
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Templating System to Generate Provenance
Luc Moreau, Belfrit Victor Batlajery, Trung Dong Huynh, Danius Michaelides, Heather Packer

Abstract—PROV-TEMPLATE is a declarative approach that enables designers and programmers to design and generate provenance
compatible with the PROV standard of the World Wide Web Consortium. Designers specify the topology of the provenance to be
generated by composing templates, which are provenance graphs containing variables, acting as placeholders for values.
Programmers write programs that log values and package them up in sets of bindings, a data structure associating variables and
values. An expansion algorithm generates instantiated provenance from templates and sets of bindings in any of the serialisation
formats supported by PROV. A quantitative evaluation shows that sets of bindings have a size that is typically 40% of that of expanded
provenance templates and that the expansion algorithm is suitably tractable, operating in fractions of milliseconds for the type of
templates surveyed in the article. Furthermore, the approach shows four significant software engineering benefits: separation of
responsibilities, provenance maintenance, potential runtime checks and static analysis, and provenance consumption. The article
gathers quantitative data and qualitative benefits descriptions from four different applications making use of PROV-TEMPLATE. The
system is implemented and released in the open-source library ProvToolbox for provenance processing.

Index Terms—provenance, PROV, provenance generation, template

F

1 INTRODUCTION

P ROVENANCE has gained a lot of traction lately in var-
ious areas including the Web, legal notices1, climate

science2, scientific workflows [1], [2], [3], computational
reproducibility [4], emergency response [5], medical ap-
plications3, geospatial domain4, art and food. The recent
standard PROV [6] of the World Wide Web Consortium
defines provenance as “as a record that describes the people,
institutions, entities, and activities involved in producing,
influencing, or delivering a piece of data or a thing.” In an
increasing number of applications, provenance has become
crucial in making systems accountable, by exposing how
information flows in systems, and in helping users decide
whether information is to be trusted. Provenance is not re-
stricted to computer systems, it can also be used to describe
how objects are transformed and people are involved in a
physical system [5].

Applications and use cases for provenance are well
documented in the literature [7], [8], [9], [10]. They include
making systems more auditable and accountable [11], re-
producing results [12], deriving trust and classification [13],
asserting attribution and generating acknowledgments [14],
supporting predictive analytics [13], and facilitating trace-
ability [15]. To enable such a powerful functionality, how-
ever, one needs to adapt or write applications, so that
they generate provenance information, which can then be
exploited to offer new benefits to their users.

A number of approaches have been proposed to gener-
ate provenance: run-time, compile-time, and retrospectively.
Runtime generation typically requires applications to be
instrumented, and provenance generated accordingly [16],

• The authors are with the Department of Electronics and Computer Science,
University of Southampton, SO17 1BJ, Southampton, UK.
E-mail: l.moreau@ecs.soton.ac.uk

Manuscript revised January 23, 2017
1. https://www.thegazette.co.uk/
2. http://nca2014.globalchange.gov/report
3. https://www.hl7.org/fhir/provenance.html
4. http://www.opengeospatial.org/projects/initiatives/ows-10

[17], [18]. Instrumenting applications and generating prove-
nance at the same time can be cumbersome from a soft-
ware engineering perspective. Instead, traditional logging
techniques have been combined with provenance gener-
ation [19]. Workflow systems are a class of applications
generating provenance, which use a mix of instrumenta-
tion and logging (cf. Taverna [1], Vistrails [2], Kepler [3]).
Aspect-oriented approaches have also been used to weave
provenance generation instructions into programs [20]. In
contrast, compile-time generation uses static analysis, such
as dependency analysis [21] and program slicing [22], to
produce executables that generate provenance information.
In many situations, however, we have to deal with legacy
applications, for which we do not have the opportunity to
modify the source code to introduce provenance-generating
code, or we do not have the opportunity to recompile
programs. Thus, in those cases, using application knowl-
edge, provenance can alternatively be reconstructed retro-
spectively [23], [24].

Regardless of the approach, whether by instrumenta-
tion, logging, aspects, static methods, or reconstruction, at
some point, a provenance record needs to be constructed.
This may involve writing code that generates a provenance
record in a well-defined, standard serialization format, such
as RDF [25], text [26] or XML [27]. Alternatively, a toolkit can
be used to create a memory representation of provenance
and to serialize it (e.g. ProvPy [28] and ProvToolbox [29]).
Writing the code for generating provenance and its seri-
alization is error-prone since, to be inter-operable [30], it
is required to address all the idiosyncrasies of the model
and formats. Whilst using libraries facilitates this task,
the programming effort may have to be repeated across
the whole of the application’s code base. This is particu-
larly challenging since, provenance being still a rather new
concept, programmers are generally not familiar with its
technical details, and are not the best placed to fine-tune
the provenance information to be generated. This problem
is particularly compounded in large projects with code

https://www.thegazette.co.uk/
http://nca2014.globalchange.gov/report
https://www.hl7.org/fhir/provenance.html
http://www.opengeospatial.org/projects/initiatives/ows-10

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

developers distributed geographically or across different
organisations: specifically, when agile methods are being
adopted, the programming overhead makes it very difficult
to maintain consistent and timely updates to the provenance
generation code, so that the provenance it generates remains
aligned with the actual behaviour of the application.

To address these challenges, we propose PROV-
TEMPLATE, a templating approach for generating PROV-
compliant provenance, with the following original and dis-
tinct characteristics:

1) With PROV-TEMPLATE, a designer can express the
shape of the provenance to be generated; the prove-
nance templates offer a declarative specification of
provenance, rather than stating how it has to be
generated.

2) Provenance templates are simply provenance docu-
ments expressed in a PROV-compatible format and
containing placeholders, referred to as “variables”,
for values.

3) A mechanism allows for values to be injected into
those placeholders: PROV-TEMPLATE is equipped
with an expansion algorithm that, given a template
and a set of bindings (associating variables to val-
ues), generates a provenance record in one of the
standardized PROV representations.

Given that we have argued against crafting code to generate
provenance, we felt strongly that it was not suitable to
define yet another specialized language to generate prove-
nance. Hence, the originality of PROV-TEMPLATE is that
provenance templates are expressed in PROV directly. A
simple serialization format also exists for sets of bindings.
These design constraints have been adopted with a view
to minimize the number of specific notations designers and
developers have to learn.

From a software development viewpoint, we have ob-
served a number of benefits of the PROV-TEMPLATE ap-
proach:

1) Separation of Responsibilities. Provenance template
design and maintenance become the responsibility
of “knowledge engineers,” whereas provenance-
related coding is reduced to bindings generation
that can be embraced by a distributed development
team, without PROV expertise.

2) Maintenance. It becomes possible to maintain an
application-wide library of templates in a single
location, allowing for incremental updates of tem-
plates, for instance, due to changes to application
ontology definitions.

3) Runtime or Static Checks. A number of safety
checks can be introduced such as determining
whether bindings are compatible with templates;
this includes type-compatibility, arity, mandato-
ry/optional nature, potential semantic constraints,
and the ability to check whether templates are
valid [31].

4) Provenance Consumption. An application consum-
ing the provenance it generates can directly process
sets of bindings, rather than perform graph queries,
followed by some query result post-processing.

We initially released a specification [32] of PROV-
TEMPLATE and an implementation in ProvToolbox [29] in
2014. Building on our experience of using the system in
various projects, the aim of this article is to present PROV-
TEMPLATE, with the following original contributions: i) an
overview of the approach and its positioning in the soft-
ware development cycle; ii) a description of the template
language, the sets of bindings, the expansion algorithm,
and core checks; iii) a quantitative evaluation of the tem-
plate expansion approach, showing improved performance
when manipulating bindings over expanded provenance
templates; iv) a qualitative discussion of our practical ex-
perience with PROV-TEMPLATE.

The article is organized as follows. Section 2 consists of
an example of template as well as a brief introduction to
PROV, and the challenges associated with the programmatic
generation of PROV. Section 3 then presents the architec-
tural overview of PROV-TEMPLATE. Section 4 defines the
templates, bindings and expansion algorithm. The quan-
titative evaluation is then the focus of Section 5, whereas
our practical experience with PROV-TEMPLATE is discussed
in Section 7. We compare our approach to related work in
Section 8, before concluding the article in Section 9.

2 PROVENANCE APPLICATIONS AND EXAMPLE

As a way of providing motivations for provenance, we
outline four applications exploiting provenance (Section 5
contains an evaluation that is based on templates and
bindings from these applications). One of the applications,
EBook (see Section 2.1.3), serves as an illustration to convey
the intuition of PROV and the templating approach.

2.1 Four Provenance-Enabled Applications
2.1.1 Smartshare
Smartshare5 [33] is a “car pooling” application that allows
drivers and commuters to offer and request rides. Ride
offers and requests include details about required travels,
timing, locations, capacity, prices, and other details rele-
vant to car sharing. The application automatically matches
commuters to available cars. It is fully provenance-enabled,
capturing the provenance of any user decision, matching or
rating managed by the system. The purpose of provenance
in Smartshare is to make the application accountable, in
particular, by providing explanations about all decisions
made. The smart data set in this article consists of all the
provenance bindings and associated templates involved in
six ride plans leading to two agreed rides between two
users.

2.1.2 Food
The food application tracks food orders and deliveries in
Hampshire schools in England, with a view to develop
“due diligence” methods with scientific authorities of the
county. The purpose of provenance in this application is to
describe the origin of food and develop analytics methods
over the food supply chain. The food data set in this article
consists of the templates that describe orders, deliveries,
food specifications and sampling, and associated bindings
for six schools in the county over six months.

5. http://www.smart-society-project.eu/software/smartshare/

http://www.smart-society-project.eu/software/smartshare/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

2.1.3 EBook

The EBook project6 released a suite of tools designed to aid
in the use and teaching of reproducible statistical analysis
techniques with a particular emphasis on their use in social
science. It consists of a workflow system capable of logging
provenance, and a system to convert provenance back into
workflows. The purpose of provenance in EBook is to sup-
port the aim of reproducibility of scientific experiments [12].
The ebook data set in this article consists of the single
template used by the EBook system and sets of bindings
generated by the execution of a specific statistical workflow.

2.1.4 PICASO

The PICASO application7 (Provenance Interlinking and Col-
lective Authoring for Scientific Objects) is an online plat-
form that crowdsources the links between related scientific
objects identified by Unified Resource Identifiers (URI). In
PICASO, the purpose of provenance is to form a knowledge
graph linking all scientific work; it is published as linked
open data to allow for further analyses and research over
this kind of information. The picaso data set in this article
consists of all the templates supported by PICASO and
bindings for some 4000 entries.

2.2 An Example of Template

In this section, we present an example of template and
sets of bindings and provide a brief overview of the PROV
data model. For further and normative details, we refer the
reader to the PROV specifications [6], [25], [26].

The template depicted in Figure 1 is a simplification
of the template used in the EBook application (see Sec-
tion 2.1.3). It captures the following provenance pattern:
an agent has launched a workflow, consisting of exe-
cution steps, referred to as blocks [34], each consum-
ing some input files, and generating output files. An
input or output file is modelled as a prov:Entity
(represented by yellow ellipses in Figure 1, labeled as
“consumed” and “produced”, respectively); the execution
of the workflow or a workflow step is modelled as a
prov:Activity (represented as blue rectangles, labeled
as “parent” and “block_instance”, respectively); finally, the
user is modelled as a prov:Agent (represented as an
orange pentagon labeled “agent”). A few relations inter-
connect these nodes: the output file is derived from the
input file (relation prov:wasDerivedFrom), the input is
used by the block (relation prov:used), whereas the out-
put is generated by it (relation prov:wasGeneratedBy),
the execution step was started by the parent execu-
tion (relation prov:wasStartedBy), whereas the par-
ent workflow was associated with the user (relation
prov:wasAssociatedWith). Further attributes of a block
include its type, start and end time, etc. We note that PROV
relations are expressed using the past tense to highlight that
provenance is intended to be a description of something that
happened in the past (as opposed to a workflow specifica-
tion or a program aimed to be executed in the future).

6. http://www.bristol.ac.uk/cmm/research/ebooks/
7. https://provenance.ecs.soton.ac.uk/picaso/

bundle

block_instance

consumed

used

type: block_type
startTime: starttime
endTime: endtime
label: block_title
block: block_uri

parent

agent

wasAssociatedWith

wasStartedBy

produced

w
as
G
en
er
at
ed
By

w
a
sD

e
ri
v
e
d
Fr
o
m

Fig. 1. A graphical illustration of a template. It shows an activity
block_instance, which used an entity and generated another entity,
the latter derived from the former. The activity was started by a parent
activity (itself a block or an overarching workflow). An agent is associ-
ated with the parent activity. Some properties are associated with the
block_instance activity, including its type, its start and end time, a
human-readable label and a URI to its full description. Terms appearing
in red are variables acting as placeholders for values.

Whilst Figure 1 is purely illustrative, Figure 2 presents
the same template using the normative PROV-N nota-
tion [26]. Each node and relation of the graph is expressed
by a PROV-N statement. The PROV-N notation makes it
explicit which name is a placeholder for values: all names
in the namespace8 var are regarded as variables by PROV-
TEMPLATE (they are marked in red in both Figures 1 and 2).
Note that some of the variables are not displayed in Figure 1
to preserve its legibility.

The template of Figure 1 describes the execution of an
activity block_instance. A typical workflow consists of
multiple steps, and the execution of each of these steps has
to be described by instantiating the same template, with
bindings pertaining to this specific execution.

In Figure 1 the graph is displayed inside a box labeled
by variable bundle; likewise, in Figure 2, we can see that
PROV terms occur inside a bundle construct, with the
same variable. A bundle is a PROV construct [6] that allows
provenance of provenance to be expressed. Specifically, such
bundles are present in templates so that their attribution can
be expressed, allowing the process of template expansion to
be documentable by provenance itself. Although such an
attribution is permitted, it is not included in the example for

8. Figure 2 also contains names in the namespace t of PROV-
TEMPLATE. We refer the reader to the ProvToolbox template user’s
guide [32] for details of how such names are used to control the
expansion of variables meant to generate time and string values. Such
low-level practical details are not discussed any further in this paper.

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.bristol.ac.uk/cmm/research/ebooks/
https://provenance.ecs.soton.ac.uk/picaso/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

document
prefix t <http://openprovenance.org/tmpl#>
prefix var <http://openprovenance.org/var#>
prefix estat <http://purl.org/net/statjr/ns#>
prefix estatwf <http://purl.org/net/statjr/wf#>

bundle var:bundle
activity(var:block_instance,

[t:startTime=’var:starttime’,
t:endTime=’var:endtime’,
prov:type=’var:block_type’,
t:label=’var:block_title’,
estatwf:block=’var:block_uri’])

activity(var:parent)
agent(var:agent)
wasAttributedTo(var:parent,var:agent)
wasStartedBy(var:block_instance, -, var:parent,

-, [t:time=’var:starttime’])
entity(var:consumed)
used(var:block_instance, var:consumed, -,

[t:time=’var:consumed_at’,
estat:bindingname=’var:consumed_name’])

entity(var:produced)
wasGeneratedBy(var:produced, var:block_instance,

-, [t:time=’var:produced_at’,
estat:bindingname=’var:produced_name’])

wasDerivedFrom(var:produced, var:consumed)
endBundle
endDocument

Fig. 2. Template of Figure 1 expressed in PROV-N. Variables are qualified
names with prefix var and appear in red.

clarity. For instance, one could express that the template is
part of a template library of an application; this also allows
details of the template expansion to be captured (such as
the version of the library that performed the expansion at a
specific date).

2.3 Bindings and Template Expansion
An extract from a set of bindings is displayed in Figure 3: it
is a JSON structure that contains a dictionary for the various
variables (in red), mapping them to one or more values (in
blue). For instance, there are two consumed inputs, so there
are two values for the variable “consumed”, expressed as
UUIDs denoting each of the two inputs; on the other hand,
there is a single output, so there is a single value for the
variable “produced”.

The expansion of the template of Figure 2 with the bind-
ings of Figure 3 is illustrated graphically in Figure 4, and
its PROV-N representation is shown in Figure 5. Variables
have been replaced by values (displayed in blue in Figure 5).
We see that two entities are consumed (fe1bf93c-... and
0266d11a-...). Supplementary Material contains a fuller
example of template expansion.

2.4 The Difficulty of Generating Provenance Without
Template
The four applications (Smartshare, Food, EBook, PICASO)
introduced in Section 2.1 use templates to generate prove-
nance. Prior to designing PROV-TEMPLATE, we developed
applications that were creating provenance directly: soft-
ware engineers had to design, implement and maintain
code that generated provenance similar to that of Figure 5.
This presented a number of challenges, which we illustrate,
based on our concrete experience with several applications.

{"var": {
"consumed": [

{ "@id": "urn_uuid:fe1bf93c- ..." },
{ "@id": "urn_uuid:0266d11a- ..." }],

"consumed_at": [
{ "@type": "xsd:dateTime",

"@value": "2016-03-08T14:21:12.085706" },
{ "@type": "xsd:dateTime",

"@value": "2016-03-08T14:21:12.085706" }],
"produced": [

{ "@id": "urn_uuid:0266d372- ..." }],
"produced_at": [

{ "@type": "xsd:dateTime",
"@value": "2016-03-08T14:21:12.085819" }],

"block_instance": [
{ "@id": "urn_uuid:0266c6c0- ..." }],

"endtime": [
{ "@type": "xsd:dateTime",

"@value": "2016-03-08T14:21:12.085844" }],
"block_type": [

{ "@id": "estatwf:BuiltinFunction" }],
"agent": [

{ "@id": "estatwf:John" }],
"parent": [

{ "@id": "urn_uuid:0266c558- ..." }],
... },

"context": {
"xsd": "http://www.w3.org/2001/XMLSchema#",
"estatwf": "http://purl.org/net/statjr/wf#",
"urn_uuid": "urn:uuid:" } }

Fig. 3. An example of set of bindings for the template of Figure 2. A set
of bindings is encoded as a dictionalry associating variables to values.
Variable names are shown in red, and values in blue.

f6d0b777-8028-4071-b76a-3addedbb4764

0266c6c0-...

fe1bf93c-...

used

0266d11a-...

used

0266c558-...

John

wasAssociatedWith

0266d372-...

wasGene-

ratedBy

wasDerivedFrom wasDerivedFrom

Fig. 4. A graphical illustration of the expansion of template of Figure 1
with bindings of Figure 3.

ProvToolbox [29] is an open-source general-purpose
toolkit to manipulate PROV-based provenance in Java. It
comes with a few examples of Java programs to create a
memory representation of provenance and save it to various
PROV serialization formats. One of the examples is the
Provenance Challenge workflow [35], a reference workflow
for the provenance community. An implementation can be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

document
bundle uuid:f6d0b777-8028-4071-b76a-3addedbb4764
prefix uuid <urn:uuid:>
prefix estatwf <http://purl.org/net/statjr/wf#>
prefix uuid <urn:uuid:>
used(uuid:0266c6c0-...,uuid:fe1bf93c-...,

2016-03-08T14:21:12.085Z)
used(uuid:0266c6c0-...,uuid:0266d11a-...,

2016-03-08T14:21:12.085Z)
activity(uuid:0266c6c0-...,

2016-03-08T14:21:12.085Z,
2016-03-08T14:21:12.085Z)

activity(uuid:0266c558-...,-,-)
entity(uuid:0266d11a-...)
entity(uuid:fe1bf93c-...)
wasAssociatedWith(uuid:0266c558-...,

estatwf:John,-)
agent(estatwf:John)
entity(uuid:0266d372-...)
wasDerivedFrom(uuid:0266d372-...,

uuid:fe1bf93c-...)
wasDerivedFrom(uuid:0266d372-...,

uuid:0266d11a-...)
wasStartedBy(uuid:0266c6c0-...,-,

uuid:0266c558-...,
2016-03-08T14:21:12.085Z)

wasGeneratedBy(uuid:0266d372-...,
uuid:0266c6c0-...,
2016-03-08T14:21:12.085Z)

endBundle
endDocument

Fig. 5. The expanded provenance of Figure 4 expressed in PROV-N.
Following expansion, variables have been replaced by values shown in
blue

found on Github9 and is also discussed in more details
in Supplementary Material. To a first approximation, each
PROV term (such as those occurring in Figure 5) requires a
factory method to be called; potentially, a further method
call would be required to add each key-value pair occurring
in these terms. As a graph structure is being built, each
node needs to be identified by a URI or a qualified name
(i.e., a URI short form [26]), and likewise, each relation
connects two or more nodes, also identified by some URIs.
This essentially requires code that manipulates names with
a size proportional to that of the provenance graph to be
generated. This results in a significant burden on software
developers since they would be required to understand the
semantics of these constructor methods, and would have to
ensure that the graph is constructed correctly, associating
resources of types compatible with the edge semantics,
and making sure that edges are constructed with the right
directions. As an illustration, 200 lines of Java code are
required to compose the Provenance Challenge provenance
graph, which can be broken down into 50 lines for node
constructors, 130 for edge constructors, and 15 for adding at-
tributes. As some nodes have up to 8 incoming edges, there
is a significant amount of repetition in node names provided
to edge constructors, and therefore of opportunities to code
the graph construction incorrectly.

ProvToolbox [29] and ProvPy [28] are libraries that take
care of deserializing to, and serializing from, Java and
Python representations, respectively. As an illustration, Ta-

9. Provenance Challenge implemented with ProvToolbox is available
at https://github.com/lucmoreau/ProvToolbox/tree/development/
tutorial/tutorial5.

ble 1 provides an approximate line count of this functional-
ity. A developer intending to generate directly a serialization
of PROV, would be confronted with developing and main-
taining a code base whose size is a significant fraction of the
ones illustrated in Table 1.

TABLE 1
Number of lines of code to support various serialization formats of

PROV in ProvToolbox and ProvPy. The difference in size can be
attributed to (i) Java’s verbosity and (ii) programming styles favouring

dynamic typing and reflection in Python and static typing in Java.

ProvToolbox ProvPy
format lines lines
PROV-XML 13000 (incl. beans) 330
rdf 3600 550
json 1600 310
PROV-N 1600 100 (output only)

The serialization formats come with their idiosyncrasies,
and as specifications are revised, or when incorrect im-
plementations have to be fixed, non-trivial work is re-
quired. The type of effort to maintain such libraries is
illustrated by the following change to ProvPy. Previously,
ProvPy used prov:QualifiedName (implemented by the
QualifiedName class) to denote short forms of URIs, and
also supported xsd:QName backed by XSDName class, a
subclass of QualifiedName. However, to ensure better
compliance with PROV-N, support for xsd:QName was re-
moved, and instead the new prov:QUALIFIED_NAME with
changed capitalization had to be supported. Changes af-
fected some 60 lines 10. In Section 7.3, we revisit this change
and show how it affect the PICASO application that is built
on ProvPy and templates.

CollabMap is a provenance-enabled crowdsourcing ap-
plication [13]. Provenance is used in CollabMap for au-
diting the application’s behavior and for predicting the
quality of data produced by the crowd [13]. CollabMap
was being developed as the standardization of PROV began,
and therefore, relies on a predecessor model of provenance
called OPM, the Open Provenance Model; it also predates
ProvPy. A significant part of CollabMap code specifically
aims at provenance management: about 145 lines are about
constructing provenance (out of 400 related to the data
model), and some 80 lines are concerned with JSON export,
and 50 for RDF export (out of 700 of the view part of the
MVC model). Handcrafting the PROV-JSON structure was
tedious and error-prone, and changes required code edits.
Issues that had to be handled included: lack of default
namespace required to resolve qualified names without a
prefix, referring to attribute with a string representation
instead of a qualified name, upgrading to the PROV model
as its specification was being agreed.

In summary, the set of evidence we have presented
point towards the need for a principled method for gen-
erating provenance and associated tooling, such as PROV-
TEMPLATE, which we now describe in details.

10. See the changes at https://github.com/trungdong/prov/
commit/c7e21a9cbc551187cb335b7fa28032ef79d695c8.

https://github.com/lucmoreau/ProvToolbox/tree/development/tutorial/tutorial5
https://github.com/lucmoreau/ProvToolbox/tree/development/tutorial/tutorial5
https://github.com/trungdong/prov/commit/c7e21a9cbc551187cb335b7fa28032ef79d695c8
https://github.com/trungdong/prov/commit/c7e21a9cbc551187cb335b7fa28032ef79d695c8

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

3 ARCHITECTURAL OVERVIEW

Figure 6 provides an overview of the PROV-TEMPLATE archi-
tecture. In blue, we show key facets of runtime execution:
an application logs values, in the form of bindings, which
are used by the template expander to generate provenance
documents. The template expander relies on a template for
provenance created at design-time; the template may refer
to application or domain ontologies. In red, we show the
templates and ontologies which are created at design time.

Template	
Expansion	

PROV	
Document	

Bindings	

PROV	
Template	

Applica:on	
Ontology	

Applica:on	

Fig. 6. The architecture of the templating approach. The blue and red
colors are used to refer to runtime and design time aspects of the
approach, respectively.

The architecture is agnostic about the mechanism used to
create bindings. Applications may log values, and then con-
vert them to bindings. Alternatively, aspects may be weaved
into the code to generate such bindings. The architecture
is also agnostic about when provenance is generated and
which documents are persisted. Template expansions may
be interleaved with application execution, possibly per-
sisting provenance graphs; alternatively, bindings may be
accumulated, and provenance generated for post-execution
analysis. The specific requirements of the application with
respect to provenance determines when these operations
have to take place.

4 TEMPLATE, BINDING, TEMPLATE EXPANSION

In this section, we present a conceptualization of PROV-
TEMPLATE, including the abstract syntax of templates, a
definition of sets of bindings, and a description of the
expansion algorithm.

4.1 Template Definition

Figure 7 displays the abstract syntax of templates. In this
article, the presentation is concerned with the syntactic
dimension of the PROV data model; for the detailed and
normative meaning of these constructs, we refer the reader
to the PROV data model specification [6].

A template, denoted by the meta-variable template is a
named set of terms (referred to as “bundle” [6]). Terms can
be of five kinds and are denoted by the meta-variables termi

for i = 1, . . . , 5. Nodes, denoted by term1, can be entities,
activities, or agents; they are identified by a mandatory
name µ. The remaining terms are relations, connecting such
nodes. In the simplest case, relations denoted by term2

are binary associations, connecting two nodes denoted by
their names α and β. Qualified relations [25], expressed by
meta-variable term3, enrich binary relations with a set of
attribute-value pairs and an optional identifier τ . Relations
described by term4 and term5 further include one or more
secondary names δ, allowing qualified relations to be refined
with extra information. When attribute-value pairs are con-
tained in a term, they occur in a set, which allows a given
attribute key ki to be present multiple times with different
values; their order is not significant.

Constants (π ∈ P) can be of usual primitive types (for
instance, XML Schema built-in datatypes [36]); constants
consist of two elements: their external representation as
a string, and their type. For example, when we conve-
niently write "John Doe", we mean the constant with
external representation “John Doe” and type xsd:string.
Likewise, the conveniently written number 40, in fact, de-
notes the constant with external representation “40” and
type xsd:integer.

The grammar of templates also allows for a name γ
to appear in attribute-value position, associated with an
attribute key κ. In that case, there is an implicit conver-
sion of the name γ into a constant in P, consisting of
the external representation of γ and the reserved type
prov:QUALIFIED_NAME. In other words, all constants
with this reserved type are considered as names by PROV-
TEMPLATE. Such constants are abbreviated with the PROV-N
single quote notation [26] (for instance, ’var:endtime’ in
Figure 2).

Names are said to be qualified [25], consisting of a prefix
denoting a namespace URI and a local name. The template
language comes with its own namespace, in which some
names are defined with a specific meaning.

prefix namespace URI
t http://openprovenance.org/tmpl#

4.2 Simple Set of Bindings

The set of all names Names(t) in a template t is the set
of all names α, β, δ, γ, µ, τ , for all terms in template t. We
distinguish two categories of names, according to their
positions in terms.

In the definition of a template in Figure 7, the names
α, β, δ, µ, τ act as placeholders — or variables — for some
concrete names in N. The process of template expansion re-
places such placeholders by concrete names. The expansion
algorithm expects a template and a set of bindings, which
maps names to their concrete instantiation.

In contrast, in Figure 7, an attribute variable name γ
acts as a placeholder for some constants. Let us consider a
binding that maps a name γ to a set of constants π0, π1,
Then, the expansion of an attribute-value pair κ = γ results
in a series of attribute-value pairs κ = π0, κ = π1,

We can formally define sets of bindings as follows.
Definition 1 (Simple set of bindings). A simple set of

bindings ρ for a term termt (resp. a template t) is a

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/prov-n/#prod-QUALIFIED_NAME

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Indexing
Terms NamesI(.) PROV Predicates

template ::= bundle(µ, term∗) µ
term ::= term1 | term2 | term3 | term4 | term5

term1 ::= node(µ, [κi = γ, . . . , κj = π, . . .]) µ node ∈ {ent, act, ag}
term2 ::= rel1(β, α) α, β rel1 ∈ {spec, alt,mem}
term3 ::= rel2(τ ;β, α, [κi = γ, . . . , κj = π, . . .]) α, β rel2 ∈ {wgb, used,wat,winvb,winfb,winflb}
term4 ::= rel3(τ ;β, α, δ, [κi = γ, . . . , κj = π, . . .]) α, β, δ rel3 ∈ {assoc, del,wsb,web}
term5 ::= rel4(τ ;β, α, δ1, δ2, δ3, [κi = γ, . . . , κj = π, . . .]) α, β, δ1, δ2, δ3 rel4 ∈ {der}

Sets:

N = {η0, η1, . . .} Set of names, with total order ηi < ηj if i < j

P = {π0, π1, . . .} Set of constants
K = {κ0, κ1, . . .} Set of keys

A name position within a term t determines its kind:

Kind of Names
τ, δ, γ optional name
µ, α, β mandatory name
µ, τ identifying name

Kind of Names
α influencer
β influencee
γ attribute value

Fig. 7. Abstract syntax of the template language.

partial map of names of the term Names(termt) (resp.
the template Names(t)) to some value, whether it is a
name in N or a set of constants in P.

It is useful for subsequent formalizations to consider a
set of bindings as a total map. Given a template t and a
simple set of bindings ρ, a total, simple set of bindings ρT
for t is a total function mapping each name of the template
Names(t) to some value, whether it is a name or a set of
constants. For any ν ∈ Names(t),

ρT (ν) =

{
ρ(ν) if ρ(ν) is defined
ν if ρ(ν) is not defined.

4.3 Simple Name Replacing in Templates
Given a simple set of bindings ρ, we can replace a template’s
names by the values associated with them in ρ. However,
there are three ways of doing this, which we refer to as
permissive, strict, and PROV-aware name replacing, respec-
tively denoted by replaceperm, replacestrict, and replacepa.
These three ways of replacing names correspond to different
modes a developer may want to use the PROV-TEMPLATE
system. Permissive mode, for instance, allows partial in-
stantiation of templates. Strict mode is particularly useful
when debugging to ensure that all variables have been
instantiated. Finally, PROV-aware mode is an intermediate
way of operating, taking into account the optional nature of
some names. We now define them in turn.

Permissive name replacing is the function that substitutes
the names found in a set of bindings ρ, and leaves the
others untouched. For instance, permissive name replacing
of term3, written replaceperm(term3, ρ), is defined as the
term term′3:

term′3 = rel3(τ ′;β′, α′, δ′, [κi = γ′, . . . , κj = π, . . .])

where each name ν′ is obtained by ν′ = ρT (ν), where ν
ranges over α, β, δ, ν, τ . For a pair ki = γ in term3, a name γ
occurring in attribute-value position is allowed to be bound
to multiple values. If γ is unbound, or bound to a single

name, then we find an attribute key-value pair κi = γ′ in
term′3, with γ′ = ρT (γ). If γ is bound to a set of constants,
for each π ∈ ρT (γ), there is an attribute key-value pair κi =
π in term′3. We note that ρT is used, ensuring that names
unbound in ρ are kept unchanged (since ρT maps them to
themselves).

Strict name replacing requires all names to be bound
by the set of bindings. For instance, strict name replacing
of term3, written replacestrict(term3, ρ), is defined as the
same term term′3, under the condition that ρ(ν) is defined
for each name ν ranging over α, β, δ, γ, µ, τ . If ρ(ν) is not
defined for one of the names ν, then the strict replacing
operation is not defined for the whole term.

However, neither permissive nor strict replacing suitably
takes the PROV semantics into account. The names α and β
are mandatory, whereas names τ, δ and names in attribute-
value position γ are all optional. Thus, we introduce the
provenance-aware replacing strategy, replacepa. If there is no
binding for optional names, they are replaced by the distin-
guished symbol − for τ, δ; likewise, an attribute-value pair
κ = γ is not included, if there is no binding for name γ. If
a binding is missing for a mandatory name, then the whole
replacing operation fails, like in the strict strategy. So, let us
define

ρ−(ν) =

{
ρ(ν) if ρ(ν) is defined
− if ρ(ν) is not defined.

We define replacepa(term3, ρ) = term′3, if α′ = ρ(α), β′ =
ρ(β) are both defined, and τ ′ = ρ−(τ), δ′ = ρ−(δ). For a
pair κi = γ in term3, if γ is bound to a single name, there
is an attribute key-value pair κi = γ′, with γ′ = ρ(γ). If γ
is bound to a set of constants, for each π ∈ ρ(γ), there is an
attribute key-value pair κi = π. If ρ(γ) is not defined, then
the pair is not included in term′3.

For term′3 to remain syntactically correct, each name in ρ
must be bound to a name, except for those names occurring
only in attribute-value position (γ), which are allowed to be
bound to any constant.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Of course, in the special case when a name ν occurs
in attribute-value position, such as in κ = ν, and also
elsewhere in a term, if ρ(ν) = ν′, then an implicit conversion
takes place into a set of constants {ν′} allowing instantiation
into the attribute-value pairs κ = ν.

4.4 Linked Names
Let us imagine that we have to design the provenance for
a book; attribution could be used to link the book to its
author. In the case of multiple authors, we do not want
to have to specify a template for each possible number of
authors. Instead, we prefer to define a template containing
one attribution relation between a book and an author, and
provide bindings for multiple authors.

For simple binary relations, denoted by term2 in Fig-
ure 7, it may be interesting to specify their type (one-to-one,
one-to-many, many-to-one, many-to-many), so that when a
name is given multiple values, it is easy to understand how
to expand a template. However, term3, term4, and term5

show that we are not just considering binary relations, but
generalized n-ary relations over names. So the question is: if
names are to be bound to multiple values, which names are
expected to be given a similar number of values, and how
should the expansion proceed. Against this background,
PROV-TEMPLATE introduces a notion of linked name.
Definition 2 (Linked Name). Two names ν1, ν2 in a template

t are said to be linked if Linkedt(ν1, ν2) holds, where the
relation Linkedt is obtained by the symmetric, transitive
closure of the relation Link, iteratively computed as
follows for all terms of t:

1) If node(µ, [t:linked = γ, . . .]), then Link(µ, γ).
2) If reli(τ ;β, α, . . . , [t:linked = γ, . . .]) for i ∈ {2, 3,

4}, then Link(τ, γ).

By extension, Names(Linkedt) denotes the set of names
related by Linkedt.
Example 1. Let us consider the template of Figure 2.

There is no occurence of the t:linked attribute. Therefore,
Linkedt = ∅ and Names(Linkedt) = ∅.

Example 2. Let us call “linked-Figure 2” a variant of tem-
plate of Figure 2, in which the variables var:consumed
and var:produced are linked, meaning that for each
output there is a single input.
entity(var:consumed,

[t:linked=’var:produced’])

In that case, Linkedt = ((var:consumed,
var:produced), (var:produced,var:consumed))
and Names(Linkedt) = {var:produced,
var:consumed}.
Given the Linkedt relation, we can construct a partition

of names. Furthermore, given a strict ordering of names, we
can construct a unique sequence of names sets, as follows.
The following definition relies on the notion of indexing
name, which can be found for each term in Figure 7.
Definition 3 (Link-Partition). Let I (termt) be the set of

indexing names in a term termt from a template t.
Let P(termt) be the set of partitionable names, defined
as the union of I (termt) and {γ | γ ∈ termt ∧

γ ∈ Names(Linkedt)}. A link-partition is a sequence
N0, N1, . . . , Nm−1 of sets of names such that ∀k, 0 ≤
k < m, ∀i, j, 0 ≤ i < j < m, the following holds:

1) ∪iNi = P(termt);
2) Ni ∩Nj = ∅;
3) ∀νm, νn ∈ Nk, Linkedt(νm, νn);
4) ∃νi ∈ Ni, such that ∀νj ∈ Nj , νi < νj .

In Definition 3, Clauses 1 and 2 show thatN0, N1, . . . , Nm−1
is a partition. Clause 3 states that each Nk contains linked
names. Clause 4 relies on name ordering over N introduced
in Figure 7. We are now equipped with a mechanism that
allows us to uniquely enumerate names according to the
way they have been linked.
Example 3. Let us consider term

wasDerivedFrom(var:produced, var:consumed)

in Figure 2. I (.) for this term is
{var:produced,var:consumed}. So is P(.). Its
link-partition is N0 = {var:consumed}, and
N1 = {var:produced}, assuming that we used
lexicographic order over variable names.

Example 4. Let us consider term
wasGeneratedBy(var:produced,

var:block_instance,
[t:time=’var:produced_at’,
estat:bindingname

=’var:produced_name’])

in template “linked-Figure 2” described
in Example 2. I (.) for this term is
{var:produced,var:block_instance}. So is P(.).
Its link-partition is N0 = {var:block_instance},
and N1 = {var:produced}.

Example 5. Instead, if we consider term
wasDerivedFrom(var:produced,

var:consumed),

in template “linked-Figure 2” described in Example 2.
I (.) for this term is {var:produced,var:consumed}.
So is P(.). Its link-partition is N0 = {var:produced,
var:consumed}.

4.5 Complex Sets of Bindings and Template Expansion

While a simple set of bindings allows for one value (either a
name or a set of constants) for each variable, a complex set
of bindings allows for multiple values for variables. Such
bindings enable cross-products of values to be created by
template expansion. Thus, a complex set of bindings for a
template is defined as a total function φt that maps each
name of the template to a vector of names (from N) or
vectors of sets of values (from P).

φt : Names(t)→ Vector(N) ∪Vector(IP (P))
A Link-Partition indicates which partitionable names are

linked. When multiple bindings are supported, names in
a given partition are regarded as an array of names, be-
ing simultaneously assigned values identified in bindings.
Therefore, the number of values associated with names
in a complex set of bindings must be the same, if those
names belong to the same partition; this number provides

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

the number of possible assignments for the names of the
partition. This is formalized as follows.

Definition 4 (Binding-Partition Compatibility 1). Let
us consider P(termt), the set of partitionable names
in a term termt from template t; its link-partition
N0, N1, . . . , Nm−1, and a complex set of bindings φt. A
complex set of bindings φt is compatible with the link-
partition N0, N1, . . . , Nm−1, if the following holds:

∀k, 0 ≤ k < m, ∀νi, νj ∈ Nk,
length(φt(νi)) = length(φt(νj)),

i.e., the number of possible bindings for two names νi, νj
from the same partition is the same. Let us denote this
number as sizekφt

for Nk.

Therefore, an integer ι in [0, sizekφt
− 1] can act as an index

for a value in the vector φt(ν) for any ν ∈ Nk.

Example 6. Building on Example 3, the complex
set of bindings φt = {var:produced →
〈p1, p2〉,var:consumed → 〈c1〉}, which defines
two generated entities for one used entity is compatible
with the link-partition of Example 3 and thus satisfies
Definition 4.

Example 7. Following on Example 4, the same com-
plex set of bindings φt = {var:produced →
〈p1, p2〉,var:consumed→ 〈c1〉} is not compatible with
Definition 4, because the number of values associated
with var:consumed and var:produced is not the
same.

What about names that are neither indexing nor linked?
The purpose of Definition 5 is to set expectations for the
number of values to be found associated with those names
in a complex set of bindings.

Definition 5 (Binding-Partition Compatibility 2). Let
us consider P(termt), the set of partitionable names
in a term termt from template t; its link-partition
N0, N1, . . . , Nm−1, and a complex set of bindings φt. A
complex set of bindings φt is compatible with the link-
partition N0, N1, . . . , Nm−1, if the following holds:

∀ν, ν 6∈ P(termt),

length(φt(ν)) = 0 or size0φt
× . . . sizem−1φt

,

i.e., the number of bindings for a non-partitionable name
ν is given by the number of possible combinations with
all partitionable names.

Example 8. Building again on Example 3, φt =
{var:produced → 〈p1, p2〉,var:consumed → 〈c1〉,
var:block_instance→ 〈b1〉,var:produced_at→
〈t1, t2〉} satisfies Definition 5, because it has 2 bind-
ings for var:produced_at, since size0φt

= 1 and
size1φt

= 2.

Binding-Partition compatibility requires both Definitions
4 and 5 to be satisfied.

Definition 6 (Multi-Index). Let us consider P(termt), the
set of partitionable names in a term termt from template
t; its link-partition N0, N1, . . . , Nm−1, and a complex set
of bindings φt compatible with the link-partition.

A multi-index ω = 〈ι0, ι1, . . . , ιm−1〉 ∈ IN0 × IN1 ×
. . . INm−1 is a tuple of naturals such that each ιk belongs
to interval [0, sizekφt

[for 0 ≤ k < m.
Multi-indices ω0, ω1, . . . can be ordered lexicographi-
cally. Let us call lex the function that returns the position
in this lexical sequence for any multi-index.

Example 9. Using the bindings φt of Example 8, for which
we have link-partition N0, N1 of Example 3, we have
ω0 = 〈0, 0〉, and ω1 = 〈0, 1〉. The lex funtion is defined
as lex(0) = ω0 and lex(1) = ω1.

A multi-index enables us to extract a simple set of
bindings from a complex set of bindings, by means of a
projection operation defined as follows.
Definition 7 (Projection). Let us consider P(termt), the set

of partitionable names in a term termt from template
t; its link-partition N0, N1, . . . , Nm−1, a complex set of
bindings φt compatible with the link-partition, and a
multi-index ω = 〈ι0, ι1, . . . , ιm−1〉.
The projection operation project(φt, ω) is a simple set of
bindings ρ, such that:

• ∀k ∈ [0,m− 1], ν ∈ Nk, ρ(ν) = φt(ν)[ιk], or
• ∀ν ∈ Names(termt), ν 6∈ P(termt), ρ(ν) =

φt(ν)[lex(ω)].

Example 10. Using the multi-index of of Example 9 and the
bindings φt of Example 8, the projection project(φt, ω1)
is {var:produced → 〈p2〉,var:consumed → 〈c1〉,
var:block_instance→ 〈b1〉,var:produced_at→
〈t2〉}, in which the values for the second produced entity
have been seelcted.

We are now ready to define template expansion. We start
with the expansion of a term.
Definition 8 (Term Expansion). Let us consider P(termt),

the set of partitionable names in a term termt from
template t; its link-partition N0, N1, . . . , Nm−1, and a
complex set of bindings φt compatible with the link-
partition. Let Ωtermt be the set of all multi-indices for
term termt.
The expansion of termt for φt is the set of terms defined
as:
expansion(termt, φt) =

{sω | ω ∈ Ω,
replacepa(termt, project(φt, ω)) is defined,
sω = replace(termt, project(φt, ω))}.

where replace denotes one of the functions replaceperm,
replacestrict, replacepa.

ProvToolbox [29], which contains an implementation of
PROV-TEMPLATE, allows users to choose a replacement func-
tion. For instance, the strict mode, which terminates with
an error code if some template variables have not been
bound, is particularly useful when debugging the applica-
tion since it allows us to check whether bindings are fully
constructed. When an application is deployed, we would
use the provenance-aware mode, which drops unbound
optional variables. In Supplementary Material, we show an
application of the permissive approach, in which templates
get partially instantiated to create new templates.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Finally, we can define a template expansion as the union
of all expansions of terms, as per Definition 8.
Definition 9 (Template Expansion). Given a template t =

bundle µ term∗ and a complex set of bindings φt:

expansion(t, φt)

= bundle µ′ {∪term∈term∗expansion(term, φt)}

with µ′ = φt(µ).

It is assumed here that a single value is provided for the
bundle name.

5 QUANTITATIVE EVALUATION

In the PROV-TEMPLATE approach, templates specify the
topology of the provenance to be generated, whereas bind-
ings contain values required to create the provenance. Given
that bindings contain no topological information, the intu-
ition is that bindings are more compact than the expanded
templates. The first part of this section contrasts the size of
bindings and the size of expanded provenance templates,
systematically, across the range of templates supported by
the applications discussed in Section 2.1. We observe that the
size of bindings is on average 40% of the size of expanded
templates. This saving is beneficial in terms of both reduced
communication cost and reduced storage cost. Indeed, ap-
plication components only need to submit bindings to a
provenance repository, instead of expanded provenance; a
more compact representation of bindings reduces commu-
nication overheads. Likewise, one may consider provenance
repositories that only persist bindings, instead of expanded
provenance: they will result in more compact storage.

The savings in communication and storage should be
understood in the context of the extra cost of expanding
templates with some bindings. We show that the cost of
expansion itself is very modest. On average, across the ap-
plications considered, it takes 0.23ms to expand a template,
which would allow over 4000 expansions to take place on a
single core every second.

For the quantitative evaluation, we consider the four
applications presented in Section 2.1, which are referred
to as smart (Section 2.1.1), food (Section 2.1.2), ebook (Sec-
tion 2.1.3), and picaso (Section 2.1.4). Table 2 summarizes
the number of bindings sets and templates per application.

TABLE 2
Number of bindings sets and templates per application

application sets of bindings templates
smart 1608 12
food 1031 3
ebook 235 1
picaso 4019 13
all 6893 29

The following evaluation relies on ProvToolbox [29], a
Java library to manipulate PROV representations, and which
includes an implementation of PROV-TEMPLATE. The perfor-
mance evaluation was run on a MacBook Pro OSX 10.1, with
an Intel Core i7, 2.7 GHz, and 16Gb of Memory.

We adopted the following procedure for preparing the
test data. PROV has multiple serializations (RDF, XML, Text)

but does not have a canonical representation. Thus, to be
able to compare sizes of bindings with sizes of expanded
provenance templates, we applied the following transfor-
mations. Provenance files are converted to Turtle [37], with
all qualified names expanded as URIs, and then converted
to PROV-N [26], allowing for new namespace prefixes to
be automatically allocated. The conversion to Turtle allows
terms to be merged [31], where appropriate, whereas the
conversion to PROV-N allows for a compact representation.
Bindings are serialized to JSON, as in Figure 3 but without
pretty printing.

Having prepared the data, we applied the following
method to generate Figure 8, which shows the compaction
ratio for each template.

1) Apply the expansion algorithm for each set of bind-
ings and template pair.

2) Compute the compaction ratio by dividing the size
of each set of bindings (as a JSON file), by the size
of the expanded provenance templates (as a PROV-N
file, prepared as above).

3) Create the box plot as per Figure 8, where the x-axis
enumerates the templates, and the y-axis indicates
the compaction ratio.

The x-axis of Figure 8 lists the templates, grouped per
application (see the legend for the application color coding).
The y-axis indicates the compaction ratio. A compaction
ratio equal to 1 means that the size of a set of bindings is
the same as the size of an expanded template. The smaller
the compaction ratio, the more “efficient” the representa-
tion of a set of bindings is. For each template, a box plot
shows the median compaction ratio, the first quartile and
third quartile, and the minimum and maximum compaction
ratios.

Each of the 6893 sets of bindings resulted in a com-
paction ratio less than one. Table 3 provides a numerical
summary of Figure 8 per application. On average, across all
the sets of bindings, the compaction ratio is 40%.

TABLE 3
Summary of compaction ratios

application mean std. dev. median
smart 0.430 0.073 0.447
food 0.526 0.080 0.532
ebook 0.670 0.062 0.660
picaso 0.350 0.053 0.342
all 0.406 0.102 0.397

Figure 8 shows some variability in the range of com-
paction ratios for some templates. For instance, in ebook’s
block_run template, the bindings leading to the smallest
ratio (0.35) are about a block with a large number of outputs
(31), whereas, at the other end of the scale, bindings with
ratio 0.8 are all for blocks that consume and produce one
entity. Likewise, the food application’s foodspec template
was designed to contain general descriptions of food spec-
ification. The bindings resulting in the lowest ratio (0.24)
contain very little details about the food product, whereas
the bindings resulting into the highest (0.73) contain long

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

co
m

pa
ct

io
n

ra
tio

 s
iz

e
of

 s
et

s
of

 b
in

di
ng

s
/ s

iz
e

of
 e

xp
an

de
d

te
m

pl
at

es

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Lo
gi

n

R
ec

ei
ve

_A
P

I_
C

al
l

C
ha

ng
e_

P
ag

e

S
en

d_
R

eq
ue

st

N
eg

ot
ia

tio
n_

Ty
pe

_1

R
ec

ei
ve

_R
eq

ue
st

R
ec

ei
ve

_R
eq

ue
st

N
eg

ot
ia

tio
n_

Ty
pe

_2

C
om

po
si

tio
n

U
se

_R
es

po
ns

e

In
it_

G
en

_R
ep

ut
at

io
n

G
en

_R
ep

ut
at

io
n

an
al

ys
is

fo
od

sp
ec

in
vo

ic
ei

te
m

s

bl
oc

k_
ru

n

D
er

iv
at

io
n_

1_
n

D
er

iv
at

io
n_

n_
1

C
on

fe
re

nc
e_

S
es

si
on

C
ita

tio
n

Tw
ee

t

D
er

iv
ed

_M
at

er
ia

l

P
re

se
nt

at
io

n_
v1

P
re

se
nt

at
io

n_
v2

W
or

k_
E

le
m

en
t

D
at

as
et

_U
sa

ge

A
ttr

ib
ut

io
n_

v1

P
ro

je
ct

A
ttr

ib
ut

io
n_

v2

A
ttr

ib
ut

io
n/

C
ita

tio
n

Applications

smart
food
ebook
picaso

Fig. 8. Compaction ratio, per application, per template. The legend shows the color adopted for each application. Colored horizontal lines are the
median compression ratio for each application.

textual strings overwhelming the topology found in the
expanded template.

We followed a similar procedure to produce perfor-
mance data. (A plot is available in Supplementary Material.)

1) For each set of bindings and template pair:

a) Run the expansion algorithm w times
b) Repeat c times:

• Measure average time over n template
expansions

c) Compute average over c measures
d) Normalize measure with respect to length of

the sets of bindings.

2) Create a box plot with templates in the x-axis and
normalized averages in the y-axis.

We ran the process with (w, n, c) = (1000, 40, 20). The
value w was selected to introduce a delay before taking
measurements, to allow for JVM warm up. Of course, the
bigger a template is, the longer its expansion; likewise, the

bigger a set of bindings is, the longer the expansion is. For
the box plot (available in Supplementary Material), to be
able to make meaningful comparisons, we normalized the
computed average time with respect to the size of sets of
bindings in kilobytes.

It is important to note that this experiment only mea-
sures expansion time, and does not include the input/out-
put time necessary to read templates and bindings, and
write the expanded template.

Table 4 summarizes the raw expansion times (without
normalization) for the various applications. We see that in
average the expansion time is 0.23ms. This type of perfor-
mance would allow over 4000 expansions to be performed
on a single core per second. This shows that the approach is
entirely tractable. Furthermore, it is to be noted that our
implementation follows the definitions of Section 4 and
currently does not optimize the expansion process. Section 9
suggests ways of improving the performance of template
expansion.

We observe that the average expansion time is signif-
icantly larger for the food application, but likewise, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 4
Summary of expansion time (in ms) — mean, standard deviation,

median — and average bindings set size (in bytes)

Expansion Time bindings
application mean std. dev. median size
smart 0.181 0.119 0.147 1106
food 0.605 0.379 0.451 3367
ebook 0.174 0.067 0.160 1126
picaso 0.174 0.100 0.165 875
all 0.234 0.225 0.167 1282

average size of sets of bindings for this application is larger.
This confirms our initial hypothesis that the larger a set of
bindings, the longer the expansion time. To validate this, we
applied Pearson’s correlation test and obtained a ρ-value
of 0.8879575 and a p-value 2.2 × 10−16 showing a strong
correlation.

The sets of bindings in the four applications extensively
used the ability to provide multiple values for variables.
However, only in a couple of cases did combinatorial explo-
sions occur. Indeed, either the corresponding templates used
linked variables to assign values simultaneously, or only one
variable was given multiple values, while the others had a
single value, resulting in 1-to-n or n-to-1 relations in the
expanded template. The most notable case of combinatorial
explosion occurred in ebook (template block_run) and
involved a binary relation with two values for one variable,
and 31 for the other, resulting in 62 instances. With the com-
binatorial effect on the expanded template, the compression
ratio is the lowest (0.319), whereas the absolute expansion
time is the largest (1.04ms), though its normalized expansion
time is not an outlier.

6 BINDINGS GENERATION

The quantitative evaluation of Section 5 demonstrated that
bindings are a more compressed representation than that of
expanded templates. Bindings representation is more space
efficient because it is devoid of topological information:
definitions of nodes and edges are to be found in template
definitions, whereas the bindings only contain associations
between variables and values to instantiate them. This ef-
ficient representation also brings some benefits in terms of
programming the generation of bindings.

First, we discuss some techniques to create bindings
easily and efficiently (Section 6.1). Second, we examine
how the development environment can help check whether
bindings are well-formed and are aligned with template def-
initions (Section 6.2). In Supplementary Material, all these
techniques are illustrated by examples or code fragments.

6.1 Ease and Performance of Generation
We consider four different techniques to generate bindings.
Depending on the context of the application, they can be
potentially combined together.

6.1.1 Abstract Bindings Creation
As discussed in Section 2.4, programming the generation
of a provenance graph typically involves a method call for

constructing each node and each edge. This requires the
programmer to understand the topology of graphs to be
generated. Further, these method calls should receive all
necessary values to specify the attributes of these nodes
and edges. This also typically involves a substantial amount
of repetition in the code, since, for each node, there will
be incoming and outgoing edges that require the node
identifier (or a reference to it) to be passed to the edge
constructors.

Instead of this, a library to construct bindings enables
the programmer simply to identify which variable is as-
sociated with which value(s). Thus, no requirement is put
on the programmer to understand the graph topology and
replicate node identifiers across constructors of its adjacent
edges. A library can take care of serializing the in-memory
representation of bindings to their concrete serial format, re-
lieving the programmer from knowing the bindings syntax.
ProvToolbox provides a reference implementation of such
abstract bindings.

6.1.2 Concrete Bindings Creation
Given the simple syntax of bindings as a JSON dictionary, it
is also easy for the programmer to generate their textual rep-
resentation directly, or build a dictionary structure (say in
Javascript) that serializes directly to JSON. Such technique is
particularly useful for programming languages that do not
have a library for abstract bindings. It is used in the smart
application, in which various components logged bindings
constructed in their serialization format.

6.1.3 Converting Tabular Values
Application data is often available or exportable in tabular
format, for instance, in the standardized CSV format [38]. If
columns are labeled with the names of variables, each row
can be converted into a set of bindings, whether abstract
(Section 6.1.1) or concrete (Section 6.1.2). Such technique is
used in the food application, in which food-related data, al-
ready existing in a tabular format, is converted to bindings.

6.1.4 Bindings Fragments
Let us consider the template of Figure 1; an activity may
run for a long time. If bindings can only be generated at the
end of an activity, it means that there may be portions of
provenance that may not become available for a long time.
This also places an unnecessary burden on the bindings
generation code to hold on to values, until the last one
becomes available, potentially resulting in memory leaks.
In such a case, it may become desirable to create bindings
fragments, containing bindings for a subset of the variables of
a template. Such technique is used in the ebook application,
in which bindings fragments are logged asynchronously,
and a separate process reconstructs whole bindings out
of fragments extracted from the log. The decoupling of
bindings generation and provenance generation is critical
to preserving the application’s performance.

6.2 Support for Checks
A potential challenge with the above techniques is that,
while the programmer’s task is facilitated because there
is no requirement to program the topology of provenance

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

graphs, a potential new source of error comes with variables
names, and the burden of ensuring that they correspond
to the variables occurring in the templates. To address
this problem, a constructor of bindings can be generated
automatically from a template definition, creating meth-
ods such as addConsumed in charge of adding a binding
for the variable consumed. If a variable is renamed in a
template, then the bindings constructor can be regenerated.
At compile-time, it can be detected if the application code
refers to the older method name. ProvToolbox provides an
implementation of the bindings generator.

Another type of check that can be performed on a set
of bindings is related to the number of values associated
with variables occurring in a specific group, as defined
in Section 4. The picaso application uses further template
metadata to control the user interface, to generate bindings
that satisfy constraints on the number of values for vari-
ables (for instance, related to minimal or maximal variable
cardinality).

7 PRACTICAL EXPERIENCE

In this section, first, we discuss the granularity of templates
and bindings; second, we revisit the benefits introduced
in Section 1, and provide some evidence supporting these,
from the four applications that adopted PROV-TEMPLATE.

7.1 Templates and Bindings Granularity
A question a designer inevitably faces is the granularity
with which templates, and to some extent bindings, should
be associated with computational modules. We have en-
countered different cases. In smart, a template is typically
associated with a method, or a sequence of method invoca-
tions, when it is desirable to abstract away from them. In the
food application, the granularity of templates is dictated by
the data the application ingests (invoice, food specification,
inspection report): templates are designed to be general so
that, for instance, they can accommodate invoices from mul-
tiple food suppliers. In ebook, a template corresponds to a
workflow step. Finally, in picaso, each template corresponds
to an editable user interface, visualizing the template, allow-
ing values to be dragged on the interface, to create bindings
for that template. In general, if a REST application has to be
instrumented to generate provenance, templates could be
associated with REST operations.

For smart, food, and picaso, a full set of bindings is
created and submitted, all at once, for template expansion.
On the other hand, in ebook, as workflow steps can be long,
bindings fragment can be submitted independently (See
Section 6.1.4).

7.2 Benefit 1: Separation of Responsibilities
The smart application was iteratively developed by four or-
ganizations, which contributed various aspects of the design
and implementation of three components: user interface
(UI), a ride matching service (Orchestrator) and a feedback
and rating service (Reputation System). Each component
recorded provenance using PROV-TEMPLATE exposed as a
web service allowing sets of bindings to be submitted for
expansion by the components distributed across the Web.

The first stage of development required a PROV expert to
design templates in consultation with each component’s
lead developer, so as to reflect the component’s business
logic in the template. PROV expertise was required to de-
sign the templates in order to support the provenance use
cases [39] targeted by the application. In the second phase,
the initial integration was completed via pair programming
(involving a developer and a PROV expert), to ensure that
the correct sets of bindings were submitted for the expected
template. Since bindings creation can be error-prone in the
absence11 of automated checks (see Section 6.2), and the
component developers were not familiar with PROV and
PROV-TEMPLATE details, such a type of pair programming
was regarded as the most efficient way of minimizing
development effort. Over time, as better tools and better
training material become available, the needs for a prove-
nance expert will be significantly reduced (see future work
in Section 9). In the third phase, further changes to the
values of the variables in the bindings were completed
by the components’ developers with essentially no support
required.

7.3 Benefit 2: Maintenance

Templates may need to be changed as applications are
redesigned and evolve, potentially due to new requirements
or bug fixes. In turn, bindings may be required to change. In
this section, we overview broad categories of changes that
may be applied to templates, we then review how bindings
generated according to techniques of Section 6 may have to
be changed.

Table 5 summarizes broad types of template changes.
Like code, templates may need to be refactored: templates
may be renamed (1), while their contents remain unchanged.
A new template may be added (2), when a new component
is added to an application or a behavior of the applica-
tion needs to be described by further provenance. On the
contrary, components may be decommissioned and corre-
sponding templates dropped (3); or alternatively, templates
may be dropped because superseded by more recent ones.
Templates can be merged (4) or split (5), depending on the
granularity and timing at which provenance needs to be
created. Finally, templates may be modified (6) in various
ways that we now discuss. Modifications may preserve
the graph topology (6.1–6.4) or may alter it (6.5–6.10).
Topology-preserving modifications include changing con-
stants, changing ontology terms, and adding or dropping at-
tributes constants. Topology-altering modifications include
adding and dropping nodes and relations, and adding
and dropping variables. We note that template operations
6.9-6.10 are not typically performed in isolation, but are
occurring in conjunction with other changes. In practice,
a template modification usually involves multiple of the
changes described in Table 5.

Table 5 also shows how bindings remain correct (3) even
in the presence of modifications to templates. When a tem-
plate is added, templates are merged, or a new variable is

11. In that version of smart, the expert was involved in programming
a library, whose aim was to assemble the bindings’ serial representation
(Section 6.1.2), which was posted to a remote service, expanding them
and persisting the expanded provenance.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 5
Types of Template Evolution

A
bs

tr
ac

tB
in

di
ng

s

C
on

cr
et

e
Bi

nd
in

gs

Ta
bu

la
r

D
at

a

Bi
nd

in
gs

Fr
ag

m
en

t

Te
m

pl
at

e
co

m
pi

la
ti

on

1. rename template I/S I/S I/S I/S C/R
2. add template I I I I I
3. drop template S S S S C
4. merge templates I I I I C
5. split template S S S S C
6. modify template
6.1. change constant 3 3 3 3 3
6.2. change ontology term 3 3 3 3 3
6.3. add attribute 3 3 3 3 3
6.4. drop attribute 3 3 3 3 3
6.5. add node 3 3 3 3 3
6.6. add relation 3 3 3 3 3
6.7. drop node 3 3 3 3 3
6.8. drop relation 3 3 3 3 3
6.9. add variable I I I I R
6.10. drop variable S S S S C

added, bindings become potentially incomplete (I), resulting
in a partially constructed provenance. When a template or
a variable is dropped, or when templates are split, some
bindings may include associations for variables that become
superfluous (S), but are ignored by template expansion. Au-
tomatic bindings bean generation (Section 6.2) allows for a
number of those changes to be detected at compile-time (C):
a compilation error indicates that the application attempts
to create bindings using incorrect names for variables or
templates. In some cases, further checks can be performed
on bindings at runtime (R), ensuring for instance that all
variables have been bound with the required number of
values.

In the smart application, there were several iterations
of the templates because of the application’s iterative de-
sign and distributed development. Table 6 describes how
templates in smart were refined. Templates were refined
by the PROV expert, but critically, consisted of changes that
did not require the bindings submitted by a component to
be altered, and the captured data was still valid; in other
words, the changes to the template did not lead to extra
development effort in the components and to data con-
versions. The Orchestrator required the largest number of
versions because its provenance was the most complex, with
respect to the number of terms in templates, and because
of evolving requirements around the targeted provenance
use cases. The other components required fewer changes,
essentially thanks to their simplicity.

The revisions presented in Table 6 are in fact among
the simplest cases of template evolution listed in Table 5.
For instance, some of the template changes are due to an
adjustment of the project’s vocabulary. The technique we
presented here complements ontology-oriented software en-
gineering [40], by ensuring that correct URIs are included in
programs to refer to the correct Semantic Web concepts. We

TABLE 6
Provenance templates in smart and their changes. The column marked

(N) shows the number of versions for each template. Changes are
described according to the classification of Table 5.

Template Name N Comments
UI
Login 1 Simple template modelling in-

volving three PROV elementsChange_Page 1
Use_Response 1
Send_Request 3 Changes were prompted by it-

erative changes to the applica-
tion’s vocabulary (6.2).

Orchestrator
Receive_Request 3 Semantic changes and vocabu-

lary changes (6.2).
Composition 5 Revisions reflect the changes in

the data structures used by the
Orchestrator. The semantics of
the relationships and the vocab-
ulary were altered (6.2, 6.6).

Negotiation_Type_1 6
Negotiation_Type_2 5
Negotiation_Type_3 7
Reputation Manager
Gen_Reputation 2 The second version results from

the merge with the second ver-
sion of Receive_Feedback tem-
plate (4).

Receive_API_Call 4 Fixed typos in vocabulary, and
change of project’s vocabulary
(6.2).

Receive_Feedback 2 The revision reflects a change of
projects’s vocabulary; after the
merge with Gen_Reputation,
this template was abandonned
in the final application (6.2, 4, 3).

acknowledge that the maintenance effort was particularly
minimal in smart because, even though the application was
evolving, its broad architecture remained stable, and the use
cases for which provenance was captured did not evolve.
Thus, bindings that were logged remained correct over the
application development cycle.

We describe a further situation to illustrate how PROV-
TEMPLATE helps software maintenance. The application
picaso underwent a complete change in its templates
when a type defined in an ontology had to be replaced
by another type belonging to another ontology. Specifi-
cally, every occurrence of xsd:QName was replaced by
prov:QUALIFIED_NAME across all templates. The reason
for this change was to ensure better inter-operability with
the PROV specifications (see Section 2.4). The application
code was left unchanged. The database containing the
stored bindings did not need to be changed either. Only
the revised templates were required to be expanded again
with the same bindings.

7.4 Benefit 3: Runtime and Static Checks

Definitions 4 and 5 already specify how to check that a set
of bindings is compatible with a template definition. These
checks can be performed at expansion time, but could also
be executed at binding creation time. For instance, from a
template definition, one could generate code that constructs
sets of bindings, while ensuring by construction that they
remain compatible with the template they are meant to be
used with.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

URIs are used by templates to denote types in external
ontologies. Our experience shows that it is fairly frequent to
introduce incorrect URIs in the definition of templates. Such
a problem can be addressed in part by extracting all URIs
from a template definition, and check that they have been
defined in a set of imported ontologies (see Figure 6). Of
course, this check is purely syntactic, and can only identify
URIs that have not been declared previously. Some form of
semantic reasoning would be required to detect if the correct
URI has been referenced in a template.

The semantics of PROV [31] associates temporal con-
straints with a core subset. For a set of provenance state-
ments to be meaningful — referred to as “valid” statements
— the constraints associated with that set should be sat-
isfiable. A necessary condition for an expanded template
to be valid is that the template itself is valid. However,
the expansion of a valid template is not guaranteed to
generate a valid provenance graph; indeed, some bindings
may for instance cause a cycle of derivations to occur in the
expanded provenance graph, which would render it invalid.
Given that templates are in fact provenance graphs, their
validity can be checked at design time using a provenance
validator (such as [41]).

Reasoning could also be applied to templates to check
that they satisfy some domain-specific constraints. For in-
stance, one may want to check that the types of entities
are compatible with the types of the activities that use and
generate them. Such a type of reasoning, referred to as
semantic validation [42], relies on ontologies being available
and referred to by templates.

While automatic methods such as validation and
domain-specific reasoning are powerful, the most common
automatic operation we have applied to templates is check-
ing whether they are syntactic well-formed. Furthermore, it
is important not to dismiss the power of manual methods,
since such methods remain practical given the relatively
small size of templates, compared to the whole provenance
being generated by an application. The most common visual
checks that we perform are: detecting whether a template
contains disjoint graphs, detecting the presence of loops,
or detecting the absence of an edge or some attribute.
For instance, in Figure 1, we may want to decide that we
need to provide a type attribute for the generated entity;
likewise, it would have been very easy to point out that
an edge is missing, should it have been the case. These
tasks would have been more challenging if they had to be
performed on the provenance generated by an application.
In the applications of Section 2.1, we have not detected
examples of invalid provenance templates, because of the
continuous manual checks we performed when designing
the templates.

7.5 Benefit 4: Provenance Consumption

There is a potential software engineering benefit in us-
ing PROV-TEMPLATE for applications that consume the
provenance they have generated. Instead of running graph
queries over provenance, applications can instead run
queries over the stored bindings. This technique is used
by two of our applications. The application ebook converts
bindings back to workflows that can be executed, whereas

picaso provides a graphical editor for the expanded tem-
plates directly from bindings.

8 RELATED WORK

The related work is structured as follows. First, we contrast
coarse and fine-grained provenance (Section 8.1); second,
we survey techniques to capture provenance (Section 8.2);
third, we look at an alternative to PROV-TEMPLATE and
other similar graphs abstractions (Section 8.3). Finally, we
position PROV-TEMPLATE in the broader context of software
engineering (Section 8.4).

8.1 Coarse-Grained and Fine-Grained Provenance

Some authors [43] distinguish coarse-grained and fine-
grained provenance, also commonly referred to as workflow
and database provenance, respectively. The context and un-
derpinning assumptions under which these approaches are
conceived differ. In a database context, provenance explains
which tables, rows, cells may have affected a query result,
given a specific query that was run (for a survey of the
field, we refer the reader to Cheney et al. [44]). Workflow
provenance is regarded as more coarse-grained, because the
workflow steps may not necessarily be detailed (e.g., a call
to a Fast Fourier Transform) or workflow steps generate
files, without the provenance of their contents being de-
tailed.

The PROV data model is designed to express provenance
and exchange it in an interoperable manner. It can be used
not only to describe the flow of information, either in work-
flows or in database systems, but also to describe human
participation in activities. When it comes to fine-grained
provenance, representing it using PROV is possible, although
it is unlikely to result in a compact representation that the
kind of dedicated database techniques can afford [44].

8.2 Provenance: Instrumentation, Logging, Recon-
structing, Compacting

A simple approach to provenance generation is to in-
strument code, which requires interleaving provenance-
generating code in the source code. This operation is not
only labor intensive, since it requires fine-tuning of prove-
nance capturing [45] to maintain adequate performance, but
it also does require both application and provenance exper-
tise. Cross-cutting concerns of provenance generation can be
addressed by aspect-oriented programming, which allows
monitoring probes to be weaved into an application [20].
Instrumenting applications and generating provenance at
the same time can be cumbersome from a software engineer-
ing perspective. Instead, traditional logging techniques have
been combined with provenance reconstruction, in various
contexts, with well-known logging tools [19], system call
tracing [16], or even at the level of the operating system
kernel, such as PASS [17].

Workflow systems are a class of applications generat-
ing provenance, which use a mix of instrumentation and
logging (cf. Taverna [1], Vistrails [2], Kepler [3]). These
systems are essentially monolithic “integrated development
environments” that allow users to compose workflows and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

execute them while keeping a trace of execution in the form
of a provenance log.

Emerging approaches move away from such “integrated
development environments” allowing disparate tools to be
exploited by users. YesWorkflow [46], [47] allows scientists
to annotate their scripts (in Python, R, or Perl) with special
comments that reveal the main computational blocks and
data flow dependencies, allowing the provenance of scien-
tific results to be constructed and queried. To avoid code
instrumentation, YesWorkflow assumes that critical infor-
mation has been encoded in data product files and directory
names, which allows full provenance to be inferred. Such
“provenance-friendly” data organization involves URI tem-
plates, capturing how inputs and outputs are named and
organized. Annotations specify notions of blocks, ports and
channels, describing the static topology of the workflow.
This approach is completely complementary with the one
described in this article. The variables identified in the URI
patterns of YesWorkflow can be used to create bindings,
used by PROV-TEMPLATE to generate PROV documents.

In some situations, in particular with legacy applications,
we do not have the opportunity to modify the source code
in order to insert provenance-generating code, or we do not
have the possibility of weaving new aspects because we
cannot recompile code, or we do not have the possibility
of dynamically re-loading and re-linking legacy code. In
those cases, data created by such legacy applications can
be mined, using application knowledge, with a view of
reconstructing provenance [23], [24]. These approaches use
a range of techniques to reconstruct provenance. Struc-
tural information allows finer grained provenance to be
reconstructed, whereas content similarity allows for high-
level “information flows” to be described. These approaches
typically introduce some uncertainty to indicate the level
of confidence associated with the reconstructed provenance
relations. Again, the topology of the provenance being
reconstructed can also be expressed with templates, to be
instantiated with runtime values.

Finally, ProvGen is a graph generation technique for
provenance [48], which relies on a seed graph, very similar
to a template, combined with a set of constraints describing
how it can be repeated. We conjecture that the provenance
generation component could be completely decoupled from
the node generation part, which would then allow PROV-
TEMPLATE to be used here too.

As PROV-TEMPLATE bindings are devoid of topology
information, bindings have been shown to be more com-
pact than expanded provenance (see Section 5). There has
been work investigating techniques to compact provenance,
while still maintaining its queryability: Chapman et al. [49]
propose factorization techniques, allowing common pat-
terns of provenance information to be identified, and the
amount of required storage to be reduced, while still be
efficiently queryable. Our experience is that templates tend
to specify the shape of provenance for small subgraphs,
typically in the close vicinity of an activity. By operating
over a whole provenance graph, factorization techniques
stand a better chance of compressing provenance. On the
other hand, the localized nature of template allows clients,
submitting provenance to a provenance repository, to bene-
fit from bindings compact representation.

8.3 Provenance Templates and Views

Curcin et al. [50] also propose a notion of template, seen as
“a higher-level abstraction of the provenance graph data”.
Their templates specify “basic conceptual units that can be
recorded in a provenance repository.” Like PROV-TEMPLATE,
their patterns use a provenance graphical model, where
nodes denote concepts rather than instances, but is extended
with further constructs to model sub-graph repetition. A key
differentiator between their approach and PROV-TEMPLATE
is that the latter has well-defined interfaces, in terms of
templates and bindings in input, and expanded graphs in
output, with clear standardized formats, and with a well-
defined expansion algorithm.

The template language of PROV-TEMPLATE has some
similarity with the provenance type graphs of Danger et
al. [51], and Moreau’s provenance summaries [52]. Prove-
nance type graphs are combined with graph transforma-
tion techniques, such as removing and inserting nodes, to
produce views over provenance graphs that satisfy some
access control properties [51]. Alternatively, “user views”,
defined as a partition of tasks in a workflow specifica-
tion [53], provide the means to selectively identify what
aspect of a provenance trace should be exposed to users.
PROV-TEMPLATE is intended for generating provenance,
whereas provenance type graphs, summaries, and views
are intended to abstract away from the concrete details of
provenance. The provenance type graphs [51] build on Sun’s
Typed Provenance Model [54] by allowing domain specific
types to be exposed. In PROV-TEMPLATE, such domain spe-
cific types can be found in the form of the prov:type
attribute supported by the PROV data model [6]. The graph
transformation technique [51] is capable of replacing sub-
graphs by new nodes, i.e., creating graph abstractions. This
is an example of graph rewriting applied to provenance;
in contrast, PROV-TEMPLATE does not perform full graph
rewriting, but instead allows template nodes to be instanti-
ated with one or more instances.

Prospective provenance, a term coined by Wilde [55], de-
notes the “recipe” or procedure used to compute data prod-
ucts. So, prospective provenance is a description of what
execution is intended to be; this should be contrasted to
PROV-TEMPLATE, which is a description of what provenance
is to be. PROV introduces the notion of prov:Plan, a plan
intended by an agent to achieve some goals in the context
of this activity, but does not provide any details about the
nature of such plans. P-Plan [56] is an approach to prospec-
tive provenance, which uses some PROV building blocks
(such as activity, entity, usage, generation) to describe what
an execution is intended to be like. While some relations
are provided to link up actual activities and entities found
in the provenance to their counterpart in the prospective
provenance, P-Plan does not prescribe how provenance is
to be shaped. P-Plan, like PROV-TEMPLATE, uses a notion
of variable to denote actual runtime entities. ProvONE [57]
is a recent community-based extension of PROV to support
scientific workflow provenance. Like P-Plan, it includes
prospective provenance, but replaces variables by the notion
of port commonly found in workflow systems [1], [3]. The
Workflow Description Ontology, which describes workflow
specifications included in Research Objects [58], instead uses

http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#Plan

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

a notion of datalink to specify data dependencies between
the processes of a workflow.

8.4 Software Engineering and Meta Models

PRIME [39], the PRovenance Incorporating MEthodology,
is a software engineering methodology to “provenance-
enable” applications. It consists of three phases to be applied
iteratively. First, provenance use cases need to be elicited
to identify the type of functionality that is expected out of
provenance information. Second, the application is decon-
structed into actors, processes, and information flows. Third,
information items are exposed, provenance is then captured,
and provenance functionality is implemented. PRIME does
not specify how provenance is generated. Again, PROV-
TEMPLATE has a natural place in this software engineering
methodology, since the templates can be expressed by the
designer to address some provenance use cases, and can
directly be used for provenance generation. More recently, a
set of common provenance recipes [14] has been put forward
for provenance patterns commonly encountered in applica-
tions. Likewise, ProvErr [59] relies on engineers’ application
knowledge to construct a dependency model aimed to support
root cause analysis of system faults. Both provenance recipes
and dependency models are good candidates for creating
provenance templates.

Zhu and Bayley [60] propose an algebra of design
patterns, from which they derive a notion of equivalence
between pattern expressions and a normal form for pattern
expressions. It is an open question as to whether a similar
algebra can be developed for provenance templates, allow-
ing some reasoning to be made about how templates are
composed.

PROV provenance draws upon the linked data [61] and
Semantic Web approaches [62]. In this context, significant
attention has been given to the problem of bringing knowl-
edge and software engineering together [40]. In particular,
there has been a growing interest in applying ontologies to
the various stages of the software engineering life cycle (for
an overview, see [40]). For instance, there are approaches
allowing conversion between OWL ontologies and UML
models, and vice-versa [63]. As we have already shown
in Figure 6, PROV-TEMPLATE builds on ontologies by mak-
ing explicit references to classes and properties defined
in ontologies. This presents researchers with opportunities
to integrate PROV-TEMPLATE in the software engineering
process to bring forth its benefits (as discussed in Section 7).

9 CONCLUSION AND FUTURE WORK

Ease of generation remains an adoption hurdle for prove-
nance technology. To address this challenge, we have pre-
sented PROV-TEMPLATE, a practical approach that facilitates
the generation of provenance. It consists of three parts. Tem-
plates provide a declarative way of specifying the prove-
nance to be generated, with placeholders (referred to as
variables) for values to be filled. Sets of bindings are simple
JSON data structures associating variable names to values.
An expansion algorithm creates a provenance document
from a template, by replacing all variables by values found
in a set of bindings. The expansion algorithm is capable of

dealing with multiple values for variables. The approach
is implemented by the ProvToolbox library, an open source
library for manipulating provenance in Java.

Our quantitative evaluation shows that exchanging sets
of bindings rather than provenance documents incurs a sig-
nificantly reduced cost in communications and/or storage,
as the size of bindings is demonstrated to be on average
40% of that of expanded provenance documents. The perfor-
mance evaluation also shows that the approach is tractable,
with only fractions of milliseconds required for expanding
typical templates.

Our practical experience with PROV-TEMPLATE over the
course of two years has shown four benefits provided by
the approach. It helps with separation of responsibilities,
allowing distributed developers to focus on code writing
and information logging, whereas a PROV expert can focus
on the design of provenance templates and their deploy-
ment in an application. PROV-TEMPLATE facilitates main-
tenance of provenance since it allows minor revisions of
provenance to be supported, without having to modify the
application, as long as the templates still rely on the same
logged values. PROV-TEMPLATE allows for an application-
wide library of templates to be assembled, and a series of
static and dynamic checks to be supported; these checks
help the application log the necessary information to create
provenance correctly. Finally, PROV-TEMPLATE allows for
applications that consume their own provenance to exploit
the regular structure of bindings, rather than having to rely
on graph queries over provenance.

There are a number of opportunities to build upon PROV-
TEMPLATE in future work. If a designer specifies all the
provenance to be generated in an application by means of
templates, there is only a need to store sets of bindings and
templates. Thus, we could envisage a notion of “provenance
repository” [64], in which PROV-compatible provenance is
only generated on demand, and is not persisted in that form.
Instead, the only information that needs to be captured and
stored is templates and sets of bindings. Pushing this ap-
proach to its logical end, the idea of a provenance template
management system becomes crucial, with key function-
ality, including editing and storage of templates and their
versions, migration of bindings to new templates, and on-
the-fly PROV-compatible provenance generation. Templates
can further be “compiled” into code that generates PROV
efficiently from a set of bindings. Services for posting bind-
ings can be generated automatically from templates, and
perform compatibility checks directly, giving early feedback
to developers if something goes wrong.

Provenance is typically queried by means of graph
queries, expressed in languages such as SPARQL. With
the PROV-TEMPLATE approach, provenance now consists of
templates and bindings. Thus, provenance graph queries
can be optimized by developing query plans that take into
account the static nature of provenance templates, and by
directly querying the bindings, which can also be indexed
to improve performance.

A theoretical strand of work could investigate the mean-
ing of abstract graphs such as templates. There, nodes no
longer represent instances but sets of these. With such a
notion, one can also study the set of algebraic operations
to process such graphs and the type of reasoning that is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

possible over such abstract graphs.

ACKNOWLEDGMENTS

This work is funded in part by the EPSRC SOCIAM
(EP/J017728/1) and ORCHID (EP/I011587/1) projects, the
FP7 SmartSociety (600854) project, and the ESRC eBook
(ES/K007246/1) project.

The data referred to as smart, ebook, and picaso support-
ing this study are openly available from the University of
Southampton repository at DOI: 10.5258/SOTON/390436.
As far as food data are concerned, their sets of bindings can-
not be made openly available because they contain commer-
cially sensitive data, but the templates and measurements
are available.

REFERENCES

[1] P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz,
“Enhancing and abstracting scientific workflow provenance for
data publishing,” in Proceedings of the Joint EDBT/ICDT 2013
Workshops. New York, NY, USA: ACM, 2013, pp. 313–318.
[Online]. Available: http://doi.acm.org/10.1145/2457317.2457370

[2] C. Silva, E. Anderson, E. Santos, and J. Freire, “Using vistrails
and provenance for teaching scientific visualization,” Computer
Graphics Forum, vol. 30, no. 1, pp. 75–84, 3 2011. [Online].
Available: http://dx.doi.org/10.1111/j.1467-8659.2010.01830.x

[3] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance collection
support in the kepler scientific workflow system,” in Proceedings
of the 2006 International Conference on Provenance and Annotation of
Data (IPAW’06). Springer, 2006, pp. 118–132. [Online]. Available:
http://dx.doi.org/10.1007/11890850_14

[4] F. Chirigati, D. Shasha, and J. Freire, “Reprozip: Using provenance
to support computational reproducibility,” in Proceedings of the 5th
USENIX Conference on Theory and Practice of Provenance (TaPP’13).
Berkeley, CA, USA: USENIX Association, 2013, pp. 1–1. [Online].
Available: http://dl.acm.org/citation.cfm?id=2482613.2482614

[5] S. Ramchurn, E. Simpson, J. Fischer, T. D. Huynh, Y. Ikuno,
S. Reece, W. Jiang, F. Wud, J. Flann, S. J. Roberts, L. Moreau,
T. Rodden, and N. Jennings, “HAC-ER: A disaster response
system based on human-agent collectives,” Istambul, Turkey, May
2015. [Online]. Available: http://eprints.soton.ac.uk/374070/

[6] L. Moreau, P. Missier (eds.), K. Belhajjame, R. B’Far, J. Cheney,
S. Coppens, S. Cresswell, Y. Gil, P. Groth, G. Klyne, T. Lebo,
J. McCusker, S. Miles, J. Myers, S. Sahoo, and C. Tilmes,
“PROV-DM: The PROV Data Model,” World Wide Web
Consortium, W3C Recommendation REC-prov-dm-20130430,
Oct. 2013. [Online]. Available: http://www.w3.org/TR/2013/
REC-prov-dm-20130430/

[7] R. Bose and J. Frew, “Lineage retrieval for scientific data
processing: A survey,” ACM Computing Surveys, vol. 37, no. 1, pp.
1–28, Mar. 2005. [Online]. Available: http://homepages.inf.ed.ac.
uk/rbose/pubs/bose_2005_ACM_CS.pdf

[8] S. Miles, P. Groth, M. Branco, and L. Moreau, “The requirements
of recording and using provenance in e-science experiments,”
Journal of Grid Computing, vol. 5, no. 1, pp. 1–25, 2007. [Online].
Available: http://eprints.ecs.soton.ac.uk/10269/

[9] L. Moreau, “The foundations for provenance on the Web,”
Foundations and Trends in Web Science, vol. 2, no. 2–3, pp. 99–241,
Nov. 2010. [Online]. Available: http://eprints.ecs.soton.ac.uk/
21691/

[10] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles, L. Moreau,
and P. Pinheiro da Silva, “Provenance XG final report,” World
Wide Web Consortium, Tech. Rep., 2010. [Online]. Available: http:
//www.w3.org/2005/Incubator/prov/XGR-prov-20101214/

[11] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. Hendler, and G. J. Sussman, “Information accountability,”
Commun. ACM, vol. 51, no. 6, pp. 81–87, Jun. 2008. [Online].
Available: http://hdl.handle.net/1721.1/37600

[12] L. Moreau, “Provenance-based reproducibility in the semantic
web,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 9, pp. 202–221, Feb. 2011. [Online]. Available:
http://eprints.ecs.soton.ac.uk/21992/

[13] T. D. Huynh, M. Ebden, M. Venanzi, S. Ramchurn,
S. Roberts, and L. Moreau, “Interpretation of crowdsourced
activities using provenance network analysis,” in Conference
on Human Computation and Crowdsourcing (HCOMP’13), Nov.
2013. [Online]. Available: http://www.aaai.org/ocs/index.php/
HCOMP/HCOMP13/paper/view/7388

[14] L. Moreau and P. Groth, Provenance: An Introduction to PROV.
Morgan and Claypool, September 2013.

[15] F. Curbera, Y. Doganata, A. Martens, N. K. Mukhi, and
A. Slominski, “Business provenance – a technology to increase
traceability of end-to-end operations,” in OTM 2008 Confederated
International Conferences. Springer, 2008, pp. 100–119. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-88871-0_10

[16] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and
reconstruction of computational provenance,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, pp. 485–496,
2008.

[17] D. A. Holland, M. Seltzer, U. Braun, and K.-K. Muniswamy-
Reddy, “Pass-ing the provenance challenge,” Concurrency
and Computation: Practice and Experience, vol. 20, no. 5,
2008. [Online]. Available: http://www3.interscience.wiley.com/
journal/116316566/abstract

[18] L. Moreau and P. Groth, “Provenance of publications: A PROV
style for latex,” in Seventh USENIX Workshop on the Theory and
Practice of Provenance (TAPP’15). Edinburgh, Scotland: USENIX,
Jul. 2015. [Online]. Available: http://eprints.soton.ac.uk/378019/

[19] D. Ghoshal and B. Plale, “Provenance from log files: A bigdata
problem,” in Proceedings of the Joint EDBT/ICDT 2013 Workshops,
ser. EDBT ’13. New York, NY, USA: ACM, 2013, pp. 290–297.
[Online]. Available: http://doi.acm.org/10.1145/2457317.2457366

[20] P. Brauer, F. Fittkau, and W. Hasselbring, “The aspect-oriented
architecture of the CAPS framework for capturing, analyzing and
archiving provenance data,” in Provenance and Annotation of Data
and Processes, vol. 8628. Springer, 2015, pp. 223–225.

[21] J. Cheney, A. Ahmed, and U. A. Acar, “Provenance as
dependency analysis,” Mathematical Structures in Computer Science,
vol. 21, no. 6, pp. 1301–1337, 2011. [Online]. Available:
http://dx.doi.org/10.1017/S0960129511000211

[22] J. Cheney, “Program slicing and data provenance,” IEEE Data
Engineering Bulletin, pp. 22–28, December 2007.

[23] S. Magliacane, “Reconstructing provenance,” in The Semantic Web
— ISWC 2012, vol. 7650. Springer, 2012, pp. 399–406. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35173-0_29

[24] T. De Nies, I. Taxidou, A. Dimou, R. Verborgh, P. M.
Fischer, E. Mannens, and R. Van de Walle, “Towards multi-
level provenance reconstruction of information diffusion on
social media,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management (CIKM
’15). New York, NY, USA: ACM, 2015, pp. 1823–1826.
[Online]. Available: https://websci.informatik.uni-freiburg.de/
publications/cikm2015-multilevel-provenance

[25] T. Lebo, S. Sahoo, D. McGuinness (eds.), K. Behajjame, J. Cheney,
D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao,
“PROV-O: The PROV Ontology,” World Wide Web Consortium,
W3C Recommendation REC-prov-o-20130430, Oct. 2013. [Online].
Available: http://www.w3.org/TR/2013/REC-prov-o-20130430/

[26] L. Moreau, P. Missier (eds.), J. Cheney, and S. Soiland-
Reyes, “PROV-N: The Provenance Notation,” World Wide
Web Consortium, W3C Recommendation REC-prov-n-20130430,
Oct. 2013. [Online]. Available: http://www.w3.org/TR/2013/
REC-prov-n-20130430/

[27] H. Hua, C. Tilmes, S. Zednik (eds.), and L. Moreau,
“PROV-XML: The PROV XML Schema,” World Wide Web
Consortium, W3C Working Group Note NOTE-prov-xml-
20130430, Apr. 2013. [Online]. Available: http://www.w3.org/
TR/2013/NOTE-prov-xml-20130430/

[28] [Online]. Available: https://pypi.python.org/pypi/prov
[29] L. Moreau, “ProvToolbox — Java library to create and convert

W3C prov data model representations,” http://lucmoreau.github.
io/ProvToolbox/, Apr. 2016.

[30] T. D. Huynh, P. Groth, and S. Zednik (eds.), “PROV
implementation report,” World Wide Web Consortium,
W3C Working Group Note NOTE-prov-overview-20130430,
April 2013. [Online]. Available: http://www.w3.org/TR/2013/
NOTE-prov-implementations-20130430/

[31] J. Cheney, P. Missier, L. Moreau (eds.), and T. D.
Nies, “Constraints of the PROV Data Model,” World

http://eprints.soton.ac.uk/id/eprint/390436
http://doi.acm.org/10.1145/2457317.2457370
http://dx.doi.org/10.1111/j.1467-8659.2010.01830.x
http://dx.doi.org/10.1007/11890850_14
http://dl.acm.org/citation.cfm?id=2482613.2482614
http://eprints.soton.ac.uk/374070/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://homepages.inf.ed.ac.uk/rbose/pubs/bose_2005_ACM_CS.pdf
http://homepages.inf.ed.ac.uk/rbose/pubs/bose_2005_ACM_CS.pdf
http://eprints.ecs.soton.ac.uk/10269/
http://eprints.ecs.soton.ac.uk/21691/
http://eprints.ecs.soton.ac.uk/21691/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://hdl.handle.net/1721.1/37600
http://eprints.ecs.soton.ac.uk/21992/
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7388
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7388
http://dx.doi.org/10.1007/978-3-540-88871-0_10
http://www3.interscience.wiley.com/journal/116316566/abstract
http://www3.interscience.wiley.com/journal/116316566/abstract
http://eprints.soton.ac.uk/378019/
http://doi.acm.org/10.1145/2457317.2457366
http://dx.doi.org/10.1017/S0960129511000211
http://dx.doi.org/10.1007/978-3-642-35173-0_29
https://websci.informatik.uni-freiburg.de/publications/cikm2015-multilevel-provenance
https://websci.informatik.uni-freiburg.de/publications/cikm2015-multilevel-provenance
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/
https://pypi.python.org/pypi/prov
http://lucmoreau.github.io/ProvToolbox/
http://lucmoreau.github.io/ProvToolbox/
http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/
http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Wide Web Consortium, W3C Recommendation REC-
prov-constraints-20130430, Oct. 2013. [Online]. Available:
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/

[32] D. Michaelides, T. D. Huynh, and L. Moreau, “PROV-TEMPLATE:
A template system for prov documents,” Jun. 2014, technical
Note. [Online]. Available: https://provenance.ecs.soton.ac.uk/
prov-template-2014-06-07/

[33] H. S. Packer, L. Dragan, and L. Moreau, “An auditable reputation
service for collective adaptive systems,” in Social Collective
Intelligence: Combining the Powers of Humans and Machines to Build
a Smarter Society, D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt,
and J. Stewart, Eds. Springer, August 2014, pp. 159–184. [Online].
Available: http://eprints.soton.ac.uk/365559/

[34] D. Michaelides, R. Parker, C. Charlton, W. Browne, and
L. Moreau, “Intermediate notation for provenance and workflow
reproducibility,” in 6th International Provenance and Annotation
Workshop (IPAW’16), McLean, VA, US, Jun. 2016, pp. 1–12.
[Online]. Available: http://eprints.soton.ac.uk/393117/

[35] L. Moreau, B. Ludaescher, I. Altintas, R. S. Barga, S. Bowers,
S. Callahan, G. Chin Jr., B. Clifford, S. Cohen, S. Cohen-Boulakia,
S. Davidson, E. Deelman, L. Digiampietri, I. Foster, J. Freire,
J. Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble, J. Golbeck,
P. Groth, D. A. Holland, S. Jiang, J. Kim, D. Koop, A. Krenek,
T. McPhillips, G. Mehta, S. Miles, D. Metzger, S. Munroe,
J. Myers, B. Plale, N. Podhorszki, V. Ratnakar, E. Santos,
C. Scheidegger, K. Schuchardt, M. Seltzer, Y. L. Simmhan,
C. Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo,
M. Wilde, J. Zhao, and Y. Zhao, “The First Provenance
Challenge,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 5, pp. 409–418, Apr. 2008. [Online]. Available: http:
//www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf

[36] P. V. Biron and A. Malhotra, “XML Schema Part 2: Datatypes,” Oct.
2004. [Online]. Available: http://www.w3.org/TR/xmlschema-2/

[37] G. Carothers and E. Prud’hommeaux, “RDF 1.1 Turtle,”
World Wide Web Consortium, W3C Recommendation,
Feb. 2014. [Online]. Available: http://www.w3.org/TR/2014/
REC-turtle-20140225/

[38] J. Tennison and Gregg Kellogg (eds.), “Model for tabular data
and metadata on the web,” World Wide Web Consortium,
Recommendation, 2015. [Online]. Available: https://www.w3.
org/TR/2015/REC-tabular-data-model-20151217/

[39] S. Miles, P. Groth, S. Munroe, and L. Moreau, “Prime: A
methodology for developing provenance-aware applications,”
ACM Transactions on Software Engineering and Methodology,
vol. 20, no. 3, pp. 1–42, August 2011. [Online]. Available:
http://eprints.ecs.soton.ac.uk/17450/

[40] H.-J. Happel and S. Seedorf, “Applications of ontologies in
software engineering,” in Proc. of Workshop on Sematic Web Enabled
Software Engineering"(SWESE) on the ISWC, 2006, pp. 5–9. [Online].
Available: https://km.aifb.kit.edu/ws/swese2006/final/happel_
full.pdf

[41] L. Moreau, T. D. Huynh, and D. Michaelides, “An online validator
for provenance: Algorithmic design, testing, and api,” in 17th
International Conference on Fundamental Approaches to Software
Engineering (FASE’14), vol. 8411. Springer, April 2014, pp.
291–305. [Online]. Available: http://eprints.soton.ac.uk/361113/

[42] S. Miles, S. C. Wong, W. Fang, P. Groth, K.-P. Zauner,
and L. Moreau, “Provenance-based validation of e-science
experiments,” Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 5, no. 1, pp. 28–38, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2006.11.003

[43] W.-C. Tan, “Provenance in databases: Past, current, and future,”
Bulletin of the Technical Committee on Data Engineering, vol. 30,
no. 4, pp. 3–12, Dec. 2007. [Online]. Available: ftp://ftp.research.
microsoft.com/pub/debull/A07dec/wang-chiew.pdf

[44] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in
databases: Why, how, and where,” Found. Trends databases,
vol. 1, no. 4, pp. 379–474, Apr. 2009. [Online]. Available:
http://dx.doi.org/10.1561/1900000006

[45] P. Groth and L. Moreau, “Recording process documentation for
provenance,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 9, pp. 1246–1259, Sep. 2009. [Online]. Available:
http://www.ecs.soton.ac.uk/~lavm/papers/tpds09.pdf

[46] T. M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame,
K. Bocinsky, Y. Cao, F. Chirigati, S. C. Dey, J. Freire, D. N.
Huntzinger, C. Jones, D. Koop, P. Missier, M. Schildhauer,
C. R. Schwalm, Y. Wei, J. Cheney, M. Bieda, and B. Ludäscher,

“Yesworkflow: A user-oriented, language-independent tool for
recovering workflow information from scripts,” International
Journal of Digital Curation, vol. 10, no. 1, 2015. [Online]. Available:
http://arxiv.org/abs/1502.02403

[47] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher,
“Retrospective provenance without a runtime provenance
recorder,” in 7th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 15). Edinburgh, Scotland: USENIX Association,
Jul. 2015. [Online]. Available: https://www.usenix.org/
conference/tapp15/workshop-program/presentation/mcphillips

[48] H. Firth and P. Missier, “Provgen: Generating synthetic prov
graphs with predictable structure,” in Provenance and Annotation
of Data and Processes, B. Ludäscher and B. Plale, Eds.,
vol. 8628. Springer, 2015, pp. 16–27. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-16462-5_2

[49] A. P. Chapman, H. V. Jagadish, and P. Ramanan, “Efficient
provenance storage,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’08),
2008, pp. 993–1006. [Online]. Available: http://doi.acm.org/10.
1145/1376616.1376715

[50] V. Curcin, E. Fairweather, R. Danger, and D. Corrigan, “Templates
as a method for implementing data provenance in decision
support systems,” Journal of Biomedical Informatics, vol. 65, pp.
1–21, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.jbi.
2016.10.022

[51] R. Danger, V. Curcin, P. Missier, and J. Bryans, “Access
control and view generation for provenance graphs,”
Future Generation Computer Systems, vol. 49, pp. 8 –
27, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X1500031X

[52] L. Moreau, “Aggregation by provenance types: A technique
for summarising provenance graphs,” in Graphs as Models 2015
(An ETAPS’15 workshop), London, UK, Apr. 2015, pp. 129–144.
[Online]. Available: http://eprints.soton.ac.uk/364726/

[53] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson,
“Addressing the provenance challenge using zoom,” Concurrency
and Computation: Practice and Experience, vol. 20, no. 5, pp. 497–506,
2008. [Online]. Available: http://dx.doi.org/10.1002/cpe.1232

[54] L. Sun, J. Park, and R. Sandhu, “Engineering access control
policies for provenance-aware systems,” in Proceedings of the Third
ACM Conference on Data and Application Security and Privacy
(CODASPY ’13). New York, NY, USA: ACM, 2013, pp. 285–292.
[Online]. Available: http://dx.doi.org/10.1145/2435349.2435390

[55] B. Clifford, I. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao,
“Tracking provenance in a virtual data grid,” Concurr. Comput.
: Pract. Exper., vol. 20, no. 5, pp. 565–575, Apr. 2008. [Online].
Available: http://dx.doi.org/10.1002/cpe.v20:5

[56] D. Garijo and Y. Gil, “Augmenting PROV with Plans in
P-PLAN: Scientific Processes as Linked Data,” in Second
International Workshop on Linked Science: Tackling Big Data
(LISC), held in conjunction with the International Semantic Web
Conference (ISWC), Boston, MA, 2012. [Online]. Available:
http://www.isi.edu/~gil/papers/garijo-gil-lisc12.pdf

[57] V. Cuevas-Vicenttin, B. Ludaescher, P. Missier, K. Belhajjame,
F. Chirigati, Y. Wei, S. Dey, P. Kianmajd, D. Koop, S. Bowers, and
I. Altintas, “Provone: A prov extension data model for scientific
workflow provenance,” DataOne Project, Tech. Rep., Mar.
2014. [Online]. Available: http://vcvcomputing.com/provone/
provone.html

[58] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne,
R. Palma, E. Mina, O. Corcho, J. M. Gómez-Pérez, S. Bechhofer,
G. Klyne, and C. Goble, “Using a suite of ontologies for
preserving workflow-centric research objects,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 32, pp. 16
– 42, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1570826815000049

[59] P. Chen and B. A. Plale, “Proverr: System level statistical
fault diagnosis using dependency model,” in 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2015, Shenzhen, China, May 4-7, 2015, 2015, pp. 525–534.
[Online]. Available: http://dx.doi.org/10.1109/CCGrid.2015.86

[60] H. Zhu and I. Bayley, “An algebra of design patterns,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 23:1–23:35, Jul. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2491509.2491517

[61] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global
Data Space, 1st ed. Morgan & Claypool, 2011. [Online]. Available:
http://linkeddatabook.com/

http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
https://provenance.ecs.soton.ac.uk/prov-template-2014-06-07/
https://provenance.ecs.soton.ac.uk/prov-template-2014-06-07/
http://eprints.soton.ac.uk/365559/
http://eprints.soton.ac.uk/393117/
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
http://eprints.ecs.soton.ac.uk/17450/
https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf
https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf
http://eprints.soton.ac.uk/361113/
http://dx.doi.org/10.1016/j.websem.2006.11.003
ftp://ftp.research.microsoft.com/pub/debull/A07dec/wang-chiew.pdf
ftp://ftp.research.microsoft.com/pub/debull/A07dec/wang-chiew.pdf
http://dx.doi.org/10.1561/1900000006
http://www.ecs.soton.ac.uk/~lavm/papers/tpds09.pdf
http://arxiv.org/abs/1502.02403
https://www.usenix.org/conference/tapp15/workshop-program/presentation/mcphillips
https://www.usenix.org/conference/tapp15/workshop-program/presentation/mcphillips
http://dx.doi.org/10.1007/978-3-319-16462-5_2
http://doi.acm.org/10.1145/1376616.1376715
http://doi.acm.org/10.1145/1376616.1376715
http://dx.doi.org/10.1016/j.jbi.2016.10.022
http://dx.doi.org/10.1016/j.jbi.2016.10.022
http://www.sciencedirect.com/science/article/pii/S0167739X1500031X
http://www.sciencedirect.com/science/article/pii/S0167739X1500031X
http://eprints.soton.ac.uk/364726/
http://dx.doi.org/10.1002/cpe.1232
http://dx.doi.org/10.1145/2435349.2435390
http://dx.doi.org/10.1002/cpe.v20:5
http://www.isi.edu/~gil/papers/garijo-gil-lisc12.pdf
http://vcvcomputing.com/provone/provone.html
http://vcvcomputing.com/provone/provone.html
http://www.sciencedirect.com/science/article/pii/S1570826815000049
http://www.sciencedirect.com/science/article/pii/S1570826815000049
http://dx.doi.org/10.1109/CCGrid.2015.86
http://doi.acm.org/10.1145/2491509.2491517
http://linkeddatabook.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[62] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web
revisited,” IEEE Intelligent Systems, vol. 21, no. 3, pp. 96–101, May
2006. [Online]. Available: http://dx.doi.org/10.1109/MIS.2006.62

[63] S. Brockmans, R. M. Colomb, P. Haase, E. F. Kendall, E. K.
Wallace, C. Welty, and G. T. Xie, “The 5th international semantic
web conference (iswc’06).” Springer, 2006, pp. 187–200. [Online].
Available: http://dx.doi.org/10.1007/11926078_14

[64] T. D. Huynh and L. Moreau, “ProvStore: a public provenance
repository,” in 5th International Provenance and Annotation
Workshop (IPAW’14), June 2014, pp. 275–277. [Online]. Available:
http://eprints.soton.ac.uk/365509/

Luc Moreau is Professor of Computer Sci-
ence and head of the Web and Internet Sci-
ence group, in the Department of Electronics
and Computer Science, at the University of
Southampton. Luc is a leading figure in the area
of data provenance. He was co-chair of the W3C
Provenance Working Group that produced the
PROV recommendations. He is co-investigator
of the ORCHID, SOCIAM, SmartSociety, and
eBook projects.

Belfrit Victor Batlajery is a PhD student in
the Web and Internet Science group, in the
Department of Electronics and Computer Sci-
ence at the University of Southampton. He com-
pleted his Master Degree in Business Informat-
ics and has interests in Provenance and Seman-
tic Web. His undergoing PhD project is about
Food Provenance where he investigates the role
of provenance to support due diligence in the
food industry.

T Dong Huynh is a researcher in the Web and
Internet Science group, in the Department of
Electronics and Computer Science, at the Uni-
versity of Southampton. He has extensive ex-
perience in the areas of trust, reputation and
provenance. Dong pioneered the provenance
network analytics method to classify data based
on their provenance. He led the development
of PICASO, CollabMap, and ProvStore and is
the main author of PROV-JSON and the PROV
Python package.

Danius Michaelides is a researcher in the Web
and Internet Science group. His research in-
terests include eScience, distributed computing,
distributed information management and Se-
mantic Web technologies. He is currently work-
ing on a project funded by the UK’s Economic
and Social Research Council to build novel tools
for training and research in quantitative social
science, including the EBook application.

Heather Packer is a Research Fellow in the
Web and Internet Science group, in the Depart-
ment of Electronics and Computer Science at
the University of Southampton, where she also
obtained her doctoral degree in Computer Sci-
ence for algorithms for the automatic genera-
tion of lightweight ontologies for task focused
domains. In the SmartSociety project, she is fo-
cusing on provenance, reputation, transparency
and accountability, in particular in Smartshare.

http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1007/11926078_14
http://eprints.soton.ac.uk/365509/
https://provenance.ecs.soton.ac.uk/picaso/
http://www.collabmap.org/
https://provenance.ecs.soton.ac.uk/store/

	Introduction
	Provenance Applications and Example
	Four Provenance-Enabled Applications
	Smartshare
	Food
	EBook
	PICASO

	An Example of Template
	Bindings and Template Expansion
	The Difficulty of Generating Provenance Without Template

	Architectural Overview
	Template, Binding, Template Expansion
	Template Definition
	Simple Set of Bindings
	Simple Name Replacing in Templates
	Linked Names
	Complex Sets of Bindings and Template Expansion

	Quantitative Evaluation
	Bindings Generation
	Ease and Performance of Generation
	Abstract Bindings Creation
	Concrete Bindings Creation
	Converting Tabular Values
	Bindings Fragments

	Support for Checks

	Practical Experience
	Templates and Bindings Granularity
	Benefit 1: Separation of Responsibilities
	Benefit 2: Maintenance
	Benefit 3: Runtime and Static Checks
	Benefit 4: Provenance Consumption

	Related Work
	Coarse-Grained and Fine-Grained Provenance
	Provenance: Instrumentation, Logging, Reconstructing, Compacting
	Provenance Templates and Views
	Software Engineering and Meta Models

	Conclusion and Future Work
	References
	Biographies
	Luc Moreau
	Belfrit Victor Batlajery
	T Dong Huynh
	Danius Michaelides
	Heather Packer

