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ABSTRACT 
Recent years have seen increased interest in the application of on-line condition 

monitoring of medium voltage networks as the need to maintain and operate ageing cable 

networks increases. Detection and analysis of partial discharge (PD) activity is generally 

used as an indicator of pre-breakdown processes that may be indicative of insulation 

degradation over time.  A significant challenge for on-line monitoring is discrimination 

between multiple partial discharge sources that will often naturally exist in the data.  To 

discriminate between PD sources each PD signal is represented as a feature vector and a 

clustering algorithm is used to identify clusters in the resulting feature vector space, often 

after dimensional reduction. Each cluster identified in the data corresponds to a distinct 

PD source. In this work a comparison of clustering algorithms and dimensional reduction 

techniques is performed to identify clusters for a variety of PD data sets, in all cases the 

feature vector is created using wavelet decomposition energies.  The three clustering 

algorithms used were Density Based Spatial Clustering of Applications with Noise 

(DBSCAN), Ordering Points to Identify Clustering Structure (OPTICS) and Simple 

Statistics-based Near Neighbour clustering technique (SSNN). The two dimensional 

reduction techniques considered were Principal Component Analysis (PCA) and 

t-Distributed Stochastic Neighbour Embedding (t-SNE).  At present the most commonly 

used combination of dimensional reduction technique and clustering algorithm for PD 

data are PCA and DBSCAN respectively. From the comparison performed in this work 

it was found that t-SNE combined with OPTICS or SSNN were the most successful at 

clustering PD data.  For use in practical situations SSNN is preferred over OPTICS as it 

requires only a single input parameter, which generally be hardcoded, leading to a 

completely autonomous technique. It is therefore suggested that a combination of t-SNE 

and SSNN is particularly appropriate for discriminating PD sources.  

   Index Terms  — Partial Discharge, Condition Monitoring, SSNN, OPTICS, t-SNE. 

 

1  INTRODUCTION 

 THE economic incentives of on-line condition based 

monitoring (CM) of electrical apparatus have encouraged 

interest and funding among utilities wishing to extend the life 

of ageing equipment.  This is especially true of medium 

voltage (MV) network operators whose urban cable 

networks were installed in the middle of the previous 

century, and are consequently nearing the end of their useful 

life.  

Of the methods used for assessing the condition of electrical 

apparatus, analysis of the partial discharges (PD) produced by 

the system has proved most informative and is currently seeing 

widespread acceptance.  A successful PD-based on-line CM 

tool for high voltage plant must be able to: discriminate 

between PD sources within the asset, localise each PD 

source, and assess the likely severity of a potential 

developing fault.  Source discrimination, comprised of 

feature extraction and classification, is the fundamental step 

in this process and has received significant research attention 

[1]. The current method of selecting the most appropriate 

classification (or clustering) algorithm for a specific data set 

remain a largely experimental-based approach [2]. Of the 

plethora of available techniques, PD source classification has 

been achieved using k-means [1], fuzzy-classifiers [3], 

Density Based Spatial Clustering of Applications with Noise 

(DBSCAN) [4], Ordering Points to Identify Clustering 
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Structure (OPTICS) [5], support vector machines [6], and 

probabilistic neural networks [7].  By contrast, the feature 

extraction stage has seen a more restricted selection, with the 

main methods using either a time-frequency (TF) approach 

[8], or the use of a discrete wavelet transform (DWT) [9].  

More recently, the current methods of feature extraction have 

been classified into so-called T1, T2, and T3 spaces (using 

global, mean, and single valued parameters respectively), 

and an evaluation of their performance carried out [5].  The 

results of this analysis were that the T2 (such as the DWT) 

and T3 spaces showed similar performance, although T3 was 

marginally better. 

In this paper an investigation into the application of 

recently reported source discrimination techniques for PD 

data is performed.  Different approaches to wavelet-based 

source discrimination and classification have been assessed 

using three different PD measurement data sets. Firstly, the 

techniques used to discriminate sources of PD are introduced 

and a summary of the data sets used in the analysis are 

provided. The visually intuitive output of OPTICS is then 

used to evaluate the performance of current wavelet-based 

discrimination techniques involving the use of Principal 

Component Analysis (PCA) and t-SNE followed by 

clustering with DBSCAN. The results of PD source 

discrimination from the two most promising combinations of 

dimensional reduction techniques and clustering algorithms 

are then presented, namely t-SNE with OPTICS and t-SNE 

with SSNN. One of the key advantage of these methods is 

that they have a high level of autonomy, and can be 

employed by a user unfamiliar with the underlying 

algorithms.  

 

2 FEATURE EXTRACTION 

Feature extraction is an important step in source 

discrimination, because a subsequent clustering technique 

can only act on variance in the data that actually exist in the 

feature space generated by the extraction process. The DWT 

has shown potential in discriminating between PD signals 

within the noisy environment of on-line applications [9] as 

well as accurately maintaining distinctions between PD 

sources from a variety of equipment [5]. It is generally 

followed by a dimensional reduction technique, typically 

principal component analysis (PCA), to reduce the 

dimension of the feature vector to three [1,4,5]. More 

recently, t-SNE has been proposed as an alternative form of 

dimension reduction that is especially suited to representing 

higher dimensional spaces in two or three dimensions. In this 

section, details regarding the application of the DWT are 

presented, followed by a brief introduction to PCA and 

t-SNE. 

2.1 DISCRETE WAVELET TRANSFORM 

Detected PD signals are inherently transient, aperiodic 

signals which are best extracted with an asymmetric wavelet 

basis such as the Daubechies wavelets, Symlet wavelets, and 

Lemarie wavelets, as this will produce a better match to the 

shape of the PD pulse [10-11]. More specifically, it has been 

shown that an order two wavelet is best for analysing an 

exponential PD pulse whereas the higher order (eight to ten) 

wavelets are best for damped resonant PDs, typical from an 

RLC-type detection impedance [11]. In this analysis a higher 

order Symlet wavelet (sym8) was found to be particularly 

good at representing the pulses and has been used 

throughout. For a detailed description of the DWT algorithm 

the reader is referred to [9].  

The choice of the number of decompositions is also vital 

for reliable feature extraction. It should be noted that there 

exists an absolute maximum number, 𝐽 − 1, of 

decomposition levels that will allow accurate representation 

and complete reproduction of the signal [12-13]. The value 

of 𝐽 is calculated as 

𝐽 = floor(log2 𝑇),  (1) 

where floor is the floor function and 𝑇 is the length of the 

discretised pulse in data points [12]. 

The wavelet coefficients produced by the DWT possess 

high dimensionality (a large number of points in each detail 

level) so it is advisable to use the signal energy in each level 

rather than the coefficients themselves to describe the PD 

signal [1, 4, 9]. For the implementation of DWT it is required 

to specify the number of decompositions and the type of 

wavelet to use. However, based on the results presented here 

and elsewhere in the literature [10-11], the number of 

decomposition levels can be set to their maximum value, 𝐽 −
1, calculated using equation 1, and sym8 wavelets are 

suitable for a variety of PD data. As such both of these 

parameters can be hard coded and do not need to be 

considered as user inputs.  

2.2 PCA 

Dimension reduction using PCA is achieved by means of 

an orthogonal linear transformation in the direction of the 

greatest variance exhibited by the data [1]. Formally, PCA 

tries to find the eigenvectors with the largest eigenvalues of 

the covariance matrix. As a result of this it tends to prioritise 

large pairwise distances between data-points instead of small 

pairwise distances which may still be important; it can 

therefore reduce sensitivity to subtle differences in data 

characteristics while exaggerating the more distinctive 

differences [1]. 

However, this particular method of dimension reduction is 

most appropriate for use on data sets where the variables are 

dependent and inter-correlated [14]. Hence it may be argued 

that it can hinder the full performance of the DWT, where 

the feature space is created from independent variables. To 

investigate this, an alternative dimensional reduction 

technique is also considered, t-SNE [15]. It should be noted 

that PCA is completely autonomous and requires no input 

parameters.  

PCA does not require significant computational time and 

can reduce the dimensions of a data set in the order of MB in 

less than ten seconds on a standard desktop PC. 

2.3 T-SNE 

t-SNE is a non-linear technique recently introduced for 

presenting high-dimensional data in two- or three-

dimensions. It uses random walks on neighbourhood graphs 



 

to allow the implicit structure of all of the data to influence 

the way in which a subset of the data is displayed [15].  

The method considers the Euclidean distances between 

data points in the high dimensional space and converts them 

into conditional probabilities which represent similarities 

[1]. When moving to the lower dimension space it attempts 

to maintain these probabilities and so retain the proximity of 

similar points, with the result that the lower dimensional data 

retains its original clustered appearance. It should be noted 

that t-SNE is completely autonomous and requires no input 

parameters. 

Due to the iterative process involved in t-SNE, the 

computational time involved was significant compared to the 

discrimination processes. t-SNE reduces the dimension of a 

data set in the order of MB in minutes. 

 

3 FEATURE DISCRIMINATION 

Source discrimination using a wavelet-based approach is 

dominated in literature by subsequent clustering with 

DBSCAN, a well-known algorithm that is able to deal with 

the presence of noise as well as discover clusters of different 

shapes [16]. More recently, OPTICS has been used to 

evaluate different spaces for PD signals [5], and showed 

some promising results.  

Recent literature has also shown interest in near-neighbour 

clustering as alternatives to density based clustering, 

although not in the field of CM. Of these, one of the most 

promising in terms of performance is SSNN, a statistics-

based algorithm that is able to discover clusters of different 

shapes and densities, as well as deal effectively with noise 

[2]. 

To provide a broad spectrum of enquiry, DBSCAN, 

OPTICS and SSNN will all be evaluated for PD source 

classification performance. For all clustering algorithms 

considered it is necessary to specify the minimum number of 

points, 𝑀𝑖𝑛𝑃𝑡𝑠, required for a group to be considered a 

cluster. If groups do not meet this criterion they are regarded 

as outliers and discounted.  

3.1 DBSCAN 

The use of DBSCAN in PD CM applications is well 

documented [1,9,17]. DBSCAN targets low dimensional 

spatial data [18], and relies on two input parameters 𝜀 and 

𝑀𝑖𝑛𝑃𝑡𝑠 [16]. Two points in feature space are considered 

directly reachable if the distance between them is less than 𝜀. 

Clusters are formed of points that are all reachable from each 

other, i.e. any path between any two points in a cluster 

consists of directly reachable steps between intermediate 

points. The algorithm does not require significant 

computational time and can produce clusters from data in the 

order of MB in less than ten seconds on a standard powerful 

desktop PC. 

The main problem with DBSCAN is its inability to deal 

with data in which clusters are of different densities. 

Additionally, clustering performance is very dependent on 

the input parameter 𝜀 whose selection is non-trivial [2]. This 

limits the reliability of its application to research 

environments where the characteristics of the data it is being 

applied to are under investigation. 

3.2 OPTICS 

OPTICS [19] is broadly similar to DBSCAN but has seen 

use in CM applications only very recently [5]. It has been 

chosen as it produces results that are visually interpretable 

and thus it can provide user insight into a data set that would 

not be possible with other clustering algorithms.  

OPTICS adjusts DBSCAN’s shortfalls to provide a more 

flexible clustering procedure [18]. The only input parameter 

to the algorithm is 𝑀𝑖𝑛𝑃𝑡𝑠. In all these studies, a value of 

between one and two percent of the number of PD signals 

analysed was found to be perfectly adequate, which is 

consistent with previous results [5]. The clustering algorithm 

works by moving between points in the feature space 

creating an ordered seed list of reachable points and storing 

the minimum reachability distance of each point. The 

reachability distance between two points, 𝑝 and 𝑞, is defined 

as the maximum of the distance between the points 𝑝 and 𝑞, 

and the distance between 𝑝 and the 𝑀𝑖𝑛𝑃𝑡𝑠th  nearest point.  

An overview of the OPTICS algorithm can be found in [20]. 

The output from OPTICS, an ordered seed list and 

minimum reachability distance, is used to plot a reachability 

graph, which is a useful way of displaying clusters that exist 

in 𝑛-dimensional space. Within this type of plot, clusters are 

visible as “valleys” and are separated by large “spikes”. The 

higher the peak of these spikes the more “different” the data 

will be in the clusters; and the lower the valley the “denser” 

the cluster.  

Automatic cluster extraction has been implemented here 

based on the derivative and magnitude of the reachability 

graph. A cluster boundary is therefore defined by a large 

derivative of the reachability distance, coupled with a 

magnitude that is significantly above the mean within a small 

window around the boundary. For all data sets considered a 

suitable window was 1% of the total number of PDs.  

The algorithm does not require significant computational 

time and can produce clusters from data in the order of MB 

in less than five seconds on a standard desktop PC. 

3.3 SSNN 

SSNN [2] differs from the previous techniques in that it 

constructs the clusters based on a statistical understanding of 

the data. For each point in feature space the distances 

between it and every other point are calculated. The mean 

and standard deviation of these distances are used to 

calculate a distance 𝜀 for each point, which can then be used 

to find clusters in a method similar to DBSCAN. The authors 

of SSNN also present an algorithm to aid clustering of 

outlying points, but it was not considered in this work as it 

was found that this improved speed without loss of necessary 

performance.  

The only input required for SSNN is the minimum number 

of points needed to form a cluster 𝑀𝑖𝑛𝑃𝑡𝑠. Although there is 

a method to calculate 𝑀𝑖𝑛𝑃𝑡𝑠 automatically in [2], it was 

found that this technique was not reliable for PD data as there 

can sometimes be a very large variation in the cluster size 



 

within a single data set. For the data sets considered 

𝑀𝑖𝑛𝑃𝑡𝑠 ≈ 10 was sufficient.  

The algorithm does not require significant computational 

time and can produce clusters from data in the order of MB 

in less than five seconds on a standard desktop PC. 

3.4 DISSIMILARITY MEASURES 

To implement these clustering algorithms it is necessary 

to define the distance between points in feature space. This 

distance is often referred to as the dissimilarity measure.  

Density based clustering algorithms for CM applications 

have exclusively used the pairwise Euclidean distance 

between points as the dissimilarity measure, as it is the 

obvious basis on which to form a density-based approach. Of 

course a Euclidean measure does not have to be used, and 

studies have shown that non-Euclidean metrics and non-

Euclidean non-metrics can both provide informative 

dissimilarity measures for clustering [21]. 

The Euclidean distance itself forms part of a set of 𝐿𝑧 

distance measures which include 𝐿1 (Manhattan), 𝐿2 

(Euclidean), 𝐿𝑛 (Minkowski with order 𝑛) and 𝐿∞ 

(Chebychev) [22-23]. Metrics may also be based on angular 

rather than linear methods (as in the Cosine measure) or be 

developed with specific applications in mind (e.g. the 

Jaccard measure). Brief investigation by the authors 

concluded that for PD source discrimination the Euclidean 

metric is sufficient and there is no advantage to using other 

metrics. As a result the Euclidean metric is used as the 

dissimilarity measure throughout this work. 
 

4 PD DATA SETS 

The work presented here deals with discrimination of PD 

sources from PD signal data. Prior to this PD signals must be 

extracted from the raw acquisition data. For the cases 

presented here PD signals were extracted by identifying data 

points that were above a threshold set by the background 

noise level. Pulses were then extracted by taking data points 

before and after this “peak” above the background noise 

level. This threshold was determined automatically by 

initially setting it to a value equal to the largest data value. 

The threshold was then gradually reduced, and the number 

of data points above this threshold was recorded. When the 

number of data points above the threshold greatly increased 

with a small reduction in the threshold it was concluded that 

the threshold had reached the background noise level of the 

acquisition data. The process of extracting PD signals did not 

require significant computational time, with PD signals 

extracted from raw data files in the order of MB in minutes.  

The different source discrimination techniques have been 

evaluated using data from a variety of sources, both field-

based and experimental. Field data was measured using 

commercially available online PD monitoring equipment, 

details are provided in the literature [6]. The two data sets 

considered were MV cable circuits in the London area:  

1) Tunbridge Wells - Approximately 950 PD pulses were 

recorded on 9th August 2008 by on-line advanced 

substation monitors (ASMs) installed on an 11 kV feeder 

located at Tunbridge Wells. The sampling rate was 

50 MSa/s. A detailed visual examination of the data set 

revealed five distinct clusters, representing five visually 

different pulse shapes. 

2) City Road - Approximately 1200 PD pulses were 

recorded over 342 AC cycles between the 4th and 13th 

August 2008 by on-line ASMs installed on an 11 kV 

feeder located at City Road, London. The sampling rate 

was 50 MSa/s. A detailed visual examination of the data 

set revealed five distinct clusters, representing four 

visually different pulse shapes, along with a small 

number of very noisy pulses that were considered to be 

outliers. 

Data from a previously reported laboratory experiment was 

also analysed [6]. In this case the likely source of the data 

was known: 

3) Void in the Crutch - An experiment was undertaken in 

which a void was intentionally included in the crutch of 

a three phase 11 kV belted paper insulated lead covered 

(PILC) cable joint [1]. The overall jointed cable was 

several meters long, and was allowed to thermally cycle 

overnight before measurements were taken, mimicking 

the variable load a cable might experience in the field. 

The experiment allowed collection of PD from all three 

phases, but only the phase with the highest PD peak 

apparent charge magnitude is included here. Due to the 

setup, it was expected that there would be one source of 

PD within the cable (i.e. the void in the crutch) and two 

sources producing PD signals in the cable terminations 

(one at each end of the cable). 
 

5 EVALUATION OF CURRENT 

WAVELET-BASED TECHNIQUES 

OPTICS produces a reachability graph which can easily 

display clusters that exist in 𝑛 dimensions. This graph is 

particularly useful when analysing the performance of 

different feature-extraction techniques, as well as the density 

(and its variation) within clusters. This section uses this tool 

to evaluate the effectiveness of the dimension reduction 

techniques outlined in Section 2, as well as demonstrate the 

main difference in cluster discrimination between DBSCAN 

and OPTICS. 

5.1 EVALUATION OF DIMENSION REDUCTION 
TECHNIQUES 

It has been found previously that t-SNE is an improvement 

over PCA [1], and this has been shown using DBSCAN as a 

clustering technique. Due to the visually intuitive results that 

are possible with OPTICS, this study has been performed 

using this clustering tool in order to gain further insight into 

the results obtained.  

Figures 1a and 1b shows reachability graphs from the City 

Road data that has been processed using PCA and t-SNE 

respectively. The difference in the separation of the clusters 

is visible from the much larger scale of the vertical axis in 

the t-SNE data. Additionally, it has been found by detailed 

visual examination of the pulse data that four clusters exist 

in this data set, which are not distinct in plot (a) but the 

boundaries for which are very clear in plot (b).  



 

5.2 LIMITATIONS OF DBSCAN 

During testing it was found that the performance of 

DBSCAN is limited by the use of its single-valued 

parameters 𝜀 and 𝑀𝑖𝑛𝑃𝑡𝑠. Figure 2 shows the output of 

OPTICS contrasted with the method used to generate clusters 

using DBSCAN for the City Road data set. This comparison 

is possible due to both methods using very similar density 

based clustering techniques. Four clusters can be identified 

in Figure 2, but unfortunately DBSCAN overlooks two peaks 

and concludes that only the two main clusters exist (see 

horizontal line), because the clusters have significantly 

different densities. It is noteworthy that it is impossible to 

extract all four clusters correctly using DBSCAN regardless 

of input parameter choice. 

 
(a) 

 
 (b) 

Figure 1. Reachability graphs produced for the City Road data set 

pre-processed with PCA (a), and t-SNE (b). There are four clusters in this 
data set (points 0-750, 751-875, 876-1180, and 1181-1200), the boundaries 

for which have been marked by arrows. The scale on the y axis shows that 

t-SNE was more successful at separating clusters in the data due to the high 
magnitude spikes in the reachability distance. 

 
Figure 2. Reachability graph produced by OPTICS showing four cluster 

for the City Road data set without dimensional reduction. The dashed line 

shows the effect of using a constant 𝜀, the case in DBSCAN, where only two 
clusters can be extracted. 

6 TWO NEW METHODS FOR PD SOURCE 

DISCRIMINATION 

It has been established that t-SNE is a more accurate 

method of representing high dimensional wavelet data in 

three dimensions compared to PCA. Additionally, of the two 

density-based feature classification methods currently used 

in literature for PD data clustering, OPTICS has shown 

greater potential because it overcomes the shortfalls of 

DBSCAN’s single valued clustering parameters. 

Notwithstanding the general prevalence in CM-related 

literature of density-based classification techniques, it has 

been stated in Section 2 that near-neighbour classification 

techniques have shown an upsurge of interest and good 

performance. This section will therefore also apply a new 

statistics-based classification technique, SSNN.  

It should be noted that an exhaustive sweep of all 

combinations of dimensional reduction techniques, 

clustering algorithms and data sets introduced in this work 

has been performed by the authors. However, to be concise 

only the results from the most successful combinations are 

presented here, which are OPTICS and SSNN, with t-SNE 

used as the dimensional reduction technique in all cases. 

 

6.1 DISCRIMINATION WITH OPTICS 

Investigations were performed on the Tunbridge Wells 

data set. Figure 3 shows that the clusters are clearly visible 

in three dimensions. t-SNE has therefore been very 

successful in maintaining the assumed clustered nature of the 

data in the higher dimensional wavelet space. Figure 4 shows 

the reachability graph which shows similarly distinct 

clusters. Figure 5 shows representative pulses from each 

cluster together with a box plot of all the clusters in the data 

set. From this it can be deduced that the clusters found in the 

reduced dimension wavelet space map to the time domain as 

well. Figure 6 shows a phase resolved partial discharge 

(PRPD) pattern of the data. 

   
Figure 3: Three-Dimensional scatter showing the clusters produced by 

OPTICS from the Tunbridge Wells data set labelled (a)-(e). 

Following this, the technique was applied to the Void in 

the Crutch data set. Figure 7 and Figure 8 show the 3D plot 

of the data and the reachability graph respectively, and the 

expected three clusters are clearly visible. Figure 9 shows 

individual pulses and box plots of the clustered data, from 

which the validity of the three clusters can be further 

confirmed. Figure 10 shows a PRPD pattern of the data. 

(a) 

(b) 

(c) 

(e) 
(d) 



 

 
Figure 4: Reachability plot generated by OPTICS from Tunbridge Wells 
data set.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Plots of a single pulse from each of the different clusters together 

with the box plot of all pulses from that cluster from the Tunbridge Wells 

data set. (a)-(e) corresponds to the same cluster in Figure 3, clusters 

identified using OPTICS.  

Figure 6. PRPD pattern Tunbridge Wells data set. Marker Types denote 
distinct clusters identified using OPTICS, markers are the same as those in 

Figure 3. 

 

Figure 7. Three-Dimensional scatter showing the clusters produced by 

OPTICS from the Void in the Crutch data set labelled (a)-(c). 

 

Figure 8. Reachability plot generated by OPTICS from Void in the Crutch 

data set. 

(a) 

(b) 

(c) 



 

These initial tests have shown that the use of t-SNE and 

OPTICS have proven a viable alternative to the more 

prevalent methods involving PCA and DBSCAN. Data of 

varying density has been correctly clustered easily by the 

algorithms. Validity of the clusters in the feature space 

created by t-SNE has been visually confirmed through the 

use of scatter plots, box plots of the principal components, 

and in the time domain through the plotting of representative 

pulses. This is a clear improvement over previous methods. 

During testing it was noted that OPTICS was sensitive to its 

input clustering parameter, 𝑀𝑖𝑛𝑃𝑡𝑠, although not to the same 

extent as DBSCAN. OPTICS also requires clustering 

extraction from a reachability graph; it was found that this 

could be achieved through a simple algorithm, described in 

Subsection 3.2. Finally, performance has been good across 

both field and experimental measurements of PD data, 

showing the versatility of the approach.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Plots of a single pulse from each of the different clusters together 

with the box plot of all pulses from that cluster from the Void in the Crutch 
data set. (a)-(c) corresponds to the same cluster in Figure 7, clusters 

identified using OPTICS.  

Figure 10. PRPD pattern of the Void in the Crutch data set. Marker 

Types denote distinct clusters identified using OPTICS, markers are the 

same as those in Figure 7. 

6.2 DISCRIMINATION WITH SSNN 

SSNN combined with t-SNE was also tested on MV field 

data, using the City Road data set. Four clusters were 

correctly identified, and can be seen in the 3D plot in 

Figure 11. Representative pulse shapes, along with 

maximum and minimum lines, and box plots, for each cluster 

are shown in Figure 12. A PRPD pattern of the data is shown 

in Figure 13. 

 

 
Figure 11. Three-Dimensional scatter showing the clusters produced by 

SSNN from the City Road data set labelled (a)-(d). 

 
(a)  

 
 (b)  

(a) 

(b) 

(d) 

(c) 



 

 
 (c) 

 
(d) 

 
Figure 12. Plots of a single pulse from each of the different clusters 

together with the box plot of all pulses from that cluster from the City Road 

data set. (a)-(d) corresponds to the same cluster in Figure 11, clusters 

identified using SSNN.  

 
Figure 13. PRPD pattern of the City Road data set. Marker Types denote 

distinct clusters identified using SSNN, markers are the same as those in 
Figure 11.  

The technique was also applied to the Void in the Crutch 

data. The results are shown in Figure 14, 15 and 16, which 

are very similar to the results from the use of OPTICS. The 

difference in the 3D plot, Figure 14, will result from the 

reduced number of iterations used in the t-SNE dimension 

reduction, and the stochastic nature of the algorithm.  

 

Figure 14. Three-Dimensional scatter showing the clusters produced by 

SSNN from the Void in the Crutch data set labelled (a)-(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 15. Plots of a single pulse from each of the different clusters in the 

Void in the Crutch data set together with the maxima and minima of all 

pulses in that cluster, and a box plot of all pulses from that cluster. Clustering 
was performed with SSNN. 

Figure 16. PRPD pattern of the Void in the Crutch data set. Marker Types 

denote distinct clusters identified using SSNN, markers are the same as 

those in Figure 14. 

6.3 DISCUSSION 

The use of OPTICS as a discrimination technique has 

shown some impressive results, and the method is clearly an 

improvement over current density-based approaches which 

suffer from lack of sensitivity, inability to identify clusters of 

different densities, and reliance on single-valued clustering 

parameters. Furthermore, with the inclusion of automatic 

(a) 

(b) 

(c) 



 

cluster selection from the reachability graph, this method 

only requires 𝑀𝑖𝑛𝑃𝑡𝑠 to be set. Using a value of between one 

and two percent allowed the technique to become completely 

autonomous, although fine tuning the value allowed slightly 

more accurate clustering in some cases, particularly when 

trying to correctly find very small clusters in a large data set. 

The use of SSNN has shown performance that matched 

that of OPTICS for selectivity, sensitivity, and reliability. 

Unlike OPTICS, SSNN outputs the clusters directly, rather 

than through a reachability graph. The reachability graph 

was extremely useful in assessing the performance of 

previous signal processing techniques, making it an ideal 

choice for research based applications. However, SSNN was 

faster than OPTICS as it did not include these unnecessary 

steps and required fewer t-SNE iterations. Furthermore, 

OPTICS requires an additional algorithm to identify peaks in 

the reachability graph and while this could be achieved 

simply for the data sets considered here this may not always 

be the case. Finally, the results of the clustering algorithm 

are not dependent on the user input 𝑀𝑖𝑛𝑃𝑡𝑠 as it only used 

to exclude small clusters as noise. It is therefore entirely 

reasonable that when using SSNN 𝑀𝑖𝑛𝑃𝑡𝑠 can be 

hardcoded, thus making the PD source discrimination 

procedure completely autonomous. The approach using 

SSNN is therefore advocated for use in systems where speed 

is important and all that is required is a reliable output 

without requiring any user input.  

Due to the influence of attenuation and dispersion of the 

PD signal classification of defect type for PD sources is not 

generally possible for MV cable circuits and this is also the 

case for the two field-based data sets considered here. 

However, for the Void in the Crutch data set it is reasonable 

to conclude the large cluster, (a) in Figures 7 and 14, is from 

the void in the crutch. The two smaller clusters are likely to 

be from the cable terminations based on their similar size and 

shape of PD signals. It is encouraging that three clusters were 

correctly identified in both OPTICS and SSNN. 

This work has shown the shortcomings of the standard 

method of classifying PD sources; PCA followed by 

DBSCAN on a feature space. A new dimensional reduction 

technique, t-SNE, and two new clustering techniques, 

OPTICS and SSNN, have been shown to address these 

shortcomings. OPTICS and SSNN were then used 

successfully to identify PD sources in data from MV cables, 

which could not be found using the standard method.  

An important point is that although the analysis performed 

here was performed after data acquisition it is possible that 

the identification of PD sources could be performed 

simultaneously with measurements. As the raw data is taken, 

PD signals are identified using the autonomous thresholding 

detailed in section 4. Each signal could then be decomposed 

into a feature vector using the DWT and would populate a 

feature space. Then at regular time intervals dimensional 

reduction and clustering algorithms could be used to identify 

new sources of PD within the data. As mentioned previously, 

a combination of t-SNE and SSNN could perform this 

routine with complete autonomy.  

7 CONCLUSION 

Two new methods for discrimination between sources of 

PD within MV cables have been presented. Both methods 

rely on the discrete wavelet transform to correctly extract the 

PD signals, producing a lower dimension feature space. This 

has been followed with the application of t-SNE as a 

dimension reduction technique, which allowed the clusters to 

be visualised in 3D space, and also improved the 

performance of consequent clustering considerably. It is 

proposed that SSNN combined with t-SNE is preferable to 

the existing techniques for the fast and reliable identification 

of PD sources in complex data sets without requiring any 

user input. 
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