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Abstract16

17

The establishment of a tephra framework for the Greenland ice-cores spanning the last18

glacial period, particularly between 25-45 ka b2k, provides strong potential for19

precisely correlating other palaeoclimatic records to these key archives. Tephra-based20

synchronisation allows the relative timing of past climatic changes recorded within21

different depositional environments and potential causal mechanisms to be assessed.22

Recent studies of North Atlantic marine records have demonstrated the potential of23

tracing cryptotephra horizons in these sequences and the development of protocols24

now allows a careful assessment of the isochronous nature of such horizons. Here we25



report on tephrochronological investigations of a marine sequence retrieved from the26

Goban Spur, Eastern North Atlantic, covering ~25-60 ka b2k. Density and magnetic27

separation techniques and an assessment of potential transport and depositional28

mechanisms have identified three previously unknown isochronous tephra horizons29

along with deposits of the widespread North Atlantic Ash Zone II and Faroe Marine30

Ash Zone III. Correlations between the new horizons and the Greenland ice-core31

tephra framework are explored and despite no tie-lines being identified the key roles32

that high-resolution climatostratigraphy and shard-specific trace element analysis can33

play within the assessment of correlations is demonstrated. The previously unknown34

horizons are new additions to the overall North Atlantic tephra framework for the last35

glacial period and could be key horizons for future correlations.36
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1. Introduction41

42

The tracing of isochronous horizons of volcanic ash between different depositional43

realms (tephrochronology) has considerable potential for the independent correlation44

and synchronisation of disparate palaeoclimatic sequences and for assessing the45

relative timing of past climatic events (Lowe, 2011). The potential of46

tephrochronology to assess these relative timings is especially pertinent for the last47

glacial period as there is evidence for several abrupt climatic changes preserved48

within ice-cores from Greenland (e.g. GRIP Members, 1993; Johnsen et al., 2001;49

NGRIP Members, 2004) and numerous North Atlantic marine cores (e.g. Bond et al.,50



1993, 1997; Van Kreveld et al., 2000; Martrat et al., 2007; Hall et al., 2011; Zumaque51

et al., 2012).52

53

A large number of tephra horizons have been identified within multiple Greenland54

ice-cores spanning the last glacial period (Abbott and Davies, 2012; Bourne et al.,55

2013, 2015b; Davies et al., 2014). Bourne et al. (2015b) in particular increased the56

number of horizons identified in the NGRIP, NEEM, GRIP and DYE-3 ice-cores and,57

in combination with past studies, a framework of 99 geochemically characterised58

tephra deposits has now been defined for the 25-45 ka b2k period. Developing a59

framework of geochemically characterised horizons with strong stratigraphic and60

chronological control is an essential first step towards the synchronisation of these61

records to other palaeoclimatic sequences in a range of environments. A notable62

feature of the ice-core framework is the dominance of deposits, closely spaced in63

time, that have similar major element compositions relating to single sources, e.g. the64

Icelandic Grímsvötn volcanic system. Subtle major element differences can be used to65

discriminate between some deposits, but others have major element compositions66

which are indistinguishable (e.g. Bourne et al., 2013).67

68

This compositional similarity presents a challenge when attempting to correlate tephra69

horizons from sequences with limited chronological and/or stratigraphic control. In70

these instances it has been widely advocated that any available climatostratigraphic71

evidence can be used alongside the compositional data to narrow down potential72

correlatives (e.g. Newnham and Lowe, 1999; Newnham et al., 2004; Pearce et al.,73

2008; Housley et al., 2012; MacLeod et al., 2015) and that trace element analysis of74

the tephra deposits may provide a useful secondary compositional fingerprint for75



testing and assessing the robustness of correlations (e.g. Allan et al., 2008; Abbott et76

al., 2012, 2014; Albert et al., 2012; Lane et al., 2012; Bramham-Law et al., 2013;77

Pearce et al., 2014; Bourne et al., 2015a).78

79

Overall, there is an order of magnitude difference between the number of tephra80

horizons identified in the Greenland ice-cores and North Atlantic marine sequences81

between 25-60 ka b2k. Only a few marine records have been investigated for their82

tephra content and there is a tendency to focus on visible horizons or on the coarse-83

grained components (>150 μm) (e.g. Lackschewitz and Wallrabe-Adams, 1997;84

Wastegård and Rasmussen, 2014). As a result, only two ice-marine tie-lines have been85

defined within the last glacial period. Firstly, the rhyolitic component of the86

widespread North Atlantic Ash Zone (NAAZ) II (55,380 ± 1184 a b2k; Svensson et87

al., 2008) has been traced within multiple ice and marine cores (e.g. Kvamme et al.,88

1989; Grönvold et al., 1995; Lacasse et al., 1996; Zielinski et al., 1997; Haflidason et89

al., 2000; Austin et al., 2004). Secondly, Faroe Marine Ash Zone (FMAZ) II, a visible90

horizon identified in a number of marine cores from the Faroe Islands region91

(Wastegård et al., 2006), was traced into the NGRIP ice-core by Davies et al. (2008)92

(NGRIP 1848 m; 26,740 ± 390 a b2k). A third ice-marine correlation was also93

proposed between the NGRIP 2066.95 m horizon (38,122 ± 723 a b2k) and FMAZ94

III, a thick and relatively scattered zone of glass shards traced between a number of95

the Faroe Islands region cores (Wastegård et al., 2006; Davies et al., 2010). However,96

Bourne et al. (2013) later highlighted the complexity of this period and identified a97

series of closely spaced tephra horizons with similar glass compositions in the NGRIP98

and NEEM ice-cores. Their compositions all fall within the broad compositional99

envelope of FMAZ III and the marine deposit has been interpreted as resulting from100



the amalgamation of primary tephra-fall from a number of volcanic events as a101

consequence of low sedimentation rates at the marine core sites (Bourne et al., 2013;102

Griggs et al., 2014). Therefore, the prior correlation between FMAZ III and a single103

tephra layer in the ice-cores is no longer valid and should not be used as an ice-marine104

tie-line. However, the tephra layers in the ice may still act as tie-lines if individual105

homogenous horizons from those single events can be found in marine records. This106

particular example highlights some of the complexities involved with defining107

correlations between the records.108

109

In recent years, there has been a shift towards the investigation of the cryptotephra110

record preserved within marine sediments. Density and magnetic separation111

techniques, previously applied to terrestrial sequences, have recently been112

successfully used to extract fine-grained cryptotephras, preserved as discrete deposits113

of glass shards, from a number of cores around the North Atlantic (e.g. Abbott et al.,114

2011, 2013, 2014; Griggs et al., 2014; Davies et al., 2014). Magnetic separation115

techniques are particularly important for the identification of basaltic cryptotephras in116

North Atlantic marine records because of the dominance of basaltic tephra deposits117

within the Greenland tephra framework (Abbott and Davies, 2012; Bourne et al.,118

2013, 2015b). In addition to these methodological advances, Griggs et al. (2014)119

outlined a protocol which uses a range of indicators to determine the potential120

influence of transportation and depositional processes on the stratigraphic and121

temporal integrity of marine tephra deposits. To date, these methods and approaches122

have not been utilised to isolate cryptotephras in North Atlantic marine sequences123

covering the 25-60 ka b2k period. The Greenland tephra framework in particular, now124



demonstrates the potential for tephrochronological synchronisation if common125

horizons can be identified.126

127

Here we report on tephrochronological investigations of the 25-60 ka b2k period128

within a marine core retrieved from the Goban Spur area in the eastern North Atlantic129

(MD04-2820CQ). Potential correlations to the Greenland tephra framework are130

explored with new high-resolution proxy data from MD04-2820CQ used to help131

determine the stratigraphic position of the tephra horizons and trace element analysis132

is utilised as a secondary compositional fingerprint.133

134

2. Materials and Methods135

136

2.1 MD04-2820CQ137

138

MD04-2820CQ was retrieved from the Goban Spur area (49°05.29´N; 13°25.90´W;139

Figure 1) and is a reoccupation of the OMEX-2K core site (see Hall and McCave,140

1998a,b; Scourse et al., 2000; Haapaniemi et al., 2010). A Ca XRF record and a low-141

resolution record of the percentage abundance of the polar foraminiferal species142

Neogloboquadrina pachyderma (sinistral) (Np(s)) have been used to define a143

preliminary stratigraphy for the sequence between MIS 3-2. A number of Dansgaard-144

Oeschger events related to the Greenland Interstadial (GI) events in the Greenland145

ice-cores are recognised within this record (Figure 2; Rasmussen et al., 2014).146

Between 450-550 cm depth, high-resolution (up to 1 cm) records of Np(s) and ice147

rafted debris (IRD) concentrations (150 µm-1 mm fraction) were generated to provide148



a more detailed stratigraphy between DO-12 and DO-8 to help constrain the tephra149

deposits within a climatic framework (Figure 6).150

151

FIGURE 1152

153

The tephra content of the core was initially investigated at a low-resolution (5 cm154

contiguous samples) between 250-650 cm depth. Intervals with distinct peaks in glass155

shard content above background levels were subsequently re-investigated at 1 cm156

resolution to refine their stratigraphic position (Figure 2).157

158

FIGURE 2159

160

2.2 Extraction of tephra-derived glass shards from marine sequences161

162

From the 5 and 1 cm samples, 0.5 g sub-samples of freeze-dried marine sediments163

were immersed in 10% HCl overnight to remove carbonate material. Samples were164

then wet sieved using 125 and 80 µm test sieves and 25 µm nylon mesh. The 25-80165

µm fraction was then density separated using sodium polytungstate prepared to the166

specific gravities of 2.3 and 2.5 g/cm3 to split the material into the density fractions of167

<2.3 g/cm3, to remove biogenic material, 2.3-2.5 g/cm3, to isolate rhyolitic material,168

and >2.5 g/cm3 to isolate basaltic material (Turney, 1998). To further purify the >2.5169

g/cm3 fraction it was magnetically separated using a Frantz Isodynamic Magnetic170

Separator. The methodology and conditions for magnetic separation are outlined in171

Griggs et al. (2014) and allow the separation of non-magnetic quartz material from172

any paramagnetic basaltic material. The >125 µm and 80-125 µm grain-size fractions,173



and the 2.3-2.5 g/cm3 and magnetic >2.5 g/cm3 density fractions, were mounted on174

microscope slides in Canada Balsam for optical microscopy to quantify their glass175

shard content.176

177

2.3 Geochemical analysis of individual glass shards178

179

Samples for geochemical analysis were prepared using the procedure outlined in180

Section 2.2. The fraction of interest was then mounted in epoxy resin on a 28 × 48181

mm frosted microscope slide to prepare thin sections of the glass shards. This was182

achieved by grinding the material using decreasing grades of silicon carbide paper and183

then polishing the surface using 9, 6 and 1 µm diamond suspension.184

185

Major element compositions of individual shards were determined using electron-186

probe micro-analysis (EPMA) at the Tephra Analytical Unit, University of Edinburgh,187

using a Cameca SX100 with five wavelength dispersive spectrometers. The operating188

conditions followed those outlined in Hayward (2012). Calibration was carried out189

using pure metals, synthetic oxides and silicate standards and the secondary standards190

of Cannetto Lami Lava, Lipari and BCR2g were analysed at regular intervals to191

monitor for instrumental drift and assess the precision and accuracy of analysed192

samples (see Table S18). For data comparison all analyses were normalised to an193

anhydrous basis, i.e. 100 % total oxides, but all raw data analyses are provided in the194

supplementary information (Tables S1-S17). Statistical comparisons between tephra195

horizons have been made using the statistical distance test (D2) of Perkins et al. (1995,196

1998) and the similarity coefficient function (SC) of Borchardt et al. (1972).197

198



Trace element compositions of single shards from one marine and one ice-core199

horizon were analysed using laser ablation inductively coupled plasma mass200

spectrometry (LA-ICP-MS) at Aberystwyth University. A Coherent GeoLas 193 nm201

Excimer laser coupled with a Thermo Finnigan Element 2 high-resolution sector field202

mass spectrometer was utilised (Pearce et al., 2011). Due to the small grain size of the203

shards making up the ice-core horizon, a laser with a beam diameter of 10 µm and a204

fluence of 10 J/cm2 was pulsed at 5 Hz with a flash duration of ~10 ns. Despite the205

larger grain size of shards in the marine horizon, a 10 µm laser beam diameter was206

used for all analyses to limit any differential impact of fractionation effects. As a207

potential correlation was being tested, the samples were analysed ‘side-by-side’ to208

limit any potential influence of instrumental differences between analytical periods209

(Pearce et al., 2014). Trace element concentrations were calculated using methods210

outlined in Pearce et al. (2007), with 29Si previously determined through EPMA used211

as the internal standard and NIST 612 used as the calibration standard, taking212

concentrations from Pearce et al. (1997). A correction factor was used to remove bias213

in analyses caused by fractional effects (Pearce et al., 2011). Trace element214

concentrations for individual shards are provided in Table S19 and analyses of the215

secondary standards BCR2g and BHVO-2g are provided in Table S20.216

217

3. Results218

219

Of the 80 intervals investigated at low-resolution, 21 were selected for high-resolution220

analysis resulting in the processing of 105 1 cm samples. Figure 2 integrates low-221

resolution counts from intervals that were not reanalysed with the high-resolution222

counts. These overall shard profiles were employed to select 17 samples for223



geochemical analysis (Figure 2). Overall, the record contains a number of distinct224

concentrations of brown glass shards and this type of shard is also present as a low225

background. There is a more consistent background of rhyolitic shards throughout the226

whole of the studied interval. Given the tephrostratigraphical record, the deposits are227

grouped into five periods and used as a basis to present results below. To determine228

the source of the glass shards, compositions are compared to glass and whole rock229

analyses to allow material to be assigned to Icelandic rock suites and specific volcanic230

systems.231

232

3.1 Period 1 - Post DO-3233

234

Between 275-279 cm a dispersed zone of shards with a low concentration of basaltic235

shards and no discernible peak was identified. Geochemical characterisation shows236

that the glass in this zone has a highly heterogeneous composition with shards of both237

transitional alkali and tholeiitic composition present (Figure 3a). Similar238

heterogeneity is observed in shards from both the less-than and greater-than 80 µm239

grain-size fractions (Figure 3). This characterisation shows that the deposit is an240

amalgamation of material from a number of volcanic eruptions from multiple volcanic241

centres.242

243

FIGURE 3244

245

According to the stratigraphy for MD04-2820CQ, this zone of ash was deposited246

during the stadial period following DO-3. In the NGRIP ice-core, FMAZ II was247

deposited within Greenland Stadial (GS) 3 approximately 1000 years after the cooling248



transition at the end of GI-3 (Davies et al., 2008). The composition of MD04-2820CQ249

275-279 cm demonstrates that this deposit does not directly relate to the homogenous250

transitional alkali basaltic FMAZ II horizon found within ice and marine sequences251

(Figure 3b). Some shard analyses fall within the compositional envelopes of the252

homogenous VZ 1x and the heterogeneous VZ 1 ash zones from cores on the253

Reykjanes Ridge, but the greater heterogeneity of the 275-279 cm deposit suggests254

they are unrelated (Figure 3b).255

256

The compositional heterogeneity and lack of a distinct peak in the shard concentration257

profile strongly suggests that this deposit represents a minor input of material,258

potentially through iceberg rafting or secondary transportation processes such as259

bottom currents, and cannot be regarded as isochronous.260

261

3.2 Period 2 – DO-5 to DO-3262

263

The highest glass shard concentration peak in the 25-80 µm fraction is observed264

within period 2 at 342-343 cm (Figure 2). The maximum peak in the >125 µm size265

fraction is between 341-342 cm. Two narrow zones of ash below this high peak266

between 355-360 cm and 370-375 cm depth were found in low-resolution counts, but267

no distinct peaks in concentration were observed in the high-resolution counts.268

269

Shards from the main peak and the two underlying ash zones have a basaltic270

composition (Figure 4a). With the exception of a shard population >80 µm in size in271

the 373-374 cm sample, and a few outlying analyses that have affinities to the272

Icelandic transitional alkali rock suite, these deposits have a tholeiitic composition273



sourced from the Kverkfjöll volcanic system (Figure 4a). Although the analysed glass274

shards are from four different depths, it is clear that the majority of shards from each275

interval occupy the same compositional space on geochemical plots and hence are276

related to one another. The relatively homogenous dominant population has SiO2277

concentrations between 48.5-51.0 %wt, CaO concentrations between 8.9-9.9 %wt and278

FeO concentrations of ~15 %wt (Figure 4). Slight geochemical bimodality can be279

observed, most notably within the TiO2 concentrations and FeO/MgO ratios (Figure280

4bi). This bimodality is present within the main shard peak at 342-343 cm and the281

underlying zones of low shard concentration. However, the deposit at 373-374 cm has282

proportionally more shards with high TiO2 values than the other two deposits (Figure283

4bi).284

285

FIGURE 4286

287

Determining potential correlatives, the isochronous nature and likely transport288

mechanisms for these deposits is complex. Bourne et al. (2015b) identified a number289

of tholeiitic basaltic tephra horizons with a Kverkfjöll source in the Greenland ice-290

cores between GI-5.2 and GS-4. The composition of all 10 of these ice-core horizons291

fall within the compositional field of the main population of the 342-343 cm and292

underlying deposits (Figure 4b), hampering their correlation to individual ice-core293

horizons. Some of these eruptives, however, have greater compositional294

heterogeneity, such as GRIP 2064.35 m, NGRIP 1931.60 m and NGRIP 1950.50 m,295

and cover the full compositional range observed in the marine deposit (Figure 4c).296

The peak input of ash at 342-343 cm may represent a single primary tephra-fall event297

related to one of these eruptions with the underlying deposits, between 355-360 and298



370-375 cm, possibly representing downward movement of tephra within the299

sediment column via bioturbation. This scenario seems unlikely, however, due to the300

lack of a distinct background of basaltic shards between the deposits. An alternative301

scenario is that the geochemical similarities are a consequence of the marine deposits302

being composed of an amalgamation of glass shards from a number of eruptions.303

Shards could be amalgamated during protracted input of material via primary fall and304

post-depositional reworking, akin to the proposed depositional mechanism for FMAZ305

III (see Section 1). This proposition is, however, not supported by the relatively306

discrete nature of the peak input of ash to the site between 342-343 cm and the307

underlying deposits, which implies that tephra delivery occurred as short-lived pulses308

of material.309

310

Delivery via repeated iceberg rafting events could create deposits of this nature. The311

greater heterogeneity of the material at 373-374 cm depth, with a transitional alkali312

composition similar to those of Katla eruptives in the Greenland tephra framework313

between GI-5.2 and GS-4 (Figure 4ai), and an additional tholeiitic population from314

Grímsvötn (Figure 4aii), may indicate that this material, with a slightly different315

compositional signature, is derived from a prior iceberg rafting event. We cannot fully316

test this proposition because an IRD record has currently not been established over317

this period. However, the high concentration of coarse-grained shards (>125 µm)318

(Figure 2), in a relatively distal location to Iceland, supports iceberg rafting as the319

transport process. Overall, this likelihood prevents the deposits in period 2 from being320

useful regional isochrons but they could be used for local core correlations321

(Brendryen et al., 2010).322

323



3.3 Period 3 – DO-9 to DO-8324

325

Period 3 is characterised by an approximately 20 cm thick zone of elevated basaltic326

glass concentrations within which four small peaks in concentration can be observed.327

Peaks at 456-457 cm, 460-461 cm, 464-465 cm and 472-473 cm depth are observed in328

the 25-80 µm and >125 µm grain size fractions and three can be clearly observed in329

the 80-125 μm fraction. Each peak contains shards with affinities to either the330

transitional alkali or tholeiitic rock suites of Iceland, with the material from each of331

these rock suites displaying distinct heterogeneity (Figure 5a). Compositional332

similarities between the deposits and the continuous nature of the ash deposition allow333

the whole of the deposit between 455-475 cm to be interpreted as a single entity.334

335

FIGURE 5336

337

According to the MD04-2820CQ stratigraphy, this deposit spans the warming338

transition related to DO-8 (Figure 2 and 6), akin to the FMAZ III deposit identified in339

other North Atlantic marine records. Distinct similarities are evident between the340

heterogeneous Grímsvötn-sourced material of FMAZ III characterised from a record341

in the SE Norwegian Sea (Griggs et al., 2014) and the tholeiitic material present in342

this ash zone (Figure 5). Homogenous Grímsvötn-sourced populations identified in343

the Greenland tephra framework between GI-8c and GS-9 cannot be identified at any344

depth in MD04-2820CQ (Figure 7a). The geochemical range of the tholeiitic material345

in MD04-2820CQ encompasses that of glass in all the ice-core horizons (Figure 7a).346

Despite the failure to correlate to an ice-core deposit, the MD04-2820CQ deposit can347

be correlated to the marine FMAZ III due to the stratigraphic similarities and348



geochemical affinity of the tholeiitic basaltic material. None of the Faroes Islands349

region occurrences of FMAZ III contain a population of transitional alkali material as350

observed in the MD04-2820CQ deposit (Figure 5; Wastegård et al., 2006; Griggs et351

al., 2014). Two transitional alkali basaltic horizons from Katla were identified in early352

GS-9 by Bourne et al. (2013, 2015b) and also fall within the range of the MD04-353

2820CQ analyses, but the heterogeneity is far greater in the marine deposits and no354

potential correlations can be suggested (Figure 7b).355

356

FIGURE 6 AND 7357

358

Griggs et al. (2014) interpreted FMAZ III in the Faroe Islands region as resulting from359

the amalgamation of primary fall material from closely timed Grímsvötn eruptions.360

Sediment accumulation rates are considered to be insufficient to allow the events to be361

separated and secondary processes such as bioturbation and bottom currents may have362

caused mixing of shards between depths. An ice-rafting transport and deposition363

mechanism was ruled out by Griggs et al. (2014) due to a lack of a coeval IRD signal.364

Within MD04-2820CQ, IRD concentrations are declining between 455-475 cm and365

there is no direct co-variance with glass shard concentrations (Figure 6). This lack of366

correlation could imply that the transport, deposition and post-deposition mechanisms367

are common between the MD04-2820CQ and JM11-FI-19PC core sites. The368

incorporation of transitional alkali material at the MD04-2820CQ site could result369

from more southerly transport of material from these eruptions. This would also370

account for the relative lack of transitional alkali eruptions in the Greenland tephra371

framework during this interval. As highlighted earlier, the FMAZ III cannot be used372

as a precise ice-marine tie-line (Bourne et al., 2013). However, the correlation of373



MD04-2820CQ 455-475 cm to FMAZ III extends the geographical distribution of this374

deposit and it can be used as a marine-marine tie-line.375

376

A small peak in colourless shards occurs at 463-464 cm and major element analysis377

shows that the glass has a rhyolitic composition and an affinity to the Icelandic378

transitional alkali rock suite (Figure 8a). Two populations are apparent, one with379

affinities to material from the rhyolitic component of NAAZ II and one with affinities380

to a number of Katla-sourced rhyolitic horizons deposited during the last glacial-381

interglacial transition and an underlying horizon in MD04-2820CQ at a depth of 497-382

498 cm (Figure 8b and c). These compositional affinities and the low shard383

concentration suggests that this material is not from a distinct volcanic event but may384

relate to a background of reworked colourless shards in the sequence.385

386

FIGURE 8387

388

3.4 Period 4 – DO-12 to DO-9389

390

During this period a series of three relatively discrete peaks (~1-3 cm) in brown glass391

shards can be identified (Figure 2 and 6). The peaks in brown shards at 487-488 cm392

and 524-525 cm depth are distinct across all grain-size fractions, whereas the peak at393

511-512 cm is only evident within the 25-80 and >125 µm grain-size fractions. A394

broad increase in colourless shards between 490-500 cm displays a double peak in395

concentration within the 25-80 µm grain-size fraction at 493-494 cm and 497-498 cm.396

397

3.4.1 MD04-2820CQ 487-488 cm398



399

All shards in the 487-488 cm deposit are basaltic in composition with one dominant400

and homogenous tholeiitic population (Figure 9). Some outliers with a transitional401

alkali composition are also observed, but are primarily restricted to the >80 µm402

fraction (Figure 9a). The main population is characterised by SiO2 concentrations of403

~49.5 %wt, TiO2 concentrations between 2.6-3.2 %wt, CaO concentrations between404

10.1 and 10.9 %wt and FeO concentrations of ~13.8 %wt, showing affinities to the405

Grímsvötn volcanic system (Figure 9).406

407

FIGURE 9408

409

A large number of Grímsvötn eruptives are found within the Greenland tephra410

framework between 25-45 ka b2k with several showing compositional similarities to411

the main population of MD04-2820CQ 487-488 cm (Bourne et al., 2015b).412

Stratigraphic information from MD04-2820CQ is thus employed to provide a broad413

constraint on the timing of this eruption relative to the main climato-stratigraphic414

framework for the North Atlantic. Further discussion of this approach is provided in415

Section 4. MD04-2820CQ 487-488 cm was deposited just prior to Heinrich event 4416

(Figure 6), which is widely regarded to have occurred in GS-9 and between DO-9 and417

DO-8 (Sanchez Goñi and Harrison, 2010). The high-resolution Np(s) record for this418

interval shows that MD04-2820CQ 487-488 cm falls within a cold period above two419

distinct decreases in Np(s) percentages, between 490-510 cm depth, and thought to be420

related to warming over the DO-9 and DO-10 events (Figure 6iii). These events were421

not apparent within the original low resolution Np(s) record or the Ca XRF record422

(Figure 2ii and 6iv). These stratigraphic constraints suggest deposition during the cold423



period following DO-9, which is equivalent to GS-9 within the Greenland424

stratigraphic framework (Rasmussen et al., 2014). The GS-9 interval has been fully425

sampled in all the ice-cores that contribute to the Greenland tephra framework (see426

Bourne et al., 2015b). In total, 10 Grímsvötn-sourced tephra horizons have been427

identified in one or more of the Greenland cores (Figure 6b). Geochemical428

comparisons show that no horizons provide a clear major element match to 487-488429

cm. Therefore, a potential correlative to the marine horizon cannot be proposed430

(Figure 10a).431

432

FIGURE 10433

434

The transport mechanism for this deposit is unlikely to be iceberg rafting because of435

the relatively homogenous geochemical signature of the material and a lack of co-436

variance with IRD (Figure 6). Other potential mechanisms, sea-ice rafting and437

primary airfall, would not impart a temporal delay and the deposit can be assumed to438

be isochronous. The relative proportion of larger grains in the 80-125 µm and >125439

µm fractions compared to other deposits, e.g. 524-525 cm, could be indicative of440

transportation via sea-ice rafting. This deposit is considered to have strong441

stratigraphic integrity as the peak in shard concentration is relatively discrete with442

only a restricted downward tail in concentration, most likely due to post-depositional443

bioturbation. Although not present in Greenland, if it was widely dispersed over the444

North Atlantic, this volcanic deposit may be a useful isochron for linking this445

sequence to other marine records.446

447

3.4.2 MD04-2820CQ 493-494 cm and 497-498 cm448



449

According to the stratigraphy for MD04-2820CQ, the slight increase in colourless450

shards between 490-500 cm occurred during the short-lived cold period between DO-451

10 and DO-9, based on an increase in Np(s) percentages (Figure 2 and 6). Shards from452

both peaks have a rhyolitic composition (Figure 8). The material from the larger peak453

at 497-498 cm has affinities to the transitional alkali rock suite of Iceland and forms a454

single homogenous population with SiO2 concentrations between 70.5 and 71.5 %wt,455

Al2O3 concentrations of ~13.5 %wt, K2O concentrations of ~3.6 %wt and CaO456

concentrations between 1.44 and 1.65 %wt (Figure 8). A source for these glass shards457

could not be determined through comparisons to characterisations of proximal whole458

rock rhyolites from Iceland, which may be due to the presence of other mineral phases459

within whole rock analyses. However, compositional similarities to glass shards from460

last glacial-interglacial transition rhyolitic tephra horizons sourced from the Katla461

volcanic system (Figure 8b) strongly indicate that this is the volcanic source. Shards462

in the overlying smaller peak at 493-494 cm fall into two populations, one with463

affinities to the Katla material 4 cm below and one with strong overlap with shards464

from 610-611 cm in the core from NAAZ II (Figure 8b and c). No rhyolitic horizons465

have been isolated within the Greenland ice-core records between GI-9 and GI-11466

(Bourne et al., 2015b).467

468

The homogeneity of the 25 shards from the 497-498 cm peak and the predominance469

of material in the 25-80 µm grain size fraction suggests that this represents primary470

fall deposition. The upward tail in shard concentrations could be related to secondary471

redistribution of material by bottom currents and the compositional bimodality in this472

tail (493-494 cm sample) suggests reworking of the underlying Katla-sourced material473



and NAAZ II input. Shards from NAAZ II (see Section 3.5) are present within474

overlying sediments and are the likely primary constituent of the reworked475

background of fine-grained rhyolitic material.476

477

3.4.3 MD04-2820 CQ 511-512 cm478

479

Brown shards from the peak at 511-512 cm are basaltic in composition with both480

tholeiitic and transitional alkali material present. Distinct heterogeneity can be481

observed in a number of components, e.g. Na2O, K2O, TiO2 and FeO, and the482

analyses cannot be grouped into clear populations (Figure 9). The glass peak is483

directly associated with a peak in IRD, which combined with the geochemical484

signature strongly suggests it is an ice-rafted deposit and cannot be assumed to be485

isochronous.486

487

3.4.4 MD04-2820 CQ 524-525 cm and 529-530 cm488

489

The highest shard concentration in this period is found at 524-525 cm and exhibits a490

broader rise in shard concentrations including a small shard peak 4 cm below the main491

peak at 529-530 cm (Figure 2 and 6). The stratigraphy of MD04-2820CQ shows that492

the tephra horizon falls on the decrease in Np(s) percentage and increase in Ca content493

of the sediment that has been related to warming at the onset of DO-11 (Figure 2 and494

6). Shards from both the main peak and underlying peak have a tholeiitic basaltic495

composition (Figure 9a). Shards from 524-525 cm form a homogenous population496

characterised by distinctly high FeO concentrations between 14.5 and 16.7 %wt, low497

CaO concentrations of ~9.25 %wt, TiO2 concentrations of ~3.2 %wt and MgO498



concentrations between 4.5 and 5.5 %wt (Figure 9). Comparison with proximal499

deposits highlights similarities to the products of both the Kverkfjöll and Grímsvötn500

volcanic systems (Figure 9b).501

502

Four Grímsvötn-sourced deposits are found within the GS-12 climatic period and one503

within GI-11 in the Greenland tephra framework (Bourne et al., 2015b). Statistical504

comparisons show that none of these horizons are statistically different from 524-525505

cm and all SC values exceed 0.95, due to the common source (Table 1). There is a506

clear affinity between the main population of MD04-2820CQ 524-525 cm and NGRIP507

2162.05 m with a low D2 value and the highest similarity coefficient of 0.977; this508

assessment is corroborated by major element biplot comparisons (Table 1; Figure 9b).509

To test this affinity, the trace element composition of both horizons was determined.510

Distinct differences can be observed in these characterisations, both in absolute511

concentrations and trace element ratios (Figure 10c). These demonstrate that the two512

horizons were not produced during the same volcanic event and cannot be correlated513

between the archives. The differences in trace element composition could be due to a514

number of factors, which will be discussed in Section 4.2.515

516

TABLE 1517

518

Assessing this deposit according to the protocol of Griggs et al. (2014) is problematic519

as key indicators are contradictory. The homogenous composition of the deposit520

suggests that this deposit was unlikely to be iceberg rafted, but it was deposited during521

a period of increased IRD concentrations (Figure 6). It is possible that primary fall522

deposition is superimposed on a period dominated by iceberg rafting. What is more,523



iceberg rafting is typically thought to transport heterogeneous tephra deposits from an524

amalgamation of tephra from a number of eruptions. Tracing this horizon in the same525

stratigraphic position in another marine sequence would provide supporting evidence526

for this interpretation.527

528

Glass shards from the small peak at 529-530 cm were additionally geochemically529

analysed to assess its relationship to the main overlying peak at 524-525 cm. All of530

the shards have a tholeiitic basaltic composition (Figure 9a), with three distinct major531

element populations present based on major oxides including FeO, CaO, MgO and532

Al2O3 (Figure 8bii). Half of the shards from this deposit make up the main population533

and indicate a source from either the Veidivötn-Bárdabunga or Reykjanes volcanic534

systems (Figure 9b). One population is sourced from Grímsvötn or Kverkfjöll and has535

compositional affinities to MD04-2820CQ 524-525 cm and the final population is536

sourced from Grímsvötn and has affinities to MD04-2820CQ 487-488 cm (Figure 9b).537

The only known tephra horizon in the Greenland ice-core framework between 25-45538

ka b2k with a composition similar to the dominant population was deposited during539

GS-5 and thus is not a correlative to this deposit. The similarity in geochemistry540

between the sub-population and MD04-2820CQ 487-488 cm is likely to be541

coincidental, with the Greenland tephra framework showing that Grímsvötn produced542

many eruptives with similar compositions throughout this period (Bourne et al.,543

2015b). The heterogeneity of this material could be linked to some iceberg rafting of544

earlier events combined with downward reworking of material from the 524-525 cm545

peak.546

547

3.5 Period 5 – DO-15 to DO-14548



549

The highest concentration of colourless shards was observed at 610-611 cm with550

~19,500 shards per 0.5 g dry weight sediment (dws) in the 25-80 µm fraction and551

~450 shards in the >125 µm fraction in this cryptotephra (Figure 2b). A peak in shards552

80-125 µm in diameter associated with this deposit occurs 1 cm above this depth553

between 609-610 cm (Figure 2b). Within the proposed MD04-2820CQ stratigraphy,554

the shard concentration peak falls on the cooling transition at the end of DO-15 as555

shown by the rise in the Np(s) percentage (Figure 2b).556

557

These colourless shards have a rhyolitic composition with affinities to the Icelandic558

transitional alkali rock suite (Figure 8a) and are characterised by SiO2 concentrations559

of ~75.8 %wt, Al2O3 concentrations of ~11.7 %wt, FeO concentrations between 2.25560

and 2.8 %wt and K2O concentrations of ~4.2 %wt. Geochemical similarities are561

highlighted between the MD04-2820CQ 610-611 cm deposit and other occurrences of562

the rhyolitic component of NAAZ II (II-RHY-1) in North Atlantic marine sequences563

and the GRIP ice-core (Figure 8c). There are some slight offsets between the MD04-564

2820CQ characterisations and the older analyses, e.g. the MD04-2820CQ shards have565

higher Na2O and lower Al2O3 and SiO2 concentrations, and these differences can be566

attributed to the effect of sodium loss during the older analyses (Hunt and Hill, 2001;567

Kuehn et al., 2011; Hayward, 2012). Therefore, these newer analyses represent a more568

up-to-date characterisation of the II-RHY-1 component of NAAZ II and should be569

utilised in future comparisons.570

571

Identification of this horizon provides a direct ice-marine tie-line, a basal stratigraphic572

constraint for the core, and a test of the proposed stratigraphy for MD04-2820CQ573



because this horizon has been identified in the Greenland ice-cores and other marine574

sequences on the cooling transition at the end of GI-15 (Grönvold et al., 1995; Austin575

et al., 2004).576

577

4. Discussion578

579

4.1 Tephrostratigraphy of MD04-2820CQ between ~25-60 ka b2k and implications580

for the regional tephra framework581

582

This work represents one of the first studies to employ density and magnetic583

separation techniques to isolate and identify cryptotephras within North Atlantic584

marine sediments between 25-60 ka b2k. Here, the identification of basaltic tephra585

deposits has been improved when compared with previous studies, e.g. Abbott et al.586

(2014), as magnetic separation of basaltic shards from the host sediment produced587

purer samples for optical microscopy work and geochemical analysis preparation.588

589

Overall, the tephrostratigraphy of MD04-2820CQ is complex and differing transport590

and deposition processes have given rise to a range of contrasting deposits. For591

example, the geochemical heterogeneity of the MD04-2820CQ 275-279 cm and 511-592

512 cm deposits and to a certain extent the deposits between 340-380 cm depth593

suggests they were deposited via iceberg rafting. Whilst three of the deposits, the594

basaltic 487-488 cm and 524-525 cm and the rhyolitic 497-498 cm, have isochronous595

characteristics and have the potential to act as tie-lines between records, however596

none of these horizons were found to have correlatives within the current Greenland597

tephra framework (Table 2; see section 4.2 for further discussion).598



599

TABLE 2600

601

Two of the deposits in MD04-2820CQ have been correlated to previously known602

tephra horizons (Table 2). MD04-2820CQ 610-611 cm correlates to NAAZ II and603

permits a direct link to the Greenland ice-cores and other marine sequences while604

MD04-2820CQ 455-475 cm can be correlated to FMAZ III, a broad marine-marine605

link around DO-8 to sequences in the Faroe Island region. The MD04-2820CQ 455-606

475 cm deposit differs from FMAZ III occurrences in the Faroe Islands region as it607

contains transitional alkali basaltic glass in addition to the tholeiitic basaltic glass608

characteristic of the original deposit (Griggs et al., 2014). Further work on tracing the609

FMAZ III at sites between the Goban Spur area and the Faroe Islands region may help610

isolate the transportation and depositional processes controlling this contrast. At611

present the MD04-2820CQ core site on the Goban Spur is the furthest south that612

FMAZ III has been identified; this increase in geographical range of the deposit613

suggests that it could be a key stratigraphic marker for the DO-8 event in widespread614

marine records.615

616

The identification of horizons that do not at present have correlatives in other617

palaeoarchives adds three further volcanic events into the regional framework for the618

25-60 ka b2k period (Table 2). Tracing these horizons within other sequences would619

test our assertion that these are atmospherically-derived and potentially validate their620

use as isochronous tie-lines. This is most relevant for the MD04-2820CQ 497-498 cm621

deposit which has a broader shard count profile relative to the two basaltic deposits.622

The timing of emplacement of the three deposits can be inferred from their623



relationship to the high-resolution stratigraphy for MD04-2820CQ shown in Figure 6,624

which can act as a guide for tracing these deposits in other records (Table 2).625

626

The two basaltic deposits are thought to be sourced from the Grímsvötn and/or627

Kverkfjöll volcanic systems, providing further support for the high productivity of628

these systems during the last glacial period (cf. Bourne et al., 2015b). These results629

also demonstrate that their eruptive products were transported south of Iceland, most630

likely via direct atmospheric transport. Katla is thought to be the most likely source of631

MD04-2820CQ 497-498 cm and a correlative could not be identified in the Greenland632

ice-cores (Section 3.4.2; Bourne et al., 2015b). Indeed, no rhyolitic tephra horizons633

from this source and very few Icelandic rhyolitic horizons are present throughout the634

last glacial period in the Greenland ice-cores (Davies et al., 2014; Bourne et al.,635

2015b). The identification of this Katla horizon within the cool interval between DO-636

10 and DO-9 thus demonstrates that older rhyolitic eruptions from this source did637

occur prior to the last glacial-interglacial transition (Lane et al., 2012).638

639

4.2 Testing correlations using stratigraphy and trace element analysis640

641

The stratigraphy of MD04-2820CQ and its likely relationship to the Greenland642

climatic record was used throughout to assess the timing of the emplacement of the643

tephra deposits. This climatostratigraphic approach was particularly crucial for644

assessing potential correlatives for the MD04-2820CQ 487-488 cm and 524-525 cm645

horizons and high-resolution records of Np(s) and IRD were available for these646

purposes.647

648



The correlation of tephras solely based on geochemical matches between horizons,649

relies on every eruption having a unique geochemical signature. For the North650

Atlantic region, however, the new Greenland tephra framework demonstrates that651

multiple basaltic horizons with overlapping geochemical signatures were erupted652

within relatively short time-intervals (Bourne et al., 2013, 2015b). Therefore, as is653

required for many other tephrochronological studies, stratigraphic control was used654

alongside the compositional data to guide the testing of correlations. This approach655

does introduce an element of circularity if the tephra correlations are to be used as656

climatically independent tools to test stratigraphic comparisons and the relative timing657

of past climatic changes (see discussion in Matthews et al., 2015). However, in this658

instance the approach is valid as the overall stratigraphy of MD04-2820CQ is659

supported by distinct event markers such as Heinrich Event 4 and NAAZ II and there660

is a strong relationship to the sequence of well-defined Greenland Interstadial events661

recorded in the ice-cores. This relationship is especially apparent over the section662

where high-resolution proxy data has been acquired. In addition, the stratigraphic663

comparisons used to test correlations were broad and on a millennial-scale, and not664

centennial or decadal-scale which is the potential magnitude of climatic phasing665

between the environments.666

667

The use of stratigraphy to guide correlations will be limited or problematic when668

correlations are being assessed between the Greenland records and marine sequences669

that have a less well-resolved stratigraphic framework, due to core location and/or670

sedimentation rate differences. However, due to the high frequency of Icelandic671

basaltic eruptions, particularly from Grímsvötn, some form of stratigraphic constraint672

is essential for exploring potential tie-lines. We recommend that, when possible, high-673



resolution stratigraphic information is gained over key intervals of interest to aid674

correlation testing.675

676

The potential correlation between MD04-2820CQ and NGRIP 2162.05 m was tested677

using grain-specific trace element analysis, due to strong major element similarities678

(Figure 10b). This analysis showed that the two horizons were not produced during679

the same volcanic event (Figure 10c). The use of trace element analysis to test and680

add robustness to correlations has been encouraged previously and its use is steadily681

increasing within tephrochronological studies (see Section 1). Our work provides682

further support for the use of this technique for testing correlations and for providing a683

key insight into geochemical variability between Icelandic eruptions, specifically684

those sourced from the Grímsvötn volcanic system. As basaltic magmas have685

undergone relatively limited compositional evolution, intra-eruption variability in686

trace elements from a single evolving system could be limited as significant fractional687

crystallisation may not have occurred, this being the process which dominantly688

controls trace element evolution (see Pearce et al., 2008). Therefore, it is of interest to689

see clear trace element differences between two Grímsvötn-sourced eruptions with690

highly similar major element compositions. In this instance, the differences could691

result from magmatic evolution within a single, fractionating magma chamber692

between eruptions or the eruptions tapped magma from different fissures within the693

overall Grímsvötn system with similar major element but differing trace element694

compositions. Trace element analysis of proximal deposits could provide an insight695

into the intra-eruption variability of Grímsvötn basalts.696

697

5. Conclusions698



699

The potential for using density and magnetic separation techniques to identify tephra700

deposits within North Atlantic marine sequences spanning ~25-60 ka b2k has been701

clearly demonstrated. Applying these techniques to MD04-2820CQ has unearthed a702

complex tephrostratigraphical record with differing transportation and depositional703

processes operating at different times, but the identification of isochronous deposits704

highlights the potential for using tephrochronology to link marine sequences. One of705

the biggest challenges for establishing correlations is the high number of706

compositionally similar eruptives preserved in the ice-cores within short time-707

intervals. We have outlined how stratigraphic constraints can help reduce the number708

of potential candidates and the need for high-resolution proxy data to constrain key709

intervals. The use of stratigraphic constraints from proxy data could ultimately be710

limited by the resolution of marine records. In addition, it has been shown that trace711

element comparisons provide a secondary fingerprint that can test the robustness of712

correlations suggested by major element geochemical similarities. Exploration of713

further records in this region will help assess the isochronous nature of the key714

deposits in MD04-2820CQ and represent a major step towards synchronisation of715

regional marine archives using cryptotephra deposits.716
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Figures736

737

Figure 1: Location map of the MD04-2820CQ core site and other cores referred to738

within the text.739

740

Figure 2: (a) Climate and tephrostratigraphy of the last glacial period within the741

MD04-2820CQ core. (i) XRF (ITRAX core scanning) Ca count rates (ii) percentage742

abundance of Neogloboquadrina pachyderma (sinistral) (iii) tephrostratigraphy743

incorporating 5 and 1 cm resolution shard counts. (b) Inset of climate and744

tephrostratigraphy of colourless shards between 550-650 cm depth. This figure is an745

expansion of the colourless shard counts that were truncated on Figure 2a. Red bars746

denote depth intervals from which glass shards were extracted for geochemical747

analysis.748

749

Figure 3: Comparison of glass compositions from MD04-2820CQ 275-279 cm to that750

from FMAZ II, VZ 1x and VZ 1 characterisations from Davies et al. (2008), Griggs et751

al. (2014) and Lackschewitz and Wallrabe-Adams (1997). (a) Inset of total alkalis752

versus silica plot. Division line to separate alkaline and sub-alkaline material from753

MacDonald and Katsura (1964). Chemical classification and nomenclature after Le754

Maitre et al. (1989). (b) (i) CaO vs FeO and (ii) K2O vs TiO2 biplot comparisons.755

NGRIP data from Davies et al. (2008), JM11-19PC data from Griggs et al. (2014) and756

VZ 1x and VZ 1 data from Lackschewitz and Wallrabe-Adams (1997). All plots on a757

normalised anhydrous basis.758

759



Figure 4: Compositional characterisation of MD04-2820CQ glass shard deposits760

between 340-380 cm depth, comparisons to proximal Icelandic deposits and761

comparisons with horizons with a Kverkfjöll volcanic source in the Greenland tephra762

framework. (a) (i) inset of total alkalis versus silica plot. Division line to separate763

alkaline and sub-alkaline material from MacDonald and Katsura (1964). Chemical764

classification and nomenclature after Le Maitre et al. (1989). (ii and iii)765

Compositional variation diagrams comparing analyses to deposits proximal to four766

tholeiitic Icelandic volcanic systems. Compositional fields defined using glass and767

whole rock analyses from Jakobsson et al. (2008) (Reykjanes), Höskuldsson et al.768

(2006) and Óladóttir et al. (2011) (Kverkfjöll) and Jakobsson (1979), Haflidason et al.769

(2000) and Óladóttir et al. (2011) (Grímsvötn and Veidivötn-Bardabunga). (b) (i)770

Compositional variation diagram of glass between 340-380 cm depth in MD04-771

2820CQ (ii) Compositional variation diagram of glass from ice-core horizons from772

the framework of Bourne et al. (2015b). (c) Compositional variation diagram of glass773

from MD04-2820CQ 342-343 cm and glass from three heterogeneous Kverkfjöll774

eruptives identifed between GI-5.2 and GS-4 in the Greenland tephra framework of775

Bourne et al. (2015b). Ice-core horizons in bold are identified in multiple cores. All776

plots on a normalised anhydrous basis.777

778

Figure 5: Compositional characterisation of glass from MD04-2820CQ tephra779

deposits between 455-475 cm depth and comparison to the glass characterised for780

FMAZ III. (a) inset of total alkali vs. silica plot. Division line to separate alkaline and781

sub-alkaline material from MacDonald and Katsura (1964). Chemical classification782

and nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams783



for tholeiitic glass. FMAZ III data from JM11-19PC core outlined in Griggs et al.784

(2014). All plots on a normalised anhydrous basis.785

786

Figure 6: (a) High-resolution stratigraphy of the 450-550 cm interval within MD04-787

2820CQ. (i) Stratigraphy of colourless glass shard concentrations. (ii) Stratigraphy of788

brown glass shard concentrations. Red bars denote samples from which shards were789

extracted for compositional analysis. (iii) High-resolution percentage abundance of790

Neogloboquadrina pachyderma (sinistral). (iv) XRF (ITRAX core scanning) Ca count791

rates. (v) High-resolution IRD counts. Light green bars highlight glass shard peaks792

with homogenous compositions. (b) Greenland tephra framework between GI-8 and793

GI-12 (Bourne et al., 2015b and references within) plotted on the NGRIP oxygen794

isotope stratigraphy (NGRIP Members, 2004). Green lines denote horizons that can be795

traced in multiple cores. Other horizons are only present in NGRIP (red), NEEM796

(purple), GRIP (yellow) and DYE-3 (blue).797

798

Figure 7: (a) Compositional comparisons of tholeiitic glass from MD04-2820CQ799

Period 3 deposits and GI-8c and GS-9 tephras in the Greenland tephra framework of800

Bourne et al. (2013, 2015b). (b) Compositional comparisons of transitional alkali801

glass from MD04-2820CQ Period 3 deposits and GS-9 tephras in the Greenland802

tephra framework. Ice-core data from Bourne et al. (2015b). Ice-core horizons in bold803

can be traced in multiple cores and only data from the NGRIP occurrence have been804

used for those horizons. All plots on a normalised anhydrous basis. The key for805

analyses from MD04-2820CQ is the same as Figure 5.806

807



Figure 8: (a) Inset of total alkali vs. silica plot focusing on rhyolitic material from the808

MD04-2820CQ core. Normalised compositional fields for the Icelandic rock suites809

derived from whole rock analyses in Jakobsson et al. (2008). Chemical classification810

and nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams811

comparing low SiO2 rhyolitic glass from MD04-2820CQ to geochemical fields for a812

number of Katla-derived tephra horizons. Glass compositions from Lane et al. (2012)813

(Vedde Ash and Dimna Ash), Matthews et al. (2011) (AF555; Abernethy Tephra814

(MacLeod et al., 2015)) and Pilcher et al. (2005) (Suduroy). (c) Compositional815

variation diagrams comparing high SiO2 rhyolitic glass from MD04-2820CQ to fields816

for marine and ice occurrences of the NAAZ II rhyolitic component. Glass data from817

Austin et al. (2004) (MD95-2006), Wastegård et al. (2006) (ENAM93-20, ENAM33,818

EW9302-2JPC), Brendryen et al. (2011) (SO82-05, MD99-2289) and Grönvold et al.819

(1995). All plots on a normalised anhydrous basis.820

821

Figure 9: Compositional characterisation of basaltic glass from deposits between 485822

and 530 cm in MD04-2820CQ and comparisons with Icelandic proximal material. (a)823

inset of inset of total alkali vs. silica plot. Division line to separate alkaline and sub-824

alkaline material from MacDonald and Katsura (1964). Chemical classification and825

nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams826

comparing analyses with material proximal to four tholeiitic Icelandic volcanic827

systems. Compositional fields defined using glass and whole rock analyses from828

Jakobsson et al. (2008) (Reykjanes), Höskuldsson et al. (2006) and Óladóttir et al.829

(2011) (Kverkfjöll) and Jakobsson (1979), Haflidason et al. (2000) and Óladóttir et al.830

(2011) (Grímsvötn and Veidivötn-Bardabunga). All plots on a normalised anhydrous831

basis.832



833

Figure 10: (a) Comparison of the main tholeiitic glass population of MD04-2820CQ834

487-488 cm with glass compositional fields for GS-9 tephra horizons sourced from835

Grímsvötn in the Greenland tephra framework of Bourne et al. (2015b). Horizons in836

bold have been identified in multiple ice-cores. (b) Comparison of MD04-2820CQ837

524-525 cm glass with characterisations of glass from tephra horizons in the838

Greenland tephra framework of Bourne et al. (2015b). (c) Comparison of trace839

element characterisations of individual shards from MD04-2820CQ 524-525 cm and840

NGRIP 2162.05 m. All plots on a normalised anhydrous basis.841

842

Table 1: Statistical comparisons of the main tholeiitic population of glass from843

MD04-2820CQ 524-525 cm with glass from GI-11 and GS-12 tephra horizons within844

the Greenland tephra framework. Some outliers were removed from the ice-core845

characterisations. Critical value of 23.21 for statistical distance comparisons (10846

degrees of freedom; 99 % confidence interval).847

848

Table 2: Summary of tephra horizons in MD04-2820CQ with the potential to act as849

widespread tie-lines to other palaeoclimatic sequences in the North Atlantic region.850

The timing of events is based on the stratigraphy for the MD04-2820CQ record.851

*Only to be used as a marine-marine tie-point.852

853
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Table 1:

Ice core horizon D2 SC

NGRIP 2150.90 m 10.042 0.959
NGRIP 2162.05 m 1.740 0.977
NGRIP 2162.60 m 8.349 0.959
NGRIP 2163.35 m 9.709 0.953
NGRIP 2164.10 m 8.239 0.952



Table 2:

Depth Interval Timing Composition Potential Source Correlations

456-473 cm DO-8 warming
Heterogenous

Tholeiitic Basaltic
Grímsvötn, Iceland FMAZ III*

487-488 cm
Between DO-10

and DO-9
Tholeiitic Basaltic Grímsvötn, Iceland New horizon

497-498 cm DO-11
Transitional alkali

Rhyolitic
Katla, Iceland New horizon

524-525 cm DO-11 warming Tholeiitic Basaltic Grímsvötn, Iceland New horizon

610-611 cm DO-15 cooling
Transitional alkali

Rhyolitic
Tindfjallajökull, Iceland NAAZ II
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