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Abstract

Purpose – The purpose of this paper is to study the effect of curvature on the magnetic field distribution and no-load
rotor eddy-current losses in electric machines, particularly in the case of high-speed permanent magnet machines.
Design/methodology/approach – The magnetic field distribution is obtained using conformal mapping and eddy-
current losses are obtained using a cylindrical multilayer model. The analytical results are validated using 2D FEA.
The analytical method is based on a proportional-logarithmic conformal transformation that maps the cylindrical ge-
ometry of a rotating electric machine into a rectangular configuration without modifying the length scale. In addition,
the appropriate transformation of permanent magnet (PM) cylindrical domains into the rectangular domain is deduced.
Based on this conformal transformation a coefficient to quantify the effect of curvature is proposed.
Findings – Neglecting the effect of curvature can produce significant errors in the calculation of no-load rotor losses
when the ratio between the air-gap length and the diameter of the rotor is large.
Originality/value – The appropriate transformation of permanent magnet (PM) cylindrical domains into the rectan-
gular domain is deduced. The proportional-logarithmic transformation proposed provides an insight into the effect
of curvature on the magnetic field distribution in the air-gap and no-load rotor losses. Furthermore, the proposed
curvature coefficient gives a notion of the effect of curvature for any particular geometry without the necessity of any
complicated calculation. The case study shows that neglecting the effect of curvature underestimates the rotor eddy-
current losses significantly in machines with large gap to rotor diameter ratios.
Keywords Conformal mapping, permanent magnet machines, rotor eddy-current power loss calculation.
Paper type Research paper

1 Introduction

The traditional approach for studying the magnetic field in electric machines has been simply to cut and open the rotor
and the stator to produce a rectangular developed model neglecting curvature (Kundur, 1993; Fitzgerald et al., 2003;
Matsch, 1972). The results are acceptable for devices with great radii and small gaps. However, in small machines
with relatively large air-gaps, like permanent-magnet (PM) machines with retaining sleeves, this approximation is
not sufficiently accurate. Several parameters of the machine like torque ripple and rotor losses (Sharkh et al., 2011;
Qazalbash et al., 2014a,b; Zhu et al., 2004) are strongly affected by the harmonics of the air-gap magnetic field. In
cases like this, the results of the magnetic field calculations should be as precise as possible for accurate performance
prediction.

High accuracy of rotor loss calculation is very important as they are usually very small compared to the rating of a
machine. For example, a commercial 60 kW, 60 krpm machine would not be feasible if the losses are more than about
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100 W. Underestimating the losses would result in a design that may fail in practice. Overestimating them may result
in ruling out a feasible and maybe good machine design.

As will be seen later in this paper, the effect of curvature on rotor losses can be very significant, especially in
machines with large diameter to air-gap ratios; the curvature tends to increase losses by as much as 100% in some
case compare to those estimated using a developed rectilinear model. However, while there are many papers such as
(Rabinovici, 1996), which deals with the effect of curvature on air-gap flux distribution, a clear criterion as to when is
it reasonable to ignore the effect of curvature or its effect on rotor losses have not been addressed.

Numerical methods, like finite element analysis (FEA), can of course be used to produce accurate solutions using
the real geometry. However, they do not readily provide an insight into the effect of machine parameters on field
quantities and performance. For this reason, analytical methods remain very useful as a first approach in the design
optimisation process.

The background theory of the analytical method presented in this paper is conformal mapping. The idea is to use
complex functions to transform a complicated domain into a simpler one in which the solution is known (Gibbs, 1958;
Freeman, 1962; Zhu and Howe, 1993). To account for slotting, conformal mapping can be used to obtain a complex
permeance (CP) function that modulates the magnetic field of a slotless solution (Zarko et al., 2006; Boughrara et al.,
2009). An alternative method for obtaining the magnetic field distribution in the air-gap is the sub-domain method
(Dubas and Espanet, 2009; Wu et al., 2010; Zhu et al., 2010; Wu et al., 2011, 2012), which provides an accurate
solution but less insight because of the complicated mathematics involved.

As mentioned earlier, the problem of modelling the effect of curvature analytically was addressed by Rabinovici
(Rabinovici, 1996) using a pure logarithmic transformation that maps the circular geometry into a rectangular one,
which can be solved using conformal mapping techniques like those developed by Gibbs (Gibbs, 1958) and Freeman
(Freeman, 1962) based on the Schwarz-Christoffel transformation. However, a pure logarithmic transformation makes
the length of the new geometry completely different from the real one thus making it difficult to assess how strong the
effect of curvature is or what would happen if it is ignored. Similar methods were also used in (Zarko et al., 2006;
Boughrara et al., 2009; Markovic et al., 2004); although these produce a solution to the problem, they do not provide
a direct insight into the effect of curvature partly due to the change in the length scale.

In this paper, a proportional-logarithmic conformal transformation is proposed to transform the cylindrical geom-
etry into a rectangular one with the same length scale as the real geometry and the traditional developed rectilinear
model. The paper also derives the appropriate correct transformation of permanent magnet (PM) in the cylindrical
domain into the rectangular one, which has not been done before. The new rectangular developed model can be solved
using the usual methods. Because of the dimensional similarity of the new rectangular model and the actual machine,
the effect of curvature can be easily understood.

Carter (Carter, 1900, 1926) proposed a coefficient that shows how the effect of slotting can be modelled as an
increase of the air-gap length. This paper proposes a similar coefficient that can be applied to quantify the effect of
curvature. The coefficient is defined as the ratio of the air-gap lengths of the equivalent rectilinear model over the
air-gap length of the actual cylindrical geometry. This coefficient can be used to assess beforehand if the effect of
curvature is going to be significant and accordingly choose the appropriate model for the analysis.

The method is applied to the calculation of asynchronous harmonics and corresponding rotor losses in two exam-
plar high speed PM machines: one with a large gap to diameter ratio and hence a strong curvature effect and the other
has double the diameter and the same air-gap and a less pronounced effect of curvature.

The paper makes the following novel contributions:

• It introduces a modified conformal transformation of cylindrical geometries into rectilinear ones, which preserve
their length scale.

• A curvature coefficient, analogous to Carter’s coefficient, is defined to enable a simple assessment of the effect
of curvature.

• The paper also presents a corrected transformation of cylindrical PM domains into the rectangular domain.

• This methodology is applied to the analysis of the magnetic field in two PM machines to calculate the asyn-
chronous harmonics and associated rotor losses. The results show that the effect of curvature can be very
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significant.

2 Effect of Curvature on the Magnetic Field

Fig. 1 shows a generic cross-section of a rotating electric machine with a toothed stator and a smooth interior rotor.
One tooth-pitch, τz = sz + tz . In Fig. 1 sz is the slot pitch, tz the tooth pitch, gz the effective air-gap length, Rr
the rotor radius and Rs the stator bore radius. The effective air-gap length is defined as the magnet thickness plus the
clearance gap plus the sleeve thickness.

This generic geometry ignores the tooth tips; the top of the slot is assumed to be wide as a the slot opening and the
sides of the slots are assumed to be radial. These are reasonable assumptions if the teeth, particularly the teeth tips,
are not saturated, which is usually the case in machines of good design.

Rotor
Stator

Rs

Rr

sz

tz
2

tz
2

gz x

y

Figure 1: Cylindrical geometry studied showing only one slot in the z-plane.

The geometry in the z-plane in Fig. 1 can be transformed into that shown in the w-plane in Fig. 2 using a
logarithmic transformation, as proposed by Rabinovici (Rabinovici, 1996):

w = R ln(z) = R ln(rz) + jRθz, (1)

where R is a proportionality constant, z = rze
jθz is the complex variable in the z-plane and w the complex variable

in the w-plane.

Rabinovici implicitly sets R = 1 in the above equation. However, this makes the w-plane geometry in Fig. 2 very
different in its scale from that in Fig. 1. The vertical length of the geometry in the w-plane is equal to the angle of one
tooth pitch, i. e. τw = θτ , where θτ is the tooth pitch angle.

In this paper we propose to set R to be the radius in the middle of the air-gap, Rg = Rr +
gz
2 . This results in

tw = Rgθt = tz, (2)

sw = Rgθs = sz, (3)

τw = Rgθτ = τz, (4)
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Figure 2: Rectangular developed model obtained after the proposed transformation in the w-plane.

gw = Rg

[
ln(Rs)− ln(Rr)

]
= Rg ln

(Rs
Rr

)
, (5)

where θt and θs are the tooth and slot angles, respectively. From these equations it can be easily appreciated that all
the geometrical length parameters are exactly the same as in Fig. 1 with the exception of gw.

It can be readily shown that gw can be expressed in terms of gz and Rg as follows:

gw = Rg ln

(
Rg +

gz
2

Rg − gz
2

)
. (6)

After these first manipulations comes the first intuitive interpretation of this transformation. The geometry obtained
from the proposed conformal transformation is exactly the same as the conventional developed model that is obtained
simply by cutting and opening the machine. The only difference is in the parameter gw whose value is given by (6).

2.1 Curvature Coefficient

Carter (Carter, 1900, 1926) proposed that the effect of slotting can be represented as a modification of the air-gap
length of an equivalent slotless model. The effect of slotting on the mean air-gap flux density can be accounted by
multiplying the air-gap length, g, by Carter’s coefficient, Kc, (Krause et al., 2013) to obtain:

g′ = gKc, (7)

which is set to be the gap of of an equivalent slotless model. The mean value of the magnetic field in the slotted
machine is then calculated as

Bs−slotted =
µ0F

g′
. (8)

where F is the mmf drop across the gap, g of the slotless model. If we define Bs−slotless as the mean value of the
magnetic field of a slotless machine with a gap of g, then

Bs−slotless =
µ0F

g
. (9)

Hence

Bs−slotted =
Bs−slotless

Kc
. (10)
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It was deduced previously, from (2)-(6), that using the proposed transformation the rectangular geometry obtained
has the same basic dimensions as the original cylindrical geometry except for the air-gap length gw. Following the
same logic as that used when defining Carter’s coefficient we define a curvature coefficient KJ such that

gw = gzKJ → KJ =
gw
gz
. (11)

Applying (11) to the mean value of the magnetic field:

Bs−curv =
µ0F

gw
=
Bs−rect
KJ

. (12)

Substituting (6) into (11) we obtain the following expression for KJ as a function of the ratio between the radius
of the machine and the air-gap length, Rg/gz:

KJ =
Rg
gz

ln

( Rg

gz
+ 1

2

Rg

gz
− 1

2

)
. (13)

With this function a direct estimation of the influence of curvature on the mean value of the flux density can be
obtained without any other calculation; the effect will depend on the ratio of gz and Rg . Qualitatively this means that
if the air-gap length is large compared to the radius of the machine the effect of curvature is significant and when the
radius is considerably larger than the air-gap length this effect is negligible.

Like Carter’s coefficient, the value of KJ is close 1; it equals 1 for a rectangular geometry and it becomes slightly
grater than one as the curvature increases. The difference between the value ofKJ and 1, i.e., KJ−1, would therefore
provide a measure of the effect of curvature on the magnetic field. Fig. 3 shows a graph of (KJ − 1) in percentage
versus the ratio of the radius in the middle of the gap to that air-gap length. As expected, the influence of curvature
reduces as the radius increases for a given air-gap length. Below a ratio of about 6 the effect of curvature is expected
to be significant.

0 2 4 6 8 10
Rg/gz

0

0.5

1

1.5

2

(K
J
−
1)
,
in

%

strong influence
of curvature

weak influence of
curvature

Figure 3: The curvature coefficient, KJ , as a function of the ratio between the air-gap radius and the air-gap length.

2.2 Magnetic Field Relations

Using the conformal transformation we can obtain the relationship between the magnetic field in the z-plane and
the w-plane. With this relationship the solution of the rectilinear geometry in the w-plane can be transformed into
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a solution for the real cylindrical geometry in the z-plane. To deduce these equations the magnetic scalar potential
functions in both planes are considered (Hammond, 1999; Zarko et al., 2006; Boughrara et al., 2009; Markovic et al.,
2004, 2005):

• ϕ(x, y) ≡ scalar potential in the z-plane.

• ψ(u, v) ≡ scalar potential in the w-plane.

Each point (u, v) in w is at the same potential as the corresponding point (x, y) in z and hence the following
equation must be satisfied in all the domain:

ϕ(x, y) = ψ
(
u(x, y), v(x, y)

)
. (14)

The field intensity in the z-plane is obtained from the potential function in the z-plane, ϕ(x, y), as follows:

Hz = Hx + jHy = −∂ϕ
∂x
− j ∂ϕ

∂y
. (15)

The field intensity in the w-plane is obtained from the potential function in the w-plane, ψ(u, v), as follows:

Hw = Hu + jHv = −
∂ψ

∂u
− j ∂ψ

∂v
. (16)

Applying the rule of an implicit derivative to the scalar potential we obtain:

∂ϕ

∂x
=
∂ψ

∂u

∂u

∂x
+
∂ψ

∂v

∂v

∂x
, (17)

∂ϕ

∂y
=
∂ψ

∂u

∂u

∂y
+
∂ψ

∂v

∂v

∂y
. (18)

Combining (15), (17) and (18) it can be shown that:

Hz = Hu
∂u

∂x
+Hv

∂v

∂x
+ j
(
Hu

∂u

∂y
+Hv

∂v

∂y

)
. (19)

As potential functions are analytic they satisfy the Cauchy-Riemann conditions1 (Hammond, 1999; Zarko et al.,
2006) and hence (19) they can be rewritten as

Hz = (Hu + jHv)
(∂u
∂x
− j ∂v

∂x

)
, (20)

or

Hz = Hw

(∂u
∂x
− j ∂v

∂x

)
. (21)

Considering that w = u(x, y) + jv(x, y), then

∂w

∂x
=
∂u

∂x
+ j

∂v

∂x
=
∂w

∂z

∂z

∂x
=
dw

dz
. (22)

1The Cauchy-Riemann conditions are:
∂u

∂x
=

∂v

∂y

∂u

∂y
=

∂v

∂x
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The complex conjugate (dw
dz

)∗
=
(∂u
∂x

+ j
∂v

∂x

)∗
=
∂u

∂x
− j ∂v

∂x
. (23)

If (23) is substituted in (21), the relationship of the field intensity in the w-plane with the z-plane is then given by

Hz = Hw

(dw
dz

)∗
. (24)

Since B = µ0H in the air-gap, then

Bz = Bw

(dw
dz

)∗
. (25)

From (1):

dw

dz
=
Rg
z

=
Rg
rz
e−jθz . (26)

Substituting (26) in (25) yields

Bz = Bw

{Rg
rz
ejθz

}
= Bw

{
M(rz)e

jθz
}
. (27)

The second term of (27), e−jθz , simply rotates and aligns the radial direction in the z-plane with the horizontal
axis in the w-plane. It does not affect the value of the field and therefore it will not be analysed further.

The term M = Rg/rz can be interpreted as a scale factor, related with the flux focusing effect of curvature.
Because of the nature of the transformation the region rz < Rg is contracted, which intensifies the field. In the region
rz > Rg , which is expanded compared to the rectangular model, the field’s intensity is reduced. When rz = Rg the
magnitude of the magnetic field is not altered.

The value of the scale factor in the z-plane therefore defines the influence of curvature on the magnitude of the
magnetic field density at a particular point. Fig. 4 shows a 2D representation of M in a certain region of the z-plane.
The value of M(rz) was restricted to values between 0.5 and 1.5 because usually the value of M in the air-gap (the
region of interest in this case) is within these limits.

x/R
g

y/
R

g

M(r)
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Figure 4: M(rz) =
Rg

rz
.
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This representation of the scale factor M(rz) shows how the magnetic field is intensified in some regions and
debilitated in others. As the radius reduces, the field lines are bunched closer together, thus intensifying the magnetic
field, and vice versa. If the air-gap length is small and it is contained within the light green region the effect of
curvature will be small. However, if this is not the case the effect of the scale factor will be important – neglecting the
curvature gives inaccurate results. The proportionality constant Rg will determine the radius at which the scale factor
is unity, the radius where distances are not distorted.

3 Permanent Magnet Transformation

In this section the transformation equations for a radially magnetised permanent magnet are deduced based on the
assumption that these permanent magnets can be represented by two current sheets on the edges of each magnet
(Boules, 1985; Rabinovici, 1996), with a current density J (A/m) equal to the magnetisation of the material, J =M.
A permanent magnet in the z-plane is represented in Fig. 5 with the equivalent current sheets as dots and crosses.

Mz

x

y

diz

Figure 5: Permanent magnet in the cylindrical geometry, the z-plane.

Rabinovici (Rabinovici, 1996) proposes that a cylindrical permanent magnet in the z-plane is transformed into
a rectangular one in the w-plane such that the magnetisation Mw in the w-plane is set in such a way that the total
equivalent current is the same in both planes. The new permanent magnet in the w-plane is shown in Fig. 6. The
implicit assumption in this procedure is that the current density is constant along the edge of the magnets in the
w-plane, i.e., thatMw is constant. It is shown below that this is not correct.

Mw

u

v
diw

Figure 6: Permanent magnet in the rectangular developed geometry, the w-plane.

For the deduction of the transformation equations let us consider the permanent magnet in the z-plane shown in
Fig. 5 and the transformed magnet in the w-plane, Fig. 6. The equivalent current sheets of the magnet in the z-plane
have a constant current density Jz . To represent these two current sheets in the w-plane each differential current
point, diz , is mapped on the w-plane in the corresponding position (Rabinovici, 1996; Boughrara et al., 2009). The
magnitude of the current should be same in both planes, this is

diz = diw. (28)

Each of these differential currents can be expressed in terms of the corresponding current density

diz = Jzdrz, (29)
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diw = Jwdu. (30)

Combining (28), (29) and (30) yields

Jzdrz = Jwdu ⇒ Jw = Jz

( du
drz

)
. (31)

The derivative can be obtained from (1). The final expression of the new current density is the following:

Jw(rz) = Jz

( rz
Rg

)
=

Jz
M(rz)

. (32)

The current density of the equivalent current sheet is therefore not constant in the w-plane; it is modified by the
scale factor, M(rz).

4 Effect of Curvature on Rotor Losses

Fig. 7 shows a quarter cross-section of a high speed PM machine, which requires a sleeve to hold the magnets,
making the effective air-gap relatively large. Machine B is the same as Machine A but scaled 2:1 keeping the air-gap
parameters (magnet thickness, sleeve thickness, clearance gap and slot opening) constant. The parameters of these
machines are shown in Table 1. The slots of the machines shown in Fig. 7 have tooth tips, but as long as the teeth tips
are not saturated, which is the case in these machines, the rectangular slot model shown in Fig. 1 remains valid (Zarko
et al., 2006; Qazalbash et al., 2014a).

Yoke

Magnet

Hub

𝑅𝑅1

𝑅𝑅2

𝑅𝑅3

𝑏𝑏𝑜𝑜

Figure 7: Quarter model of the PM synchronous machines under study.

Taking into account that the permeability of the magnets and the sleeve is close to µ0 the effective air-gap length
as defined in Fig. 1 is:

gz = hm + tsl + hg = 11.12 mm, (33)

where hm is the magnet’s thickness, tsl the sleeve’s thickness and hg the clearance gap as shown in Table 1.

9



Table 1: Parameters of the Machines

ine Machine A B
ine Rated speed nrpm 65 krpm 32.5 krpm
Number of poles 2p 4 4
Number of slots Qs 12 12
Core length L 109 mm 218 mm
Rotor hub radius R1 20 mm 47.43 mm
Magnet outer radius R2 27.4 mm 54.8 mm
Stator radius R3 31.15 mm 58.55 mm
Magnet’s thickness hm 7.37 mm 7.37 mm
Sleeve’s thickness tsl 2.95 mm 2.95 mm
Clearance gap hg 0.8 mm 0.8 mm
Slot opening bo 3 mm 3 mm
Rotor hub permeability µr1 750 750
Rotor hub conductivity σr 6.7 · 106 S/m 6.7 · 106 S/m
Magnet conductivity σm 0.77 · 106 S/m 0.77 · 106 S/m
Magnet material - NdFeB NdFeB
Magnet permeability µr2 1.07 1.07
Magnet remanence Br 1.05 T 1.05 T
Magnet coercivity Hc 781 kA/m 781 kA/m
ine

The no-load magnetic field distribution in the air-gap of the slotless configuration in the rotor’s reference frame
can be expressed using complex number notation as

Bsl(θ, r) =

∞∑
n=1,3,5

Kn(r) cos(npθ) + j

∞∑
n=1,3,5

Dn(r) sin(npθ), (34)

where the coefficients Kn(r) and Dn(r) are calculated according to (Zhu et al., 2002) and j =
√
−1 is the imaginary

unit. The complex permeance (CP) function using the rotor’s reference frame is

λ(θ, r, t) = λa0 +

∞∑
m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)
+ j

∞∑
m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)
, (35)

where the coefficients λa0, λam(r) and λbm(r) are calculated using conformal mapping and ωm = ω/p is the me-
chanical speed of the rotor. Therefore, the magnetic field distribution in the slotted geometry is

B(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (36)

For the calculation of rotor losses we are interested in the amplitude of the asynchronous harmonics of the radial
component of the magnetic field, as it discussed later in section 4.1. Therefore, combining (34), (35) and (36) we
obtain:

Re
(
B(θ, r, t)

)
=

∞∑
n=1,3,5

Kn(r) cos(npθ)

[
λa0 +

∞∑
m=1,2,3

λam(r) cos
(
mQs(θ − ωmt)

)]

+

∞∑
n=1,3,5

Dn(r) sin(npθ)

[ ∞∑
m=1,2,3

λbm(r) sin
(
mQs(θ − ωmt)

)]
. (37)

For a particular mo, which means a time order k = moQs/p, we can re-arrange (37) to express explicitly each
asynchronous harmonic. For each particular no we have two asynchronous harmonics whose space orders, q1 and q2,
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and amplitudes, Bq1k and Bq2k, are calculated as follows{
q1 = k + no, and Bq1k = Kno

(r)
λamo

2 −Dno
(r)

λbmo

2

q2 = k − no, and Bq2k = Kno
(r)

λamo

2 +Dno
(r)

λbmo

2

(38)

The two machines studied in this paper have Qs = 12 slots and p = 2 pole pairs. Therefore, the time orders are 6,
12, 18...

The radial and tangential components of the CP function on the surface of the magnets are shown in Fig. 8. In this
case the value of the coefficient KJ is

KJ =

{
1.6%, for machine A
0.37%, for machine B,

(39)

which according to Fig. 3 places Machine A in the region where strong effect of the curvature is expected. Machine
B is in the region of Fig. 3 where the effect of curvature is expected to be small. This is confirmed by Fig. 8, which
shows the permeance functions of both machines with and without taking curvature into account.
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Figure 8: Complex permeance function obtained with and without curvature; radial and tangential components.

4.1 Calculation of No-Load Rotor Eddy-Current Power Loss

From the perspective of the rotor’s reference frame the slots change position with time and this variation of permeance
produces a variation of the magnetic field seen by the rotor which induces eddy current losses, which are commonly
known as tooth ripple losses (Lawrenson et al., 1966; Stoll and Sykulski, 1992). The magnitudes of the asynchronous
harmonics due to tooth permeance variation can be calculated using the CP methods outlined earlier.

The no-load rotor eddy current power loss for each asynchronous harmonic can be calculated analytically, as
described in (Sharkh et al., 2011; Qazalbash et al., 2014a,b; Zhu et al., 2004), using a cylindrical multilayer model in
which each asynchronous harmonic is represented by a current sheet at the bore of a slotless stator configuration of the
machine as shown in Fig. 9. The non-segmented magnet is modelled as a conducting region with no magnetization.
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Figure 9: Cylindrical model of the PM machine with the corresponding current sheet at the stator bore.

The current sheet density that represents an asynchronous harmonic of space order q and time order k can be
expressed as

Jqk = Ĵqk cos(qθ + kωt) = Re
(
Ĵqke

jqθejkωt
)
. (40)

The objective is to calculate the magnetic vector potential, A, in the cylindrical multilayer domain shown in Fig.
9. In cylindrical coordinates the Laplacian of A assuming no variation in the z direction is expressed as follows:

∇2A =
1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2
∂2A

∂θ2
. (41)

Since the applied current sheet is sinusoidal in space and time, and the materials operate in their linear regions; the
magnetic vector potential, A, can be expressed as a phasor as

A(θ, r, t) = R(r)ejqθejkωt, (42)

accordingly, in the steady state the Laplacian can be expressed as

∇2A = jkωµσA. (43)

Substituting (42) into (43) and re-arranging the terms we obtain

d2R(r)

dr2
+

1

r

dR(r)

dr
−
(
jkωµσ +

q2

r2

)
R(r) = 0, (44)

which is a modified Bessel differential equation whose general solution is given by

R(κr) = CIq(κr) +DKq(κr), (45)

in which κ2 = jkωµσ, C and D are constants that are determined by applying the boundary conditions, and Iq and
Kq are the modified Bessel functions of the first and second kinds of order q, respectively. The radial and tangential
components of the magnetic field distribution are calculated as follows:

Br(θ, r, t) =
1

r

∂A

∂θ
=

1

r
jq
[
CIq(κr) +DKq(κr)

]
ejqθejkωt, (46)

Bθ(θ, r, t) = −
∂A

∂r
= −κ

[
CI ′q(κr) +DK ′q(κr)

]
ejqθejkωt. (47)

The constants C and D for each layer (1 rotor hub, 2 magnets, 3 air-gap and 4 stator iron) are obtained after
applying the following boundary conditions:
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1. Br and Bθ are finite as r approaches zero,

2. Br is zero at the outer radius of the stator,

3. the radial flux density, Br, is continuous at all interfaces,

4. the tangential field intensity, Hθ, is continuous at r = R1 and r = R2,

5. at the current sheet (r = R3) there is a discontinuity in the tangential field intensity, Hθ, by the amount of the
current sheet.

Once the constants are calculated the magnetic vector potential is known in all the domain and the currents induced
in the axial direction are calculated as follows:

Jaxial = −σ
∂A

∂t
, (48)

where σ is the conductivity of the material. The total rotor losses can be obtained by integrating J2
axial/σ in all the

domain or using the Poynting vector (Qazalbash et al., 2014a,b; Zhu et al., 2004).

The amplitude of the current sheet that corresponds to each asynchronous harmonic, Ĵqk, is effectively set to
produce the same normal flux density on the surface of the magnet B̂qk (Qazalbash et al., 2014a,b, 2015). In practice,
the problem is solved by setting Ĵqk = 1 and calculating the corresponding losses Pqk1 from the solution of the
diffusion equation in the current sheet model. In addition, the Laplace equation (no eddy currents) is solved to find the
corresponding B̂qk1 when Ĵqk = 1. Finally, the actual losses for a given B̂qk (obtained from harmonic analysis using
conformal mapping in this case) are calculated as

Pqk =
( B̂qk
B̂qk1

)2
Pqk1. (49)

4.1.1 Limitations of the complex permeance and current sheet model

The current sheet model provides more than reasonable results for the calculation of eddy currents as long as the
amplitudes of the asynchronous harmonics are accurate. However, there are several simplifying assumptions.

First, the current sheet model is two-dimensional. Therefore, the end effects and the influence of the return path of
the eddy currents induced is neglected. The model does not cater for peripheral magnet segmentation.

In machines with relatively small active length to diameter ratios, it is necessary to use 3D FEA because the end
effects can be significant (Hendershot and Miller, 2010; Russell and Norsworthy, 1958). Nevertheless, the qualitative
information and the insight provided by the current sheet model in these case can be helpful to a machine designer.

The properties of the materials are assumed to be linear and isotropic. Accordingly, the methodology presented in
this paper does not take into account the saturation. Significant saturation, particularly of the tooth tip can result in
significant under estimation of the magnitudes of the asynchronous harmonics and corresponding losses (Qazalbash
et al., 2014a,b, 2015).

Finally, the effect of the induced eddy currents on the traveling flux harmonics is neglected, the eddy currents
generate travelling harmonics that interact with the slotting, which is not taken into account in the slotless current
sheet model. However, this effect is expected to be negligible due to the large air-gap and the relatively weak magnetic
field of the eddy currents (Irenji, 1998; Qazalbash, 2014).

4.2 Transient FEA

Transient FEA was used to calculate rotor losses directly. A constant mechanical speed was assigned to the rotor
without any other excitation besides the PM magnetisation. In this case, the element size was determined such that
there are at least 3 elements per skin depth. The model had around 100 thousand elements. for accurate calculation
of eddy currents. The time step was set to 0.5 µs such that there are at least 10 time steps per slot opening so that
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the slotting permeance variation is captured at a high resolution. Mesh size and time step independence were also
confirmed.

Figure 10: Eddy current density at a particular instant of time obtained using transient FEA, Machine A shown as an
example.

Fig. 10 shows the eddy current density obtained from the transient FEA simulation. It can be appreciated that most
of the rotor losses are concentrated in the magnets.

4.3 Results and Discussion

Fig. 11 shows the waveform of the radial component of the no-load magnetic field distribution on the surface of the
magnet at a particular rotor position using two-dimensional static FEA, CP function with curvature and CP function
without curvature. It can be appreciated in Fig. 11 that in machine A the CP function without curvature underestimates
the amplitude of the tooth-ripple harmonics. On the other hand, in the case of machine B; which has smaller KJ , this
effect is less significant.

Ignoring the effect of curvature underestimates the amplitude of the asynchronous harmonics in both cases as
shown in Fig. 12. However, in Machine A this effect is more significant.

The no-load rotor losses obtained using transient FEA are shown in Fig. 13. Table 2 shows a comparison of the
average no-load rotor losses obtained with the linear transient FEA, the CP function taking into account the effect of
curvature and the CP function neglecting the effect of curvature for the machines under study running at rated speed.
The no-load rotor losses were calculated using the current sheet model described in section 4.1.

Table 2: No-load rotor power loss

ine Machine A B
ine Transient FEA ≈ 25.4 W 76.2 W
Model with curvature ≈ 22.7 W 87.0 W
Model without curvature ≈ 12.7 W 67.0 W
ine

The no-load rotor losses obtained using the CP function without curvature are significantly lower than the result
obtained using FEA. On the other hand, the value obtained when the effect of curvature is taken into account agrees
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(a) Machine A.
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Figure 11: Magnetic field distribution in the air-gap obtained using two-dimensional static FEA and the CP function
with and without curvature.
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Figure 12: Amplitudes of significant magnetic induction space harmonics, Machine A is running at 65 000 rpm and
Machine B is running at 32 500 rpm.
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Figure 13: No-load rotor power loss at rated speeds calculated using transient FEA.

reasonably well with FEA. In Machine A, the model with curvature underestimates the losses by a factor of 0.89
compared to the model without curvature, which underestimates losses by a factor of 0.5. In machine B, the model
with curvature overestimates the losses by a factor of 1.14 and in the model without curvature underestimates the
losses by a factor of 0.88. This is consistent with the fact that the curvature coefficient is higher in Machine A than in
Machine B and as expected the discrepancy between the results neglecting curvature and FEA is greater in Machine
A.

The difference between FEA and the model with curvature may be explained to be due to numerical errors as well
as the assumptions made in the current sheet model as discussed in section 4.1.1.

5 Conclusion

In this paper the influence of curvature on the magnetic field distribution and no-load rotor losses in slotted rotating
PM electric machines has been investigated. The proposed proportional logarithmic transformation provides an insight
into the effect of curvature because it preserves the length scale. The curvature coefficient, KJ , indicates when the
effect of curvature is going to be important.

The value of the curvature coefficient, KJ which is the ratio of the air-gaps in the rectangular and cylindrical
models in the w and z-planes, respectively, tends to be small. However, this small change of the air-gap length in the
w-plane has a significant influence in the amplitude of the asynchronous harmonics of the magnetic field distribution
as shown in Fig. 12.

The case study presented in Section 4 illustrates how strong the effect of curvature can be in machines with a large
effective air-gap, particularly on rotor losses. Ignoring the effect of curvature grossly underestimates the no-load eddy
current losses in the rotor in Machine A with large ratio of air-gap length to radius ratio. On the other hand, the effect
of curvature is less significant in Machine B as anticipated from the smaller value of KJ .
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