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Abstract

Here we develop an analytical expression for the curvature of rods of circular
cross-section, when subjected to combined bending and axial force. Small
deformations are assumed here so that the deflections are small compared to
the cross-sectional dimensions. An enhanced material constitutive law having
a linear elastic part followed by smoothly matched hyperbolic hardening is
proposed. Analysis for two material models are presented which includes
elastic-perfectly plastic material as well as hardening. The effects of the
axial force on the response and springback are analytically assessed. The
analysis is then applied to the bending of rods of circular cross-section. The
analytical results are in excellent agreement with numerical calculations.

Keywords: Rods of circular cross section, elasto-plastic analysis, recoil,
hyperbolic hardening, combined bending-stretching

1. Introduction

Plastic deformation of rods is encountered in the manufacture of many
components used in automotive, aerospace and transportation engineering
sectors of the industry. Perhaps the most common example is forming of
metal sheets and curved beams. Such components and processes are used
in several mechanical engineering applications, such as load-bearing devices,
steel wires for tyre manufacture or in civil engineering structures for aes-
thetic purposes. The most common cross-section shapes of rods encountered
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in engineering are rectangular and circular. The problem of plastic defor-
mation of rods of rectangular cross-section under combined axial-bending
loading was solved analytically by [Yu and Johnson (1982) sometime ago.
Surprisingly, the case of elasto-plastic response and recoil of rods of circular
cross-section under combined loading seems missing in the literature. This
situation is frequently encountered in metal forming. In addition to such
manufacturing technique, a problem having very similar features, in terms
of the mechanics and the geometry, also arises in dealing with the micro-
mechanics of many additively manufactured lattice materials such as those
for biomedical implants. This is particularly true when fused deposition
modelling (FDM) is the manufacturing process. This is because the material
is dispensed as stacked cylinders from a circular nozzle. When such biomed-
ical scaffolds undergo complex loading, individual filaments are often under
combined stretching and bending. The present work is inspired by a host of
such practical engineering problems. The application is however restricted
here to the stretch-bending of a single rod.

Analytical prediction of the final manufactured shape after a process such
as die-forming is challenging due to the nonlinearities introduced by plastic-
ity and the recovery of the elastic deformation upon unloading. Die geometry
frequently dictates the presence of combined axial-bending loading. During
the manufacturing process, the material undergoes elastic deformation first,
which is followed by plasticity. Due to recoverable elastic deformation, the fi-
nal shape of the object, following the forming process, is not the one imposed
by the forming tool, but the recoverable elastic strain must be deducted. Sev-
eral possible measures are taken in practice to account for the springback.
For example, extra features in radii or variation in blank holder force are
used to ensure the shape of the formed part to be the same as intended after
springback has taken place. In stretch-bending processes, rods are clamped
and stretched from its ends and bent over a die (El-Domiaty and Elsharkawy
(1998)). The key problem encountered is the control of the effective residual
curvature after the process. The application of a tensile load reduces the
springback; however, the inevitable elastic recovery will always be observed
which necessitates studies to quantitatively predict the same. Trial and error
methods have often been used to establish the appropriate setting param-
eters. Researchers have also looked at the influence of cross-section shape
(Miller et al. (2001); [El-Domiaty and Elsharkawy (1998)), material and load-
ing parameters on the final deformed shape (Zhao et al! (2013)). Xu et al.
(1987) analysed L-beams for elasto-plastic response and springback while ac-
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counting for the shift and the rotation of the neutral axis. To the best of
our knowledge, the commonly encountered problem of simultaneously bent-
stretched circular rods and wires has not been solved in a closed-form yet.

Another motivation of the present work is a closely related problem of
the elasto-plastic response and recoil of lattice structures. Such architec-
tures are often used for biomedical implants where porosity is intended to
facilitate cell adhesion and growth. The high energy absorption capabil-
ity (Dharmasena et all (2008), Wadley et al. (2008)) as well as heat trans-
fer characteristics (Tian et all (2004), [Tian et all (2007)) make them also
suitable materials for automotive catalytic converters or impact and sound
absorption devices (Gibson and Ashby (1999), Tuncer (2003)), for example.
The possibility to manufacture such lattice material in a controlled fashion-
unlike foams having random pore geometry-is greatly enhanced by the advent
of additive manufacturing (Yang et al. (2001), [Yang et al! (2002)). Coupled
with the ability to predict the structural response and be able to design ma-
terial with required properties, the future of structured porous solids is very
promising. The apparent response of such structures can be inferred from
that of a single strut. Such analyses for lattice structures were carried out for
elastic response by (Gibson et all (1982) and [Bonfanti and Bhaskar (2015) for
elasto-plastic response and recoil. Coupled with the naturally circular shape
of filaments found in lattice structures manufactured using Fused Deposition
Modelling (FDM), the importance of the mechanical response of a single cir-
cular rod under complex loading involving axial and bending deformations
becomes critical for micro-mechanical analyses.

Approaches to predict elasto-plastic response and recoil of elastic rods
make use of various approximations in order to simplify analysis (Johnson and Mellor
(1983); [Kaliszky (1989); [Rees (2006); |Chakrabarty (2006)). The situation
is particularly complicated when the stress-strain relationship in the plas-
tic regime is complex. Therefore, analytical results for elasto-plastic beam
response are limited. Due to analytical difficulties in solving the equation
governing the elasto-plastic problem, numerical and experimental techniques
have been extensively used in the past (Saje et al| (1998); Mines and Jones
(1995)). However, some closed form solutions are also available. Exact solu-
tions are known for a beam with rectangular cross-section subjected to con-
stant bending moment and only few for non-constant bending moment distri-
butions along the length, such as linear (Yu and Johnson (1982)) or quadratic
(Chakrabarty (2006); [Prager and Hodge (1951); Stok and Halilovid (2009))
have been studied. In all these analyses, elastic-perfectly plastic material has



been assumed. This idealisation is frequently used in analytical work as the
starting point, since it simplifies the mathematics and includes all the essen-
tial features of the plasticity problem. In order to obtain a more realistic
description of the beam behaviour, the non-linear hardening effect must be
taken into account during the plastic analysis. The present study provides
such a generalisation and yet successfully affords closed form solution.

A theoretical study on the nonlinear bending of wires with rectangular
and circular cross section assuming three different types of material behaviour
was presented by Baragetti (2006). They developed an analytical approach
to predict the final shape of a wire without using finite element analysis.
A well-known geometry that has attracted attention with regards to bend-
ing processes is the tube, widely used in the aircraft industry. Theoretical
studies of elasto-plastic bending of tubes are available in the literature to
predict their final deformed shape and springback (Al-Qureshi (1999)). In
many engineering applications, the beam is subjected to combined bending
and tensile axial force. The application of a longitudinal force affects the
position of the neutral axis; therefore, the stress distribution in each cross-
section is not symmetric even if the cross-section is geometrically symmetric
with respect to the such axis. [Yuand Johnson (1982) presented the first
theoretical study for a beam with a rectangular cross-section, made of an
elastic-perfectly plastic material under combined bending and axial force.
However, to our knowledge, analytical solutions for other geometries, includ-
ing circular cross-section, are not available for combined loading. A source
of mathematical difficulty under combined loading is the lack of validity of
the superposition principle because of the non-linearity introduced to the
problem by plasticity.

Several mathematical representations are available to model material
hardening. Power law is one of the most commonly used material constitu-
tive law when the plastic strain is large (Samuel (2006); Dafalias and Popov
(1975)). However, this representation introduces difficulties in the analysis.
A new mathematical model which captures both linear and nonlinear be-
haviour is proposed here. This model is amenable to analysis as presented in
Section 2. The present work aims to provide an analytical calculation of the
elasto-plastic deformation and recoil of a thin beam of circular cross-section
for two different material laws (a) elastic-perfectly plastic and, (b) with the
model of hyperbolic hardening introduced here. The diameter is assumed to
be much smaller than the length of the beam allowing neglecting the shear
deformation through the cross-section.
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Figure 1: Initial straight beam of circular cross section loaded with axial force N and
bending moment M.

The paper is organized as follows. In Section 2, the plastic analysis of a
beam under combined loading is described. Further the constitutive model
with hyperbolic hardening is introduced here which allows smooth transition
at an yield point from linear elastic to non-linear hardening. The develop-
ment of the analytical model assuming an elastic-perfectly plastic material is
presented in Section 2.1. Section 2.2 takes up the analysis assuming the hy-
perbolic nonlinear model. Following this, the calculation of springback upon
removal of external load is presented in Section 2.3. The load-curvature re-
lationships for a rod undergoing metal forming under axial and transverse
forces is described in Section 3. The presence of combined loading is a result
of the geometry of the punch-die system. Finally, concluding remarks are
made in Section 4.

2. Plastic analysis and springback of beams under combined axial
and bending loading

An initially straight beam of circular cross section of radius r is loaded
by a constant bending moment M and a tensile force N, as shown in figure
Il Small deformations are assumed here so that the deflection of the beam
is small compared to the cross-sectional dimensions. Also, it is assumed
that the cross-section of the beam remains plane during the elasto-plastic
deformation (Bernoulli’s hypothesis). As a result, strain is linearly related
to the distance from the neutral axis. The beam is also assumed stress-free
before loading.

For different combinations of M and N, the stress distribution over a
cross section can be one of the three types:

1. Wholly elastic stress distribution: no fibre parallel to the longitudinal
axis of the beam undergoes plastic deformation;



2. Primary plastic stress distribution: only part of one side of the beam,
either above or below the neutral axis, is plastically deformed;

3. Secondary plastic stress distribution: the cross-section is partially plas-
tically deformed above and below the neutral axis. However, the extent
of the two plastic zones is asymmetric due to the presence of axial load.

An ideal elastic-perfectly plastic material model is considered first. The
study is then extended for an elasto-plastic material model with nonlinear
hardening. The following dimensionless variables for axial force, moment and
curvature of the section are now defined as

n=|N|/(oyr*), m=|M|/(oyr") and ¢ = |x|/ke, (1)

where o, is the yield stress, 7 is the radius of the cross section and &, is the
initial yield quantity under pure bending for the curvature given by

ke = 0y/(rE), (2)
where F is the Young’s modulus.

2.1. FElastic-perfectly plastic material behaviour

Consider isotropic and homogeneous material that exhibits elastic-perfectly
plastic behaviour so that the stress-strain relationship can be expressed as

U:{Ee a<ay. (3)

Oy 0 20y

For a combination of M and N, the stress distribution over each cross section
can be qualitatively classified in one of the three categories listed before. By
setting up the equations for force and moment equilibrium for each category,
the load-curvature relationship is derived in the following analysis.

2.1.1. FElastic-perfectly plastic material: the elastic regime E,

In this regime, the deformation is purely elastic; therefore, the final stress
distribution is obtained by superposing the effects of separately applied axial
force and bending moment. Note that under this loading state the longitu-
dinal axis of the beam and the longitudinal axis through the centroid of the
cross-section do not coincide, in contrast to the pure bending case normally
studied.
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Figure 2: (a) Stress distribution across the circular cross section: PI regime. The circular
segment area is denoted by Ao and the location of its centroid by y.o.(b) Stress distribution
across the circular cross section: PII regime. The circular segment areas are denoted by
Ag; and the location of its centroid by y.;. Stress profiles for elastic-perfectly plastic case
are shown at the centre and these for hyperbolic hardening at the right end.

Using of the superposition principle, it can be shown that the load-
curvature relationship in the elastic regime is

p=m (4)

for m +n < 1. Hence, the boundary of the onset of plasticity for this regime
is m +n = 1, beyond which the treatment must account for plasticity.



2.1.2. Elastic-perfectly plastic material: the primary plastic regime PI

Due to the asymmetric stress distribution above and below the line pass-
ing through the centroid on the cross-section, upon simultaneous application
of N and M, one side of the beam undergoes plastic deformation as loading
is increased. This is shown in figure 2] (a). The non-linearity of the problem
introduced by yielding now prohibits the use of the superposition principle.
Therefore, the load-curvature relationship can only be calculated by imposing
the force and moment static equilibrium conditions at the cross section.

The cross-section is assumed to be circular having radius 7 in which a
circular segment of area A, has undergone plastic deformation. The central
figure within 2 (a) refers to the stress profile for PI regime when elastic-
perfectly plastic stress-strain relationship is used. Let 6, be half of the central
angle of the circular segment in radians and y. the position of its centroid
respect to the centre of the circle. The position along the circumference is
described using the angle 6, measured from the vertical axis. It turns out that
parametrising the plastic zone in the polar co-ordinates using 6, facilitates
calculations greatly.

Static equilibrium of the axial force over the cross-section leads to

1 . 2 0r . d 1. d
(90 — g sin 290) 2 {g sin® 0y + D) (90 — 5 sm 290) _Wi] =n, (5)

where d is the shift of the neutral axis from the centre of the section and
¢ is the distance of the first yielded fibre from the neutral axis (figure
a). Equilibrium of the bending moment due to stress distribution over the
cross-section results in

2 2 |d . r 1 . r
] sin® 6, — ; {g sin® 0, + 3 (00 — 4 sin 400) - Wg} = m. (6)
A detailed derivation of this can be found in the Appendix.

Substituting from
(c—d)/r = cosb (7)

for d into equations (H) and ([6)), we obtain a pair of simultaneous equations

(7r—90+%sin290) + %sin?’@o =(mr—n)¢
i (7T — b +isin480) +§cosﬁosin390 =ms

(8)



in variables 6y and ¢/r. The unknown c¢/r can be eliminated leading to a
single equation in terms of 6y only. Substituting this into one of the equation
in (8), we determine the value of ¢. Once the value of ¢ is known, then the
dimensionless curvature ¢ can be calculated from

¢=rfc (9)

2.1.3. Elastic-perfectly plastic material: the secondary plastic regime PII

When the axial force and bending moment, N and M respectively, are
further increased, both sides of the beam undergo plastic deformation, as
shown in figure 2 (b). As for the case of primary plastic regime, the load-
curvature relationship is found by imposing the static equilibrium since the
nonlinearity due to plasticity forbids the application of the superposition
principle.

When plastic deformation develops on both sides of the longitudinal axis,
the two yielded segments have a different area, A, and A. above and below
the neutral axis respectively, because of the asymmetric distribution respect
the centre of the section. The locations of the centroids of the plastic regions
are, respectively, y.; and y.o and the central angles of the two plastic regions
are ¢ and 6, as shown in figure 21 (b). The central figure within 2 (b) refers
to the stress profile for PII regime when elastic-perfectly plastic stress-strain
relationship is used.

The axial force equilibrium now requires summing contributions from the
two outer plastic regions and the elastic core. The result is expressed as

1 1 4sin®6; —sin®0y  cosf; — cos by
0 — =sin20; | — {0y — =sin20y | — = -0, -0
( ! 23111 1> ( S i 2) 3 cosbi + cosby + cos by + cos b, (7 ! 2) +

1 1
—1—5 sin 20, + 3 sin 2605 = n.
(10)

Similarly, the moment equilibrium now requires integrating contributions
over the cross-section leading to

2.3 . 2cosf; —cosby , . '
9 8 36 - - - @@ - 3 8 . 3 8
3 (sin® 61 + sin® 6,) Y — (sin® 6, — sin® 65) + -
1 1 ‘ ‘

S cosd oo, 7401+ 02— ) sin 46 + sin 40] = m.



A detailed derivation of (I0) and (II]) is presented in the Appendix. Equa-
tions (I0) and (II)) constitute a nonlinear system of algebraic equations that
cannot be reduced further. From the values of #; and 0y obtained, the dis-
tance c of the fibre first yielded from the neutral axis is obtained as

c=r/[2(cosb + cosbs)], (12)
from which the curvature is derived using equation (3.

2.2. Hyperbolic hardening model

Engineering design requires realistic constitutive models that relate stress
and strain within materials. Mathematical description of constitutive be-
haviour frequently requires a compromise between realism and complexity of
the model for the given purpose. The classic plasticity theory developed from
the study of metals and other crystalline materials. At microscopic level crys-
tal planes slip in the direction of the largest shear stress. This slip is possible
because of the motion of dislocations of atom planes. The two commonly
used mathematical descriptions employed to model the macroscopic harden-
ing behaviour of materials are Hollomon’s equation and Ludwik’s equation
(Samuel (2006)). Since these power law expressions introduce mathematical
difficulties in the plastic beam bending analysis and also lack a linear elastic
regime, a new mathematical representation of the stress-strain curve is sought
here. A very wide range of engineering material show a linear response for
low strain followed by a plastic region of hardening where the tangent mod-
ulus of the material monotonically reduces upon increased strain. Inspired
by the constitutive law used for soil and polystyrene geofoam (Chun et al.
(2004)), a linear model followed by an hyperbolic stress-strain relationship
has been proposed here (figure[3]). The stress-strain behaviour of several ma-
terials can be separated into the linear elastic behaviour and the nonlinear
behaviour due to plasticity. The linear behaviour is observed until the yield
point is reached and it is modelled using a straight line which passes through
the origin and whose slope is the Young’s modulus. The plastic behaviour is
described here by a rectangular hyperbola with asymptotes translated with
respect to the reference system. The proposed constitutive relation is written
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Figure 3: Proposed stress-strain relationship with hyperbolic hardening

as
Fe o <oy
0=X Be+D o (13)
—— o >0
A—¢€ =Y

where A, B and D are the coefficients of the hyperbola and ¢ = —B and
e = A are the asymptotes. The parameters are calculated by imposing the
continuity and differentiability at the interface of the elastic and the plastic
regimes. The first requirement is expressed as

o(e =€) =oy. (14)

The gradient continuity between the hyperbola and the straight line at the
yield point provides a second condition

do
— =F. 15
de —, (15)

The material parameters most readily available from the experiments are
the Young’s modulus F, yield stress oy, yield strain ¢, and the parameter
B which is the o asymptote. To test how realistic the proposed hyperbolic
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Figure 4: Hyperbolic interpolation for Douplex stainless steel 2205, Stainless steel 304 and
Magnesium alloy (Original data from |Association (nd); Fare et all (2010)).

Material A (10=%) | B (MPa) D (MPa)
Douplex Stainless Steel 2205 | —8.98 —6.32 x 10? | 2.34 x 107¢
Stainless Steel 304 —4.84 —3.12 x 10? | 6.37 x 1072
Magnesium Alloy —0.122 —2.50 x 10? | 2.44 x 107¢
Elastic-perfectly plastic —0.111 | —2.20 x 10? | 2.32 x 102

Table 1: Hyperbola coefficients obtained from the genetic algorithm for the real materials
shown in figure ] and the ideal elasto-perfectly plastic material.

hardening model is, here we compare the best fit to experimentally obtained
data (Association (nd); [Fare et all (2010)). For this, the difference between
the data and the model was treated as error to facilitate curve fitting. The
sum of square of the error was minimised by the use of a Genetic Algorithm
(GA). The process of curve-fitting was thus treated as an error minimisation
problem by a GA. The o — e relationship (I3]) was fit to previously published
data for three different real materials (figure ). The hyperbola parameters
estimated for the set of trial materials shown in the figure are summarized
in Table [II

The experimental data and the hyperbolic hardening model are found to
be in good agreement. Note that a somewhat similar representation has been
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recently used for cast iron (Rajani (2012)). There, the hyperbolic model has
been used to describe the whole constitutive material law because the cast
iron shows non-linearities also at low stresses. Unlike Rajani (2012), the
model proposed here has a linear part which simulates many real material
behaviour more faithfully.

The analysis for the elastic-perfectly plastic material in the three regimes
of plasticity (on the lines of Section 2.1) is now carried out for the hyperbolic
hardening model.

2.2.1. Hyperbolic hardening: the elastic regime E,

The stress distribution over the cross-section remains the same as that dis-
cussed previously in Section 2.1 for the elastic-perfectly plastic case. There-
fore, all the relationships developed there stay unchanged.

2.2.2. Hyperbolic hardening: the primary plastic regime Pl

When a cross section starts yielding under combined axial loading and
flexure, the plastic deformation takes place only on one side of the beam
as for the elastic-perfectly plastic material. The presence of the axial force
shifts the neutral axis away from the centroid, causing an asymmetric stress
distribution whose qualitative behaviour is illustrated in figure 2l (a). The
stress profile for hyperbolic hardening is shown in the right figure within
(a). Whilst for the elastic-perfectly plastic material model the maximum
stress remains constant, once the yield stress o, is reached, for the hyper-
bolic hardening material, the post-yielding stress distribution is nonlinear
and requires new analysis.

Johnson and Mellor (1983) presented the stress distribution over each
cross section by re-drawing the material stress-strain diagram from the neu-
tral line. Therefore, the shape of the nonlinear stress profile is known. By
using this argument, the axial force equilibrium yields

0 bo
oy / 20(0) sin? 0df — 2 / (rcosf + d)sin® 0df = n (16)
6o T

C

and similarly the moment equilibrium results in

0 6o
oy / o (6)2sin? 0 cos 0df — 2 / (rcos® +d)sin®fcosfdf =m  (17)
0 ™

o C
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where

B(ey/c)(rcosf +d) + D

o0)=—— (e,/0)(rcos0 +d)

(18)

The first integral in equation (I6) and (IT) is the contribution of the stress
over the circular segment having undergone plastic deformation, whilst the
second integral is that corresponding to the area where the deformation is
still elastic. A detailed derivation of o(#) is presented in the Appendix. The
three unknowns ¢, d and 6, are related by equation (7). By substituting one
variable from equation ([7) into (I6) and (), a system of two equations in two
unknowns is obtained. The nondimensional curvature is finally calculated
using equation ([@). The curvature relation can be integrated to determine
the transverse deflection.

2.2.3. Hyperbolic hardening: the secondary plastic regime P11

Increasing N and M further leads to plastic deformation on both sides
of the beam as shown in figure 2 (b). The corresponding stress profile for
the hyperbolic hardening model is shown in the right figure of @ (b) In a
manner similar to that applied for the PI case, the stress profile after yielding
shows a nonlinear behaviour. In the current model, the hyperbolic function
introduced here is used to describe the post-yield stress distribution.

The equilibrium along the axial direction can be expressed as

0 0 5 0
/ o (6)2sin® 0do + / —0o(0)2sin* 0df — = / (rcos® + d) sin® 0df = n.
01 02 CJr
(19)
which is obtained by summing the contributions of fibres under tension and

compression over the circular cross-section. Similarly, moment equilibrium
leads to

0 0 0
/ o(0)2sin? § cos Odf + / —0(6)2sin? 6 cos Odf — 2 / (rcos B + d) sin? 6 cos 0df = m,

61 92 ¢

(20)

where the moment over the cross-section is calculated via the sum of the
integrals above. The first two integrals are the stress contributions from the
upper and lower circular segment undergone plastic deformation, whilst the

14
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Figure 5: Non-dimensional curvature after the unloading for different combinations of m
and n. The non-dimensional axial force, n, is 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively
from the right to the left lines. The primary plastic region and the secondary plastic region
are demarcated by the dark solid lines. (a) Elastic-perfectly plastic material (E = 209
GPa, o, = 240 MPa) (b) Hyperbolic hardening material (E = 209 GPa, op = 240 MPa),
yielding for this occurs at 200 MPa shown by a dot.

last integral is attributed to the area under elastic deformation. A nonlinear
system of two equations, (I9) and (20), involving four unknowns ¢, d, 6, 0,
is obtained. Two further conditions that relate these four unknowns are
given by costy = (¢ =d)/r and cosfy = (¢ + d)/r. Finally we have a pair
of non-linear algebraic equations in terms of two unknowns which can be
solved.

2.3. Springback of a beam following simultaneous application of bending mo-
ment and azial force

When the applied moment M and axial force N are removed, the elastic
deformation is recovered but the plastic deformation remains permanently
within the material. If the unloading is assumed to be linearly elastic, the
final residual non-dimensional curvature is given by

oF = ¢—m. (21)

For all combinations of bending moment and axial force, the expression above
provides the springback.
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The numerical results for the elastic-perfectly plastic material and a ma-
terial showing hyperbolic hardening, whose horizontal asymptote op corre-
sponds to the yield stress of the elastic-perfectly plastic material, are plotted
in figure Bl For the same combination of m and n, the final curvature ¢p is
lower for the material showing nonlinear hardening. The shaded regions show
the combination of normalised axial force and bending moment that lead to
primary plastic state of stress. FigureBl(a) relates to elastic-perfectly plastic
case whereas [B(b) to hyperbolic hardening. When an elastic-perfectly plas-
tic material undergoes plastic deformation, the hardening rate (measured by
the tangent modulus) is equal to zero. Thus, the plastically deformed ma-
terial no longer resists if any additional strain is applied. By contrast, to
further deform a material showing an hardening rate different from zero, an
increasing stress is required.

3. An illustrative example: press-brake bending of a metal rods

The results obtained in Section 2 can now be applied to calculate elasto-
plastic response for practical manufacturing processes. Consider a press-
brake bending of a metal rod, as shown in figure [l (a). Observed the sym-
metry of the problem, half of the rod can be modelled as a cantilever beam.
Here the bending moment varies along the length of the beam and an axial
force is applied additionally. The rod is of circular cross section with radius
r, clamped at one end and subjected to a concentrated force F' at the tip
inclined at an angle a; as shown in figure [@ (b). The inclination of the reac-
tion from the die is a consequence of the direction of the normal to the die
surface. Thus the geometry of the problem enforces simultaneous presence
of significant axial force and bending moment. The inclined load can be
separated in its transverse and axial components, which are respectively P
and N (see figure [6] b). The plastic zone is depicted by the hatched area in
the figure and it shows asymmetric distribution due to the presence of axial
force. Note that tensile or compressive N results in the same final curvature
because both tend to the same departure in stress distribution form the elas-
tic case but on the opposite sides of the centre line. The extent of plasticity
on the top fibre is given by 0 < x < x; and that for the bottom fibre by
0 <z < xy. Pl regime spans x1 < x < x5 and PII regime spans 0 < z < x;.
Finally, x9 < x <[ corresponds to the elastic part of the structure.

Two cases of the material behaviour are considered: that of elastic-
perfectly plastic and the one with hyperbolic hardening. To simplify the

16



Punch

Die

M,
M,
(a) (b)

Figure 6: (a) Press-brake bending of a metal rod (b) Half of the work piece modelled as a
cantilever beam with axial and shear components. The hatched areas are the plastic zones
that spread along the beam while the load is increased. Due to the asymmetric stress
distribution, the two sides of the beam do not undergo plastic deformation at the same
time. Moment distribution along the beam due to the shear force P.

analysis, the maximum bending moment at the root of the beam is expressed
in the following non-dimensional form

m* = Pl/(o,r°). (22)

where o,r? is the factor of dimensionalisation; [ is the length of the beam.
Introduce the non-dimensional co-ordinate ¢ along the beam and the non-
dimensional transverse deflection 7 as ¢ = 2/l and n = wrE/(l*c,), where w
is the beam deflection. The non-dimensional curvature is now given by

d?n B
e (23)

The complete beam deflection is obtained by integrating the curvature ex-
pressions derived in the previous sections, and applying the geometric bound-
ary conditions at the fixed end

d
n=0 and d—Z:o at €=0. (24)

The final deflected shape of the cantilever beam after the unloading is found
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Figure 7: Deflection of the cantilever beam with circular cross section. The results are
presented for both elastic-perfectly plastic materialand elasto-plastic material with hyper-
bolic hardening. Different combinations of n and m™ are examined to study the influence
of the axial force on the deformed shape: the solid line refers to n = 0.0 and m* = 1.3,
whilst the dashed line to n = 0.3 and m* =1.3.

by subtracting the elastic deflection from the expression of 7:

ne =1n—m"(1-¢). (25)

Two loading conditions were considered. The first assumes a cantilever
beam subjected to pure bending, while the second example considers a can-
tilever beam subjected to a combined loading: bending moment and axial
force. The deformed shapes are presented in figure [[l As expected, for the
same loading state, the deflection obtained using an elasto-plastic material
with nonlinear hardening is lower. This is due to the increased strength of
the material attributed to the strain hardening. A smaller elastic recoil is ob-
served when an axial force is applied. In manufacturing processes, like metal
forming, the estimation of the elastic recoil is fundamental in determining
the load to which the solid must be subjected so that the desired final shape
is obtained.

The results obtained using the analytical model are compared here against
those obtained using a finite element approximation. The analysis has been
performed using the Finite Element Analysis commercial code Abaqus. The
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cantilever beam is discretised using the beam element B23, which does not
allow for shear deformation, but it has stretch degrees-of-freedom. The beam
is fixed at left end and it is loaded by prescribing a compressive axial force
and shear force at the right end. The analytical and computational results
are in good agreement, as shown in figure B (dashed lines). The application
of the axial force results in the shift of the neutral axis and axial strain.
The analytical model takes into consideration only the change of position of
the neutral axis; therefore, the slight difference between analytical and FEM
results can be attributed to the absence of the stretch in the model earlier
developed.

Although, neglecting geometric non-linearity might appear as a limita-
tion, it enables us to successfully develop a new simple and accurate analytical
solution to predict and control the stretch-bending final deformed shape and
springback of rods and beams in traditional manufacturing processes. This is
valuable for assigning the process parameters as opposed to current practice
of applying a combination of experience, trail-and-error approaches, or de-
tailed computations that provided result for specific geometries without any
analytical information about the sensitivity to the parameters. In practice,
metal forming processes include both geometric and material nonlinearities.
The nonlinear material behaviour is likely to be much more significant; there-
fore, in order to handle the problem analytically, we considered the influence
of the material nonlinearities only while neglecting the nonlinear term arising
from the large displacement as a first approximation. We study these effects
in the next section.

3.1. The effects of geometric nonlinearity and kinematic hardening

The analysis presented above is restricted to small strains. Thus, only
the effects of the material nonlinearity were included. We lift the restrictions
of geometric linearity and kinematic hardening now and include geometric
non-linearity in our calculations first.

We can assess the role of geometric nonlineariy on the elasto-plastic re-
sponse computationally. We carried out finite element calculations with and
without the effects of geometric non-linearity while always accounting for
plasticity. The deflected shape that includes the effects of large deforma-
tions and large displacements obtained from finite element calculations using
the commercial software Abaqus is presented in figure [§l The two deformed
shapes obtained using FEM-with and without geometric nonlinearity, show
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Figure 8: Comparison of the elasto-plastic deformed shape and springback obtained using
the analytical model (solid lines—with and without geometric nonlinearity) developed here
and the commercial Finite Element software Abaqus (dashed lines) for m* = 1.3 and
n = 0.3.

excellent agreement. This illustrates that the geometric nonlinearity is of
minor importance for slender beams and small deformation.

In the prediction of springback, both kinematic hardening and plastic
anisotropy play important roles. However, the reduction in stiffness during
the plastic deformation, due to the Bauschinger effect, is important when sewv-
eral cycles of stress past plasticity are applied. Here, we are concerned with
applications where the structure undergoes only one cycle of stress reversal.
This is a common scenario in metal forming. Likewise, in situations such as
the analysis of cardiovascular stents during expansion, a single cycle of spring-
back is of interest. This is also true in many impact and crash applications
when only one cycle of plasticity is applied. Therefore, the Bauschinger effect
was neglected, as a first approximation in the previous section, in order to ob-
tain a closed form analytical solution. As demonstrated by Yu and Johnson
(1982), under the assumptions made for the analysis, re-yielding cannot occur
during unloading if an elastic perfectly plastic material is assumed; therefore,
the unloading is fully elastic. This justifies our approach in the previous sec-
tions even though a compromise to realism takes place as a results which is
deliberate in the interest of developing analytical results. The assessment of
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situations where kinematic hardening has an appreciable effect is taken up
next.

Residual tip displacement (mm) - Isotropic hardening

2 4 6 8 10
Residual tip displacement (mm) - Kinematic hardening

Figure 9: (a) Constitutive material curve for Douplex UNS31803 alloy. The solid line is the
experimental curve [Rasmussen (2003), the dashed line is the linear hardening model. (b)
Final tip deflection for both kinematic and hyperbolic hardening. Reyileding occurs when
high load is applied; this is depicted by the black area within the circular cross-section in
the inset. However, the structure fails under such loading—crosses.

The prediction of springback depends mainly on the accuracy of the resid-
ual stress calculation, directly related to the material properties, both during
loading and unloading. Under the assumption of small strain, we can com-
putationally assess the effects of the kinematic hardening. The material
considered here is Douplex UNS31803 alloy (see figure [ a). The nonlinear-
ity is now modelled by piece-wise linear curves, both assuming isotropic and
kinematic hardening. The tip deflection after springback is in a good agree-
ment as calculated from the two hardening models (isotropic and kinematic
hardening). Results obtained for isotropic hardening assumption are plotted
against those computed using kinematic hardening in figure @ b. The rela-
tionship along a line equally inclined to the two axes confirms that the role
of kinematic hardening is non-existent for all the points up to ~ 7.5 mm de-
flection. Reyielding occurs when the force is further increased. The influence
of kinematic hardening can be observed in the last two points computed on
this graph. The “AC YIELD” state variable within Abaqus (a flag indicating

21



if the material is currently yielding, or not) is plotted within the clamped
cross-section of the rod (see the inset of figure @ b). The black area is the
region that has undergone reyielding after springback, whilst the white area
is still under pure elastic deformation. This shows that the volume of the
plastic region is negligible compared to the total volume of the rod indicating
the insignificance of kinematic hardening. However, at this stage, the struc-
ture fails as the strain within the rod exceeds the maximum strain allowed
by the material (denoted by “plus signs” in figure @ b). This shows that
for the case considered here, kinematic hardening has no impact for most
cases and the results with or without accounting for this match very well.
However, it is also clear that there are circumstances when reyielding could
occur significantly, thus affecting the results.

4. Conclusions

Analytical models incorporating the influence of axial force on elasto-
plastic bending and springback of beams of circular cross-section were devel-
oped. Such an analysis has been previously performed only for a rectangular
cross-section with elastic-perfectly plastic constitutive model. This has been
possible by the introduction of an improved mathematical description of the
stress-strain curve which combines a straight line with a translated rectangu-
lar hyperbola. This mathematical representation of the material constitutive
law gives us the possibility to exactly calculate the linear-elastic behaviour
at low strain in addition to that in the plastic regime. The analysis assumes
that plane cross sections remain plane after bending and the deformations
are small with respect to the dimensions of the beam.

The model relates the radius of curvature to the combination of bending
moment and axial force during the loading and unloading process. The re-
lationship has been expressed using mathematical equations, leading to the
exact solution presented here. The analysis developed above enables a de-
signer to chose the correct loading to obtain the desired final shape of the
beam during forming processes.

The theoretical model predicts the loading and unloading of a beam with
circular cross section for two material models. This allows to assess the
deformed shape for most of the available materials. Finally, the methodology
developed here is applied to the practical problem of bending of a circular rod
within a die where the geometrical necessity forces combined loading. The
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results for the two material models have been verified with those obtained
from the FEM analysis resulting in an excellent agreement.

The analysis is limited to small deflection and deformation ignoring ge-
ometric non-linearity as well as kinematic hardening. A computational as-
sessment of these effects show the insignificance of the first, while the roles
of kinematic hardening and Bauschinger effect are also small but they could
be important for cyclic plastic loading.

5. Appendix A

In order to find the stress distribution in a circular cross section given
an applied load, the axial force and moment equilibrium are imposed. A
detailed derivation is presented in this Appendix.

5.1. Elastic-perfectly plastic material: primary plastic regime, PI

The area of the circular segment that has undergone plasticity is given
by

ACO = 7"2(90 — sin 80 COS 90) = 7"2(‘90 — sin 200/2) (26)
The y-position of its centroid is calculated as

Yeo = 2rsin® 0y / [3(6p — sin by cosy)] = 2rsin’® b/ [3(Ac/r?)] = 2r° sin® 0/ (3A.) .
(27)

We can carry out integrations in the (r,6) polar coordinates such that y =
rcosf. The stress distribution in the elastic area of this regime is obtained
as

o(y) =0, x (y+d)/c, (28)
after imposing
oly=c—d)=o0, and o(y=—r) =0, x (—r+d)/c. (29)
Hence in polar coordinates the stress profile is calculated as

o(0) = oy(rcosf+d)/c. (30)
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Imposing static equilibrium in the longitudinal direction leads to

c—d
Aoy + / [2rsinfo(y)]dy = N (31)

—-T
or in polar coordinates
0o

Acoy + (204 /c) / [(rcosf + d)rsinf(—rsind)| df = N (32)

™

which after integration and substitution of A. from equation (26]) becomes

(6o — sin26p/2) — (2/c) [rsin® 0y /3 + d(6y — sin26,/2)/2 — wd/2] = N/(r’a,).
(33)

Imposing momentum equilibrium leads to

0o
Acoyye + 2/ [yrsinfo(8)] dy = M (34)

s

which after substitution of A. from equation (28]), y. from equation (27) and
y = rcos f and integration becomes

2sin®6o/3 — (2/c) [—rm /84 (0 — sin 46y /4) /8 + dsin® 0, /3] = M/ (r’c,).
(35)

Equation (@), (33) and (B5) respectively form a set of simultaneous equa-
tions in three unknowns ¢, d and 6,.

cosby = (c—d)/r
wd/c+ (0y — sin20,/2)(1 — d/c) — (2r/3c) sin® 6y = N/(rc,) (36)
mr/dc+ 2(1 — d/c) sin® 0y /3 — (r/4c)(0p — sindby/4) = M/ (r3a,)

Solving the first of these equations for d and substituting in the second and
the third, and then eliminating d, we have

{(W — 0 + sin 20, /2) cos Oy + 2sin® 0y /3 = [r — N/(r%a,)] (¢/r) (37)

(7 — 0o + sin 46, /4) /4 + 2sin® Oy cos 0y /3 = [M/(r?a,)] (c/7)

¢/r can now be eliminated from one of the above equations, leading to a
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single equation depending only the unknown 6.

5.2. FElastic-perfectly plastic material: secondary plastic regime, PI1

The areas of the two circular segments are respectively given by
Ag =7%(0; —sin26,/2) and Ay = r2(0y — sin 26,/2) (38)
and the y-position of their centroids is respectively calculated as
Yoo = 2r°sin® 0, /(3A,1) and ye = 2r3sin® 0, /(3A.,). (39)

The boundaries between elastic and plastic deformation on the two sides of
the beam are

costh = (c—d)/r and cosby = (c+d)/r =cosb + 2d/r. (40)

Imposing static equilibrium in the longitudinal direction leads to

c—d
Aqoy — Aoy, + / [2rsinfo(y)|dy = N (41)

—c—d

which, after substituting the expressions for the circular segment areas (38)),
equation (40) and carrying out the integration, becomes:

1 1 4sin®0; —sin®0y  cos B, — cos by
0, — =sin26;) — (0 — —sin 260y) — — -0, -0
(01 2 sin 201) — (62 28111 2) 3 cos by + cos by + cosy + cos b, (m ! 2)+

1 1
%‘§Eﬂ11291‘% §Eﬂrl282 =n.

(42)
Imposing the momentum equilibrium leads to
c—d
Aoy~ Aaoyta-+ [ [rsindyo(y)dy = M (43)
—c—d
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which after integrating and substituting equations ([B38), (89) and Q) into
the above equation becomes

2sin’ 0 /3 + 2sin® 0, /3—
(2/c) {d(sin® 6; — sin® 65)/3 — r [—4(61 + 02 — 7) + sin 46, + sin465] /32} = M/ (r’0,).
(44)

5.3. Nonlinear hardening model: stress distribution

By assuming an nonlinear material with hyperbolic hardening, the stress
distribution in the cross section takes the form of o(e) = (Be + D) /(A — ¢).
Imposing that o(d) = 0 and o(c — d) = 0, leads to

Bley/c)(y+d)+ D
A—(ey/c)(y +d)

The mathematical description of the stress distribution in polar coordinates
is obtain by substituting y = r cosf into (43])

oly) = (45)

B(ey/c)(rcos@ +d) + D
A —(e,/e)(rcosf+d)

o(h) = (46)
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