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Abstract

We study memory lifetimes in a perceptron-based framework with binary

synapses, using the mean first passage time for the perceptron’s total input

to fall below firing threshold to define memory lifetimes. Working with the

simplest, memory-related model of synaptic plasticity, we may obtain exact re-

sults for memory lifetimes or, working in the continuum limit, good analytical

approximations that afford either much qualitative insight or extremely good

quantitative agreement. In one particular limit, we find that memory dynam-

ics reduce to the well-understood Ornstein-Uhlenbeck process. We show that

asymptotically, the lifetimes of memories grow logarithmically in the number of

synapses when the perceptron’s firing threshold is zero, reproducing standard

results from signal-to-noise ratio analyses. However, this is only an asymp-

totically valid result, and we show that extending its application outside the

range of its validity leads to a massive over-estimate of the minimum num-

ber of synapses required for successful memory encoding. In the case that

the perceptron’s firing threshold is positive, we find the remarkable result that

memory lifetimes are strictly bounded from above. Asymptotically, the de-

pendence of memory lifetimes on the number of synapses drops out entirely,

and this asymptotic result provides a strict upper bound on memory lifetimes

away from this asymptotic regime. The classic, logarithmic growth of mem-

ory lifetimes in the simplest, palimpsest memories is therefore untypical and

non-generic: memory lifetimes are typically strictly bounded from above.
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1 Introduction

Accumulating evidence suggests that synaptic strengths may take only a fi-

nite, discrete set of values (Petersen et al., 1998; Montgomery and Madison,

2002, 2004; O’Connor et al., 2005a, 2005b, 2007) or change only in discrete

steps (Yasuda et al., 2003; Bagal et al., 2005; Sobczyk and Svoboda, 2007);

the former implies the latter although the converse need not follow. Imposing

biophysically-motivated bounds on synaptic strengths or employing discrete-

strength, typically binary-strength synapses in mathematical models of mem-

ory formation overcomes the catastrophic forgetting associated with the stan-

dard Hopfield network (Hopfield, 1982; Hertz et al., 1991), instead turning

memory systems into palimpsests, which learn new memories by forgetting old

ones (Nadal et al., 1986; Parisi, 1986; Tsodyks, 1990; Amit and Fusi, 1994).

Such models, however, run straight onto the horns of the plasticity-versus-

stability dilemma (Abraham and Robins, 2005), with the fidelity of the recall

of synaptically-stored memories in the simplest models typically falling expo-

nentially fast as changes in synapses’ strengths induced by ongoing memory

storage degrade already-stored memories.

The determination of memory lifetimes in feed-forward or recurrent net-

works with binary-strength synapses has become an area of considerable inter-

est because excessively short memory lifetimes may invalidate models as viable

candidates for at least long-term memory storage, either in real brains or in

electronic hardware. Critical to this determination is the very definition of the
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lifetime of a memory. The simplest and perhaps by-now classic definition of

memory lifetime is based on a signal-to-noise ratio (SNR) analysis of a memory

(Tsodyks, 1990; Amit and Fusi, 1994; Brader et al., 2007) although alterna-

tive approaches exist, including for example signal detection theory (Leibold

and Kempter, 2006, 2008) and retrieval probabilities (Huang and Amit, 2010,

2011). In an SNR analysis in a feed-forward, perceptron system, the ratio of

the mean (unthresholded) output of a neuron to its standard deviation in re-

sponse to the memory of interest is used to define that memory’s lifetime: the

point at which the SNR drops to unity is taken to define the point in time at

which the memory has been forgotten. The dependence of this lifetime on the

perceptron’s number of synapses, N , essentially determines the efficiency of

the memory system. For a palimpsest in the simplest models, this dependence

is only logarithmic (Tsodyks, 1990).

SNRs may, however, be problematic for a variety of reasons. First, there

is a degree of arbitrariness is setting the SNR threshold of unity. Second,

by considering only the variance as a source of fluctuations that can help to

drive the SNR below unity, potentially important higher-order fluctuations are

ignored. Third, SNR memory lifetimes differ depending on whether we con-

sider a discrete-time formulation or a continuous-time formulation for memory

storage (Elliott and Lagogiannis, 2012). Finally, the SNR is somewhat of an

abstraction divorced from a neuron’s firing characteristics: as a quantity in-

volving statistics of different orders, it is hard to relate an SNR directly to any

particular property of a system.
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Here, as an alternative to SNRs, we consider defining memory lifetimes

by the mean first passage time (MFPT) for a perceptron’s (unthresholded)

output to drop below firing threshold. This definition is free from arbitrari-

ness; it includes all possible sources of fluctuations; MFPTs, as we shall show,

are identical in discrete-time and continuous-time formulations. Perhaps more

important, the first passage time for a perceptron’s total input to fall below

firing threshold is a quantity of direct and immediate relevance to the neuron:

it can, for example, be regarded as a direct read-out of membrane integra-

tive dynamics, determining the first point in time at which re-presentation of

a stored memory will fail to induce the perceptron to fire, thus defining the

point at which the neuron has forgotten the memory. The mean first passage

time is then a natural quantity to consider, averaging over many realisations

but without mixing up statistics of different orders. By using an MFPT defi-

nition of memory lifetimes in the simplest, memory-related model of synaptic

plasticity, we show that for zero firing threshold, we indeed obtain asymp-

totic logarithmic dependence of memory lifetimes on the number of synapses.

However, this is only an asymptotic result and we show that it typically mas-

sively over-estimates the minimum number of synapses required for successful

memory storage. For a non-zero firing threshold, we find the remarkable re-

sult that even this rather feeble logarithmic asymptotic behaviour is broken.

Specifically, we find that for any positive firing threshold, for N large enough,

memory lifetimes asymptote to a constant, independent of N . For positive

firing thresholds, therefore, memory lifetimes are strictly bounded from above
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for all N .

The remainder of this paper is organised as follows. In section 2 we set

up the problem and establish our basic notation. In the following section, we

derive generic results for MFPT memory lifetimes, for both discrete-time and

continuous-time formulations. In section 4 we introduce and define the simplest

possible, memory-related model of synaptic plasticity (Tsodyks, 1990). Next,

restricting to this specific model, we compute exact transition probabilities and

MFPTs. In section 6 we take the continuum limit of this model, in which the

perceptron’s output is regarded as a continuous- rather than discrete-valued

variable. Doing so enables us to develop an approximation that provides much

qualitative understanding for comparatively little analytical effort. In section 7,

we formulate continuum MFPTs in terms of an integral equation involving

jump processes and consider two methods for solving this equation by making

approximations to the kernel. We then compare analytical, numerical and

simulation results in section 8. Finally we discuss our approach and results

and consider future possible extensions to more complicated models of synaptic

plasticity.

2 Preliminaries

Consider a single neuron or perceptron with N synapses of strengths Si(t) ∈

{−1, +1}, i = 1, . . . , N , at time t ≥ 0. With inputs xi, i = 1, . . . , N , through
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these N synapses, the neuron’s output is taken to be of the standard form

hx(t) =
1

N

N∑

i=1

xi Si(t), (2.1)

where the factor 1/N is a normalisation term that may be dropped under a

rescaling of the neuron’s firing threshold. For simplicity, we do not consider a

bias because it may also be absorbed into a re-definition of the neuron’s firing

threshold. The inputs xi are assumed without loss of generality to have two

levels, xi ∈ {−1, +1}, with xi = −1 corresponding to low input and xi = +1

corresponding to high input (see Hertz et al., 1991). The two strength states

±1 for a synapse are interpreted as weak (−1) and strong (+1) rather than

inhibitory and excitatory, without loss of generality. We may, for example,

write S ′
i(t) = 1

2
[1 + Si(t)] ∈ {0, 1} and work with S ′

i(t) instead of Si(t). A bias

of the form − 1
N

∑N
i=1 xi would then be induced. When the inputs xi have zero

mean and unit variance, this induced bias has zero mean and variance 1/N and

so is essentially irrelevant; it may, in any event, be absorbed into a re-definition

of the neuron’s firing threshold. The neuron’s actual output is set to +1 or

−1 according to whether hx(t) > θ or hx(t) ≤ θ, respectively, although we do

not explicitly threshold the output in the following and we will simply refer

to hx(t) in Eq. (2.1) as the neuron’s output, or sometimes, when we draw the

distinction, its total input.

The neuron is required to store a set of “synaptic memories” ξα, where α =

0, 1, 2, . . . indexes these memories. Any particular memory ξα constitutes an

input x to the neuron at some defined time and induces changes in the synaptic
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strengths that lead to the storage of ξα. The memories ξα have components

ξα
i = ±1 and these are assumed for simplicity to be independent both over

i = 1, . . . , N and across the different memories α = 0, 1, 2, . . .. We need not,

for a single perceptron, specify a target neuronal output hα ∈ {−1, +1} for

each memory input vector +ξα since for hα = −1 we may without loss of

generality reverse the sign of the input vector, to −ξα, instead. The target

outputs are therefore always hα = +1. With this convention, the component

ξα
i is the synaptic plasticity induction signal to synapse i upon presentation

of memory α, with ξα
i = +1 corresponding to a strengthening or potentiating

induction signal and ξα
i = −1 corresponding to a weakening or depressing

induction signal.

For binary-valued synapses, the neuron is a palimpsest, storing newer mem-

ories by forgetting older ones (cf. Nadal et al., 1986; Parisi, 1986), overcom-

ing the catastrophic forgetting associated with unbounded, continuous-valued

synapses in the Hopfield network (Hopfield, 1982; Hertz et al., 1991). The

lifetime of a memory may be gauged by the period for which the memory can

be successfully retrieved after its initial storage. Often this is defined via an

SNR, a ratio of the neuron’s mean output to the standard deviation in the

neuron’s output. Neither quantity is available to the neuron itself and so an

SNR is somewhat of an abstraction. However, the neuron’s (unthresholded)

output hξα(t) for any particular memory ξα is directly available, and we may

instead define a memory’s lifetime as the average duration for which hξα(t) > θ

after storage, i.e. as the MFPT for hξα(t) to fall below firing threshold. Such
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an approach has the advantage of considering all possible fluctuations leading

to the neuron’s output falling below threshold and not just the fluctuations

due to the variance.

In a discrete-time framework, memory α is stored at discrete time step α,

while in a continuous-time framework, memories are stored at times determined

by a Poisson process of rate r, although the first memory, ξ0, is always stored

at time t = 0 s. In either case, we track the particular memory ξ0 stored at

t = 0 s and determine its lifetime; we refer to this memory as the tracked

memory and the neuron’s subsequent output hξ0(t) as the tracked memory

signal, or just the memory signal. We write h(t) = hξ0(t) for simplicity. Since

we are not interested in the lifetime of any particular realisation of a pattern

ξ0, we will typically average over all possible initial patterns ξ0.

Model synapses may or may not possess internal, plasticity-related states,

where any internal states may be modified by plasticity induction signals and

may affect the subsequent expression of plasticity by synapses. For generality,

in this and in the following section we consider that a synapse may possess

such internal states, although in later sections we will restrict for analytical

simplicity to synapses without internal structure. Let Si(t) be a vector that

denotes the joint probability distribution of both the strength of synapse i and

its current internal state, at time t. We will assume that any internal states

are symmetric between weak and strong states, and that the first set of, say,

s entries in Si(t) correspond to the distribution of internal states when the

synapse is weak and the second set of s entries to the distribution when the
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synapse is strong. Writing

n− = (1, . . . , 1︸ ︷︷ ︸
s

| 0, . . . , 0︸ ︷︷ ︸
s

)T, (2.2)

n+ = (0, . . . , 0︸ ︷︷ ︸
s

| 1, . . . , 1︸ ︷︷ ︸
s

)T, (2.3)

where a superscript T denotes the transpose, the probability that synapse i is

strong or weak at time t is then simply

Prob[Si(t) = ±1] = nT
±Si(t), (2.4)

i.e. we just sum over the relevant part of the joint probability distribution to

integrate out the internal states.

Let M+ be the 2s× 2s matrix that represents the transitions in state Si(t)

when the synapse is subjected to a potentiating induction signal, and M− that

when subjected to a depressing induction signal. For the storage of ξ0, the

synapses are subjected to definite inductions signals, either +1 or −1, acting

on the asymptotic or equilibrium distribution for Si(t), which we shall discuss

later for a specific model of synaptic plasticity. For subsequent memory storage,

however, ξα
i , α > 0, may be +1 with probability 1/2 or −1 with probability

1/2. The state transition matrix for the storage of each subsequent memory

at any synapse is then just

M =
1

2
(M+ + M−) . (2.5)

Changes in strength and internal state upon the presentation of memory α are

assumed to be independent across all synapses, i.e. synapse i responds only to
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its own local induction signal ξα
i . Thus, the operator that represents the si-

multaneous updating of all N synapses upon subsequent memory presentation

is the tensor product operator

MN = M ⊗ · · · ⊗ M︸ ︷︷ ︸
N

. (2.6)

This operator acts on the product space of states of each synapse, which we

may write as S(t) = S1(t) ⊗ · · · ⊗ SN(t), for a definite ordering of synapses.

3 Mean First Passage Time for Perceptron

Output

With these preliminaries completed, we may now derive an expression for the

MFPT for hξ0(t) to fall below θ, which we denote by τmfpt

(
ξ0

)
, in both discrete

time and continuous time. The MFPTs for discrete-time and continuous-time

processes are, up to a simple multiplicative rate factor, identical, unlike mem-

ory lifetimes obtained from SNR calculations. To derive an expression for the

MFPT, we must project out of MN any transitions that lead to hξ0 ≤ θ, or

retain only those transitions maintaining hξ0 > θ. Let

P− =


 Is Os

Os Os


 and P+ =


 Os Os

Os Is


 , (3.1)

with these matrices acting on Si(t), projecting out only weak states (P−) and

strong states (P+), where Is is the s × s identity matrix and Os is the s × s

zero matrix. These are projection matrices satisfying (P+)2 = P+, (P−)2 = P−
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and P+P− = O2s, with O2s being the 2s × 2s zero matrix. Define

Ph>θ =
∑

permutations: h>θ

P± ⊗ · · · ⊗ P±︸ ︷︷ ︸
N

, (3.2)

where we sum over that subset of the 2N possible tensor products that enforce

hξ0 > θ. For example, for N = 4 and θ = 0, with say ξ0 = (+1, +1,−1,−1)T,

this operator would be

Ph>0 = P+ ⊗ P+ ⊗ P− ⊗ P− ← h ≡ +1

+ P− ⊗ P+ ⊗ P− ⊗ P− ← h ≡ +1/2

+ P+ ⊗ P− ⊗ P− ⊗ P− ← h ≡ +1/2

+ P+ ⊗ P+ ⊗ P+ ⊗ P− ← h ≡ +1/2

+ P+ ⊗ P+ ⊗ P− ⊗ P+, ← h ≡ +1/2

with the other 16−5 = 11 permutations projecting onto the forbidden hξ0 ≤ 0

states. Because each permutation is distinct in Ph>θ, it is clear that Ph>θ is

also a projection operator, i.e. (Ph>θ)
2 = Ph>θ, because any cross terms in the

product vanish due to P+P− = O2s. The transition operator that implements

synaptic updates under memory storage while enforcing only hξ0 > θ to hξ0 > θ

transitions without hξ0 dropping below threshold is then just Ph>θMN . Let

the initial state of all N synapses after the storage of ξ0 be P
(
ξ0

)
. This may

contain states corresponding to hξ0 ≤ θ, and they must be removed too, so the

initial, allowed state is just Ph>θP
(
ξ0

)
. The state after m subsequent memory

storage events is then

(Ph>θMN)m [
Ph>θP

(
ξ0

)]
≡ (Ph>θMNPh>θ)

m [
Ph>θP

(
ξ0

)]
. (3.3)
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where we have used the projection property (Ph>θ)
2 = Ph>θ to write the hξ0 > θ

to hξ0 > θ transition operator as Ph>θMNPh>θ rather than Ph>θMN because, as

an operator, Ph>θMNPh>θ contains fewer non-zero entries and is thus somewhat

easier to handle. With n = n+ + n− and writing

N = n ⊗ · · · ⊗ n︸ ︷︷ ︸
N

, (3.4)

the probability that hξ0 > θ after m subsequent memory encoding events

without ever having dropped below threshold is

pm = N T (Ph>θMNPh>θ)
m [

Ph>θP
(
ξ0

)]
. (3.5)

Because Ph>θ 6= I2s ⊗ · · · ⊗ I2s, pm → 0 as m → ∞, i.e. it is inevitable

that hξ0 will eventually drop below threshold. As a sequence, p0, p1, p2, . . .

is monotonic decreasing, and the “leak” pm − pm+1, m ≥ 0, is the probability

that hξ0 falls below threshold when memory α = m + 1 is stored. The MFPT

for the discrete-time process is then just

τmfpt

(
ξ0

)
=

∞∑

m=0

(m + 1) (pm − pm+1)

=
∞∑

m=0

pm (3.6)

= N T

[ ∞∑

m=0

(Ph>θMNPh>θ)
m

]
[
Ph>θP

(
ξ0

)]

= N T
[
(I2s ⊗ · · · ⊗ I2s) − (Ph>θMNPh>θ)

]−1 [
Ph>θP

(
ξ0

)]
.

(3.7)

In continuous time, the memories ξα, α > 0, are presented at times determined

by a Poisson process of rate r. The probability of precisely m memories being
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presented in time t is just e−rt(rt)m/m! and the probability that hξ0 > θ after

a time t without ever having dropped below threshold is given by the Poisson

sum

p(t) =
∞∑

m=0

(rt)m

m!
e−rtpm, (3.8)

with −dp(t)/dt ≥ 0 corresponding to the “leak” at time t. For the continuous-

time process, the MFPT is then

τmfpt

(
ξ0

)
= −

∫ ∞

0

dt t
dp(t)

dt

=

∫ ∞

0

dt p(t)

=
∞∑

m=0

pm

∫ ∞

0

dt
(rt)m

m!
e−rt

=
1

r

∞∑

m=0

pm. (3.9)

Thus, up to the overall factor of the rate r, the MFPTs are identical in both

discrete time and continuous time, regardless of the model of synaptic plasticity

encoded in the underlying transition matrix M. This result does not in fact

depend on a specifically Poisson process as the continuous-time process. In

Appendix A we show that the result carries over to any continuous-time process

in which the waiting times between memory storage events are governed by

some common probability density function that need not be the exponential

distribution.

In principle, in order to determine the MFPT for the neuron’s output in re-

sponse to memory ξ0 to fall below firing threshold, we simply have to compute

the inverse of the tensor product operator in Eq. (3.7). In practice, however,

such a computation is extremely hard if not intractable for all but the most
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trivial of problems. For θ = 0, for example, the projection operator Ph>0

contains 2N−1 terms for N odd and 2N−1 − 1
2

NCN/2 terms for N even, where

NCN/2 is a binomial coefficient, and the tensor product operator to be inverted

does not factorise over the underlying synaptic space (as we might expect, be-

cause hξ0(t) is a function over all synapses). Perhaps the simplest strategy is to

“flatten” the product space, although the resulting flattened matrices become

(2s)N × (2s)N , and except for very small N , they will be unmanageably large.

Another strategy is to work directly in the transitions in the discrete values of

the neuron’s output, which ranges from −1 to +1 in steps of 2/N . Matrices

would then be only (N + 1)× (N + 1). However, with such a collapsing of the

underlying synaptic dynamics down to just hξ0 transitions, these transitions

become non-Markovian except for synapses without internal states. To com-

pute memory lifetimes from a MFPT approach, we must therefore typically

develop approximation methods, use numerical methods, or resort to simula-

tions to extract results. Here, we will restrict to a particular model of synaptic

plasticity for which essentially exact results may be obtained, or for which

good, controlled approximations are available.

We will compare memory lifetimes determined from MFPTs to those from

SNRs. With SNRs, a memory is typically deemed to have been forgotten when

the SNR reaches a value of unity. At this point, the memory signal becomes

indistinguishable from zero at the one standard deviation level. Thus, to enable

comparison, we will set θ = 0 and therefore require hξ0 > 0; hξ0 = 0 is the

point at which the memory is forgotten.
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4 Stochastically Updating Synapses

The simplest, memory-related model of synaptic plasticity to consider is one in

which synapses stochastically express synaptic plasticity, with probability p, in

response to a plasticity induction signal (Tsodyks, 1990). Such a synapse does

not possess any internal, plasticity-related states, and so the analysis in this

case is greatly simplified. The single synapse transition matrices are simply

M− =


 1 p

0 1 − p


 , M+ =


 1 − p 0

p 1


 , M =


 1 − 1

2
p 1

2
p

1
2
p 1 − 1

2
p


 .

(4.1)

Since

M =
1

2


 1 1

1 1


 +

1

2
(1 − p)


 1 −1

−1 1


 , (4.2)

we have that

M
m → 1

2


 1 1

1 1


 (4.3)

as m → ∞ and so Si(t) → A ≡ 1
2
(1, 1)T as t → ∞. In equilibrium, then,

Prob[Si(t) = ±1] = 1/2 so that both strength states are equiprobable. It is

against this background equilibrium distribution of synaptic strengths given

by A ⊗ · · · ⊗ A that the definite initial memory ξ0 is stored. Now, if synapse

i receives a ξ0
i = +1 signal, then the distribution of its strengths immediately

after storage is M+A = 1
2
(1− p, 1 + p)T, while for ξ0

i = −1, this distribution is

M−A = 1
2
(1+p, 1−p)T. A synapse with ξ0

i = +1 contributes to h(t) positively,

while a synapse with ξ0
i = −1 contributes negatively. A weak synapse with

ξ0
i = −1 therefore contributes positively to h(t) while a strong synapse with

ξ0
i = −1 contributes negatively, i.e. for ξ0

i = −1, the roles of strong and weak
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strengths states are reversed in terms of their contributions to h(t). Defining

S̃i(t) = ξ0
i Si(t), with h(t) = 1

N

∑N
i=1 S̃i(t), and defining S̃i(t) = ξ0

i Si(t), the

initial distribution of S̃i for ξ0
i = +1 immediately after the storage of ξ0 is

1
2
(1 − p, 1 + p)T, and the initial distribution of S̃i for ξ0

i = −1 immediately

after storage is also 1
2
(1 − p, 1 + p)T. These distributions are identical, so

h(t) is the sum over N independent, identically-distributed random variables

immediately after the storage of ξ0. Moreover, each synapse is subsequently

exposed to the same transition matrix M at later memory storage steps. Thus,

h(t) remains for all time the sum over N independent, identically-distributed

random variables. In order to avoid the repeated phrase, “immediately after

the storage of ξ0”, we shall consider that ξ0 is stored at time t = 0− s, so

that t = 0 s is the time immediately after storage and we can just refer to the

state at t = 0 s. In the following, h(t) refers to hξ0 with memories stored as a

continuous-time process, while hn will be understood to refer to hξ0(t = n s)

with memories stored at discrete, unit time steps. We will, however, often use

h0 and h(0) interchangeably, for simplicity of notation.

5 Exact Transition Probabilities for h

We may use the observation that h(t) is the sum over N independent, ident-

ically-distributed random variables S̃i(t) to calculate directly the mean and

variance of the memory signal for an SNR determination of memory lifetimes

(see Elliott and Lagogiannis, 2012). However, we proceed somewhat more gen-
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erally using an approach that allows us also to obtain the MFPT determination

of memory lifetimes. We do this by working directly with the transitions in

the values of h(t), or hn, rather than the transitions in individual synaptic

strengths.

If h(t) = 2j/N − 1, then there are precisely j of the S̃(t) variables taking

values +1 and N − j taking values −1. For the initial state at t = 0− s, then,

we immediately have

Prob

[
h0 =

2j

N
− 1

]
= NCj

(
1 + p

2

)j (
1 − p

2

)N−j

, (5.1)

with mean E[h0] = p and variance Var[h0] = (1−p2)/N . If hn = 2j/N −1 and

hn+1 = 2i/N −1, then by considering the possible transitions of the j synapses

with S̃ = +1 and the N − j synapses with S̃ = −1, we see that the transition

probability from hn = 2j/N − 1 to hn+1 = 2i/N − 1 is

Prob

[
hn+1 =

2i

N
− 1

∣∣∣∣ hn =
2j

N
− 1

]

=

j∑

k=0

jCk

(p

2

)k (
1 − p

2

)j−k
N−jCi−j+k

(p

2

)i−j+k (
1 − p

2

)N−i−k

, (5.2)

where the standard conventions regarding the binomial coefficients apply, i.e.

aCb = 0 for b < 0 and b > a. Eq. (5.2) gives the one-memory-encoding-

step transition matrix elements for h. We denote this matrix by T. It is

homogeneous, not depending on the encoding step n.

In Appendix B, using generating functions we compute T
m, giving the

m-memory-encoding-step transition matrix. From T
m, we can obtain the con-

ditional and unconditional means and variances in the memory signal after m
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subsequent memories have been stored. Defining q = 1 − p, we obtain

E [hm|h0] = qm h0, (5.3)

Var [hm|h0] =
1 − q2m

N
, (5.4)

and

E [hm] = qm p, (5.5)

Var [hm] =
1 − q2m p2

N
=

1 − E [hm]2

N
. (5.6)

The form for Var [hm] indicates the absence of any covariance terms between

pairs of synapses’ strengths. In continuous time, the equivalent results are

E [h(t)|h(0)] = e−(1−q)rt h(0), (5.7)

Var [h(t)|h(0)] =
1 − e−(1−q2)rt

N
+

[
e−(1−q2)rt − e−2(1−q)rt

]
h(0)2, (5.8)

and

E [h(t)] = e−(1−q)rt p, (5.9)

Var [h(t)] =
1 − e−2(1−q)rt p2

N
+

(
1 − 1

N

)
p2

[
e−(1−q2)rt − e−2(1−q)rt

]

=
1 − E [h(t)]2

N
+

(
1 − 1

N

)
p2

[
e−(1−q2)rt − e−2(1−q)rt

]
. (5.10)

The second term in the expression for Var [h(t)] reflects the continuous-time-

induced covariance between changes in pairs of synapses’ strengths, despite

their independent updates [see Elliott and Lagogiannis (2012) for a full dis-

cussion of this phenomenon]. We may use these discrete- and continuous-time

results to obtain SNR memory lifetimes. The presence of a covariance term in
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Var [h(t)] and its absence in Var [hm] lead to different SNR lifetimes depending

on whether we use a continuous-time approach or a discrete-time approach. For

longer lifetimes, the difference is usually negligible, but for shorter lifetimes, it

can be significant.

In the underlying tensor product space, the one-memory-encoding-step op-

erator is MN = M⊗ · · · ⊗M, while in terms of the transitions in the neuronal

output h itself, the one-memory-encoding-step matrix is T. We may therefore

use T to rewrite τmfpt in Eq. (3.7) or Eq. (3.9), removing the tensor prod-

ucts. The equivalent projection operator onto states with h > 0 is simply the

(N + 1) × (N + 1) diagonal matrix,

Ph>0 = diag
{

0, . . . , 0︸ ︷︷ ︸
h≤0 states

| 1, . . . , 1︸ ︷︷ ︸
h>0 states

}
, (5.11)

where we consider a canonical ordering of entries for h = 2i/N − 1 for i =

0, . . . , N . There are either (N + 1)/2 or N/2 entries of unity on the diagonal

of Ph>0 depending on whether N is odd or even, respectively. Writing P (h0)

as a vector denoting a particular, definite initial value for h0, so with an entry

of unity at position i = N
2
(1 + h0) and entries of zero elsewhere, and writing ν

as an (N + 1)-dimensional vector with entries of unity everywhere, Eq. (3.7)

translates directly into

τmfpt (h0) = νT
[
IN+1 − Ph>0T Ph>0

]−1
[Ph>0P (h0)] , (5.12)

and of course, the continuous-time form in Eq. (3.9) is identical but with a rate

factor present. Even for sizeable values of N , up to around 10,000, the inverse

matrix in Eq. (5.12) may be computed numerically. With the form Ph>0T Ph>0
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rather than Ph>0T, the dimensionality of the problem is reduced, for odd N

for example, from (N + 1) × (N + 1) to (N + 1)/2 × (N + 1)/2.

We may obtain an alternative expression for τmfpt(h0). Writing T++ =

Ph>0T Ph>0 as a convenient short-hand, we have that

τmfpt (h0) = νT
[
IN+1 + T++ + (T++)2 + · · ·

]
[Ph>0P (h0)]

= νT
Ph>0P (h0)

+ νT
[
IN+1 + T++ + (T++)2 + · · ·

]
T++ [Ph>0P (h0)] .

(5.13)

The vector T++ [Ph>0P (h0)] is the distribution of states of h after one ad-

ditional memory has been stored, with h ≤ 0 states projected out. Hence,

assuming that h0 > 0, we may write

τmfpt (h0) − 1 =
∑

h′>0

τmfpt (h′) Prob [h′|h0] (5.14)

as an alternative form, with Prob [h′|h0] given by Eq. (5.2). A generalisation

of this form will be extremely useful later.

6 Continuum Limit: Memory Nearly on a

Spring

If N is large enough, then we may consider a continuum limit for the neuronal

output h(t) or hm. This consists merely of replacing the binomial distribution

by the Gaussian distribution for N large enough. In this limit, we must have

21



a Gaussian distribution with mean and variance given by Eqs. (5.5) and (5.6)

for m = 0 for the initial distribution of h0, so

Prob [h0] =

√
N

2π(1 − p2)
exp

[
−N(h0 − p)2

2(1 − p2)

]
, (6.1)

and a conditional Gaussian distribution with conditional mean and variance

given by Eqs. (5.3) and (5.4) for m = 1 for the transition probabilities, so

Prob [hn+1|hn] =

√
N

2π(1 − q2)
exp

[
−N(hn+1 − q hn)2

2(1 − q2)

]
. (6.2)

We may directly confirm that this limit respects the Markovian property,

namely

∫
dhn+1Prob [hn+2|hn+1] Prob [hn+1|hn] = Prob [hn+2|hn] , (6.3)

and so in general,

Prob [hn+m|hn] =

√
N

2π(1 − q2m)
exp

[
−N(hn+m − qmhn)2

2(1 − q2m)

]
, (6.4)

with

Prob [hm] =

√
N

2π(1 − q2mp2)
exp

[
−N(hm − qmp)2

2(1 − q2mp2)

]
. (6.5)

We may in principle compute Prob [h(t)|h(0)] and Prob [h(t)] via Poisson sum-

mation over m (with n = 0) in Eqs. (6.4) and (6.5), but the sums cannot be

evaluated in closed form. As we already know E [h(t)|h(0)] and Var [h(t)|h(0)]

from Eqs. (5.7) and (5.8), it is extremely tempting to write

Prob [h(t)|h(0)]
?
=

√
1

2πVar [h(t)|h(0)]
exp

{
−

[
h(t) − E [h(t)|h(0)]

]2

2Var [h(t)|h(0)]

}
.

(6.6)
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However, this cannot be correct since the only stationary, Markovian, Gaussian

process is (essentially) the Ornstein-Uhlenbeck (OU) process (see, for exam-

ple, van Kampen, 1992) and if Eq. (6.6) were correct, then we would have

another distinct such process. We may, though, consider the limit of small p

in Eqs. (5.7) and (5.8) so that we can write 1 − q2 = 1 − (1 − p)2 ≈ 2 p. Then

E [h(t)|h(0)] = e−prt h(0),

Var [h(t)|h(0)] ≈ 1 − e−2prt

N
, (6.7)

and we recognise these as precisely the conditional mean and variance of an

OU process, so that we may write

Prob [h(t)|h(0)] ≈
√

N

2π(1 − e−2prt)
exp

{
−N [h(t) − e−prth(0)]

2

2(1 − e−2prt)

}
. (6.8)

with

Prob [h(t)] ≈
√

N

2π(1 − e−2prtp2)
exp

{
−N [h(t) − e−prtp]

2

2(1 − e−2prtp2)

}
. (6.9)

The OU process may be thought of as describing the dynamics of a spring

subject to random, Gaussian impulses. Thus, in this limit with p ≪ 1 and

N ≫ 1, the initial memory encoding event at t = 0− s extends the spring

to a length, on average, of p units, and the restoring force returns the spring

back to zero length but subject to random fluctuations, giving an asymptotic

variance of 1/N .

The transition probability for this OU process satisfies the backward Kol-

mogorov or Fokker-Planck equation,

[
∂

∂(rt)
+ p h(0)

∂

∂h(0)
− p

N

∂2

∂h(0)2

]
Prob [h(t)|h(0)] = 0. (6.10)
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From this, we may obtain the MFPT for the system to escape from an interval

for the first time by erecting absorbing boundaries. Erecting a boundary at

h = θ ≡ 0 and a second boundary at h = θ̂ > 0 and then taking the limit

θ̂ → ∞ so that it becomes irrelevant, we obtain the MFPT for a system initially

with h(0) = x > 0 to be absorbed at h = 0. The calculation is standard and

the details of similar calculations may be found elsewhere (Elliott, 2011a). The

MFPT satisfies the differential equation

−1

r
= −pxτ ′

mfpt(x) +
p

N
τ ′′
mfpt(x), (6.11)

subject to the boundary conditions τmfpt(0) = 0 and τmfpt(θ̂) = 0. The solution,

with θ̂ → ∞, is

rτmfpt(x) =
1

2p

{
π erfi

(√
N

2
x

)
− Nx2

2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)}
, (6.12)

where erfi is the imaginary error function and 2F2 is a hypergeometric function.

If the firing threshold θ is non-zero, then this solution simply becomes

τmfpt(x; θ) = τmfpt(x) − τmfpt(θ). (6.13)

For large Nx2, there is an extremely delicate cancellation between the two

terms on the right hand side of Eq. (6.12), leaving a logarithmic behaviour.

We find that

rτmfpt(x) ∼ 1

2p

[
loge

Nx2

2
− ψ(1

2
)

]
, (6.14)

for large Nx2, where ψ is the digamma function, with ψ(1
2
) = −γ̂ − 2 loge 2

where γ̂ ≈ 0.5772 is Euler’s constant. With non-zero θ, this asymptotic be-
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haviour is just

rτmfpt(x) ∼ 1

2p

[
loge

Nx2

2
− ψ(1

2
) − 2pr τmfpt(θ)

]
(6.15)

∼ 1

p
loge

(x

θ

)
, (6.16)

where the second line follows in the case that Nθ2 is large enough. Notice that

the N -dependence has entirely disappeared in Eq. (6.16); we shall return to

this issue later.

Taking Var[h(t)|h(0)] ≈ 1/N and writing τsnr(x) for the continuous-time

SNR determination of memory lifetimes with h(0) = x, we find that

rτsnr(x) ≈ 1

2p

[
loge

Nx2

2
+ loge 2

]
. (6.17)

If instead we require that the SNR falls to some general value ϑ rather than

ϑ = 1 specifically, then this result is modified, becoming

rτsnr(x) ≈ 1

2p

[
loge

Nx2

2
+ loge 2 − 2 loge ϑ

]
. (6.18)

The results in Eqs. (6.14) and (6.17) are identical up to an additive constant,

although their respective ranges of validity may differ, depending on parameter

values. We shall compare τmfpt(x) and τsnr(x) both qualitatively and quanti-

tatively when we are in possession of an expression for τmfpt(x) that does not

depend on the small p limit.

Although we have taken the Gaussian limit of the state and transition

probabilities in Eqs. (6.1) and (6.2) to define a continuum limit for h for N ≫ 1,

we note that these expressions are also extremely good approximations to the

exact, binomial state and transition probabilities in Eqs. (5.1) and (5.2) for
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discrete values of h. The conditions for this approximation are usually stated

as requiring N ' 20 and both Np ' 5 and Nq ' 5. For numerical efficiency,

we will frequently use this approximation for discrete h calculations when it is

valid.

7 Mean First Passage Time for Continuum h

The expression for the MFPT in Eq. (5.14) for discrete h generalises immedi-

ately to a continuum h version. In continuous time, τmfpt becomes rτmfpt, so

for some definite, initial state h(0) = x > 0, we have

τmfpt(x) − 1

r
=

∫ ∞

0

dy τmfpt(y)Prob [y|x] , (7.1)

which is an integral equation with kernel Prob [y|x] given by the Gaussian form

in Eq. (6.2). We will write K0(y|x) = Prob [y|x] for simplicity, i.e.

K0(y|x) =

√
N

2π(1 − q2)
exp

[
−N(y − qx)2

2 (1 − q2)

]
. (7.2)

We now set r = 1, without loss of generality, so that we have 1 rather than

1/r on the left hand side of Eq. (7.1). The form in Eq. (7.1) is the standard

expression for MFPTs for processes with jumps (van Kampen, 1992). That

jump processes are present is clear from the discrete h process. For N synapses

each with strength-change probability 1
2
p upon memory storage, on average

we expect 1
2
Np synapses to change strength per memory encoding step. The

neuronal output h may therefore be subject to large jumps and, in particular,

it may jump over the h = 0 firing threshold. These jumps are automatically
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accounted for in the discrete h form in Eq. (5.14) (and in the earlier form in

Eq. (3.9)), of which the integral equation in Eq. (7.1) is the continuum limit.

Unfortunately, this integral equation is rarely soluble in closed form, al-

though standard numerical methods are available. The Neumann series solu-

tion of Eq. (7.1) is

τmfpt(x) = 1+

∫ ∞

0

dy1K0(y1|x)+

∫ ∞

0

∫ ∞

0

dy2 dy1K0(y2|y1)K0(y1|x)+· · · , (7.3)

although typically the integrals cannot be evaluated nor the resulting series, if

available, re-summed. However, we may make considerable progress by replac-

ing the particular Gaussian kernel K0(y|x) by a simpler one that has identical

first- and second-order conditional moments. For N large enough, K0(y|x) is

a very narrow, nearly Dirac-delta-function-like spike. In this limit, its precise

shape should not be too important, and provided that we use a replacement

kernel with identical lower-order conditional moments, we would expect to

obtain very good approximations to the exact solution for τmfpt(x) with the

original Gaussian kernel. The trick is to pick a replacement kernel that allows

us to recast the integral equation in Eq. (7.1) as a differential equation that

can be solved, by a power series method if necessary. We will consider two

such replacements.
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7.1 Formal Kernel Replacement

We first consider a replacement based on a formal expansion in the Dirac delta

function, δ(x), and its derivatives. Writing

K1(y|x) = δ(y − x) + pxδ′(y − x) +
1

2

(
p2x2 +

1 − q2

N

)
δ′′(y − x), (7.4)

it is a simple matter to check that
∫ +∞
−∞ dy ym K1(y|x) gives the correct condi-

tional moments for m = 0, 1 and 2, of 1, qx and q2x2 + (1− q2)/N (and hence

conditional variance (1 − q2)/N), respectively. The advantage of this kernel

is that when we insert it into Eq. (7.1), we automatically obtain a differen-

tial equation because of the Dirac delta functions. For x < 0, we obtain the

solution τmfpt(x) = 1, while for x > 0, we have

−1 = −pxτ ′
mfpt(x) +

1

2

(
p2x2 +

1 − q2

N

)
τ ′′
mfpt(x). (7.5)

For small p, the p2x2 term may be dropped and 1 − q2 ≈ 2p and so we obtain

Eq. (6.11). The solution in this limit is then

τmfpt(x) = A+B

√
π

2N
erfi

(√
N

2
x

)
−Nx2

2p
2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)
. (7.6)

Usually, the constants A and B are uniquely determined by substituting this

solution back into the integral equation for the MFPT in Eq. (7.1) with kernel

K1(y|x). However, because of the purely formal character of this kernel, we

merely obtain trivial identities that do not fix these constants. We may instead

determine A and B by requiring continuity at x = 0, thus giving A = 1, and

by observing that for large x, τmfpt(x) ∼ 1
p
loge x is a solution of Eq. (7.5) for

small p. Thus, we may set B so that this logarithmic behaviour emerges from
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the above-mentioned delicate cancellation between erfi and 2F2, so we require

B = 1
p

√
Nπ
2

. Hence, we obtain, for small p with kernel K1(y|x),

τmfpt(x) = 1+
1

2p

{
π erfi

(√
N

2
x

)
− Nx2

2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)}
, (7.7)

which is identical to Eq. (6.12) (with r = 1) up to an additive constant.

By direct substitution we may verify that the full solution of Eq. (7.5) is

the rather unwieldy

τmfpt(x) = A + B x

(
1 +

Np2x2

1 − q2

)1+ 1

p

2F1

({
1, 3

2
+ 1

p

}
, 3

2
,−Np2x2

1 − q2

)

− Nx2

1 − q2 3F2

({
1, 1, 1

2
− 1

p

}
;
{

3
2
, 2

}
,−Np2x2

1 − q2

)
. (7.8)

By comparing the power series in the small p limit, we find a direct correspon-

dence between the particular solutions and the non-constant general solutions

in Eqs. (7.6) and (7.8). Again, continuity fixes A = 1. For large x, the logarith-

mic behaviour of the solution of Eq. (7.5) becomes τmfpt(x) ∼ 2
2p+p2 loge x. The

constant B is again set by imposing this logarithmic behaviour in Eq. (7.8) for

large x, resulting in the equally unwieldy

B =
2

2

p
−1
√

Nπ2 sec2 π
p

√
1 − q2 Γ

(
1
2
− 1

p

)2

Γ
(

2
p

) (7.9)

∼
√

Nπ

2

1

p

(
1 +

1

8
p +

9

128
p2 + · · ·

)
, (7.10)

where Γ(x) is the gamma function. The asymptotic behaviour of the full

solution of Eq. (7.5), including constants, is then found to be

τmfpt(x) ∼ 1 +
1

2p + p2

[
loge

Np2x2

1 − q2
− ψ

(
1
2

)
+ ψ

(
−1

2
− 1

p

)]
(7.11)

small p−−−−→ 1

2p

[
loge

Nx2

2
− ψ

(
1
2

)]
, (7.12)
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with the small p limit agreeing with Eq. (6.14).

7.2 Laplace Kernel Replacement

A second kernel that permits the derivation of a differential equation for

τmfpt(x) is the Laplacian rather than Gaussian form,

K2(y|x) =
γ

2
e−γ|y−qx|, (7.13)

where γ2 = 2N/(1 − q2). Again, the conditional mean and variance are the

same as those for K0(y|x). This kernel satisfies the differential equation

(
∂2

∂x2
− q2γ2

)
K2(y|x) = −q2γ2δ(qx − y), (7.14)

and hence we can employ the differential operator on the left hand side to

kill the kernel under the integral sign in Eq. (7.1), obtaining the differential

equation

τ ′′
mfpt(x) = q2γ2

[
τmfpt(x) − 1 − H(x)τmfpt(qx)

]
, (7.15)

where H(x) is the Heaviside step function. For x < 0, insisting on a finite

solution as x → −∞, we have the solution

τmfpt(x) = 1 + [τmfpt(0) − 1] e+qγx (x < 0), (7.16)

where τmfpt(0) is to be determined. For large x > 0, if we assume that

τ ′′
mfpt(x) → 0, then the asymptotic solution must satisfy

τmfpt(x) − τmfpt(qx) = 1, (7.17)

which has solution τmfpt(x) = C−(loge x)/(loge q) with constant C. Since such

a solution indeed satisfies τ ′′
mfpt(x) → 0 as x → ∞, this asymptotic behaviour
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is consistent. As − loge q ≈ p for small p, we recognise the limiting behaviour

of the OU solution. For x > 0, the full solution of Eq. (7.15) must be obtained

as a power series, with the result

τmfpt(x) = A + B
∞∑

m=0

(qγx)2m+1

(2m + 1)!

(
q; q2

)
m
−

∞∑

m=0

(qγx)2m+2

(2m + 2)!

(
q2; q2

)
m

, (7.18)

where (a; q)k ≡
∏k−1

l=0

(
1 − a ql

)
with (a; q)0 ≡ 1 is the q-Pochhammer symbol.

Both series are absolutely convergent for all x. By considering the small p limit

of the powers series for the particular solution and the non-constant general

solution, we again find the OU limit:

1

qγ

∞∑

m=0

(qγx)2m+1

(2m + 1)!

(
q; q2

)
m

∼
√

π

2N
erfi

(√
N

2
x

)
, (7.19)

−
∞∑

m=0

(qγx)2m+2

(2m + 2)!

(
q2; q2

)
m

∼ −Nx2

2p
2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)
,(7.20)

at leading order in p. (We do not pull a factor of (qγ)−1 out of the constant B in

Eq. (7.18) in order to make results below somewhat cleaner.) The constants A

and B are determined by plugging this solution back into the original integral

equation with the K2(y|x) kernel. Writing

αi = qi

∞∑

m=0

q2m
(
qi; q2

)
m

, (7.21)

we find that B = (1−α2)/(1−α1) and A = 1+B. Using the theory of q-series,

we may explicitly evaluate the sum defining αi. The details may be found in

Appendix C. The result is

αi = 1 −
(
qi; q2

)
∞ . (7.22)
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The full solution is therefore

τmfpt(x) = 1 +
(q2; q2)∞
(q; q2)∞

[
1 +

∞∑

m=0

(qγx)2m+1

(2m + 1)!

(
q; q2

)
m

]

−
∞∑

m=0

(qγx)2m+2

(2m + 2)!

(
q2; q2

)
m

. (7.23)

The behaviours of (q; q2)∞ and (q2; q2)∞ for q ∼ 1, i.e. p ∼ 0, are well-known.

For q = e−ρ, and thus ρ = − loge(1 − p), we have (Watson, 1936)

(
q; q2

)
∞ ∼

√
2 exp

(
− π2

12ρ
− ρ

24

)
+ o(1), (7.24)

(
q2; q2

)
∞ ∼

√
π

ρ
exp

(
− π2

12ρ
+

ρ

12

)
+ o(1). (7.25)

Individually, neither expression has a power series expansion around ρ = 0 and

therefore around p = 0, but their ratio does. We have

(q2; q2)∞
(q; q2)∞

=

√
π

2p

(
1 − 1

8
p − 13

384
p2 − 49

3072
p3 − · · ·

)
. (7.26)

Because the particular solution and the non-constant general solution in Eq.

(7.23) do not appear to be standard special functions (they are neither hyperge-

ometric nor q-hypergeometric functions), their asymptotic behaviours for large

x are unknown, although we do know that there is a cancellation, leaving the

logarithmic behaviour τmfpt(x) ∼ C−(loge x)/(loge q). We also observe that the

constant C is γ-dependent and thus N -dependent, but this dependence can be

eliminated by instead writing τmfpt(x) ∼ C ′ − (loge γx)/(loge q) for some other

constant C ′; indeed, only the combination γx appears in Eq. (7.23). We may

at least obtain the asymptotic behaviour in principle order-by-order in p, by

expanding the two power series in Eq. (7.23) in orders of p, obtaining increas-

ingly higher order hypergeometric functions, whose asymptotic behaviours are
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known. We give the expansion of Eq. (7.23) up to second order in Appendix

D. We do not labour these tedious and unenlightening calculations here, but

instead just give the asymptotic behaviour for the first few, calculated orders

in p:

τmfpt(x) ∼ 3

4
− 5

72
p +

√
π

2p

(
1 − 1

8
p

)

+
1

2p

(
1 − 1

2
p − 1

12
p2

)[
loge

Nx2

2
− ψ

(
1
2

)]
. (7.27)

Again the small p limit is correct, giving Eq. (6.14).

For the Laplacian K2(y|x) kernel, we may also explicitly evaluate all the

terms in the Neumann series in Eq. (7.3) and obtain a different representation

of the solution in Eq. (7.23). We sketch the details in Appendix E, giving here

only the final result,

τmfpt(x) = 1 +
(q2; q2)∞
(q; q2)∞

+
(
q2; q2

)
∞

∞∑

n=0

1 − exp (−γqn+1x)

(q2; q2)n

. (7.28)

By expanding exp (−γqn+1x) as a power series in x and summing over n us-

ing the methods in Appendix C, we may show that the form in Eq. (7.28) is

identical to that in Eq. (7.23). Although necessarily identical, these two rep-

resentations have differing rates of convergence and each is therefore useful for

numerical evaluation in differing regions of parameter space. For example, for p

away from zero, qn rapidly drops to zero, so only a few terms in Eq. (7.28) need

be retained, even for large x; in contrast, for large x, many terms in Eq. (7.23)

must be evaluated. However, for p close to zero, qn falls more slowly, so many

terms in Eq. (7.28) must be computed and often Eq. (7.23) is numerically more

efficient.
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8 Results: Comparison Between Analytical,

Numerical and Simulation Methods

Simulations are based on protocols described elsewhere (Elliott and Lagogian-

nis, 2012) but modified to extract MFPTs rather than SNRs. Extracting

MFPTs requires running simulations until the memory signal has dropped to

or below firing threshold. Critically, simulations must not be terminated after

some fixed time step, as this would introduce a systematic bias that would

lead to an underestimate of MFPTs. Computationally, extracting MFPTs

from simulations is therefore more time-consuming than extracting SNRs. We

average results over many simulations in order to obtain the mean first pas-

sage time rather than just a particular first passage time. Since each simulation

constitutes a particular realisation of the randomly-generated, initial memory

ξ0, the MFPT that emerges from simulation is not τmfpt(h0) for some definite

initial memory signal h0, but rather an average, 〈τmfpt(h0)〉, over all possible

initial memories ξ0 (or at least a very good sample thereof) leading to h0 > 0.

(If h0 ≤ 0, the simulation is of course immediately terminated and its particu-

lar first passage time set to zero.) We must therefore typically compare MFPTs

from simulation to 〈τmfpt(h0)〉 where the average is taken over the initial dis-

tribution of h0. For N large enough, however, the distribution of h0 is sharply

focused around h0 = p, and so we would expect that 〈τmfpt(h0)〉 → τmfpt(p) as

N → ∞.

Below we will compare MFPTs and SNRs, but SNRs are based on the
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ratio of the mean memory signal to its standard deviation, and the initial

mean memory signal is just p. However, for discrete values of h, p will not

usually be a possible value of h0. Given a set of discrete values of τmfpt(h0), we

therefore construct an interpolating function to obtain τmfpt(p). Interpolation

avoids introducing the noise into the inferred value of τmfpt(p) that would result

were we instead to use the value of τmfpt(h0) with h0 closest to p, and such a

procedure would also be extremely sensitive to whether N is even or odd, as

described next.

MFPTs for discrete h states can depend quite sensitively on whether N is

even or odd, since this determines whether or not h = 0 is a permitted discrete

state. We may see this sensitivity by explicitly considering the trivial, p = 1

limit of MFPTs. In this limit, synapses always change strength in the presence

of an induction signal of the appropriate sign. For p = 1, we have that q = 0,

and for the continuum case, the Gaussian K0(y|x) kernel in Eq. (7.2) loses

its x-dependence and hence Eq. (7.1) becomes τmfpt(x) − 1 = const. for some

constant, for x > 0. Thus, we see that τmfpt(x) = 2 for x > 0, and this does

not depend on N . In the discrete case, however, for p = 1, the distribution of

strengths at any subsequent encoding step m after the storage of ξ0 is given

by a symmetric binomial distribution (see Appendix B, specifically Eq. (B.5)

for p = 1). Thus, the probability, call it p, that h > 0 after any subsequent

encoding step is just

p =





1
2

for N odd

1
2

(
1 − 1

2N
NCN/2

)
for N even

, (8.1)
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where the additional term for even N removes the disallowed h = 0 state that

exists for even N . For this p = 1 case, the MFPT is therefore equivalent to

the mean number of tosses for a (possibly biased) coin to come up with, say,

heads (probability 1 − p) for the first time. This is simply the sum

1 p
0(1 − p) + 2 p

1(1 − p) + 3 p
2(1 − p) + · · · =

1

1 − p
. (8.2)

This result can also be seen directly from Eq. (5.14) since
∑

h′>0 Prob[h′|h] ≡ p.

For odd N for discrete h, the MFPT is therefore always 2, agreeing with the

continuum limit, while for even N , the MFPT is

2

1 + 1
2N

NCN/2

N→∞−−−→ 2. (8.3)

The even N values are always lower than the adjacent, odd N values, but the

values necessarily converge as N → ∞. This is true for p 6= 1, too. Below,

therefore, we shall always use even N values for consistency, to avoid spurious

“wobbles” in graphs, and because it is better slightly to under-estimate MFPTs

in general than to over-estimate them.

First we validate our discrete analytical results, for both the exact bino-

mial transition probabilities and their Gaussian approximation, by comparing

them to simulation results. In Fig 1, we plot 〈τmfpt(h0)〉 as a function of N for

different choices of the update probability p. Exact binomial results are deter-

mined for N ≤ 2.5 × 103 while their Gaussian approximations are determined

for p−1 / N ≤ 104. For smaller N , there are tiny discrepancies between these

exact and approximate MFPTs, but as expected they converge and become

indistinguishable for larger values of N . Also shown in the same figure are
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simulation results for the particular values N = 102, N = 103, N = 5 × 103

and N = 104. The agreement between simulation results and analytical results

is exact.

Because numerical matrix inversion becomes increasingly time-consuming

as N grows, we are essentially limited to a maximum value of N of around

104 in Fig. 1 for discrete values of h. For larger N , we must move to the

continuum h limit and solve the integral equation for MFPTs for the Gaussian

kernel K0(y|x) using standard numerical methods. In Fig. 2, we compare the

discrete h results in Fig. 1 with the continuum, Gaussian kernel results. The

discrete h results are patched together essentially seamlessly from the exact

binomial results for smaller N and the approximate Gaussian results for larger

N . As expected, the discrete and continuum results differ somewhat for smaller

N , but as N increases, the continuum limit becomes an increasingly good

approximation. We also show additional simulation results for N = 5 × 104

and N = 105, observing essentially perfect agreement between the continuum

results and the simulation results for these larger values of N . We do not

consider larger values of N because they would be biologically implausible,

although the agreement would of course be maintained.

Although simulations generate results for 〈τmfpt(h0)〉 where we average over

the initial signal of the memory stored at t = 0− s, computing this aver-

age from complicated analytical results for different continuum kernels can

be time-consuming. If we can work instead with τmfpt(p), where 〈h0〉 ≡ p,

then such averaging can be eliminated. This would in some very weak sense
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Figure 1. Comparison between MFPTs for exact binomial transition prob-

abilities, approximate Gaussian transition probabilities and simulation results

for discrete values of the perceptron output h. For each value of the update

probability p as indicated, we plot 〈τmfpt(h0)〉 against N for binomial transi-

tion probabilities (solid line), Gaussian transition probabilities (dashed line)

and simulation results (circles). Exact binomial results are obtained only for

N ≤ 2.5 × 103 while approximate Gaussian results are obtained for N ≤ 104,

although the validity of the approximation sets a lower bound on Np. Here we

use N ' 1/p. Simulation results are obtained by averaging over 108/N trials

for each value of N and choice of p; the larger N , the less averaging is required

to obtain good estimates of 〈τmfpt(h0)〉 due to higher levels of self-averaging for

more synapses.
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Figure 2. Comparison between MFPTs for discrete values of h and the

continuum limit of h. Analytical results for discrete values of h (solid lines)

are taken from Fig. 1 by stitching together exact binomial and approximate

Gaussian results as N increases. Continuum results (dashed lines) are obtained

by the numerical solution of the integral equation for MFPTs with the Gaussian

K0(y|x) kernel. Additional simulation results (circles) are shown for N =

5 × 104 and N = 105.
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be a mean-field approximation, although one warranted by our expectation

that for large N , the distribution of h0 becomes increasingly sharply focused

around p, rather than just being a convenient ansatz to facilitate or simplify

calculations. We compare τmfpt(p) and 〈τmfpt(h0)〉 by plotting their ratio as a

function of N in Fig. 3. Indeed, as N increases, this ratio asymptotes to unity,

although as expected, smaller values of p require larger values of N for this

asymptotic behaviour to emerge. Below, we may therefore use τmfpt(p) rather

than 〈τmfpt(h0)〉. This will, furthermore, facilitate comparison between MFPTs

and SNRs, since SNRs are based on a definite, mean initial memory signal of

h0 = p.

The Gaussian kernel K0(x|y) does not lend itself to any analytical under-

standing of the dependence of τmfpt(p) on the parameters p and N because

numerical methods are necessary to solve the integral equation governing MF-

PTs. If the formal kernel K1(x|y) and the Laplace kernel K2(x|y) provide

good replacements with satisfactory approximations to τmfpt(p) for the Gaus-

sian kernel, then we may gain some analytical insight. In Fig. 4, we therefore

plot results for all three kernels, together with the derived asymptotic or loga-

rithmic behaviours of τmfpt(p) for the two replacement kernels. The very close

agreement between the Gauss and Laplace results is both striking and satisfy-

ing. There is also good qualitative agreement between the Gauss and formal

results, with the formal results following perfectly the trends in the Gauss re-

sults as a function of N . All three kernels provide results that differ essentially

only by a small, fixed constant for any value of N . The logarithmic, asymptotic
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Figure 3. Convergence of τmfpt(p) and 〈τmfpt(h0)〉 as N increases. Solid lines

show τmfpt(p)/〈τmfpt(h0)〉 for continuum h, while dashed lines show the same

ratio for discrete h. One set of dashed lines (those that start at lower values

of N) are those corresponding to exact binomial results, while the other set

(those that start at higher values of N when the approximation becomes valid)

are those corresponding to the approximate Gaussian results.
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results for the formal and Laplace kernels are also seen to match perfectly the

exact forms as N grows. We note, however, that were we to use the logarithmic

results to estimate MFPTs, we would typically obtain a significant underesti-

mate of MFPTs, particularly for smaller N . Indeed, we would wrongly deduce

that there is a minimum value of N only above which memory storage is pos-

sible. However, MFPTs are positive for all displayed values of N and so no

such lower bound exists. For p = 0.01, for example, we would wrongly deduce

that the minimum number of synapses required for successful initial memory

encoding is around 2000 to 3000. Since neurons typically have at most a few

thousand synapses, such an badly wrong estimate may lead to radically false

conclusions about the viability of models with biologically realistic numbers

of synapses. In fact, for around 2000 to 3000 synapses for p = 0.01, memory

lifetimes gauged by MFPTs are already distinctly non-zero and positive.

The memory-on-a-spring, OU limit is a formal limit for p → 0, based essen-

tially on a diffusion approximation of the full dynamics. The computation of

the MFPT in this OU limit by using an absorbing boundary implies smooth,

continuous transitions without jump processes, with all intermediate states

being visited as the system evolves towards, and is eventually absorbed by,

the boundary. In Figs. 5 and 6, we compare MFPTs from this OU limit with

those obtained from the formal, K1(y|x) kernel and the Laplace, K2(y|x) ker-

nel, respectively, and also compare their asymptotic, logarithmic behaviours.

The formal kernel is an expansion in conditional moments up to second order

involved Dirac delta functions of zero width. Jump processes are therefore
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Figure 4. Comparison between continuum h MFPT results for the Gaus-

sian K0(y|x) kernel, the formal K1(y|x) kernel and the Laplace K2(y|x) kernel,

including the logarithmic forms for the formal and Laplace kernels. Gaus-

sian kernel results are again obtained by numerical methods while formal and

Laplace kernel results correspond to the analytical results discussed in the

main text. The four panels show results for different update probabilities as

indicated.
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absent from this kernel and so we would expect increasingly good quantitative

agreement between the formal kernel MFPTs and the OU results as p is re-

duced. Indeed we see explicitly this convergence in Fig. 5. The Laplace kernel,

however, has a finite width and therefore retains jump processes and indeed, as

we have seen in Fig. 4, provides an extremely good quantitative approximation

to the Gaussian kernel. Although a small p limit will suppress jump processes,

because the average number of strength changes per memory storage event,

1
2
Np, reduces as p reduces, increasing N will necessarily reinstate these jump

processes. Thus, although we expect good qualitative agreement between the

OU limit and the Laplace kernel, we should not expect that the MFPTs will

converge for all N as p is reduced, except in the formal mathematical limit,

Np → 0. Fig. 6 bears out these expectations: we observe good qualitative

agreement but with little if any hint of convergence of MFPTs for smaller p.

The MFPTs in these two cases differ by an amount that is a roughly fixed

constant, independent of N , for any given choice of p.

The asymptotic behaviour of MFPTs for the OU dynamics is particularly

simple, given in Eq. (6.14). Its form is identical to memory lifetimes determined

by SNRs in Eq. (6.17) up to an overall, p-dependent additive constant. Were

we to plot τsnr(p) on the graphs in Fig. 6, we would obtain a straight line of

identical gradient to the asymptotic behaviour of τmfpt(p) for the OU process,

but shifted overall downwards due to the additive constant. For the asymptotic

OU process, we would deduce that the minimum number of synapses required

for a non-zero memory lifetime is Nou
min = exp(−γ̂)/2p2, where exp(−γ̂)/2 ≈
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Figure 5. Comparison between the OU limit MFPT results and those for

the formal K1(y|x) kernel, including their respective asymptotic, logarithmic

behaviours.
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Figure 6. Comparison between the OU limit MFPT results and those for

the Laplace K2(y|x) kernel, including their respective asymptotic, logarithmic

behaviours.
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0.28, or roughly Nou
min ≈ 1/4p2. We have seen above that this number is badly

wrong, since the asymptotic behaviour is invalid for smaller values of N (for

the OU limit but also for any kernel). For SNRs, we would deduce that this

minimum number is N snr
min = 1/p2, i.e. nearly four times larger than Nou

min. We

point out that when computing SNRs, it is usually required that the initial

SNR exceeds unity, i.e. p
√

N > 1, which leads precisely to N > 1/p2. Of

course, within an MFPT approach, such an initial requirement is not valid

nor is it necessary, and this is reflected in the small N behaviour of MFPTs,

and specifically in the fact that they are positive even for very small N . For

MFPTs, all we require initially is that the neuron’s total input exceeds firing

threshold. How much it exceeds threshold is irrelevant, for the Heaviside non-

linearity will take care of the rest, setting the neuron’s actual output to unity.

Arguments based on the size of the total input and of the resulting “vividness”

of recall are therefore entirely fallacious in the presence of such a non-linearity.

Is it possible that this significant qualitative and quantitative disagreement

between memory lifetimes gauged by MFPTs and SNRs owes its origin to an

inappropriately chosen firing threshold, θ = 0? An SNR criterion corresponds

to the mean memory signal reaching zero at some definite number of stan-

dard derivations, typically at the one standard deviation level. Perhaps the

one standard deviation level is not equivalent to a firing threshold θ = 0, thus

perhaps explaining the above disagreement between MFPT and SNR memory

lifetimes? This is not, however, the case, as shown in Fig. 7. Indeed, the

disagreement becomes far more profound, with far deeper and wide-ranging
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implications, when θ > 0. We see that the logarithmic, asymptotic behaviour

is entirely destroyed when θ > 0, and that τmfpt(p) asymptotes to the con-

stant value 1
p
loge

(
p
θ

)
given by Eq. (6.16). Specifically, the N -dependence is

essentially lost: increasing N will not increase this maximum possible memory

lifetime. Although this result is derived from the OU limit in the presence

of an absorbing boundary at h = θ > 0, simulation results confirm that this

behaviour is present away from the OU limit. A neuron with a non-zero firing

threshold θ therefore has a fixed, maximum upper capacity to the memories

that it can store, and increasing the number of its synapses will not increase

this maximum. This asymptotic saturation of memory capacity occurs for any

non-zero, positive value of θ, regardless of how small, because the asymptotic

validity condition, that Nθ2 is large enough, can always be achieved by taking

N large enough. While the number of synapses required to achieve this asymp-

totic behaviour may not be biologically relevant, this upper bound on memory

capacity nevertheless still exists. The logarithmic asymptotic behaviour at

θ = 0 is therefore entirely untypical and non-generic. Moreover, the θ → 0

limit is therefore discontinuous. If the overall loge N SNR capacity of a neuron

with binary synapses is usually regarded as a problem, then this upper bound

on MFPT capacity with θ > 0 is a catastrophe. We discuss this result, and

the reasons for it, extensively in the next section.

However that may be, and despite the far deeper consequences, on a more

parochial level, this asymptotic saturation shows that the difference in memory

lifetimes between SNR and MFPT for θ = 0 cannot be due to an inappro-
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Figure 7. MFPTs for the OU limit in the presence of a possibly non-zero firing

threshold θ. Solid lines show exact MFPTs for this OU limit for the values

of θ as indicated. Dashed lines show the asymptotic forms of these MFPTs,

derived in the large Nθ2 limit. In this asymptotic limit, the N -dependence

disappears entirely, so these dashed lines are constants at 1
p
loge

(
p
θ

)
, to which

the exact OU MFPTs asymptote as N grows for θ > 0. Simulation results

(circles) for 〈τmfpt(h0)〉 are also shown for comparison and validation of this

asymptotic behaviour for θ = 0, θ = p/5 and θ = 2p/5. For N = 100 there

appear to be only two simulation datum points. However, the results for θ = 0

and θ = p/5 = 0.01 are identical for N = 100 because the increments in h are

2/N = 0.02 and thus these two thresholds are indistinguishable for this value

of N for discrete h.
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priately selected firing threshold, for all other choices merely exacerbate the

differences, not remove them. We may, however, put the question the other

way around: what value of SNR, other than unity, would be necessary in order

to match SNR memory lifetimes to MFPT memory lifetimes in the logarithmic

asymptotic limit (necessarily with θ = 0)? If we take a target SNR of ϑ rather

than unity, then Eq. (6.18) matches Eq. (6.14) when ϑ2 = exp(−γ̂)/2, or when

ϑ ≈ 0.530. That is, the mean memory signal must reach zero at nearly the half

a standard deviation level if τsnr(p) is to agree with τmfpt(p). Needless to say,

such a loose criterion seems somewhat unreasonable: usually, we would insist

on increasing the number of standard deviations, not decreasing them.

9 Discussion

Several approaches to determining the lifetimes of memories in feed-forward or

recurrent networks of neurons with binary synapses have been considered, in-

cluding the signal-to-noise ratio (Tsodyks, 1990; Amit and Fusi, 1994; Brader

et al., 2007), signal detection theory (Leibold and Kempter, 2006, 2008) and

retrieval probabilities (Huang and Amit, 2010, 2011). To our knowledge, our

analysis above is the first time that an approach based on mean first passage

times for a perceptron’s output to fall below firing threshold has been con-

sidered. The difference between SNRs and MFPTs in this memory lifetime

context may be compared to the different ways in which to compute the time-

to-spike in a leaky integrate-and-fire neuron (see, for example, Tuckwell, 1988;
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Gerstner and Kistler, 2002). Although considerably harder than an SNR cal-

culation, a time-to-spike calculation based on the first passage time for the

membrane potential to reach threshold takes into account all possible fluctu-

ations that drive the membrane potential to threshold. Furthermore, there

is no arbitrariness in an MFPT calculation as there is in an SNR calculation

in defining when the mean signal reaches threshold at a certain, fixed num-

ber of standard deviations. Moreover, unlike SNRs, MFPTs are identical in

discrete-time and continuous-time formulations.

We have studied extensively above the MFPT memory lifetime for the

simplest possible, memory-related synaptic plasticity model based on a synapse

without internal structure (Tsodyks, 1990). The use of such a simple model has

greatly facilitated the derivation of exact or approximate results that would,

in a more complicated model, be intractable. The continuum h limit naturally

presents itself for N large enough, and for the update probability p sufficiently

small, an OU limit essentially falls out. Typically a diffusion approximation is

necessary in time-to-spike calculations, also resulting in an OU process for the

membrane potential dynamics. It should not be surprising, therefore, that a

limiting OU process appears in our analysis of MFPT memory lifetimes. On

such a view, the initial memory encoding event pulls out a spring by an amount

determined by the strength of the initial encoding. Ongoing memory storage

constitutes a restoring force that pulls the spring back to equilibrium, with

oscillations that asymptote to a fixed amplitude in the limit of large time.

Although the OU limit is an approximation, one that ignores the potentially
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large jump processes that are present in the dynamics of the memory signal h,

it provides qualitatively very good understanding of the full numerical results

based on the Gaussian kernel or the controlled approximations based on the

formal or Laplacian kernels. The results for the formal kernel asymptote to

those for the OU process because the formal kernel has zero width and therefore

explicitly lacks jump processes. In some sense, then, the formal kernel is a

generalisation of the OU process but still based on a diffusion approximation:

the differential equation governing τmfpt(x) for the formal kernel in Eq. (7.5)

is second order. Conversely, the Laplacian kernel retains jump processes and

provides extremely good quantitative agreement with the numerical results for

the Gaussian kernel. Although Eq. (7.15) is superficially also second order, in

fact the τmfpt(qx) term on the right hand side in effect induces derivatives in x

of all orders for p 6= 0. It cannot, therefore, arise from a purely second-order

Fokker-Planck equation. To offset this good agreement, however, the analytical

results for the Laplacian kernel are somewhat complicated, precisely because

this τmfpt(qx) term induces an expansion at all orders in powers of p.

Despite the fact that the full solutions for τmfpt(x) for the Laplace kernel

and even for the formal kernel are complicated, fortunately their asymptotic

behaviours in the large Nx2 regime are considerably simpler, with all results

at leading order in 1/p necessarily matching the asymptotic behaviour for the

OU limit. This behaviour (at least for θ = 0) is logarithmic in Nx2, so that

MFPT memory lifetimes grow only logarithmically as a function of the number

of synapses, N , when N is large enough. An identical result is of course by
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now classic for SNR memory lifetimes in palimpsests, and much work has been

devoted to overcoming the problems caused by such absurdly inefficient mem-

ory storage. However, there are significant and important differences between

the MFPT and SNR results.

First, the MFPT result is only an asymptotic, large Nx2 result, while the

SNR result is typically regarded as generic. It is true that the SNR result is

coupled with the requirement that Np2 > 1 in order to achieve an initial SNR

in excess of unity. This is because of internal consistency, in the sense that

SNR memory lifetimes are defined as the time at which the SNR drops to unity,

and so the initial SNR must be in excess of unity. Thus, the requirement that

Np2 > 1 simply arises rather trivially from the very definition of SNR lifetimes.

It emphatically does not follow from a mathematical, large Nx2 argument with

x = p in order to realise the asymptotic behaviour of some function. It is also

worth pointing out that the motivation, other than definitional consistency, for

demanding an initial SNR in excess of unity is somewhat unclear. Some authors

have argued that a large initial SNR correlates with a well-encoded, “vivid”

memory. However, the only relevant read-out from a neuron is its thresholded

output, here of +1 or −1: it does not matter how small its total input is

provided this total input exceeds firing threshold, because the Heaviside non-

linearity takes care of the rest. The vividness of the memory will correlate with

the neuron’s firing, not with its sub-threshold membrane integration dynamics.

If we simply insist that the initial memory is well-encoded, then we require only

that Np ≫ 1, i.e. that many synapses changed due to its storage. The two
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conditions, Np ≫ 1 and Np2 > 1, may be rather different: consider, for

example, the threshold case p = 1/
√

N with N large enough.

Second, extending the asymptotic results outside of their range of valid-

ity, we appear to obtain lower bounds on the minimum number of synapses

required to achieve positive memory lifetimes. Specifically, for MFPTs in the

OU limit, we saw earlier that we require, approximately, N > 1/4p2. With

SNRs, we have the even stronger form, N > 1/p2, i.e. four-fold more synapses

are apparently required. However, MFPT memory lifetimes are positive for all

non-zero N : there is no lower bound on N . It is true that for very small N ,

the initial memory encoding may be weak, especially if p is small, but such

considerations are already factored into the MFPT calculation. Specifically,

for small N , some neurons’ total inputs upon initial memory storage will not

exceed firing threshold and thus their first passage times will be identically

zero; other neurons’ total inputs will exceed firing threshold and contribute

to a small but distinctly non-zero first passage time. Despite these marginal

dynamics for small N , we saw in Fig. 4 that where the asymptotic MFPT

or SNR results massively over-estimate the minimum number of synapses for

non-zero memory lifetimes, the actual memory lifetimes for smaller numbers

of synapses than this apparent minimum are in fact a sizeable fraction of the

lifetimes for very much larger values of N for which the asymptotic behaviour

is valid. That this is possible is due to the very slow, logarithmic growth: prior

to the onset of this logarithmic growth, the memory lifetimes will already have

grown to a considerable fraction of the lifetimes at logarithmic onset. For
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example, in Fig. 4D at N = 2000, below the supposed lower bound on N

from the asymptotic behaviour and well below that from SNR, we already

have rτmfpt(p) ≈ 60, while at N = 105, 50-fold larger than N = 2000, we still

only have rτmfpt(p) ≈ 195, barely 3-fold higher than at N = 2000. Because

of this massive over-estimate of the minimum number of synapses required for

memory storage, basing arguments about network function on this asymptotic,

logarithmic behaviour may be profoundly dangerous, leading to false conclu-

sions about any particular model’s viability, or absence thereof, as a model of

memory. This conclusion is true also of the logarithmic, SNR behaviour.

In the OU limit, the extension of our analysis to include a non-zero fir-

ing threshold θ was immediate, since it merely involved a translation of the

absorbing boundary. For θ = 0, we have the usual asymptotic, logarithmic

behaviour of τmfpt(x) for large Nx2. However, for any value of θ > 0 we found

the remarkable property that τmfpt(x) ∼ 1
p
loge

(
x
θ

)
for large enough N , i.e.

τmfpt(x) becomes entirely independent of N . Thus, MFPT memory lifetimes

in the presence of a positive firing threshold are strictly bounded from above

as a function of N and do not grow logarithmically with N . We confirmed

this analytical observation, based on the OU limit, by comparing it to MFPTs

from simulations away from the OU limit, seeing precisely the same asymp-

toting of MFPTs as a function of N for positive firing thresholds. While the

feeble logarithmic growth of memory lifetimes from SNRs and asymptotic MF-

PTs is typically regarded as seriously problematic for models of memory that

aspire to be based on biologically plausible principles, this strict upper bound
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on memory lifetimes for positive firing thresholds must surely be regarded as

a catastrophe. Just as the introduction of internal, plasticity-related synaptic

states has been proposed in an attempt to overcome or at least ameliorate the

logarithmic growth of memory lifetimes (see, for example, Fusi et al., 2005;

Leibold and Kempter, 2008; Elliott and Lagogiannis, 2012), we might hope

that such models may also overcome or soften this strict bounding of memory

lifetimes in the presence of a positive firing threshold. However, at least in the

case of cascade-based synapses (Fusi et al., 2005) and filter-based synapses (El-

liott and Lagogiannis, 2012), preliminary simulation-based evidence does not

indicate this to be the case: MFPT memory lifetimes still appear to asymptote

to a constant, fixed value independent of N for a positive firing threshold.

It is natural, then, to wonder what is so special about a firing threshold of

θ = 0, which permits logarithmic growth in memory lifetimes, as opposed to

θ > 0, which strictly bounds memory lifetimes from above. From a purely tech-

nical standpoint, the result that rτmfpt(x) ∼ 1
p
loge

(
x
θ

)
in Eq. (6.16) requires

that it is possible to make Nθ2 (strictly speaking,
√

Nθ) large. Clearly, for any

positive value of θ, regardless of how close to zero, N may always be chosen

so that Nθ2 is large. Conversely, for θ = 0, it is never possible to make Nθ2

large because its value is always identically zero. By taking θ small enough but

non-zero, we can make τmfpt(x) grow (very nearly) logarithmically over some

(in principle large) range of N , but increasing N beyond that range will always

cause τmfpt(x) to peel off from logarithmic growth and asymptote to its upper

bound. Of course, the onset of this asymptotic behaviour may occur for values
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of N that are too large to be biologically relevant. Nevertheless, formally, the

θ → 0 limit is discontinuous and results at θ = 0 are untypical and non-generic:

the behaviours for θ > 0 and θ = 0 are qualitatively different.

But why θ = 0 specifically and not some other value of the neuron’s firing

threshold? The reason for this is simply that for the way in which we have set

up the memory encoding problem in the above, E [h(t)] → 0 as t → ∞, i.e. the

mean memory signal asymptotes to zero and not some other value. The mean

memory signal asymptotes to zero because we have employed binary synapses

with strengths ±1; symmetric, zero-mean inputs through these synapses; and

symmetric potentiation and depression processes. These are the standard,

simplifying assumptions classically made when gauging memory lifetimes in

models such as those considered here. However, were we to relax any of these

assumptions, E [h(t)] would typically asymptote to some non-zero value, call

it h∞. We could then work with h(t) − h∞ above, in effect performing a

transformation that would restore the standard assumptions. For example, if

we added an overall constant, say σ, to the ±1 synaptic strengths considered

here, then our entire analysis above would simply translate h by this overall

constant and we would have h∞ = σ. Thus, in general, the “critical” firing

threshold would be θ = h∞ and not θ = 0. For θ = h∞, the logarithmic growth

of memory lifetimes would be observed, while for θ > h∞, the logarithmic

behaviour would be destroyed.

In comparing memory lifetimes from SNRs to those from MFPTs, it may

be argued that we are not comparing like-with-like, and thus qualitative differ-
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ences are to be expected. Is it possible, for example, that by making the SNR

threshold or the neuron’s firing threshold scale with the system size, here de-

termined by the number of synapses N , we could restore equivalence between

the two measures? If we were to scale the required SNR threshold as some

power of N , say ϑNβ, then memory lifetimes would grow as
(

1
2
− β

)
loge N ,

and for the particular choice β = 1
2
, the logarithmic growth would drop out,

achieving equivalence with the MFPT form for θ 6= 0. Notice that again this

would appear to be a generic result, although in fact we know that it must only

be an asymptotically valid, large N result. Conversely, if we were to scale the

neuron’s firing threshold θ with the system size, writing instead θ = θ̄/Nβ with

β > 0, so that the firing threshold drops as N increases, then immediately the

asymptotic result rτmfpt(x) ∼ 1
p
loge

(
x
θ

)
would regain a logarithmic dependence

on N with overall coefficient β, provided that β < 1
2
. This proviso is necessary

because Eq. (6.16) is valid only if Nθ2 can be made large. If θ = θ̄/Nβ, then

Nθ2 = N1−2β θ̄2, and for β ≥ 1
2
, making Nθ2 large by increasing N is not

possible. However, in this case, τmfpt(θ) simply never attains its asymptotic,

logarithmic behaviour, and so never cancels that from τmfpt(x) in Eq. (6.13).

Thus, regardless of the value of β > 0, logarithmic behaviour in the MFPT

is re-instated by taking θ = θ̄/Nβ. We would have to set β = 1
2

to achieve

equivalence with the SNR form.

Neither move, however, appears justified. First, the entire basis of the

enhancement of memory lifetimes, gauged by SNRs, is that as the number of

synapses increases, the law of large numbers dominates: the fluctuations are
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suppressed since they go like 1/
√

N (ignoring any covariance-induced terms)

while the signal remains unchanged, not scaling with N . Thus, we would

expect memory lifetimes to increase as N increases, ultimately because h(t) is

a sum over N identically-distributed random variables and the signal stands

out more from the background noise as N increases. While logarithmic growth

is theoretically optimal for the simple memory model considered here, slower

growth, asymptoting to a constant as N → ∞, is more usual. Second, scaling

the neuron’s firing threshold with N is invalid for two reasons. The first reason

is that the neuron’s output h(t) does not scale with N (or, rather, in including

a factor of 1/N in the definition of h(t), we have already in effect scaled the

threshold correctly), and increasing N will therefore not change E[h(t)] and so

there is no need to scale θ as N increases. The second reason is that scaling θ

to re-introduce a logarithmic dependence on N only works “naturally” for the

specific, critical value of h∞ = 0. For h∞ 6= 0, we would in fact have to scale

only that part of the neuron’s firing threshold that is above h∞, i.e. we would

have to write θ = h∞ + θ̄/Nβ. However, this is unnatural, not least because a

neuron cannot “know” in advance what h∞ is, because it does not have access

to the inputs’ statistics, nor arguably to the possible distribution of synaptic

strengths, given contaminating factors such as noise, etc.

Why, then, is there this difference between SNR and MFPT memory life-

times for θ = 0 (or θ = h∞) and θ > 0 (or θ > h∞)? This difference arises

not because of a failure to scale SNR or firing thresholds correctly with sys-

tem size, but because the MFPT relates directly to observable, supra-firing-
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threshold memory performance while the SNR constitutes a “bird’s eye view”

that may, and typically almost certainly will, involve dynamics that are sub-

firing-threshold. It is for precisely this reason that the MFPT measure is to

be preferred over the SNR measure. The SNR measure gives theoretically

optimal memory performance without indicating whether memories may actu-

ally be read out. The MFPT measure gives an in-practice, realisable memory

performance because the stored memories can, by definition, always be read

out. The key issue determining the in-practice realisability of optimal, log-

arithmic memory performance is whether or not we have the freedom to set

the neuron’s firing threshold appropriately. If we always have the freedom to

set θ = h∞, then we can always realise optimal memory performance with

logarithmic growth, and in this case, as we might expect and as is indeed the

case, SNRs and MFPTs agree, at least asymptotically for large N , although

we have seen that SNRs away from this asymptotic regime are unreliable. But

consider the extreme scenario in which θ = E[h0], so that the firing threshold

sits precisely at the (average) strength of the initial encoding. Clearly, the

sub-firing-threshold h(t) dynamics are entirely unaffected by the location of

the firing threshold, and thus h(t) will still fall exponentially fast, asymptot-

ing to h∞, and with fluctuations in h(t) being suppressed as N increases. The

neuron’s sub-firing-threshold dynamics (the neuron’s integrative membrane po-

tential dynamics) retain a trace of the tracked memory. But, critically, this

trace is inaccessible, in terms of normal memory performance, because it is

entirely sub-firing-threshold. The trace may be made accessible only by re-
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ducing the neuron’s firing threshold. The extent to which we reduce the firing

threshold determines the relative attainability of that threshold to the ongo-

ing fluctuations that will degrade the memory. If it is reduced all the way

to h∞, then we achieve optimal, logarithmic memory performance; but if to

some value between h∞ and E[h0], then the memory performance will be sub-

optimal and so sub-logarithmic and in fact asymptotically bounded. The firing

threshold θ = h∞ is special, and privileged, because E[h(t)] for this specific

choice always remains above the firing threshold. However, for θ > h∞, E[h(t)]

will always eventually drop below firing threshold. It is this dropping below

firing threshold that causes the logarithmic or near-logarithmic enhancement

of memory lifetimes with increasing N to be truncated, because the memory

signal, now hiding below the firing threshold, becomes inaccessible.

We may see this truncation explicitly by considering a modified form of

an SNR calculation. Rather than requiring that E[h(τsnr(x))] = 1/
√

N to

determine τsnr(x) (with h∞ = 0), we instead enforce an accessibility criterion

by requiring that the mean memory signal reaches one standard deviation

above the neuron’s firing threshold. Thus, we need E[h(τsnr′(x))] = θ + 1/
√

N ,

whence prτsnr′(x) = loge x/(θ + 1/
√

N). Only for θ > 0 (or more generally

θ > h∞) may we now perform a Taylor expansion around 1/N = 0, obtaining

rτsnr′(x) ∼ 1
p
loge

(
x
θ

)
− 1

p θ
√

N
. Thus, the logarithmic growth is indeed truncated

in an SNR-type calculation for θ > 0 (but not for θ = 0 because the Taylor

expansion ceases to be valid), and we see the asymptotic bounding of memory

lifetimes in agreement with the MFPT calculation. This agreement is achieved
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precisely by imposing an accessibility or memory read-out criterion when θ > 0,

essentially throwing away any inaccessible and therefore irrelevant sub-firing-

threshold dynamics.

In an artificial network or in electronic hardware, we always have the free-

dom to pick a neuron’s firing threshold and thus to realise theoretically-optimal,

logarithmic memory performance. However, if models such as those considered

above have any relation, for example, to memory performance in real neurons

(and, after all, the motivation for considering bounded synaptic strengths is

increased biological plausibility), then the freedom to set firing thresholds at

will to achieve optimal memory performance is likely not available. In real neu-

rons, then, we might expect logarithmic memory performance to be untypical

and non-generic, even if in-principle achievable with suitably-set firing thresh-

olds. These considerations clearly apply not only to synapses without internal

structure but also to those with internal structure, which is presumably why

our preliminary simulation-based evidence mentioned above indicates that we

also observe a breaking of the logarithmic growth in these more complicated

models.

Analytical extension of our MFPT approach to memory lifetimes for these

more complicated synapse models is likely to be hard. The non-Markovian na-

ture of the transitions in h in the presence of synapses with internal structure

means that we must work in principle with the full product space, flattened

or otherwise, working at the level of individual synaptic strength transitions

and not transitions in h. Numerically, working with such large matrices will

62



rapidly become intractable for all but the simplest problems with very small

N . One promising approach, however, is to attempt to develop a stochastic

updater synapse approximation to these more complicated synapse models.

For the transitions in h, we are not interested in the transitions in the inter-

nal states of the synapses. Instead, we need only know when the synapses

change strength. Thus, we could integrate out the internal, plasticity-related

states as we have done in other analyses (Elliott, 2010, 2011b), and consider

a structureless, stochastically-updating synapse in which the probability p for

changing strength in response to an induction stimulus becomes both time- and

strength-state-dependent, yielding p±(t). Such an approach would reproduce

exactly the dynamics of the mean memory signal, essentially by construction.

The h transition matrix T will become time- or time-step-dependent and thus

simple powers of T will no longer suffice for multi-step transitions. Instead we

will have to deal with products of T evaluated at different time steps. Never-

theless, we would need work only with (N +1)× (N +1)-dimensional matrices.

Integrating out internal states will inevitably mean that we do not fully cap-

ture all the fluctuations at all orders that lead to changes in synaptic strength,

changes in h, and therefore first passage events past the firing threshold θ.

However, the approximation may be good enough to provide qualitative un-

derstanding of MFPT memory lifetimes with more complicated synapses, and

it will be interesting to pursue this approach in subsequent work.
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size argument, although I believe that the core of the difference between MFPT

and SNR memory performance is in-practice versus in-principle realisability,

as discussed above.

Appendix A Non-Poisson Continuous-Time

Processes

The equality of the discrete-time and continuous-time MFPTs, up to an overall

rate factor, arises because in the derivation of Eq. (3.9) for the continuous-time

MFPT, we employed the result

∫ ∞

0

dt
(rt)m

m!
e−rt =

1

r
, (A.1)

where the integrand is just the Poisson probability for the occurrence of pre-

cisely m events in time t. In fact, this result, suitably generalised, carries over

to any continuous-time process in which the waiting times between memory

storage events are governed by any common probability density function and

not just the exponentially-distributed waiting times that define the Poisson

process. We show this here.

Let the probability density function governing the waiting times be f(t)

and let πm(t) be the probability of precisely m events in time t. Let F̄ (t) be

the probability of the non-occurrence of a single event in time t. Then πm(t)
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is given by the convolution

πm(t) =

∫ t

0

dt1f(t1)

∫ t−t1

0

dt2f(t2) · · ·
∫ t−t1−···−tm−1

0

dtmf(tm)

×
∫ t−t1−···−tm

0

dtm+1F̄ (tm+1), (A.2)

where the last integral enforces the non-occurrence of an event in the time

between the occurrence of the m-th event and time t. If a function with a hat

over it denotes its Laplace transform and s is the transformed variable, then

π̂m(s) =
[
f̂(s)

]m ˆ̄F (s), (A.3)

where ˆ̄F (s) =
[
1 − f̂(s)

]
/s. The equivalent of the integral in Eq. (A.1) is just

∫ ∞
0

dt πm(t) ≡ π̂m(0), where if necessary we define π̂m(0) = lims→0 π̂m(s). Since

f(t) is a probability density function, we have that
∫ ∞
0

dt f(t) ≡ f̂(0) = 1. So,

∫ ∞

0

dt πm(t) = lim
s→0

{
[
f̂(s)

]m 1 − f̂(s)

s

}
= −f̂ ′(0), (A.4)

where f̂ ′(s) = df̂(s)/ds. In fact, −f̂ ′(0) is just the reciprocal of the asymptotic

rate of the overall, continuous-time process. The rate r(t) of this overall process

is defined as

r(t) =
d

dt
E

[
N(t)

]
, (A.5)

where E
[
N(t)

]
is the expectation value of the number of events N(t) in time

t, so that E
[
N(t)

]
=

∑∞
m=0 m πm(t). It is easy to see that

r̂(s) =
f̂(s)

1 − f̂(s)
. (A.6)

The asymptotic rate limt→∞ r(t) is just lims→0 s r̂(s) (see, for example, Elliott,

2010), and thus

lim
t→∞

r(t) = lim
s→0

s f̂(s)

1 − f̂(s)
= − 1

f̂ ′(0)
. (A.7)
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So,
∫ ∞

0

dt πm(t) =
1

limt→∞ r(t)
, (A.8)

and therefore continuous-time and discrete-time MFPTs are always identical,

up to this overall asymptotic rate factor, for any common waiting time distri-

bution f(t).

Appendix B Computation of T
m

By defining the generating function

G1(x|k) =
N∑

i=0

xi Prob

[
hn+1 =

2i

N
− 1

∣∣∣∣ hn =
2k

N
− 1

]
, (B.1)

for the elements of T given in Eq. (5.2), we find that

G1(x|k) =
[p

2
+

(
1 − p

2

)
x
]k [(

1 − p

2

)
+

p

2
x
]N−k

. (B.2)

From this we may obtain the generating function for the elements of T
m. For

T
2, for example, we have that

G2(x|k) =
N∑

i=0

xi

N∑

j=0

Prob

[
hn+2 =

2i

N
− 1

∣∣∣∣ hn =
2j

N
− 1

]

× Prob

[
hn+1 =

2j

N
− 1

∣∣∣∣ hn =
2k

N
− 1

]

=
N∑

j=0

G1(x|j) Prob

[
hn+1 =

2j

N
− 1

∣∣∣∣ hn =
2k

N
− 1

]

=
{

1
2

[
1 − (1 − p)2

]
+ 1

2

[
1 + (1 − p)2

]
x
}k

×
{

1
2

[
1 + (1 − p)2

]
+ 1

2

[
1 − (1 − p)2

]
x
}N−k

. (B.3)
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In general, by induction, we find that T
m has elements given by the generating

function

Gm(x|k) =
[

1
2
(1 − qm) + 1

2
(1 + qm) x

]k [
1
2
(1 + qm) + 1

2
(1 − qm) x

]N−k
,

(B.4)

where q = 1− p. The unconditional generating function for the distribution of

hm, Gm(x), is then given by

Gm(x) =
N∑

k=0

Gm(x|k) Prob

[
h0 =

2k

N
− 1

]

=
[

1
2
(1 − p qm) + 1

2
(1 + p qm) x

]N
. (B.5)

We may obtain results in continuous time rather than discrete time by

writing the continuous-time generating functions as

G(t; x|k) = e−rt

∞∑

m=0

(rt)m

m!
Gm(x|k), (B.6)

G(t; x) = e−rt

∞∑

m=0

(rt)m

m!
Gm(x). (B.7)

Unfortunately, we cannot evaluate these sums explicitly without expanding

Gm(x|k) and Gm(x) using the binomial theorem, producing messy results. Nev-

ertheless, we can obtain the moments of the continuous-time process in the

standard way by differentiation with respect to x, and then the Poisson sums

do simplify.

Appendix C Derivation of Eq. (7.22)

In order to derive Eq. (7.22), we need the q-binomial theorem and some of its

corollaries. A discussion of q-series and the q-binomial theorem may be found,
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for example, in Andrews et al. (1999). The q-binomial theorem states that, for

|x| < 1 and |q| < 1,
∞∑

k=0

(a; q)k

(q; q)k

xk =
(ax; q)∞
(x; q)∞

. (C.1)

Four of its corollaries are

n∑

k=0

[
n

k

]

q

(−1)kq
kC2xk = (x; q)n, (C.2)

∞∑

k=0

[
n + k − 1

k

]

q

xk =
1

(x; q)n

, (C.3)

∞∑

k=0

(−1)kq
kC2xk

(q; q)k

= (x; q)∞, (C.4)

∞∑

k=0

xk

(q; q)k

=
1

(x; q)∞
, (C.5)

where the q-binomial coefficient
[
n
k

]
q

is given by

[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

=

[
n

n − k

]

q

. (C.6)

We may now proceed to show that

∞∑

j=0

x q2j
(
x; q2

)
j
= 1 −

(
x; q2

)
∞ , (C.7)

from which Eq. (7.22) follows by putting x = qi. We have

∞∑

j=0

x q2j
(
x; q2

)
j

=
∞∑

j=0

x q2j

j∑

k=0

(−x)k
(
q2

)kC2

[
j

k

]

q2

by Eq. (C.2)

= −
∞∑

k=0

(−x)k+1
(
q2

)kC2

∞∑

j=0

q2(j+k)

[
k + j

k

]

q2

= −
∞∑

k=0

(−x)k+1
(
q2

)kC2 q2k 1

(q2; q2)k+1

by Eq. (C.3)

= 1 −
∞∑

l=0

(−x)l
(
q2

)lC2
1

(q2; q2)l

= 1 −
(
x; q2

)
∞ , by Eq. (C.4)

which establishes the advertised result.
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Appendix D O(p2) Expansion of τmfpt(x) for

Laplace Kernel

We have the exact power series solution for τmfpt(x) for the Laplace K2(y|x)

kernel in Eq. (7.23), given by

τmfpt(x) = 1 +
(q2; q2)∞
(q; q2)∞

[1 + g(x)] + f(x) (D.1)

where the particular solution f(x) and the non-constant general solution g(x)

are

f(x) = −
∞∑

m=0

(qγx)2m+2

(2m + 2)!

(
q2; q2

)
m

, (D.2)

g(x) = +
∞∑

m=0

(qγx)2m+1

(2m + 1)!

(
q; q2

)
m

. (D.3)

We perform an expansion in powers of p. Expanding up to O(p2), we write

f(x) = −N

p

(
1 − 3

2
p +

1

4
p2

)
x2

∞∑

m=0

(Nx2)
m

(2m + 2)!
cm, (D.4)

where

cm = 2mm!

[
1 − p

m(m + 3)

2
+ p2 m (9m3 + 58m2 + 69m − 64)
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]
. (D.5)

Writing

f(x) =
1

p

[
f0(x) + p f1(x) + p2 f2(x) + · · ·

]
, (D.6)
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we find

f0(x) = − Nx2

2
2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)
, (D.7)

f1(x) =
Nx2

8
+

√
2πN

16
x

(
3 + Nx2

)
eNx2/2 erf

(√
N

2
x

)

+
Nx2

4
2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)
(D.8)

f2(x) = − 41

96
Nx2 +

√
2πN

576
x

(
173 − 123Nx2

)
eNx2/2 erf

(√
N

2
x

)

− 43

144
Nx2

2F2

(
{1, 1};

{
3
2
, 2

}
,
Nx2

2

)

− 29

432

(
Nx2

)2
4F4

(
{2, 2, 2, 2};

{
1, 1, 5

2
, 3

}
,
Nx2

2

)

− 1

96

(
Nx2

)2
5F5

(
{2, 2, 2, 2, 2};

{
1, 1, 1, 5

2
, 3

}
,
Nx2

2

)
, (D.9)

where erf is the standard error function. Similarly for g(x), we have

g(x) =

√
N

p

(
1 − 3

4
p − 5

32
p2

)
x

∞∑

m=0

(Nx2)
m

(2m + 1)!
dm, (D.10)

where

dm =
(2m − 1)!

2m−1(m − 1)!

[
1 − p

m(m + 2)

2
+ p2 m (9m3 + 40m2 + 18m − 49)
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]
,

(D.11)

with g0 ≡ 1. Then we write

g(x) =
1√
p

[
g0(x) + p g1(x) + p2 g2(x) + · · ·

]
, (D.12)
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and obtain

g0(x) =

√
π

2
erfi

(√
N

2
x

)
, (D.13)

g1(x) = −
√

N x (3 + Nx2)

8
eNx2/2 − 3

√
2π

16
erfi

(√
N

2
x

)
, (D.14)

g2(x) =
5
√

N

288
x

[
4
(
Nx2

)2
+ 13Nx2 − 3

]
eNx2/2 − 5

√
2π

96
erfi

(√
N

2
x

)

+
(Nx2)

3/2

48
4F4

({
3
2
, 2, 2, 2

}
,
{
1, 1, 1, 5

2

}
,
Nx2

2

)
. (D.15)

From these expansions for f(x) and g(x), we may obtain that for τmfpt(x).

Appendix E Evaluation of Neumann Series for

Laplace Kernel

For the Laplacian K2(y|x) kernel, we write the Neumann series is Eq. (7.3) as

τmfpt(x) =
∞∑

n=0

fn(x), (E.1)

where

fn(x) =

∫ ∞

0

dy fn−1(y)K2(y|x), (E.2)

for n > 0 and f0(x) ≡ 1. By explicitly evaluating a few of these fn(x) for small

n, we observe that we may write

fn(x) = 1 +
n∑

i=1

β
(n)
i exp

(
−γqix

)
, (E.3)
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for some coefficients β
(n)
i . These coefficients may then be found to satisfy the

set of recurrence relations,

β
(n)
i = β

(n+1−i)
1

1

(q2, q2)i−1

, (E.4)

β
(n+1)
1 = −1

2

[
1 +

n∑

i=1

1

(1 − qi)

1

(q2; q2)i−1

β
(n+1−i)
1

]
. (E.5)

The quantities β
(n)
1 are fundamental because of Eq. (E.4). Writing a generating

function for the β
(n)
1 as g(z) =

∑∞
n=0 β

(n+1)
1 zn and with the help of the auxiliary

generating function

f(z) =
∞∑

n=1

zn

(1 − qn) (q2; q2)n−1

, (E.6)

we have, from Eq. (E.5),

g(z) = − 1

1 − z

1

2 + f(z)
. (E.7)

We may in fact evaluate f(z) explicitly using the methods in Appendix C:

∞∑

n=1

zn

(1 − qn) (q2; q2)n−1

=
∞∑

l=0

(
z ql

) ∞∑

n=0

(
z ql

)n

(q2; q2)n

=
∞∑

l=0

z ql

(z ql; q2)∞

=
1

(z; q2)∞

∞∑

n=0

z q2n
(
z; q2

)
n

+
1

(z q; q2)∞

∞∑

n=0

(z q) q2n
(
z q; q2

)
n

=
1 − (z; q2)∞

(z; q2)∞
+

1 − (z q; q2)∞
(z q; q2)∞

=
(z; q2)∞ + (z q; q2)∞

(z; q)∞
− 2. (E.8)

Since (z; q)∞ /(1 − z) = (z q; q)∞, we have

g(z) = − (z q; q)∞
(z; q2)∞ + (z q; q2)∞

. (E.9)
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We now write

τ(x; z) =
∞∑

n=0

znfn(x) (E.10)

and we of course have

lim
z→1

τ(x; z) = τmfpt(x). (E.11)

By writing

τ(x; z) =
(
1 1 1 1 · · ·

)




1 0 0 0 · · ·
z zβ

(1)
1 0 0 · · ·

z2 z2β
(2)
1 z2β

(2)
2 0 · · ·

z3 z3β
(3)
1 z3β

(3)
2 z3β

(3)
3 · · ·

...
...

...
...

. . .







1

e−γq1x

e−γq2x

e−γq3x

...




,

(E.12)

and using Eq. (E.4) we see that we have

τ(x; z) =
1

1 − z
+ z g(z)e−γq1x +

z2g(z)

(q2; q2)1

e−γq2x +
z3g(z)

(q2; q2)2

e−γq3x + · · ·

=
1

1 − z
+ z g(z)

∞∑

n=0

zn exp (−γqn+1x)

(q2; q2)n

. (E.13)

Although there appears to be a divergence as z → 1 because of the (1 − z)−1

term on the right hand side, this is not in fact the case. Nevertheless, we

remove this (1− z)−1 term by considering only τ(x; z)− τ(0, z). We have that

τ(x; z) − τ(0, z) = z g(z)
∞∑

n=0

exp (−γqn+1x) − 1

(q2; q2)n

zn. (E.14)

Since

g(1) = − (q; q)∞
(1; q2)∞ + (q; q2)∞

= − (q; q)∞
(q; q2)∞

≡ −
(
q2; q2

)
∞ , (E.15)

we have

τmfpt(x) − τmfpt(0) =
(
q2; q2

)
∞

∞∑

n=0

1 − exp (−γqn+1x)

(q2; q2)n

. (E.16)
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It only remains to show that limz→1 τ(0; z) gives the correct, known value of

τmfpt(0):

τ(0; z) =
1

1 − z
+ z g(z)

∞∑

n=0

zn

(q2; q2)n

=
1

1 − z
+ z g(z)

1

(z; q2)∞

=
1

1 − z

[
1 − z

(z q; q2)∞
(z; q2)∞ + (z q; q2)∞

]

=
1

1 − z

[
(1 − z) (z q; q2)∞ + (z; q2)∞

(z; q2)∞ + (z q; q2)∞

]

=
(z q; q2)∞ + (z q2; q2)∞
(z; q2)∞ + (z q; q2)∞

z→1−−→ (q; q2)∞ + (q2; q2)∞
(q; q2)∞

= 1 +
(q2; q2)∞
(q; q2)∞

≡ τmfpt(0),

as required.
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