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Abstract

After central nervous system injury, axon regeneration is blocked by an inhibitory environment
consisting of the highly-upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs).
Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly
a9p1. Additionally, integrins can be inactivated by CSPGs and this inhibition can be overcome
by the presence of a B1-binding integrin activator, kindlin-1. We examined the synergistic
effect of 09 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after
dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After
twelve weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich
dorsal root entry zone (DREZ) into the dorsal column up to C1 level and above (over 25 mm
axon length) through a normal pathway. Animals also showed anatomical and
electrophysiological evidence of reconnection to the dorsal horn, and behavioral recovery in
mechanical pressure, thermal pain and ladder-walking tasks. Expression of a9 integrin or

kindlin-1 alone promoted much less regeneration and recovery.



Significance statement

The study demonstrates that long-distance sensory axon regeneration over a normal pathway
and with sensory and sensory-motor recovery can be achieved. This was achieved by
expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue,
and an integrin activator. This enabled extensive long-distance (over 25 mm) regeneration of
both myelinated and unmyelinated sensory axons with topographically correct connections in
the spinal cord. The extent of growth and recovery we have seen would probably be clinically
significant. Restoration of sensation to hands, perineum and genitalia would be a significant

improvement for a spinal cord injured patient.
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Introduction

After injury, central nervous system (CNS) axons fail to regenerate due to the presence of
inhibitory factors, the lack of growth-promoting factors in the environment, and a poor intrinsic
regenerative response of the neurons. In the injured CNS, extracellular matrix molecules such
as chondroitin sulfate proteoglycans (CSPGs) and tenascin-C are highly upregulated and these
molecules play a critical role in blocking CNS repair. The upregulated CSPGs in the glial scar
have an inhibitory effect on axon growth and treatments directly targeting CSPGs, such as
chondroitinase, can permit some axon regeneration (Friedlander et al., 1994, Bradbury et al.,
2002, Moon et al., 2001, Cafferty et al., 2007). Tenascin-C has several splice variants
containing the binding sites for CSPGs, integrins, fibronectin, laminin, contactin and other
ligands (Joester and Faissner, 1999, Lundell et al., 2004, Probstmeier and Pesheva, 1999). The
combination of CSPGs, tenascin-C, Nogo-A, semaphorin 3A and other inhibitory molecules
forms an inhibitory environment for axon regeneration (Milev et al., 1997, Probstmeier et al.,
2000, Kwok et al., 2014, Pasterkamp and Verhaagen, 2006). Of these molecules, tenascin-C is
of particular interest. It is thought of as an inhibitory molecule, but it can promote the growth
of axons that possess an appropriate tenascin-binding integrin such as a7p1 or a9p1 (Mercado
et al., 2004, Andrews et al., 2009). The aim of this study is to use a tenascin-binding integrin

to promote spinal cord regeneration.

Integrins are a family of transmembrane cell adhesion receptors possessing an a and a § subunit
which can promote neurite outgrowth in embryonic (Lein etal., 1991, Neugebauer et al., 1991),
postnatal (Vogelezang et al., 2001) and adult neurons (Condic, 2001, Gardiner et al., 2005,
Andrews et al., 2009). Although peripheral nerve regeneration is associated with upregulation
of 04, a5, 06, a7 and 1 (Hammarberg et al., 2000, Ekstrom et al., 2003, Vogelezang et al.,

2001, Wallquist et al., 2004, Gardiner et al., 2007), a9 integrin which is a receptor for tenascin-
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C remains downregulated after CNS injury (Staniszewska et al., 2008, Andrews et al., 2009).
The expression of a9 integrin in adult dorsal root ganglion (DRG) neurons promotes profuse
sensory axon regeneration in vitro on tenascin (Andrews et al., 2009). However the
regeneration-promoting effect in vivo was modest after spinal cord injury and dorsal root crush.
The reason is that integrins are deactivated by the presence of CSPGs and Nogo-A (Tan et al.,

2012, Hu and Strittmatter, 2008).

Integrin activation, ‘inside-out’ signaling, is controlled by the binding of kindlin and talin to
the B-integrin cytoplasmic tail (Moser et al., 2009). This enables binding of a ligand to integrin
which triggers a series of intracellular signaling cascades, ‘outside-in’ signaling. The kindlins
comprise three isoforms (kindlin-1, -2 and -3) which bind to the B-integrin tail via a FERM
(4.1/ezrin/radixin/moesin) domain, triggering activation and cell-matrix adhesion (Rogalski et
al., 2000). Kindlin-1 is expressed predominantly in epithelial cells, kindlin-2 is expressed in all
tissues and is the only isoform expressed in the nervous system, while kindlin-3 is exclusively
expressed in hematopoietic cells (Ussar et al., 2006). Our previous work has demonstrated that
expression of kindlin-1, but not kindlin-2, can promote short-distance sensory axon

regeneration in vivo in the presence of CSPGs (Tan et al., 2012).

The aim of this study was to examine whether the expression of the tenascin-binding a9 integrin
with an integrin activator, kindlin-1, could promote extensive sensory axon regeneration in the
spinal cord. We have examined sensory axon regeneration in vitro and in vivo from DRG
neurons expressing a9 integrin and kindlin-1 through an environment rich in tenascin-C and
CSPGs. We show that activation of a9 integrin by kindlin-1 allows axons to interact with

tenascin-C and overcome the inhibitory environment of the adult CNS. Extensive axon



1 regeneration was observed in vivo through a largely normal anatomical pathway with
2 behavioral and physiological restoration of sensory functions. Expression of either a9 integrin

3 orkindlin-1 alone stimulated much less regeneration and recovery.
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Materials and Methods

Adult rat DRG cultures

Adult female Sprague-Dawley rats were sacrificed and DRGs were harvested. For explant
culture, each DRG was cut into 2-3 pieces and then plated on substrate-coated glass coverslips.
For dissociated culture, DRGs were incubated with 0.2% collagenase (Sigma) and 0.1% trypsin
(Sigma), followed by trituration and centrifugation. Before being plated on substrate-coated
glass coverslips at a density of 2.0-4.0 x 10* cells/cm?, the cells were transfected with Neon
transfection kit (Invitrogen). For each reaction, 500 ng of plasmid (a9-eYFP and/or kindlin1-
mCherry) was used to transfect 1.0-1.5 x 10° cells at 1200 V, 20 ms and 2 pulses. The substrates
used for coating were PDL (20 pg/ml, Sigma), laminin (10 pg/ml, Sigma), tenascin-C (10

pag/ml, Millipore) or aggrecan (10 pg/ml, Sigma).

Neurite outgrowth assay

Dissociated cultures were maintained for three days and explant cultures for five days prior to
fixation with 4% paraformaldehyde (PFA). Quantification was performed using ImagelJ. For
dissociated cultures, the longest neurite of 20 randomly-selected DRG neurons per condition
was measured (5 independent repeats to give 100 neurons). For explant cultures, the longest 25
neurites per explant per condition were measured (5 explants per condition, 5 independent
repeats). To measure the number of neurites extending from each explant, a parallel line was
drawn 50 um away from the edge of the explant, the number of neurites passing through the

line was calculated per field of observation (550 pum x 425 um).
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Probe synthesis and in situ hybridization

Probes were synthesized with PCR using the following primers. For o9 integrin, 5°-
AGCCGGACGCCAGAGTCCCCT-3’ (forward) and 5°-
GGAGGGGATGATGTAGCAGAA-3’ (reverse). For kindlin-1, 5’-
ATGTTCCAGCCTGATCTTTG-3" (forward) and 5’-TGCGAGTTTAGGGATGTCAG-3’
(reverse). The purified PCR products were then labelled with digoxigenin (Roche) for in situ
hybridization on PFA-fixed DRG sections. The procedure for in situ hybridization was

performed as previously described (Carulli et al., 2006).

Generation of AAV

The plasmids AAV-CMV-fGFP, AAV-CAG-09-V5, and AAV-CMV-kindlin1-GFP were
amplified and sequenced before proceeding to be packaged into AAV5 as described previously
(Hermens et al., 1999). For virus production, HEK293T cells were transfected with the
individual expression and helper plasmids and kept for three days in culture. The transfected
cells were then lysed by using 3 freeze-thaw cycles. After centrifugation, the crude lysate was
subjected to iodixanol gradient (15%, 25%, 40% and 60%) ultracentrifugation using a Type
70Ti rotor (Beckman) at 490000 x g, 16°C for 70 min. The virus was then collected and
concentrated using an Amicon Ultra-15 device (Millipore). The titer of the virus was then
determined by using real-time quantitative PCR - 1.52 x 10'® GC/ml for AAV5-fGFP, 1.54 x

1018 GC/ml for AAV5-09-V5 and 1.41 x 10* GC/ml for AAV5-kindlin1-GFP.
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Animal surgeries

All animal surgeries were conducted in accordance with the UK Animals (Scientific
Procedures) Act 1986. Adult 2-month-old male Lewis rats were used for surgery. Each animal
was allocated a number and assigned into one of the control or experimental groups randomly.
The experimenter was blinded throughout the entire study including during behavioral testing
and axon quantification. During surgery, the animals were anesthetized in 2 - 4% isoflurane, in
1.5 - 2.0 L/min of oxygen. A left hemi-laminectomy was performed at the level C5-T1. 1 ul of
the virus at a working titer of 2 x 101> GC/mL was injected into the left C6 and C7 DRG using
a 33-gauge needle syringe (Hamilton) with an infusion syringe pump (World Precision
Instruments) at 0.1 pl/min, with additional three minutes before needle withdrawal. At the same
time, a concurrent dorsal root crush injury (left C5-C8) was performed with a pair of fine Bonn
forceps (Fine Science Tools) for 3 x 10 s for each root. A week before the final experimental
time point, a total of 5 ul of 1% CTB (List Biological Labs) was injected into the left footpad
and the four digits (Carulli et al., 2010). At the end of the experimental time point, the animals
were perfused transcardially with 4% PFA. We did not have to humanely kill any animals based

on welfare reasons in this study.

Sensory behavioral testing

Ladder rung walking task, mechanical pressure (Randall-Selitto touch sensitivity) test and
thermal pain (Hargreave’s hotplate) test were administered once before the surgery and once

each week after surgery for twelve weeks.

Ladder rung walking task. Animals were placed on a 1.2 m-long horizontal ladder, with uneven

spaced rungs which were 3.0 — 5.0 cm apart. Sugar pellets were provided at the end of the

10
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ladder. The animals were allowed to walk on the ladder for three trials and video-recorded. The

average number of slips from the three trials was quantified.

Mechanical pressure test. Animals were placed in an enclosure with a metal mesh bottom. A
probe connected to an electronic anesthesiometer (IITC Life Science) was applied with a
gradual increase of pressure to the footpad of the forepaw, until the animal withdrew its paw.
The maximum pressure recorded was termed as the withdrawal force (in grams). Five trials
were performed on each forepaw, left (experimental) and right (internal control). The trial was
terminated if the animal failed to respond within 100 g. The average withdrawal force was

determined after eliminating the highest and lowest measurements.

Thermal test. Animals were placed in an enclosure with a fiberglass bottom. An infrared-
emitting device (Ugo Basile) was placed directly under the footpad of the forepaw, until the
animal withdrew its paw. The infrared intensity was set at 48 units. The time between the onset
of the heat stimulus and withdrawal of the paw was termed as the withdrawal latency (in
seconds). Three trials were performed on each forepaw, left (experimental) and right (internal
control). The trial was terminated if the animal failed to respond within 20 s. The average

withdrawal latency was calculated by averaging the three trials.

Electrophysiology

Animals were terminally anesthetized with urethane (Sigma) at a dosage of 1.5 g/kg. A
laminectomy was performed at the level C4-T2. The left dorsal roots C4, C5, C8 and T1 were
cut acutely before the recording. The incision cavity was filled with paraffin oil (Sigma). The
stimulating electrodes were inserted in parallel into the footpad of the left forepaw
(experimental) or right forepaw (internal control). The recording microelectrodes (Platinum/20%

Iridium metal, Harvard Apparatus) were inserted into the left and right dorsal horns (=<1 mm

11
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depth), perpendicularly to the spinal cord. The parameters for electrical stimulation were: 4

mA, 100 ps and 5 Hz. The readings were recorded using Spike2 (Cambridge Electronic Design).

Immunostaining

Sections of PFA-fixed tissues were cut at 14 um on a cryostat. Sections were blocked in 0.4%
Triton-X 100 (Sigma) and 10% normal goat serum (Invitrogen). The tissues were then
incubated with primary antibodies overnight at 4°C and secondary antibodies for 2 hr at room
temperature. After that, the tissues were washed in triplicate of 0.2% Triton-X 100 in PBS and
then mounted with Fluorosave (Calbiochem). Primary antibodies used were rabbit anti-1-
integrin (1:500, Millipore), chicken anti-pIII-tubulin (1:500, Abcam), mouse anti-BIII-tubulin
(1:500, Sigma), mouse anti-FAK (1:500, Invitrogen), rabbit anti-pY397FAK (1:250,
Invitrogen), chicken anti-GFP (1:500, Invitrogen), rabbit anti-GFP (1:1000, Invitrogen), mouse
anti-mCherry (1:250, Clontech), mouse anti-V5 (1:250, Invitrogen), mouse anti-chondroitin
sulfate (1:400, Sigma), rabbit anti-laminin (1:500, Sigma), rabbit anti-tenascin-C (1:250,
Abcam), mouse anti-NF160/200 (1:500, Sigma), mouse anti-NF200 (1:500, Sigma), rabbit
anti-CGRP (1:1000, Sigma), biotinylated IB4 (1:500, Vector), goat anti-CTB (1:500, List
Biological Labs), guinea pig anti-VGLUT2 (1:500, Synaptic Systems). Secondary antibodies

used were Alexa Fluor 488, 568, 647 or 660 (1:500, Invitrogen).

Microscopy and statistical analysis

Fluorescence imaging was performed using a Leica DM6000 epifluorescent microscope and a
Leica DMI14000B confocal microscope. Images were analyzed using ImageJ. Bar graphs were
shown with mean £ SEM produced using Microsoft Excel 2013. Statistical analysis was
performed using SPSS version 22 and statistical differences between groups were determined

by using Student’s t-test, one-way, two-way or repeated measures ANOVA with Bonferroni

12



1 post-hoc test where appropriate. For all statistical analyses, a p value of p<0.05 was considered

2 to be significant.
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Results

Expression of both a9 integrin and kindlin-1 promotes DRG neurite outgrowth on

tenascin-C and aggrecan

To study the independent and synergistic effects of a9 integrin and kindlin-1 in vitro,
dissociated and explant adult DRG cultures were used to assess neurite outgrowth. Dissociated
DRG neurons were transfected with the fusion constructs a9-eYFP and/or kindlin1-mCherry,
alongside mock transfected controls. Transfected DRG neurons were cultured on a substrate of
laminin (10pg/mL) alone, or tenascin-C (10pg/mL) with or without aggrecan (10ug/mL) for 3
days (Fig. 1A-1C). Due to a lack of commercially reliable antibodies for a9 integrin and
kindlin-1, the immunostaining of eYFP was used for detecting 09 integrin and mCherry for
kindlin-1. In all cases, BIII tubulin staining was used for neurite length analysis, but a9 integrin
and kindlin-1 co-localized with BIII tubulin being present throughout the axons (Fig. 1A). On
laminin, the average neurite length was approximately 210 um for all groups with no statistical
differences (Fig. 1B). On tenascin substrates there was almost no growth except from neurons
transfected with alpha9 integrin: the alpha9-only (121 + 30 um) and alpha9 + kindlinl (110 +
34 um) groups had significantly greater neurite outgrowth (***p=1.01e>, two-way ANOVA,
n=5 repeats of 20 neurons each), as compared to the control (32 + 8 um) and kindlin1-only (29
+ 9 um) groups (Fig. 1C). On tenascin-C + aggrecan, the alpha9-only group showed a
significant inhibition of neurite outgrowth by aggrecan (**p=0.00274, two-way ANOVA, n=5),
73 + 18 um. The alpha9 + kindlinl group extended long neurites on tenascin-C + aggrecan,

126 + 30 um, reversing the inhibitory effect of aggrecan.

To further study the synergistic effect of a9 integrin and kindlin-1, we utilized DRG explant

cultures. Specifically, the left C5-C7 DRGs were injected in vivo with the viruses AAV5-fGFP,

14
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AAV5-09-V5 and/or AAV5-kindlinl-GFP four weeks before being harvested for explant
culture. The DRG explants were cultured on a substrate of laminin or tenascin-C + aggrecan
for 5 days (Fig. 1D-1F). On laminin, the average neurite length was approximately 1000 pum
for all groups (Fig. 1E) with an average of 43 neurites per field of observation (Fig. 1F). On
tenascin-C + aggrecan, the alpha9 and alpha9 + kindlinl groups extended significantly longer
neurites (***p=1.76e13, one-way ANOVA, n=5) than the fGFP control group (Fig. 1E). The
alpha9 + kindlinl group had the longest average neurite outgrowth (757 + 221 um), followed
by alpha9-only (584 + 233 um), kindlinl-only (224 + 82 um) and fGFP (55 + 21 um). For the
number of neurites per field of observation, the alpha9 + kindlinl group had 34 + 10 neurites
(***p=4.77¢”, one-way ANOVA, n=5), and the alpha9-only group had 15 # 5 neurites
(**p=0.00364, one-way ANOVA, n=5), compared to less than 10 neurites in the kindlin1-only

and fGFP groups (Fig. 1F).

Additionally, the overexpression of kindlin-1 increased the phosphorylation of focal adhesion
kinase (FAK; *p=0.0108, one-way ANOVA, n=5), demonstrated by an increased
immunoreactivity to pY397 FAK in the kindlinl-only (1.2 + 0.4 unit) and alpha9 + kindlinl
(1.3 £ 0.1 unit) groups (Fig. 2A-2B), indicating downstream signaling cascades triggered by
integrin activation (Tan et al., 2011). Collectively, these experiments showed that in both
dissociated and explant cultures, a9 integrin expression allowed neurite growth on tenascin-C,
but this was inhibited by the presence of aggrecan, confirming our previous results. However,
additional expression of kindlin-1 with o9 integrin allowed the neurites to overcome the

inhibitory effect of CSPG (aggrecan).
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Expression of a9 integrin and kindlin-1 in vivo by adeno-associated virus

Previous studies have shown that adult rat DRG neurons do not express a9 integrin or kindlin-
1 (Andrews et al., 2009, Tan et al., 2012, Chiu et al., 2014). In order to express a9 integrin and
kindlin-1 ectopically in vivo in DRG neurons, we utilized adeno-associated virus serotype 5
(AAVS5) for the fusion constructs AAV-CMV-fGFP, AAV-CAG-09-V5 and AAV-CMV-
kindlin1-GFP. As compared to lentivirus and other AAV serotypes (1, 2, 3, 4, 6 and 8), AAV5
has the highest efficiency in transducing DRG neurons over a long time course, up to 12 weeks,

when injected directly into the DRG (Mason et al., 2010).

First, we confirmed that our AAVs will co-transduce sensory neurons. Four weeks after direct
injection of AAV5-09-V5 and AAV5-kindlin1-GFP into C6-C7 DRGs, in situ hybridization
confirmed the positive expression of a9 integrin and kindlin-1 mRNAs, respectively (Fig. 3A).
Immunostaining analysis of virus-injected DRG sections showed that AAV5-fGFP had a
transduction efficiency of 44 + 6 %, while AAV5-09-V5 had a transduction efficiency of 28 +
3 %, with 33 = 4 % for AAV5-kindlin1-GFP and 25 + 6 % for the co-transduction of AAV5-
a9-V5 + AAV5-kindlinl-GFP (Fig. 3B-3C). Transduction efficiencies were obtained by
measuring the ratio of GFP and/or VV5-positive cell bodies with Bl tubulin-positive cell bodies.
In addition, further immunostaining showed that AAV5-09-V5 and AAV5-kindlinl-GFP
transduced both large-diameter NF200-positive and small-diameter CGRP-positive DRG
neurons (Fig. 3D). Within the DRG and dorsal root, many axons containing both a9 integrin
and kindlin-1, visualized by V5 and GFP staining respectively, were seen, and bright kindlin1-
GFP-containing axons were clearly seen passing up the spinal cord an innervating the cuneate
nucleus, validating it as a good axon tracer equivalent to GFP alone. The staining of a9-V5
was dimmer due to the limitations of the antibody recognizing the short V5 tag, but in most

cases axons were seen in the dorsal column up to top of the spinal cord.
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Expression of both a9 integrin and kindlin-1 promotes sensory axon regeneration in

vivo in a time-dependent manner

AAV5-09-V5, AAV5-kindlin1-GFP or a combination of the two or AAV5-fGFP control was
injected into the left C6 and C7 DRGs at the same time as a concurrent quadruple left C5-C8
dorsal root crush injury in adult rats (4 groups of n=10). Lesions of these four dorsal roots have
been demonstrated to be a useful model for forepaw deafferentation (Wu et al., 2009). Twelve
weeks after virus injection and injury, axon quantification was performed on the C7 segment
of the spinal cord, corresponding to the C7 dermatome map and the area of the forepaw for
behavioral testing and electrophysiology (Takahashi and Nakajima, 1996). Depending on
which AAVS5 the animal had been injected with, the immunostaining of fGFP, the V5 tag on
a9 and/or the GFP tag on kindlin-1 was used as a neuronal tracer for axon quantification. In
addition, in all animals cholera toxin B subunit (CTB) was injected into the left forepaw as an
additional neuronal tracer to ensure that regeneration measures were not confused by the use
of different labels, and to confirm for the completeness of dorsal root axotomy through staining

of terminals in the cuneate nucleus.

Completeness of dorsal root axotomy

To verify the completeness of axotomy in our crush injury model, we examined the degree of
denervation in the spinal cord using electrophysiology and anatomy. A week after dorsal root
crush injury, electrophysiological recordings from the dorsal horn in a group of 5 animals
showed no compound action potential and no further change was observed when the root was
cut subsequently (Fig. 4A). In the main experiment, we used connection to the cuneate nucleus
as an indicator of incomplete lesioning. In addition to kindlin-1 which can be observed filling

axons and terminals in the cuneate nucleus of animals with no dorsal root injury, we also
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utilized CTB for transganglionic tracing of the dorsal column axons (Fig. 4B). This allowed us
to further verify the completeness of our crush injury by excluding animals that showed visible
CTB and/or kindlin-1 staining in the cuneate nucleus from all anatomical, behavioral and
electrophysiological analyses. Using this criteria, from a total of 58 animals that underwent
surgery, we excluded 3 animals which showed evidence of incomplete crush injury in the

cuneate nucleus.

Regeneration in the dorsal root, DREZ and C7 spinal cord segment

To assess ingrowth into the cord from the virus-injected C7 DRG, we analyzed axon
regeneration in the dorsal root, dorsal root entry zone (DREZ) and C7 spinal cord (Fig. 5A).
Within the dorsal root, all groups had approximately 47 regenerated axons per 14 um section
(3 sections per animal, n=10) distal to the crush site with no significant difference found
between groups (Fig. 5B). Within the DREZ, all three experimental groups, alpha9-only (12 +
3 axons), kindlinl-only (15 + 4 axons) and alpha9 + kindlinl (13 + 3 axons) showed
significantly more axons per 14 um section (3 sections per animal, *p=0.0466, one-way
ANOVA, n=10) than the fGFP control group (2 + 1 axons) (Fig. 5C). In the C7 spinal cord
segment, both the kindlinl-only (22 + 5 axons) and alpha9 + kindlinl (48 + 10 axons) groups
had significantly more axons per section (3 sections per animal, ***p=7.99¢*, one-way
ANOVA, n=10) than the fGFP control (0.3 + 0.2 axons) and alpha9-only (2 + 0.5 axons) groups
(Fig. 5D). Furthermore, the alpha9 + kindlinl group had significantly more axons per section
(*p=0.0361, one-way ANOVA, n=10) than the kindlin1-only group. Axons expressing both a9
integrin and kindlin-1 were observed in the spinal cord, especially in the cuneate fasciculus and
dorsal horn (Fig. 5E and 5G). For the fGFP control group, no axons were observed growing

into the DREZ and spinal cord (Fig. 5F).
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Long-distance regeneration in the spinal cord with dual expression of 0.9 integrin and

kindlin-1

For animals treated with both a9 integrin and kindlin-1, further assessment along the spinal
cord revealed regenerated axons in the dorsal column all the way up to level C1 and medulla
with no kindlin-1 or CTB immunopositive axons observed in the cuneate nucleus (Fig. 6A).
However, only a limited amount of regeneration with less than a spinal segment was observed
in animals treated with a9 integrin only (Fig. 6B). The long-distance regeneration with a
maximum axon length averaged between animals of 25 + 3 mm observed in the alpha9 +
kindlin1 group was highly significant (***p=1.66e1°, one-way ANOVA, n=5) as compared to
the fGFP, alpha9-only and kindlinl-only groups in which only a segment or less (<4 mm)
regeneration was observed (Fig. 6C). In the alpha9 + kindlinl group at C5/C6 segment, an
average of 31 axons per section was counted while at C3/C4 and C1/C2 segments there was

still a robust projection with approximately 10 axons per section (Fig. 6D).

Additionally, further assessment of those regenerated axons revealed that a proportion of the
regenerated kindlinl-positive axons were NF200, CGRP- and IB4-immunopositive (Fig. 7A).
Many NF200-immunopositive axons were observed as axons of passage in the cuneate
fasciculus of the dorsal column. Within the dorsal horn we counted the proportion of kindlin-
1-positive regenerated processes that stained for the three markers. NF200 processes were 17
+ 6 % in laminae I-11 (substantia gelatinosa), 59 + 8 % in the deeper laminae I11-V (nucleus
proprius) of the dorsal horn. CGRP processes were 44 + 10 % in laminae I-1l, 21 + 7 % in

laminae I11-V, and IB4-immunopositive processes were 32 + 8 % in laminae 1-11, 14 + 4 % in
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laminae 111-V. The innervation pattern of axonal subtypes was similar to normal spinal cord
but less precise (Fig. 7B). Using confocal microscopy of single optical slices, kindlin-1-
expressing sensory axon terminals were observed in the dorsal horn to be co-localized with the
VGlut2 puncta of dorsal horn neurons, indicating potential synaptic reconnections (Fig. 7C).
Together, these data show that axons expressing both a9 integrin and kindlin-1 are able to
regenerate through the DREZ, where they follow appropriate pathways and terminal zones
within the spinal cord, and within 12 weeks they can grow for up to 7 spinal segments and over

25 mm in length.

Time course of regeneration

For the alpha9 + kindlinl group, we further assessed axon regeneration at 3 and 6 week time-
points in an additional set of animals (2 groups of n=5) (Fig. 8A). At 3 weeks (which is the
time it takes for maximal AAV-driven expression to build up), regenerating axons were
observed in the dorsal root (27 + 5 axons per section, 3 sections per animal, n=5), with a few
in the DREZ (3 £ 1 axons, 3 sections per animal, n=5) and none were found in the spinal cord
(Fig. 8B). At 6 weeks, significantly more regenerating axons were observed in the DREZ (14
+ 3 axons per section, 3 sections per animal, *p=0.0414, Student’s t-test, n=5) and spinal cord
(25 £ 4 axons per section, 3 sections per animal, **p=0.00951, Student’s t-test, n=5). Taken
together with the data obtained at the 12 week time-point, these data demonstrate that
expression of both 09 integrin and kindlin-1 significantly promotes sensory axon regeneration
in a time-dependent manner because the level of regeneration was observed to increase over

time from 3 to 6 to 12 weeks.
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Changes in extracellular matrix molecules in the DREZ

For this study, the DREZ was defined as the segment in the dorsal root which was
immunonegative for laminin (Fig. 9A). Laminin was highly expressed in the dorsal root, but
not in the DREZ central to where the dorsal root joins the spinal cord. Additionally, the
immunoreactivity of laminin does not change in the DREZ after injury (McPhail et al., 2007),
hence the staining of laminin is a good delineator between the PNS and CNS environments of
the dorsal root. Twelve weeks after dorsal root crush injury, there was an upregulation of
CSPGs in the injured dorsal root and of tenascin-C in the DREZ (Fig. 9B). A dorsal root crush
did not upregulate the expression of CSPGs and tenascin-C in the contralateral uninjured dorsal
root (Fig. 9B). Axons in the fGFP control group did not grow into the tenascin-C-rich DREZ
while axons expressing both a9 integrin and kindlin-1 were observed growing beyond the
tenascin-C-rich DREZ and into the spinal cord (Fig. 9C). This is consistent with our in vitro
experiments, with tenascin-C in the DREZ being inhibitory to sensory axon regeneration.
However, for axons expressing a9 integrin, this tenascin-C would be a growth-promoting

substrate.

Treatment with a9 integrin and kindlin-1 promotes electrophysiological reconnection

To further investigate functional sensory axon regeneration, electrophysiological recording
was performed at the end of the 12 week experimental time-point. The left dorsal roots C4, C5,
C8 and T1 were cut acutely to eliminate spinal inputs from overlapping dermatomes while
leaving C7 intact. Extracellular platinum-iridium recording electrodes were inserted into the
left and right C7 dorsal horns. At the 12 week time-point, there were large differences in the
size of the dorsal column compound action potentials recorded from the control and three

experimental groups (alpha9-only, kindlin1-only and alpha9 + kindlin1) (Fig. 10A). In all cases,
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when the C7 dorsal root was cut subsequently during the recording session, the compound
action potential was completely eliminated. We saw no evidence of reconnection in the fGFP
control group. As compared to the fGFP control group (3 £ 0.2 uV), the alpha9 + kindlinl
group showed the highest peak-to-peak voltage amplitude of 64 + 20 uV (**p=0.00352, one-
way ANOVA, n=5), followed by the alpha9-only (21 + 5 uV) and kindlinl-only (21 £ 1 uV)
groups (*p=0.0266, one-way ANOVA, n=5) (Fig. 10B). This was compared with an amplitude

of 159 + 20 pV in uninjured controls.

Treatment with a9 integrin and kindlin-1 promotes sensory-motor behavioral

recovery

To examine sensory behavioral recovery, mechanical pressure (Randall-Selitto touch
sensitivity) test, thermal pain (Hargreave’s hotplate) test and uneven-rung ladder-walking task
were administered up to a week before the surgery with pre-training on the ladder, and then
weekly after surgery for 12 weeks. A week after surgery, the experimental left forepaw from
all groups showed significant sensory deficits in all three behavioral tests as compared to pre-
surgery levels (Fig. 11A-11C). This was indicated by a higher withdrawal force and a longer
withdrawal time was required to initiate paw withdrawal, and an almost complete inability to

place the left forepaw on the rungs during the ladder-walking task.

In the mechanical pressure test, the alpha9 + kindlinl group started to show a significant
recovery (**p=0.00926, repeated measures ANOVA, n=10) from week 8 while the other three
groups, fGFP control, alpha9-only and kindlin1-only, did not show any significant recovery
(Fig. 11A). In the thermal test, all three experimental groups (alpha9-only, kindlinl-only and
alpha9 + kindlinl) showed a significant recovery (*p=0.0271, repeated measures ANOVA,
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n=10 per group) as compared to the fGFP control group (Fig. 11B). The alpha9 + kindlinl
group showed a faster and more significant recovery at an earlier time-point (week 5) as
compared to the kindlinl-only (week 7) and alpha9-only (week 8) groups. In the ladder-
walking task, the control group showed very inaccurate limb placement throughout. The alpha9
+ kindlinl group showed significant recovery in limb proprioception (**p=0.00631, repeated
measures ANOVA, n=10) from week 9 and the kindlin1-only group possibly showed marginal
recovery from week 11 (*p=0.0429, repeated measures ANOVA, n=10), but the fGFP control
and alpha9-only groups did not recover (Fig. 11C). Taken together, these results indicate that
the alpha9 + kindlin1 group showed excellent sensory recovery in the mechanical pressure and
thermal tests, and excellent sensory-motor recovery in the ladder-walking task. The kindlin1-
only group showed a delayed recovery in the thermal and possibly ladder-walking tests, while
the alpha9-only group showed recovery only in the thermal test, while the fGFP control group

showed no recovery in any test.
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Discussion

This study demonstrates that sensory axons are able to regenerate for substantial distances
following a dorsal root axotomy provided that they have on their surface an integrin co-
expressed with an inside-out activator, kindlin-1. Alpha9 integrin binds to tenascin-C, a
constituent of the non-permissive environment in the adult spinal cord, and kindlin-1 prevents
it from being deactivated by CSPGs. Our previous studies (Andrews et al., 2009, Tan et al.,
2012) had shown that expression of either a9 integrin or kindlin-1 in DRG neurons could
enhance regeneration of axons into the spinal cord through the DREZ, but there was little
growth from this point of entry along the length of the cord. In this study we show that the
combinatorial expression of 09 integrin and kindlin-1 promotes axon regeneration over
remarkably long distances, 25 mm or seven spinal levels and more, all the way up to the
medulla. The regenerating axons follow a relatively normal pathway, re-form synaptic
connections in appropriate regions of the dorsal horn, and can re-establish sensory and sensory-
motor behaviors. While the combination of o9 integrin and kindlin-1 enabled useful
reconstruction of sensory connections and function, our results with o9 integrin alone or
kindlin-1 alone confirm our previous studies, promoting regeneration for 4 mm or less with

only recovery of heat sensation.

Expression and activation of an appropriate integrin

Axons will not grow unless they have on their surface a receptor that recognizes a ligand in
their environment. Our previous work has identified 09 integrin as such a receptor, recognizing
tenascin-C which is present in the DREZ and CNS environment. However axon regeneration
in vivo after expression of this integrin was modest (Andrews et al., 2009). The probable reason

for the limited effect of a9 integrin in vivo is that it is inactivated by CSPGs and Nogo-A found
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in the injured CNS (Hu and Strittmatter, 2008, Tan et al., 2012). The signaling pathway is not
identified, but intracellularly, the Rho/ROCK pathway has been suggested to mediate the
growth inhibition of CSPGs (Monnier et al., 2003) and myelin-associated inhibitors (Niederost
et al., 2002), and integrin-mediated suppression of the Rho/ROCK pathway is required to
promote cell motility (Arthur et al., 2000). Additionally, kindlin-1 (Tan et al., 2012) and full-
length talin (Tan et al., 2015) have been shown to promote neurite outgrowth in the presence
of CSPGs by binding to Bl integrin for integrin activation, resulting in increased integrin
signaling via focal adhesion kinase (FAK) and integrin linked kinase (ILK) (Schaller et al.,
1995, Novak et al., 1998). Kindlins activate integrins by binding to the beta tail via their FERM
domain. They also bind to PIP3 and paxillin (Theodosiou et al., 2016, Rognoni et al., 2016).
Full-length talin cannot be used for promoting neuronal regeneration because of its large size,
and the talin head which contains the integrin-binding and activating site inhibits axon growth,

probably by competing with full-length talin (Tan et al., 2015).

In the present experiments, we have expressed a9 integrin which combines with the pool of B1
subunit in adult DRG neurons to produce a9f1 integrin, which can then be activated via the
inside-out pathway using kindlin-1. Tissue culture experiments using dissociated adult DRG
neurons and adult DRGs transduced in vivo showed that a9p1 integrin promotes growth on
tenascin-C, but this growth is inhibited by CSPGs. Activation with kindlin-1 enables the axons
to overcome this CSPG inhibition. The same combination of molecules was then transduced
into DRG neurons in vivo coupled with dorsal root crush injury. Axons expressing either a9
integrin or kindlin-1 alone showed limited regeneration through the DREZ into the cord, but
only the synergistic effect of a9 integrin and kindlin-1 co-expression resulted in a combined
effect which led to much greater axon regeneration, with many axons regenerating 7 or more

spinal levels to and beyond C1, for a length of up to 25 mm and above. It will be important to
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study the regenerative effect of a9 integrin and kindlin-1 co-expression when the injury is
placed in the spinal cord rather than the dorsal root. Tenascin-C is strongly upregulated around
spinal injuries, so it is probable that axons expressing activated a9 integrin will grow
extensively in this environment, as they did through the upregulated tenascin-C at the DREZ

in the present study.

It is interesting that kindlin-1-only expressing axons were able to grow a limited distance into
the spinal cord, while kindlin-1 did not increase growth in our in vitro experiments. We assume
that this occurs because DRGs express various integrins such as aVp8 and a7B1 (Tucker and
Chiquet-Ehrismann, 2015, Chiu et al., 2014), which become activated allowing them to interact
with various integrin ligands in the spinal cord, whereas in the in vitro assay only tenascin-C
and aggrecan were present. These kindlin-1-activated integrins were able to produce some axon

growth, but were relatively ineffective compared to activated o9p1 integrin.

Long-distance axon regeneration in the spinal cord

We have demonstrated complete axotomy electrophysiologically and by using two tracers to
demonstrate complete denervation of the cuneate nucleus; this was a good control because no
axons regenerated back to the cuneate nucleus. We also examined the time course of
regeneration, finding regeneration into the DREZ at 3 weeks, to the lower cervical cord at 6
weeks, and to C1 and above at 12 weeks. To date, dorsal column regeneration to the nucleus
has only been reported in cases with high cervical lesion and with neurotrophin stimulation
(Alto et al., 2009, Bonner et al., 2011) or at a longer experimental time-point of up to 6 months
after treatment with artemin (Wang et al.,, 2008, Wong et al., 2015). Combinatorial
overexpression of two neuronal intrinsic regeneration-associated genes, GAP43 and CAP23

26



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(Bomze et al., 2001), or four regeneration-associated transcription factors, ATF3, c-Jun,
STAT3 and Smadl (Fagoe et al., 2015) have produced relatively modest sensory axon
regeneration. The current approach of combining an integrin with an integrin activator seems
to be the most effective strategy to boost the intrinsic regenerative capacity of an injured

Sensory neuron.

The pathway taken by the regenerating axons was remarkably normal, with most NF200-
positive axons travelling in the dorsal column and re-innervation of the dorsal horn by NF200-,
CGRP- and IB4-positive processes being mainly in the correct layers, although less precise
than normal. This implies either that some axon guidance information remains in the
denervated adult cord, and/or that the axons were following the physical pathways of the
degenerated axons. We did not see evidence of axonal misguidance or wandering as observed
in some recent regeneration experiments (Luo et al., 2013). We suggest that stimulation of
regeneration through expression of an appropriate surface receptor allows for normal signaling
within the axons, while maximal direct activation of signaling pathways might render axons

dazzled and unable to see features in their environment.

Behavioral recovery

Animals receiving treatment of both 09 integrin and kindlin-1 showed good recovery in all
three behavioral tests despite no direct re-innervation of the cuneate nucleus. The observation
that thermal pain sensation is restored even with the very limited and local re-innervation that
we saw in the o9 integrin or kindlin-1 alone groups is consistent with the view that heat
withdrawal is a local spinal reflex. However mechanical pressure sensation and ladder-walking

proprioception were restored only in those animals treated with both a9 integrin and kindlin-1,
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suggesting that a more complete re-innervation is required for these behaviors. Although there
was no direct re-innervation of the cuneate nucleus, it is possible that propriospinal neurons

received input from regenerated axons and then relayed information up to the brain.

The prolific regeneration that we have seen in sensory axons forced to express 09 integrin and
kindlin-1 begs the question of whether this strategy could be used to promote regeneration of
intrinsic CNS axons. However, there are problems with this approach. Integrins are transported
readily down adult DRG neurons to be inserted into the growth cones (Eva et al., 2012, Eva et
al., 2010), explaining how a9 integrin expression can promote dorsal column regeneration.
However trafficking of integrins in cortical neuron axons is very different. During
developmental growth, cortical neurons transport integrins, but with neuronal maturity
integrins become restricted to the somatodendritic domain and are excluded from the axons,
hence contributing to the developmental loss of regenerative ability in CNS axons (Franssen et
al., 2015, Heintz et al., 2014). Extension of the a9 integrin-kKindlin-1 approach to CNS axons
will require a solution to this issue. However it is now reasonable to ask whether it would be
possible to restore useful sensation to patients with spinal injuries. Restoration of sensation
would enable patients to avoid burns, pressure sores and other damage and to improve
manipulative ability. In addition, restoration of genital sensation is a desired outcome for many

patients (Anderson, 2004).
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Figure 1. Co-expression of a9 integrin and Kindlin-1 promotes DRG neurite

outgrowth in vitro on tenascin-C + aggrecan

(A) Neurite outgrowth of dissociated DRG neurons, mock transfected (control) or transfected
with a9-eYFP and/or kindlin1-mCherry cultured on laminin or tenascin-C + aggrecan. Scale
bar is 100 um. (B-C) The average neurite length of dissociated DRG neurons cultured on
laminin (B), tenascin-C only or tenascin-C + aggrecan (C) for 3 days, n=5. (D) Neurite
outgrowth of DRG explants injected with AAV5-fGFP, AAV5-09-V5 and/or AAV5-kindlinl-
GFP cultured on laminin or tenascin-C + aggrecan. Scale bar is 100 um. (E-F) The average
neurite length (E) and the average number of neurites per field of observation (F) of virus-
injected DRG explants cultured on laminin or tenascin-C + aggrecan for 5 days, n=5. Results
were analyzed by one-way (B, E, F) or two-way (C) ANOVA and expressed as mean + SEM,

*p<0.05, **p<0.01 and ***p<0.001 were statistically significant.
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Figure 2
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Figure 2. Overexpression of kindlin-1 increases phosphorylation of FAK

(A) DRG neurons, mock transfected (control) or transfected with a9-eYFP and/or kindlinl-
mCherry cultured on laminin, labeled with antibodies to FAK and pY397 FAK. Scale bar is 30
pm. (B) Quantification of pY397 / total FAK ratio in arbitrary unit, analyzed by one-way

ANOVA and expressed as mean + SEM, *p<0.05 was statistically significant, n=5.

37



1

10

11

Figure 3

AAV5-09-V5

. fGFP

|| AAvs-kindiin1-GFP ]B AAV5.GFP \ AAV5-q9.V5
(g AR

Anti-sense

|

Sense

fGFP Alphad Kindlin1 Alphad +
Kindlin1

Figure 3. Expression of a9 integrin and kindlin-1 in DRG neurons 4 weeks after

direct injection

(A) In situ hybridization of AAV5-09-V5 or AAV5-kindlin1-GFP injected DRG sections,
labeled with anti-sense and sense probes for a9 integrin or kindlin-1. Scale bar is 500 um. (B)
DRG sections injected with AAV5-fGFP, AAV5-a9-V5 and/or AAV5-kindlinl-GFP. Scale
bar is 500 um. (C) Transduction efficiencies of AAV5-fGFP, AAV5-09-V5 and AAVS5-
kindlin1-GFP in DRG neurons, expressed as mean + SEM, n=5. (D) DRG sections injected
with AAV5-09-V5 or AAV5-kindlinl-GFP, co-labeled with antibodies to NF200 or CGRP.

Scale bar is 50 pum.

38



1

Figure 4
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Figure 4. Dorsal root crush injury denervates the spinal cord

(A) Electrophysiological recordings at the right C7 dorsal horn with right C7 dorsal root intact
as an internal control, and the left C7 dorsal horn with left C7 dorsal root 1 week after injury
and then cut subsequently, n=5. (B) Section of cuneate nucleus from animals injected with
AAVS5-kindlin1-GFP or CTB with no dorsal root crush injury. Animals that showed visible
CTB and/or kindlin-1 staining in the cuneate nucleus were excluded from all analyses (3 out

of 58 animals). Scale bar is 250 pm.
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Figure 5. Co-expression of o9 integrin and kindlin-1 promotes sensory axon

regeneration into the spinal cord at level C7

(A) Dorsal root, DREZ and spinal cord C7 sections 12 weeks after being injected with AAV5-
fGFP, AAV5-09-V5 and/or AAV5-kindlin1-GFP and followed by dorsal root crush injury.
Scale bar is 250 um. (B-D) The number of axons per section in the dorsal root (B), DREZ (C)
and C7 spinal cord (D) after 12 weeks of treatment, 3 sections per animal, analyzed by one-
way ANOVA and expressed as mean + SEM, *p<0.05, **p<0.01 and ***p<0.001 were
statistically significant, n=10 per group. (E) Axons co-expressing kindlin-1 and a9 integrin in
the spinal cord. Scale bar is 50 um. (F-G) Spinal cord sections at level C7 of AAV5-fGFP (F)
or AAV5-09-V5 + AAV5-kindlinl-GFP (G) injected animal 12 weeks after dorsal root crush

injury. The white-dotted lines represent the region of dorsal root crush. Scale bar is 650 pm.
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Figure 6
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Figure 6. Co-expression of o9 integrin and kindlin-1 promotes sensory axon

regeneration in the dorsal column up to C1 level and the medulla

(A-B) Diagrams representing a single 14 um parasagittal spinal cord section of AAV5-a9-V5
+ AAV5-kindlin1-GFP (A) or AAV5-09-V5 (B) injected animals 12 weeks after dorsal root
crush injury, showing regenerating axons in various regions along the spinal cord. Scale bar is
250 um. The diagrams were produced by drawing the axons from single sections taken from
the middle of the dorsal horn into the arrowed squares then interpolating between them. Each
dorsal column is approximately 600 um across or approximately 40 parasagittal 14 um sections.
(C) The maximum length (mm) of regenerating axons observed along the spinal cord for each
group, analyzed by one-way ANOVA and expressed as mean + SEM, ***p<0.001 was
statistically significant, n=5. (D) The number of axons per section at C5/C6, C3/C4 and C2/C1

spinal cord segments of the alpha9 + kindlinl group, expressed as mean + SEM, n=5.
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Figure 7. Co-expression of a9 integrin and Kindlin-1 promotes axonal re-

connections in the spinal cord

(A) Ipsilateral spinal cord C7 sections showing kindlin-1-positive regenerating axons which
are immunopositive for NF200 in the dorsal column, CGRP and IB4 in the dorsal horn. The
contralateral control side is the corresponding uninjured region of the spinal cord. Scale bar is
50 um. (B) The composition of axonal subtypes NF200, CGRP and IB4 in laminae I-11 and
laminae I11-V of the dorsal horn on the ipsilateral regenerated and contralateral control sides.
Results expressed as mean + SEM, 3 sections per animal, n=5. (C) Spinal cord section showing
potential synaptic reconnections of kindlin-1-positive axonal terminals with VGlut2-positive

neurons in the dorsal horn. Scale bar is 50 pm.
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Figure 8
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Figure 8. Co-expression of a9 integrin and kindlin-1 promotes sensory axon

regeneration in a time-dependent manner

(A) Dorsal root, DREZ and spinal cord C7 sections 3 and 6 weeks after being injected with
AAV5-09-V5 + AAV5-kindlin1-GFP and followed by dorsal root crush injury. Scale bar is
250 pm. (B) The number of axons per section in the dorsal root, DREZ and spinal cord after 3
and 6 weeks of treatment, 3 sections per animal, analyzed by Student’s t-test and expressed as

mean + SEM, *p<0.05 and **p<0.01 were statistically significant, n=5.
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Figure 9. DREZ is a barrier for DRG axon regeneration

(A) The DREZ (white-bordered area) is defined as the segment in the dorsal root which is
immunonegative for laminin. Scale bar is 500 um. (B) Spinal cord section labeled with
antibodies to chondroitin sulfate (CS) chain and tenascin-C to show the upregulation of CSPGs
in the injured dorsal root and tenascin-C in the DREZ 12 weeks after dorsal root crush injury.
Scale bar is 250 um. (C) Spinal cord section of AAV5-fGFP or AAV5-09-V5 + AAV5-
kindlin1-GFP injected animals 12 weeks after dorsal root crush injury, showing fGFP-
expressing axons do not grow into the tenascin-C-rich DREZ, whereas a9 integrin and kindlin-
1-expressing axons grow beyond the tenascin-C-rich DREZ and into the spinal cord. Scale bar

IS 250 pm.
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Figure 10. Treatment with a9 integrin and kindlin-1 promotes electrophysiological

Improvement

(A) Electrophysiological recordings at the right C7 dorsal horn with right C7 dorsal root intact

as an internal control, and the left C7 dorsal horn with left C7 dorsal root injured (12 weeks

after crush/regeneration) and then cut in fGFP, alpha9, kindlinl, and alpha9 + kindlinl

treatment groups. (B) Peak-to-peak voltage amplitude of the intact/injured recordings from

each treatment group, analyzed by one-way ANOVA and expressed as mean + SEM, *p<0.05

and **p<0.01 were statistically significant, n=>5.
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Figure 11
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Figure 11. Treatment with a9 integrin and kindlin-1 promotes sensory behavioral

recovery

(A-C) Mechanical pressure test (A), thermal test (B) and ladder rung walking task (C) on the
experimental left forepaw, before the surgery and during weeks 1-12 after surgery. The results
were analyzed by repeated measures ANOVA and expressed as mean + SEM, *p<0.05 and

**p<0.01 were statistically significant, n=10 per group.
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