Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord
Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) obtained from adult transgenic rats expressing alkaline phosphatase (AP) were studied following implantation into intact spinal cord and after dorsal column crush (DCC) injury, either within the lesion or near the lesion borders. We observed no evidence of migration of AP OECs or AP SCs after lesion site injections, with most cells remaining in or nearby the injection/lesion site. Acute injection of either cell type outside of the lesion site resulted in the presence of cells in the lesion even two hours after injection. However, after a 2-week delay between DCC injury and cell injection, only OECs injected 2.5-mm outside of a DCC lesion entered the lesion, while SCs did not pass a region of increased astroglial immunoreactivity. GFAP-immunoreactivity also revealed differences in the astroglial scar at the lesion border with openings apparent in this region only in the OEC group. SCs induced greater ingrowth of CGRP-positive axons within the lesion, two weeks post-injury. Equivalent numbers of GAP-43-positive axons grew within the lesion after SC or OEC implantation. These findings show that, although there is no active migration for either cell type, both OECs and SCs are able to support axonal regrowth and/or sprouting into the lesion. The openings in the astroglial boundary at the lesion site may give OECs a potential advantage over SCs in promoting axonal growth through the astroglial scar.
1773-1792
Andrews, Melissa R.
ae987a2f-878e-4ae3-a7a3-a7170712096c
Stelzner, Dennis J.
53e95c3a-99ba-4aef-9297-ea55c854f1c9
14 November 2007
Andrews, Melissa R.
ae987a2f-878e-4ae3-a7a3-a7170712096c
Stelzner, Dennis J.
53e95c3a-99ba-4aef-9297-ea55c854f1c9
Andrews, Melissa R. and Stelzner, Dennis J.
(2007)
Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord.
Journal of Neurotrauma, 24 (11), .
(doi:10.1089/neu.2007.0353).
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) obtained from adult transgenic rats expressing alkaline phosphatase (AP) were studied following implantation into intact spinal cord and after dorsal column crush (DCC) injury, either within the lesion or near the lesion borders. We observed no evidence of migration of AP OECs or AP SCs after lesion site injections, with most cells remaining in or nearby the injection/lesion site. Acute injection of either cell type outside of the lesion site resulted in the presence of cells in the lesion even two hours after injection. However, after a 2-week delay between DCC injury and cell injection, only OECs injected 2.5-mm outside of a DCC lesion entered the lesion, while SCs did not pass a region of increased astroglial immunoreactivity. GFAP-immunoreactivity also revealed differences in the astroglial scar at the lesion border with openings apparent in this region only in the OEC group. SCs induced greater ingrowth of CGRP-positive axons within the lesion, two weeks post-injury. Equivalent numbers of GAP-43-positive axons grew within the lesion after SC or OEC implantation. These findings show that, although there is no active migration for either cell type, both OECs and SCs are able to support axonal regrowth and/or sprouting into the lesion. The openings in the astroglial boundary at the lesion site may give OECs a potential advantage over SCs in promoting axonal growth through the astroglial scar.
This record has no associated files available for download.
More information
Published date: 14 November 2007
Organisations:
Biomedicine
Identifiers
Local EPrints ID: 404996
URI: http://eprints.soton.ac.uk/id/eprint/404996
ISSN: 0897-7151
PURE UUID: 10fd455e-ff4c-424b-97da-7988eeac09eb
Catalogue record
Date deposited: 26 Jan 2017 16:45
Last modified: 16 Mar 2024 04:28
Export record
Altmetrics
Contributors
Author:
Dennis J. Stelzner
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics