
Research Article
Statistics
in Medicine

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Statistical methodology for estimating the mean
difference in a meta-analysis without
study-specific variance information

Patarawan Sangnawakij,a Dankmar Böhning,b∗† Stephen Adams,c
Michael Stantonc and Heinz Hollingd

Statistical inference for analyzing the results from several independent studies on the same quantity of interest has
been investigated frequently in recent decades. Typically, any meta-analytic inference requires that the quantity of
interest is available from each study together with an estimate of its variability. The current work is motivated by
a meta-analysis on comparing two treatments (thoracoscopic and open) of congenital lung malformations in young
children. Quantities of interest include continuous end-points such as length of operation or number of chest tube
days. As studies only report mean values (and no standard errors or confidence intervals), the question arises how
meta-analytic inference can be developed. We suggest two methods to estimate study-specific variances in such a
meta-analysis, where only sample means and sample sizes are available in the treatment arms. A general likelihood
ratio test is derived for testing equality of variances in two groups. By means of simulation studies, the bias and
estimated standard error of the overall mean difference from both methodologies are evaluated and compared
with two existing approaches: complete study analysis only and partial variance information. The performance
of the test is evaluated in terms of type I error. Additionally, we illustrate these methods in the meta-analysis on
comparing thoracoscopic and open surgery for congenital lung malformations and in a meta-analysis on the change
in renal function after kidney donation. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. Introduction and motivating case study

Meta-analysis is a statistical methodology for the analysis and integration of results from individual, independent studies.
In recent decades, meta-analysis developed a crucial role in many fields of science such as medicine and pharmacy, health
science, psychology, and social science [1–4]. Any meta-analytic inference, as developed so far, requires as minimal
information that the quantity of interest is available from each study together with an estimate of its variability. The
sample variance information is used to compute the weights of the effect size in each study for achieving the overall
estimate [5, 6]. A problem in a meta-analysis of continuous outcomes occurs when incomplete variability measures are not
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reported or are missing sample variances. In recent years, several approaches to impute variance estimates when lacking
those variances for some studies have been considered (see [7–9]). For example, Philbrook et al. [7] compared changes
in renal function after living kidney donation using meta-analysis based on four imputation methods, reported p-values
in primary studies, reported non-parametric summaries in primary studies, correlation values and multiple imputation, for
imputing missing change sample variances. Chowdhry et al. [9] considered a meta-analysis for the difference in means
where sample variances are missing for some studies. They used a multiple imputation method employing gamma meta-
regression to impute the missing variances. However, meta-analysis, which has only the information of the quantity of
interest (with no information on within-study variability for all studies), has not yet been considered as previous work
relies on the fact that variance information is available at least for some studies. The question arises how meta-analytic
inference can be developed. This is the situation we are dealing with here.

The current work is motivated by difficulties encountered in performing a meta-analysis of two treatments
(thoracoscopic and open resections) of asymptomatic lung malformations in young children. Congenital lung
malformations are seen on routine antenatal scans of 1 in 2500 live born children and there is controversy regarding
their management [10]. The majority of children’s surgeons elect to operate on infants with lesions even if they have not
caused any symptoms, due to concern about potential for infection, or the purported small risk of developing a cancer in
the abnormal piece of lung later in life [11]. Since the late 1990’s, there has been a trend toward surgeons performing
these operations using a minimally invasive approach (key-hole surgery) called thoracoscopy [12]. Thoracoscopy involves
making several small incisions in the chest through which a fibre-optic camera and operating instruments can be passed,
in this manner lesions can be removed with minimal scarring. In contrast, the traditional operation would be performed
through a thoracotomy which is a single, large incision on the side of the chest wide enough to see the lung and its
attachments. The aim of the operation regardless of the approach (thoracoscopic or open) is to remove the lung lesion
including any lung directly involved with it. This often entails removing one of the lobes of the affected lung.

It is currently unclear whether thoracoscopy is associated with an increased risk of operative complications or not.
There have been no published reports of mortality secondary to this operation for asymptomatic cases in the past 10 years,
although a recent study described a near-death [13]. Other outcomes that are relevant include wound infection, chest
infection, bleeding, injury to the trachea (wind-pipe), prolonged air leak into the space around the lung or development of
new air leak subsequent to the operation. When the operation is commenced with thoracoscopy and changed to an open
technique during the procedure, this is referred to as an open conversion. Typically studies into this type of surgery report
basic demographic details of the study population, conversion rate and complications (see Table 1). If the interest is in
the number of complications as primary endpoint, a standard meta-analysis using count modeling can be performed [14].
In more detail, using a mixed Poisson regression [2, 5, 15] with log-size-at-risk as offset and study as random effect, the
results show that total number of complications in thoracoscopic has a significantly decreased risk ratio (0.69) in favour
of the thoracoscopic surgery with a p-value of 0.04. Note that the Mantel-Haenszel estimator of the risk ratio [6] with 0.68
is very close to the mixed Poisson model-based estimator. This beneficial aspect of thoracoscopy raises interest in also
investigating other clinical endpoints that are of quantitative nature. In contrast to the number of complications where the
count structure carries intrinsic information on its variance, this is not that case when we turn to quantitative outcomes
where a second independent variance parameter describes the variability. This leads to the problem we would like to
address here.

In a meta-analysis [15–17] of 38 studies investigating the performance of open and thoracoscopic surgery, studies report
a variety of outcomes including the length of operation, the number of days that drains are left in the chest and number of
days in hospital, age and weight of child. As a typical example, available information on mean age of patient (months) is
shown in Table 2 for the two surgical procedures in the 38 studies. Unfortunately the reports in the surgical literature are
heterogeneous in the specific type of data presented and generally refer to small patient populations. Quite often papers
will present outcomes either for a thoracoscopic series only or an entirely open surgery group only, with no control group
for comparison. In order to assess whether the thoracoscopic approach is as safe as the open approach and indeed whether
there are benefits to performing this type of surgery using available data, statistical analysis has to be developed to perform
a meta-analysis of the data without using reported measures of variance. Hence, we are interested in estimating the mean
difference in a meta-analysis when only sample means and sample sizes of the two groups to be compared are available,
but the estimated variances are not. Furthermore, it is possible that population variances between the two groups are
homogeneous, however, they might not be identical. Therefore, in this paper two approaches are considered in order to
estimate the overall mean difference in a meta-analysis. A general likelihood ratio test statistic is also derived for testing
the equality of variances of the two groups. In any of the two approaches, we assume equality of variances across studies.
This seems to be a strong assumption but also reasonable as surgeries take place under fairly standard conditions.
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The rest of the paper is organized as follows. In Section 2, we consider the estimator of variance for the equal variance
case. This allows variance estimators to be derived for the individual studies involved in the meta-analysis. Under equal
variances, the overall mean difference is presented with its associated standard error. In Section 3, we focus on estimation
parameters under unequal population variances. Again, variance estimates for the individual studies are developed. Then,
the overall mean difference with its associated standard error is derived. A likelihood ratio test for test of equality of
variances is introduced in Section 4. Section 5 presents the results of simulation work with focus on mean difference with
respect to bias, standard error, coverage probability, and expected length. Type I error probability is used to investigate the
likelihood ratio test. In Section 6, all estimators are illustrated in two case studies of comparing open versus thoracoscopic
surgery (highlighting the benefits of the latter) and the change in renal function after kidney donation. The paper ends with
Section 7 containing discussion and concluding remarks which sets the approach in perspective.

2. Methodology I: Estimation of the mean difference for equal variances

We consider k independent studies with only sample means and sample sizes in the treatment group (T ) and in
the comparison or control group (C) available, respectively, X̄T

i , X̄C
i , nT

i and nC
i , where X̄T

i =
∑nT

i
j=1 XT

ij/nT
i and

X̄C
i =

∑nC
i

j=1 XC
ij/nC

i . Only X̄T
i and X̄C

i are observed, but not the within-study values XT
ij and XC

ij for i = 1, 2, . . . , k and
j = 1, 2, . . . , ni. In addition, no estimate of variances of X̄T

i and X̄C
i is available. Here, we are interested in developing

statistical inference for the mean difference between two groups as the effect size. The mean difference of the study i is
given by

Di = X̄T
i − X̄C

i . (1)

Assume that XT
ij and XC

ij are independent and normally distributed with means µT and µC , respectively, and identical
variance σ2 across groups and studies. Thus, it follows that X̄T

i and X̄C
i are independent and normally distributed with

means µT and µC , and variances σ2/nT
i and σ2/nC

i , respectively. These assumptions lead to the distribution of Di, being
also normal with mean µ = µT − µC and variance σ2wi, where wi = 1/nT

i + 1/nC
i is non-random. In general, µ and σ2

are unknown parameters and need to be estimated.

2.1. Maximum likelihood estimation

Under the normal distribution for the effect size Di as mentioned before, the likelihood function of µ and σ2 is given by

L(µ, σ2;Di) =
k∏

i=1

1√
2πσ2wi

exp
{
− (Di − µ)2

2σ2wi

}
with associated log-likelihood function

log L(µ, σ2;Di) = −
k∑

i=1

(Di − µ)2

2σ2wi
− k log(2πσ2)

2
− log

k∏
i=1

√
wi. (2)

Taking partial derivatives of (2) with respect to µ and σ2, respectively, we yield the maximum likelihood estimators

µ̂ML =
∑k

i=1 Di/wi∑k
i=1 1/wi

and σ̂2
ML =

1
k

k∑
i=1

(Di − µ̂ML)2

wi
. (3)

Furthermore, it is important to investigate the precision of these estimators. We find the variance of estimators in (3) as
follows:

V ar(µ̂ML) =
σ2∑k

i=1 1/wi

and V ar(σ̂2
ML) =

2(k − 1)σ4

k2
,

with details given in appendix A as Theorem 1. We also note that µ̂ML given above is an unbiased estimator of µ, while
σ̂2

ML is an asymptotically unbiased estimator of σ2. Both estimators are consistent. The details of proof are given in
appendix B as Theorem 2-Theorem 3.
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In this study, the effect size is the mean difference. Hence we are now able to provide an estimate of the variance of Di

as
V̂ ar(Di) = σ̂2

MLwi. (4)

This allows meta-analytic inference as we have now for each study an effect size estimator with associated estimated
variance. This can been seen for mean age in Figure 1.

2.2. Estimation of the overall mean difference

Typically in meta-analysis, summary measures are developed as weighted average of the study-specific outcome measures,
here Di. We first consider the weight of the effect size in the study i, which is computed as the inverse of variance of its
effect size [6]. For combining the mean difference, each study’s mean difference is given weight

vi =
1/(σ̂2

MLwi)∑k
i=1 1/(σ̂2

MLwi)
=

1/wi∑k
i=1 1/wi

.

Note that vi only depends on the the sample sizes of the individual studies and is non-random. It follows that the estimator
of the overall mean difference is given by

Doverall =
k∑

i=1

Divi, (5)

where Di is the mean difference of the study i as defined in (1). Note that Doverall coincides with µ̂ML the maximum
likelihood estimator as developed in (3).

Moreover, the (1− α)100% confidence interval for the overall mean difference can be calculated by

Doverall ± Zα/2ŜE(Doverall), (6)

where Zα/2 is (α/2)100th percentile of the standard normal distribution and ŜE(Doverall) = σ̂ML/
√∑k

i=1 1/wi is the
estimated standard deviation of the overall mean difference. The estimate of the overall mean difference for age together
with a 95% confidence interval can be found as the last row in Figure 1.

Additionally, statistical inference for the mean difference is usually used to compared the effect size between two
treatment groups. Thus, test of equality of mean is constructed. Under the null hypothesis H0 : ξ = 0, where ξ is the
population mean difference between the treatment and control groups, the test statistic is defined as

Zoverall =
Doverall√

σ̂2
ML/

∑k
i=1 1/wi

, (7)

where Zoverall has the standard normal distribution. Note that the null hypothesis is rejected, if |Zoverall| > Zα/2.

3. Methodology II: Estimation of mean difference for unequal variances

The variances in the two groups of interest might no be equal. Therefore, in this section, the mean difference in meta-
analysis is considered again, but we allow unequal variances for the two groups.

Assume that XT
ij and XC

ij for i = 1, 2, . . . , k and j = 1, 2, . . . , ni are independent and normally distributed with means
µT and µC and unknown variances σ2T

and σ2C

, respectively. The sample means X̄T
i and X̄C

i are observed, and are also
independent and normally distributed with means µT and µC , and variances σ2T

/nT
i and σ2C

/nC
i . Since σ2T

and σ2C

are
unknown, we need to estimate them and this is considered in the following.

3.1. Maximum likelihood estimation

We first consider the maximum likelihood estimator for parameters in the treatment group. Under the normal distribution,
the log-likelihood function of µT and σ2T

is given by

log L(µT , σ2T

; X̄T
i ) = −

k∑
i=1

(X̄T
i − µT )2

2σ2T wT
i

− k log(2πσ2T

)
2

− log
k∏

i=1

√
wT

i , (8)
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where wT
i = 1/nT

i . Then taking partial derivatives of (8) with respect to µT and σ2T

, respectively, the estimators for µT

and σ2T

are

µ̂T
ML =

∑k
i=1 X̄T

i /wT
i∑k

i=1 1/wT
i

and σ̂2T
ML =

1
k

k∑
i=1

(X̄T
i − µ̂T

ML)2

wT
i

. (9)

Since the estimators in (9) are of simple nature, the variance estimates are easily derived as

V ar(µ̂T
ML) =

σ2T∑k
i=1 1/wT

i

and V ar(σ̂2T

ML) =
2(k − 1)σ4T

k2
.

Similarly, we derive the maximum likelihood estimators for µC and σ2C

of the control group. The estimators are given
by

µ̂C
ML =

∑k
i=1 X̄C

i /wC
i∑k

i=1 1/wC
i

and σ̂2C

ML =
1
k

k∑
i=1

(X̄C
i − µ̂C

ML)2

wC
i

, (10)

where wC
i = 1/nC

i . Note that the maximum likelihood estimators given in (9) and (10) are consistent. The estimated
means µ̂T and µ̂C are unbiased estimators for µT and µC , respectively. Furthermore, the estimated variances σ̂2T

ML and
σ̂2C

ML are asymptotically unbiased estimators for σ2T

and σ2C

, respectively. Hence, the estimated variance of the mean
difference of the study i in this case is given as

V̂ ar(Di) = σ̂2T

MLwT
i + σ̂2C

MLwC
i . (11)

The associated forest plot of Di/
√

σ̂2T

MLwT
i + σ̂2C

MLwC
i for our case study is presented in Figure 2.

3.2. Estimation of the overall mean difference

Like in the previous section, the weight of effect size of each study is considered in order to estimate the overall effect
size. Here, the individual mean differences are weighted as

v∗i =
1/(σ̂2T

MLwT
i + σ̂2C

MLwC
i )∑k

i=1 1/(σ̂2T

MLwT
i + σ̂2C

MLwC
i )

.

Note that these weights involve the two variance estimates of the two groups and, hence, are random. This is a considerable
difference to the previous case of equal variances. Next, we can compute the overall mean difference as follows:

D∗overall =
k∑

i=1

Div
∗
i (12)

with the variance
V ar(D∗overall) =

1∑k
i=1 1/(σ2T wT

i + σ2C wC
i )

.

The above variance is obtained under the assumption that the two sample means are independent. Since we have the
variances of the effect size estimates, we can now develop a (1− α)100% confidence interval for the overall mean
difference. It is given by

D∗overall ± Zα/2ŜE(D∗overall), (13)

where ŜE(D∗overall) =
√

1/
∑k

i=1 1/(σ̂2T

MLwT
i + σ̂2C

MLwC
i ) is the estimated standard deviation for the overall mean

difference.
For hypothesis testing of the difference between two means, H0 : ξ = 0, the test statistic when the population variances

are unequal is

Z∗overall =
D∗overall√

1/
∑k

i=1 1/(σ̂2T

MLwT
i + σ̂2C

MLwC
i )

, (14)

where Z∗overall has the standard normal distribution. If |Z∗overall| > Zα/2, the null hypothesis is rejected.
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4. Test for equality of variances

Evidently, it is of interest if the two variances can be assumed to be equal or not. This can be accomplished by separately
estimating the variances in the two arms and compare the associated likelihoods by means of a likelihood ratio test. As
there is no reason to restrict the comparison to those studies where both treatment arms have information we include all
available studies.

Suppose, in generality, we have k1 studies in the treatment group and k2 studies in the control group of the same
issue. In each group, there are only sample means and sample sizes. Let X̄T

i ∼ N(µT , σ2T

/nT
i ) for i = 1, 2, . . . , k1 and

X̄C
i ∼ N(µC , σ2C

/nC
i ) for i = 1, 2, . . . , k2. Also, two sample means X̄T

i and X̄C
i are independent across groups and

studies. We consider a test of the null hypothesis

H0 : σ2T
= σ2C (15)

against the alternative hypothesis H1 that the variances in the treatment and control groups are unequal. In order to
construct the likelihood ratio test, the procedure is as follows. From the joint probability density function of X̄T

i and X̄C
i ,

the log-likelihood function of θ = (µT , µC , σ2T

, σ2C

) is

log L(θ; X̄T
i , X̄C

i ) =− 1
2

[
1

σ2T

k1∑
i=1

(
X̄T

i − µT√
wT

i

)2

+
1

σ2C

k2∑
i=1

(
X̄C

i − µC√
wC

i

)2]

− k1 log σ2T

2
− k2 log σ2C

2
+ constant.

Then, the general likelihood ratio statistic for testing H0 versus H1 is defined by

Λ = (k1 + k2) log σ̂2
0 − k1 log σ̂2T

ML − k2 log σ̂2C

ML, (16)

where σ̂2
0 = (k1σ̂

2T

ML + k2σ̂
2C

ML)/(k1 + k2) is the maximum likelihood estimator for the pool variance σ2
0 under H0, and

σ̂2T

ML and σ̂2C

ML are the likelihood estimators for σ2T

ML and σ2C

ML obtained from (9) and (10), respectively. The details of the
proof are presented in appendix C as Theorem 4. Under the null hypothesis, Λ has an approximate chi-square distributed
with one degree of freedom as the null-hypothesis lies entirely in the interior of the alternative hypothesis. Therefore, the
test rejects H0 if Λ > χ2

α,(1).

5. Simulation studies

Simulation studies are conducted to evaluate the proposed estimators for the mean difference in meta-analysis and the test
for equality of variances using the R statistical language [18]. We simulated the data from a normal distribution under a
variety of parameter constellations of mean and variance. The number of studies was varied as k = 10, 30, 50, and 100.
The weight of each study, wi for i = 1, 2, ..., k, was simulated as uniform(0.02,0.20) in order to produce a reasonable
sample size of each study. The setting of the simulation can be distinguished in three cases as follows:

• In the simulation study for Methodology I, the data for the mean difference Di were generated as independent and
identically distributed with N(µ, σ2wi), where µ = 0 and 2, and σ2 = 2, 4, and 9.

• In the simulation study for Methodology II, we generated the data for the means X̄T
i and X̄C

i from N(µT , σ2T

wT
i )

and N(µC , σ2C

wC
i ), respectively, where (µT , µC) = (0,0) and (4,2), and (σ2T

, σ2C

) = (1,2), (1,4), and (2,9). The
mean difference was obtained as Di = X̄T

i − X̄C
i .

• In the simulation study for the likelihood ratio test, we simulated the means of two treatment groups from the
normal distributions as in the second simulation case. The parameters were set to be (µT , µC) = (0,0) and (4,2), and
(σ2T

, σ2C

) = (σ2, σ2) =(2,2), (4,4), and (9,9).

The number of replications was set as 10,000 for each simulation constellation. Bias, estimated standard error, coverage
probability, and expected length of the estimators for the mean difference were calculated by

Bias(θ̂) = Ê(θ̂)− θ =
1

10, 000

10,000∑
i=1

θ̂i − θ,
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SE(θ̂) =

√√√√ 1
10, 000

10,000∑
i=1

(θ̂i − Ê(θ̂))2,

CP =
c(L ≤ θ ≤ U)

10, 000
,

and

EL =
∑10,000

i=1 (Ui − Li)
10, 000

,

respectively, where θ̂ is the mean difference for parameter θ and c(L ≤ θ ≤ U) is the number of simulation runs for θ that
lies within the confidence interval. To consider the performance of the likelihood ratio test, the type I error probability
was used. It was estimated as the proportion of times that H0 : σ2T = σ2C is rejected under the assumption that variances
between the two treatment groups are equal. Here, the target significant level α was fixed at 0.05. The major findings of
the simulation studies can be summarized as follows:

• Table 3 and Table 4 show the performance of the proposed estimators and the confidence intervals for the mean
difference from Methodology I and Methodology II, respectively. The results indicate that the bias of estimators
tends to be small in general. This means that values of the proposed estimators Doverall and D∗overall are very close
to the population mean difference. These two estimators have small standard errors, where values of standard error
tend to decrease if the number of the study (k) increases.

• For a small number of studies (k ≤ 30), the coverage probabilities of the proposed confidence intervals for the mean
difference shown in equations (5) and (13) are less than the nominal coverage level of 0.95. However, if k increases,
the coverage probabilities maintain the target and tend to be greater than 0.95.

• Figure 4 presents type I error probabilities for the general likelihood ratio test. The results show that values of type
I error are slightly larger than the target significant level of 0.05 for k = 10. If k increases, type I error probabilities
become close to 0.05.

In summary, if the number of studies is at least moderately large the performance of the proposed estimators Doverall and
D∗overall, and corresponding confidence intervals are reasonably well. Moreover, type I error probability of the likelihood
ratio test is close to the target significant level.

Additionally, two existing approaches (see also [22, 23]) are used to compare with the method proposed here. We
consider three types of scenarios: the within-study variances are available for all studies, the within-study variances
are available for some of the studies, and no variance information is available for all studies (our case). For Scenario
1, the number of studies is reduced if there is missing variance information. Thus, only complete studies are used
in the analysis. This is done in practice for complete case analysis. The overall mean difference of this scenario can
be computed using a meta-analysis based on the conventional fixed effect model, as the sample means and sample
variances of the two treatment arms in the study i are reported, and the pooled variance estimate can be readily
provided as S2

p,i = ((nT
i − 1)S2

i
T + (nC

i − 1)S2
i

C)/(nT
i + nC

i − 2). We note in passing, that also this setting would allow
incorporating potential heterogeneity by means of the random effects model, but we will not use this here for better
comparability. For the partial information setting in Scenario 2, the Expectation-Maximization (EM) algorithm [19] is
utilized in principle to impute the missing variances. The details of this method are as follows. In the the E-step, the
missing variances are imputed as

E(S2
i

T |S2
i

C
) =

σ2
p
(t)(nT

i + nC
i − 2)

nT
i − 1

− (nC
i − 1)S2

i
C

nT
i − 1

and

E(S2
i

C |S2
i

T
) =

σ2
p
(t)(nT

i + nC
i − 2)

nC
i − 1

− (nT
i − 1)S2

i
T

nC
i − 1

.

To update the overall pooled variance σ2
p in the M-step (see also [9]), a weighted average σ2

p
(t+1) =

∑k
i=1 S2

p,i(n
T
i +

nC
i − 2)/

∑k
i=1(n

T
i + nC

i − 2) of the pooled variances S2
p,i in the i−th trial is determined, where t is the tth iteration. The

iterative procedure is terminated if |σ2
p
(t+1) − σ2

p
(t)| < 0.0001. Then, the overall mean difference is computed using the

meta-analysis approach described in the previous scenario.
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The simulation studies are performed to evaluate the performance of the overall mean difference under the three
scenarios. We simulated X̄T

i and X̄C
i from N(µT , σ2T

wT
i ) and N(µC , σ2C

wC
i ), respectively, where (µT , µC) = (0,0)

and (4,2), and (σ2T

, σ2C

) = (σ2, σ2) =(2,2), (4,4), and (9,9). We then calculated the mean difference from Di =
X̄T

i − X̄C
i . For Scenario 1 and Scenario 2, the variances S2

i
T and S2

i
C are generated from χ2

nT
i −1

σ2T
/(nT

i − 1) and

χ2
nC

i −1
σ2C

/(nC
i − 1), respectively, where χ2 is the quantile of the chi-squared distribution. The percentage of studies

with missing variances was 50% and 75%. Given these scenarios, the results of the simulation studies were analyzed with
respect of bias and standard error. The bias and estimated standard error of the overall mean difference computed from
the three scenarios are shown in Figure 7 and Figure 8. It can be concluded that the bias of the estimators is close to the
population mean difference for all cases of the studies. The overall mean difference of the proposed method presented in
Scenario 3 provides the standard errors slightly smaller than that of Scenario 2. The estimator derived from Scenario 1
gives largest variances.

6. Case studies

6.1. Meta-analysis of Thoracoscopic and Open resections for treating congenital lung malformation

To illustrate the estimators presented in this paper, we use the meta-analytic data on the two surgeries for treating
congenital lung malformation, the thoracoscopic and the open operations, as mentioned in the beginning section. This
data set comprises 38 published reports containing the mean of variables of interest such as length of operation, number
of chest tube days, length of stay, age, and weight and the number of the patients in each study arm. Some of these reports
have only information on one arm (see e.g. Table 2).

The test for equal variances presented in Section 4 is conducted prior to further statistical analysis. The results in Table
5 show that there are two variables, length of stay and weight of child, for which we have to reject the null hypothesis of
equal variances between the thoracoscopic and the open study arms.

Next, we use the add-on package METAN of the statistical package STATA14TM [20] to estimate the overall mean
difference of variables. The statistics obtained from the Methodology I and the Methodology II are presented in Table
6. The results indicate that the mean of length of operation in the thoracoscopic lung resection is longer than the open
procedure. Furthermore, there is evidence that length of stay and number of chest tube days is better for thoracoscopic,
significantly so when using Methodology I, although the likelihood ratio test suggests to use Methodology II for length
of stay. In addition, weight and age of child are not different between the two surgeries which implies that these two
covariates will not bias the results for the variables of interest.

Note that the completion of the meta-analysis is straightforward if an estimate for the study-specific mean difference
has been obtained. Forest plots for the mean difference of age using Methodology I and Methodology II are shown in
Figure 1 and Figure 2, respectively.

6.2. Meta-analysis on changes in renal function after living kidney donation

Philbrook et al. [7] presented data that concern changes in continuous outcomes such as glomerular filtration rate (mL/min
per 1.73m2), serum creatinine (µmol/L), systolic blood pressure (mmHg), and diastolic blood pressure (mmHg) after
living kidney donation. For these data, they reported the mean changes between pre- and post-donation (X̄post

i − X̄pre
i )

and sample sizes (npost
i = npre

i = ni = 1/wi) for each study, whereas a variance estimate is often not reported (see e.g.
Table 7). Instead of working with pairs of pre- and postdonation measurements we take pairwise differences and base
inference on Di/

√
σ̂2wi, i = 1, 2, . . . , k which allows the use of Methodology I for this case study.

The statistics obtained from Methodology I are shown in Table 8. It can be concluded that glomerular filtration rate
decreases after donation. In contrast, serum creatinine and diastolic blood pressure increase after donation. These results
do not differ from the findings in meta-analysis presented in the paper of Philbrook et al. [7] which uses various imputation
methods to cope with missing standard errors in the studies. Finally, our method confirms that there is no change between
before and after donation in systolic blood pressure. A forest plot for the change in serum creatinine is shown in Figure 5.
We also report probability plots of the standardized quantity Di/

√
σ̂2wi, i = 1, 2, . . . , k, for continuous variables in this

example (see Figure 6). The assumption of a homogeneous normal distribution is supported for serum creatinine, systolic
blood pressure, and diastolic blood pressure.
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7. Discussion and concluding remarks

Meta-analysis has become a standard instrument in the tool-box for systematically evaluating medical research. In this
paper, we focus on estimating the mean difference as the effect size, where only sample means and sample sizes are
reported for the study arms, but not variance estimates. Two approaches are introduced depending on whether the variances
in the study arms are assumed to be equal or not. The first approach called Methodology I is the estimation of the overall
mean difference when the unknown study variances are assumed to be equal. We estimate the pooled variance and then
derive the estimated variance of the mean difference in order to provide an overall estimate. The other method called
Methodology II is derived under the assumption that the population variances are unequal. For this method, we separately
estimate variances of two treatment arms. Then, we find the overall mean difference with an associated variance estimate.
Furthermore, a likelihood ratio test is introduced for testing the equality of variances.

Both developed methodologies build on the assumption of equal variances within arms and across studies and no
heterogeneity between studies. The latter is a serious restriction but unavoidable given the restricted data available. As we
estimate a free variance parameter, we are have some freedom in coping with mild forms of heterogeneity. Recall that in a
conventional meta-analysis also only one variance parameter is estimated so that the degree of complexity in the variance
structure is identical. In Figure 3, we provide probability plots of the standardized quantity Di/

√
σ̂2wi, i = 1, 2, . . . , k,

for length of operation, number of chest tube days, length of stay, and weight in the case study underlying this work.
There is no evidence that assumption of a homogeneous normal distribution is violated. Hence, at least for the case study
considered here, the approach seems reasonable.

The performance of the proposed estimators for the difference of means and the test for equality of variances have
been investigated in a simulation. The bias of our estimators appears to be small in all cases of the study. The proposed
estimators have small standard errors, especially for large number of the studies. These empirical findings agree with
asymptotic results provided in the appendix B. The confidence intervals for the mean difference also provide coverage
probabilities close to the nominal coverage level if number of the studies become large (k > 30). Complete case analysis
and imputation approach for estimating the missing sample variances are not performing as well as the proposed method,
in particular the complete case approach suffers under considerable larger variance. As can be seen, although all methods
provide the overall mean difference very close to the population but the existing approaches have larger standard errors.
For testing of equality of variances, the general likelihood ratio test can control type I error probability as 0.05 for large
number of the studies, which also agrees with the asymptotic distributional results mentioned in appendix C. As the
proposed approach follows a normal distributional setting it is easily possible to extend it to include covariate information
on study level such as treatment modification or locality. Finally, we have focussed here on performing fixed effects
meta-analysis (estimation of one true effect for all studies) when estimated variances are not available in the studies. In
further research, random effects modelling will be considered to investigate for unobserved heterogeneity in addition to
the before-mentioned inclusion of observed heterogeneity in form of covariate information.

We also mention that R-code for computing the case studies and simulation results as well as more detailed results from
simulation work is available as supplementary material.

Appendix

In the following, we are detailing some inferential properties and results for our meta-analytic setting which can be
achieved, with appropriate modification and adaptation, from general likelihood inference as provided, for example, in
Casella and Berger [21].

A. Standard errors of estimators

Theorem 1 If Di ∼ N(µ, σ2wi) for i = 1, 2, . . . , k with maximum likelihood estimators of µ and σ2 as µ̂ML =Pk
i=1 Di/wiPk
i=1 1/wi

and σ̂2
ML = 1

k

∑k
i=1(Di − µ̂ML)2/wi, respectively, then the standard errors are

1. SE(µ̂ML) =
√

σ2/
∑k

i=1 1/wi for µ̂ML

2. SE(σ̂2
ML) =

√
2(k − 1)σ4/k2 for σ̂2

ML.
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Proof. For the first part, it is easy to see that

V ar(µ̂ML) =
V ar(

∑k
i=1 Di/wi)

(
∑k

i=1 1/wi)2
=

σ2∑k
i=1 1/wi

,

so it is clear for SE(µ̂ML) =
√

V ar(µ̂ML). For the second part, we first consider

k∑
i=1

(Di − µ)2

wiσ2
=

k∑
i=1

(Di − µ̂ML + µ̂ML − µ)2

wiσ2

=
k∑

i=1

(
Di − µ̂ML

σ
√

wi

)2

+
k∑

i=1

1
wi

(
µ̂ML − µ

σ

)2

.

It can be simply written as

k∑
i=1

(
Di − µ

σ
√

wi

)2

=
k∑

i=1

(
Di − µ̂ML

σ
√

wi

)2

+
(√∑k

i=1(1/wi)(µ̂ML − µ)

σ

)2

.

Since Di ∼ N(µ, σ2wi), the term on the left hand side of the above equation has a chi-square distribution with k degrees of
freedom. The second term on the right hand side has a chi-square distribution with one degree of freedom. Hence the first
term on the right hand side

∑k
i=1

(
Di−µ̂ML

σ
√

wi

)2 of the above equation must be a chi-square with k − 1 degrees of freedom.
Therefore, we achieve that the variance of σ̂2

ML is

V ar(σ̂2
ML) =

1
k2

V ar

( k∑
i=1

(Di − µ̂ML)2

wi

)
=

2(k − 1)σ4

k2
,

which ends the proof.

B. Properties of estimators

Theorem 2 If Di ∼ N(µ, σ2wi) for i = 1, 2, . . . , k with maximum likelihood estimator of µ as µ̂ML =
Pk

i=1 Di/wiPk
i=1 1/wi

, then
µ̂ML is unbiased and consistent for µ.

Proof. To prove the unbiasedness of an estimator, we need to show the identity E(µ̂ML)− µ = 0. Since E(Di) = µ, it
can be seen that E(µ̂ML) = µ. Thus, µ̂ML is an unbiased estimator of µ. To prove the consistency, the sufficient condition
is to show that lim

k→∞
E(µ̂ML) = µ and lim

k→∞
V ar(µ̂ML) = 0. As V ar(µ̂ML) = σ2/

∑k
i=1 1/wi, it is easy to see that the

sufficient condition of consistency is satisfied. Therefore, µ̂ML is a consistent estimator of µ.

Theorem 3 If Di ∼ N(µ, σ2wi) for i = 1, 2, . . . , k with the maximum likelihood estimator of σ2 as σ̂2
ML = 1

k

∑k
i=1(Di −

µ̂ML)2/wi, then σ̂2
ML is asymptotically unbiased and consistent for σ2.

Proof. We find the expectation and variance of σ̂2
ML, respectively, as

E(σ̂2
ML) =

1
k

E

( k∑
i=1

(Di − µ̂ML)2

wi

)
=

(k − 1)σ2

k

and

V ar(σ̂2
ML) =

2(k − 1)σ4

k2
.

Here, the bias of σ̂2
ML is −σ2/k. Taking the limit, we have lim

k→∞
E(σ̂2

ML) = σ2 and lim
k→∞

V ar(σ̂2
ML) = 0. Therefore, σ̂2

ML

is asymptotically unbiased and consistent for σ2.
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C. General likelihood ratio test

Theorem 4 Suppose that X̄T
i ∼ N(µT , σ2T

wT
i ), where wT

i = 1/nT
i for i = 1, 2, . . . , k1 and X̄C

i ∼ N(µC , σ2C

wC
i ),

where wC
i = 1/nC

i for i = 1, 2, . . . , k2. The general likelihood ratio test statistic for the null hypothesis H0 : σ2T = σ2C

versus the alternative hypothesis H1 : σ2T 6= σ2C is given by

Λ = (k1 + k2) ln σ̂2
0 − k1 ln σ̂2T

ML − k2 ln σ̂2C

ML.

Proof. Let Ω = {θ;−∞ < µT , µC < ∞, σ2T

, σ2C

> 0} be the overall parameter space, and ω = {θ;−∞ < µT , µC <

∞, σ2T

= σ2C

= σ2
0 > 0} be the parameter space under H0, where θ = (µT , µC , σ2T

, σ2C

). Since X̄T
i and X̄C

i are
independent, the joint probability density function of X̄T

i and X̄C
i is f(X̄T

i , X̄C
i ) = f(X̄T

i )f(X̄C
i ). Here, the log-likelihood

function of θ is derived as

log L =− 1
2

[ k1∑
i=1

(
X̄T

i − µT

σT
√

wT
i

)2

+
k2∑

i=1

(
X̄C

i − µC

σC
√

wC
i

)2]
− k1 log σ2T

2
− k2 log σ2C

2

− (k1 + k2) log 2π

2
− log Πk1

i=1

√
wT

i − log Πk2
i=1

√
wC

i ,

with the maximum likelihood estimators µ̂T
ML, µ̂C

ML, σ̂2T

ML, and σ̂2C

ML. Next, consider the log-likelihood function under
H0, we have

log L =− 1
2σ2

0

[ k1∑
i=1

(
X̄T

i − µT√
wT

i

)2

+
k2∑

i=1

(
X̄C

i − µC√
wC

i

)2]
− (k1 + k2) log σ2

0

2

− (k1 + k2) log 2π

2
− log Πk1

i=1

√
wT

i − log Πk2
i=1

√
wC

i ,

where the maximum likelihood estimator for σ2
0 is given by σ̂2

0 = (k1σ̂
2T

ML + k2σ̂
2C

ML)/(k1 + k2). The likelihood ratio test
can be obtained from

λ =
supθ∈ω L(θ)
supθ∈Ω L(θ)

,

[21]. Substituting the maximum likelihood estimators into the likelihood functions, we have

sup
θ∈ω

=
exp{−(k1 + k2)/2}

(2πσ̂2
0)(k1+k2)/2Πk1

i=1

√
wT

i Πk2
i=1

√
wC

i

and
sup
θ∈Ω

=
exp{−(k1 + k2)/2}

(σ̂2T

ML)k1/2(σ̂2C

ML)k2/2(2π)(k1+k2)/2Πk1
i=1

√
wT

i Πk2
i=1

√
wC

i

.

Therefore, the likelihood ratio test statistic for testing H0 versus H1 is given by

λ =
(σ̂2T

ML)k1/2(σ̂2C

ML)k2/2

(σ̂2
0)(k1+k2)/2

.

It is easy to obtain Λ = −2 log λ, which is the general likelihood ratio test statistic. The test rejects H0 if Λ > χ2
α,(1). The

proof is therefore complete.
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Table 1. Total number of complications in open vs. thoracoscopic surgery

thoracoscopy open total

complications 53 87 140
at risk 352 420 772

Table 2. The mean age of child and sample size from thoracoscopic and open operations

Study Thoracoscopic Open
n mean age n mean age

Vu 2008 12 6.7 24 3.7
Diamond 2007 12 7.18 24 7.56
Reismann 2012 14 4.8 8 3.5
Kunisaki 2014 49 18 13 1
Lau 2013 39 10.4 28 11.7
Rahman 2009 14 10 14 7
Cho 2012 7 21 27 100
Tolg 2005 5 94 4 39
Jesch 2005 5 0.79 . .
de Lagausie 2005 8 10 . .
Tanaka 2013 12 65.6 . .
Rothenberg 2008 97 45.6 . .
Rothenberg 2011 75 4.1 . .
Seong 2013 50 38.4 . .
Kaneko 2010 7 0.9 . .
Muller 2012 12 12 . .
Sundararajan 2007 20 19 . .
Tarrado 2010 6 8.5 . .
Truitt 2006 12 10.3 . .
Zeidan 2009 6 5 . .
Cano 2006 6 10 . .
Boubnova 2011 30 3.94 . .
Tsai 2008 . . 105 2.5
Calvert 2007 . . 16 80
Raychaudhuri 2011 . . 14 8.3
Nagata 2009 . . 5 4.5
Sueyoshi 2008 . . 8 0.52
Chow 2007 . . 6 3.66
Aziz 2004 (Asymp, elective or < 6m) . . 6 5
Aziz 2004 (Asymp init but symp > 6mo) . . 3 8
Aziz 2004 (Asymp, elective or > 6m) . . 9 3
Ferreira 2010 . . 35 17
Fascetti-Leon 2013 26 . 28 .
Fievet 2012 9 . 2 .
Albanese 2007 144 . 0 .
Johnson 2011 15 . 0 .
Laje 2015 100 1.7 188 1.8
Kulaylat 2015 112 15.6 146 18
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Figure 1. Forest plot for the difference in mean age by Methodology I
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Figure 2. Forest plot for the difference in mean age by Methodology II
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Figure 3. Probability plot based upon Di/
√

σ̂2wi for Length of operation, Number of chest tube days, Length of stay, and Weight of child

 

Figure 4. Type I error for the general likelihood ratio test in the simulation for various settings of distribution of Di and number of study (k)
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Table 3. Bias, standard error, coverage probability, and expected length of the estimators for mean difference in the
simulation for Methodology I

k Distribution of Di Point estimator (Doverall) Interval estimator
Bias Standard Error Coverage Probability Expected length

10 N(0, 2wi) 0.0013 0.1302 0.9138 0.4837
N(0, 4wi) 0.0001 0.1641 0.9088 0.6050
N(0, 9wi) -0.0036 0.2534 0.9142 0.9418
N(2, 2wi) 0.0008 0.1202 0.9094 0.4439
N(2, 4wi) -0.0021 0.1869 0.9069 0.6847
N(2, 9wi) -0.0012 0.2358 0.9063 0.8658

30 N(0, 2wi) 0.0006 0.0724 0.9464 0.2860
N(0, 4wi) -0.0016 0.0992 0.9403 0.3859
N(0, 9wi) -0.0004 0.1460 0.9415 0.5734
N(2, 2wi) -0.0007 0.0762 0.9423 0.2962
N(2, 4wi) -0.0008 0.1056 0.9428 0.4119
N(2, 9wi) 0.0030 0.1546 0.9428 0.6043

50 N(0, 2wi) 0.0005 0.0550 0.9474 0.2155
N(0, 4wi) 0.0018 0.0834 0.9509 0.3344
N(0, 9wi) 0.0015 0.1075 0.9466 0.4249
N(2, 2wi) 0.0005 0.0503 0.9516 0.2008
N(2, 4wi) 0.0007 0.0822 0.9492 0.3264
N(2, 9wi) 0.0002 0.1231 0.9456 0.4802

100 N(0, 2wi) -0.0003 0.0388 0.9499 0.1541
N(0, 4wi) 0.0011 0.0543 0.9509 0.2175
N(0, 9wi) -0.0003 0.0883 0.9496 0.3474
N(2, 2wi) 0.0000 0.0390 0.9542 0.1557
N(2, 4wi) 0.0009 0.0559 0.9505 0.2217
N(2, 9wi) 0.0007 0.0867 0.9512 0.3488

Statist. Med. 2010, 00 1–14 Copyright c© 2010 John Wiley & Sons, Ltd. www.sim.org 17
Prepared using simauth.cls



Statistics
in Medicine P. SANGANWAKIJ et al.

Table 4. Bias, standard error, coverage probability, and expected length of the estimators for mean difference in the
simulation for Methodology II

k Distribution of Di Point estimator (D∗overall) Interval estimator
Bias Standard Error Coverage Probability Expected length

10 N(0, wT
i + 2wC

i ) -0.0024 0.1814 0.9187 0.6696
N(0, wT

i + 4wC
i ) -0.0004 0.2010 0.9285 0.7563

N(0, 2wT
i + 9wC

i ) -0.0015 0.3455 0.9218 1.2930
N(2, wT

i + 2wC
i ) 0.0006 0.1771 0.9258 0.6590

N(2, wT
i + 4wC

i ) 0.0025 0.2391 0.9210 0.8792
N(2, 2wT

i + 9wC
i ) 0.0010 0.3472 0.9173 1.2855

30 N(0, wT
i + 2wC

i ) -0.0015 0.1010 0.9453 0.3943
N(0, wT

i + 4wC
i ) -0.0017 0.1243 0.9476 0.4872

N(0, 2wT
i + 9wC

i ) 0.0041 0.1732 0.9450 0.6711
N(2, wT

i + 2wC
i ) -0.0014 0.0961 0.9457 0.3777

N(2, wT
i + 4wC

i ) -0.0016 0.1131 0.9473 0.4449
N(2, 2wT

i + 9wC
i ) -0.0014 0.1851 0.9460 0.7266

50 N(0, wT
i + 2wC

i ) -0.0011 0.0787 0.9501 0.3092
N(0, wT

i + 4wC
i ) 0.0003 0.0979 0.9500 0.3875

N(0, 2wT
i + 9wC

i ) 0.0005 0.1437 0.9496 0.5676
N(2, wT

i + 2wC
i ) -0.0003 0.0730 0.9502 0.2874

N(2, wT
i + 4wC

i ) 0.0017 0.0971 0.9528 0.3851
N(2, 2wT

i + 9wC
i ) -0.0014 0.1425 0.9476 0.5630

100 N(0, wT
i + 2wC

i ) 0.0002 0.0539 0.9491 0.2132
N(0, wT

i + 4wC
i ) 0.0010 0.0651 0.9507 0.2582

N(0, 2wT
i + 9wC

i ) 0.0001 0.0966 0.9529 0.3852
N(2, wT

i + 2wC
i ) -0.0011 0.0536 0.9522 0.2116

N(2, wT
i + 4wC

i ) 0.0007 0.0656 0.9554 0.2652
N(2, 2wT

i + 9wC
i ) -0.0005 0.0960 0.9529 0.3831

Table 5. Test for equality of variances for α = 0.05

Variables k1 k2 Λ

length of operation (mins) 23 13 2.62
length of stay (days) 25 18 9.17
number of chest tube days (days) 20 11 3.32
weight of child (kilograms) 15 8 9.47
age of child (months) 24 20 0.70
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Table 6. Results of the study in the clinical trials between the thoracoscopic and the open operations

Variables Overall mean Standard 95% Confidence Test of
difference error interval equal means

Methodology I:
length of operation 36.97 9.19 (18.96, 54.99) 4.03
length of stay -1.38 0.52 (-2.40, -0.37) -2.65
number of chest tube days -0.79 0.41 (-1.59, 0.02) -1.93
weight of child 0.40 0.31 (-0.21, 1.01) 1.29
age of child -1.43 4.83 (-10.89, 8.03) -0.30

Methodology II:
length of operation 36.75 13.14 (11.00, 62.49) 2.80
length of stay -1.28 0.90 (-3.05, 0.49) -1.42
number of chest tube days -0.71 0.71 (-2.10, 0.68) -1.00
weight of child 0.40 0.75 (-1.07, 1.86) 0.53
age of child -2.85 8.18 (-18.89, 13.18) -0.35
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Figure 5. Forest plot for the mean change in Serum Creatinine (µmol/L) after living kidney donation
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Table 7. The mean change in serum creatine after living kidney donation

Study n mean change in serum creatinine

Johnson et al. 2005 78 23
Mimran et al. 1993 18 28
Sobh et al. 1989 45 27
Kostakis et al. 1997 255 20
Hida et al. 1982 34 29
Rizvi et al. 2005 736 18
Tondo et al. 1998 10 .
Abomelha et al. 1993 70 11
Siebels et al. 2003 122 27
Edgren et al. 1976 46 24
Basseri et al. 1995 87 23
Enger 1973 13 25
Mendoza et al. 1987 152 4
Fourcade et al. 2002 99 23
ter Wee et al 1994 12 32
O Donnell et al. 1986 33 14
Laskow et al. 1991 48 31
Miller et al. 1985 40 18
Rodriguez et al. 1985 25 .
Marekovic et al 1992 50 23
Prandini et al. 1987 32 .
Chen et al. 1992 77 23
D Almeida et al. 1996 110 .
Wiesel et al. 1997 67 27
Najarian et al. 1992 51 20
Toronyi et al. 1998 30 .
Schostak et al. 2004 50 .
Haberal et al. 1998 102 5
Friedlander et al. 1988 17 29
Undurraga et al. 1998 74 12
Eberhardi et al. 1997 29 .
Fehman-Ekholm et al. 2001 348 .
Gonzalez et al 1989 22 15
Dunn et al. 1986 180 15
Beekman et al. 1994 35 24
Goldfarb et al. 2001 70 18
Williams et al. 1986 24 3
Watnick et al. 1988 29 .
Talseth et al. 1986 68 9
Iglesias-Marquez et al. 2001 20 12
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Table 8. Results of the study for changes in renal function after living kidney donation

Variables Overall mean Standard 95% Confidence Test of
difference error interval equal means

Methodology I:
Glomerular filtration rate (mL/min) -21.42 2.51 (-26.35, -16.50) -8.53
Serum creatinine (µmol/L) 18.21 1.18 (15.89, 20.52) 15.43
Systolic blood pressure (mmHg) 2.65 1.41 (-0.11, 5.42) 1.88
Diastolic blood pressure (mmHg) 3.38 0.73 (1.96, 4.80) 4.63
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Figure 6. Probability plot based upon Di/
√

σ̂2wi for Glomerular filtration rate, Serum creatinine, Systolic blood pressure, and Diastolic blood pressure
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Figure 7. Bias of the overall mean difference from Scenario 1 and Scenario 2 with 50% and 75% studies missing variances, and Scenario 3 with no variance information
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Figure 8. Standard error of the overall mean difference from Scenario 1 and Scenario 2 with 50% and 75% studies missing variances, and Scenario 3 with no variance information
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