

Read me file:

University of Southampton

The excel file contains experimental data for the paper. In particular:

Figure 2. Axial strain accumulation during undrained and free to drain cyclic stress increases for Material A

Figure 3. Axial strain accumulation during undrained and free to drain cyclic stress increases for Material B

Figure 4. Axial strain accumulation during undrained and free to drain cyclic stress increases for Material C

Figure 5. Pore pressure changes during undrained and free to drain cyclic stress increases for Material A

Figure 6. Pore pressure changes during undrained and free to drain cyclic stress increases for Material B

Figure 7. Pore pressure changes during undrained and free to drain cyclic stress increases for Material C

Figure 8. Volumetric strain (compressive) accumulation during free to drain cyclic stress increases for Material A

Figure 9. Volumetric strain (compressive) accumulation during free to drain cyclic stress increases for Material B

Figure 10. Volumetric strain (compressive) accumulation during free to drain cyclic stress increases for Material C

Figure 11. Resilient Young's Modulus changes during undrained cyclic stress increases for Material A

Figure 12. Resilient Young's Modulus changes during undrained cyclic stress increases for Material B

Figure 13. Resilient Young's Modulus changes during undrained cyclic stress increases for Material C

Figure 14. Resilient Young's Modulus changes during free to drain cyclic stress increases for Material A

Figure 15. Resilient Young's Modulus changes during free to drain cyclic stress increases for Material B

Figure 16. Resilient Young's Modulus changes during free to drain cyclic stress increases for Material C

Figure 17. Stress paths of Materials A, B and C at failure (Test stages UA8.5, UB11.5 and UC14.5 respectively)

Figure 18. The effect of increasing the clay content on the cyclic stress threshold of the mixes under undrained and free-to-drain conditions.

Figure 19. Variations of the resilient Young's modulus with clay content and the magnitude of shear strain cycle in undrained conditions.

Figure 20. Variations of the resilient Young's modulus with clay content and the magnitude of shear strain cycle in free-to-drain conditions.

Date of data collection: from December 2011 – May 2012

Information about geographic location of data collection: University of Southampton, U.K.

Date that the file was created: January 2017