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Abstract 

Purpose of review 

In multiple studies, the high-density lipoprotein cholesterol (HDL-C) concentration has been shown to 

be inversely associated with cardiovascular disease (CVD) and CVD risk. Based on this observation, 

increasing the plasma HDL-C concentration is thought to be a desirable strategy, in the 21st century, 

for decreasing the burden of CVD.  

Recent findings 

Recent studies have shown that powerful HDL-C concentration-increasing drugs are ineffective for 

decreasing CVD. Increasing evidence now shows that HDL is an unstable and heterogeneous particle, 

and that “HDL particle functionality” is far more important in atheroprotection than is the HDL-C 

level, alone. Apolipoprotein A-I (ApoA-I) is the major protein component of HDL and increasing 

evidence suggests that the ratio of HDL-C to apoA-I may give additional insight as a risk marker not 

just for CVD but also for all-cause and cancer mortality.  

Summary  

In this review, we discuss the importance of HDL composition, apoA-I levels, and the HDL-C/apoA-I 

ratio for predicting CVD and mortality outcomes. 
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Introduction 

Numerous studies have shown an inverse relationship between the concentration of high-density 

lipoprotein cholesterol (HDL-C) and the risk of coronary heart disease [1-3]. Based on these 

observations, raising plasma HDL-C levels may protect against cardiovascular disease (CVD): the 

increase in HDL-C concentration may reflect the body’s capacity to return peripheral tissue 

cholesterol to the liver for elimination. However, recent studies have questioned this association; these 

studies showed that agents that inhibit the cholesterol ester transfer protein (CETP) markedly increase 

HDL-C concentrations, but fail to show any decrease in cardiovascular events [4,5]. The reason for 

the failure of these agents to reduce cardiovascular events is uncertain, but these results have focused 

attention on identifying the key component or function of HDL that confers cardiovascular protection. 

In attempting to address this issue, recent studies have suggested that the HDL lipoprotein is an 

unstable and heterogeneous particle, and that “HDL particle functionality” is far more important in 

atheroprotection than the HDL-C level, alone [6].  

The protein component of HDL is 70% apolipoprotein A-I (apoA-I) and 20% apolipoprotein A-II 

(apoA-II) [7]. HDL lipoprotein particles are heterogenous in size, charge, lipid and proteomic 

composition, metabolism and function. Consequently, alternative indices of the lipoprotein besides 

HDL-C, such as HDL function, size or composition of HDL particles may be better clinical markers 

of the physiological role of HDL particles. Recently, the HDL-C/apoA-I ratio was shown to be 

associated with preclinical atherosclerosis and mortality [8,9]. In this review, we discuss recent 

evidence obtained from intervention studies that have tested the effect of increasing HDL-C levels on 

clinical outcomes. We also discuss the relationship between HDL composition and CVD, and the 

clinical implications of the HDL-C/apoA-I ratio on CVD risk prediction.  

 

Dysfunctional HDL and atherosclerosis  

HDL comprises a heterogenous group of particles that differ in size, density, composition of lipids and 

apolipoproteins and electrophoretic mobility. α-HDL is the most abundant HDL in human plasma, 

whereas pre-β-HDL represents only 2-14% of the apoA-I population [10,11]. HDL metabolism 

involves at least 5 important steps. First, apoA-I, secreted by the liver and intestine, combines with 

phospholipids to form small, discoidal pre-β-1-HDL that can bind to cholesterol. Second, pre-β-HDL 

is converted into small, discoidal α-4-HDL by the efflux of cellular free cholesterol from macrophages 

into the arterial wall via ATP-binding cassette (ABC)A1 and ABCG1 transporters. Third, lecithin-

cholesterol acyl transferase (LCAT) esterifies the cholesterol. Fourth, the triglyceride (TG) from TG-

rich lipoprotein is exchanged for the HDL cholesterol ester (CE) through the functioning of CETP, 



resulting in the formation of pre-α-HDL (reverse cholesterol transfer). Lastly, the liver takes up CE 

from HDL and apoA-I and the remaining pre-β-HDL is catabolized and excreted by the kidney [12].  

Among the two membrane transporters implicated in cholesterol transport from macrophages, that is, 

ABCA1 and ABCG1, ABCA1 exports cholesterol to lipid-free apoA-I, whereas ABCG1 mediates 

cholesterol efflux to mature HDL, but not to lipid-free apoA-I [13,14]. ABCA1 and ABCG1 function 

cooperatively to remove cholesterol from cells in vitro, and dysfunction of these two transporters 

impairs reverse cholesterol transport and increases macrophage cholesterol accumulation in vivo [15] 

In a study by Du et al.,using reconstituted HDL particles of defined size and composition, they 

showed that ABCA1 is the major mediator of macrophage cholesterol efflux to HDL, demonstrating 

most marked efficiency with small, dense HDL subfrations (HDL3b and HDL3c) [16]. 

Nearly 20 years ago, the conversion of HDL from an anti-inflammatory particle to a 

proinflammatory particle was suggested to occur during the acute-phase response [17]. The data used 

to make this suggestion were obtained by measuring the capacity of a ‘test’ HDL to inhibit monocyte 

chemotaxis induced by oxidized LDL. Patients with coronary heart disease (CHD) showed 

significantly higher levels of this ‘inflammatory index’ than did control patients [18]. In contrast to the 

anti-inflammatory HDL particle, the proinflammatory particle was characterized by an altered protein 

composition that contained increased levels of ceruloplasmin and serum amyloid A (SAA), and 

decreased levels of apoA-I, PON, and PAF-AH [17].  

Overexpression of LCAT, in a mouse model, increased the risk of atherosclerosis despite increased 

plasma HDL-C and apoA-I levels [19]. A subsequent report showed that in the absence of CETP and 

LCAT-generated HDL cholesterol esters cannot be transferred to TG-rich lipoproteins, resulting in the 

formation of HDL particles with altered composition and function [20]. Thus, distinguishing between 

loss of HDL function and increased HDL dysfunction may be important.  

 The anti-inflammatory and antioxidative activities of HDL can be impaired due to the accumulation 

of HDL particles containing oxidized phospholipids, which possess proinflammatory properties. In a 

proteomics study involving patients with acute coronary syndrome (ACS), HDL particles had higher 

levels of SAA, complement C3, and other inflammatory proteins, compared with HDL particles from 

individuals without ACS [21]. In an analysis of the Nurses’ Health and Health Professionals Follow-

Up Studies, the presence or absence of apoC-III in an HDL subfraction identified patients with and 

without a risk of future CHD [22]. Therefore, these results suggest that the alteration of HDL 

composition may be key to HDL’s atheroprotective role. 

 

HDL/apoA-I oxidation and composition in inflammation 



Myeloperoxidase (MPO), a heme protein highly expressed in human atherosclerotic tissue, is able to 

modify lipids, proteins, and lipoproteins [23,24]. Oxidation of apoA-I by MPO, results in increased 

oxidation of multiple residues. In turn, oxidative damage to HDL-associated lipid-poor apoA-I in the 

arterial wall might decrease the capacity of HDL/apoA-I to mediate cholesterol efflux from 

macrophages, thus promoting atherosclerosis development [25,26]. In addition to MPO-induced 

oxidation of apoA-I, HDL also undergoes substantial modification during the inflammatory response. 

Further, the circulating levels of HDL and apoA-I are markedly decreased during the inflammatory 

acute-phase response; HDL particles become enriched in TG and depleted of cholesteryl esters [27].  

 During the acute-phase response, SAA might associate with spherical HDL particles, resulting in the 

displacement of apoA-I [28]. SAA might also reduce the levels of HDL-C by inhibiting the formation 

of nascent HDL [29]. Cytokines are known to increase hepatic SAA expression, and the secreted SAA 

is associated with HDL, thereby comprising the major protein of HDL [30]. SAA and apoA-I levels 

seem to be reciprocally regulated in the liver by inflammatory cytokines, suggesting the substitution 

of apoA-I by SAA during the acute-phase response.   

 Other mechanisms that affect HDL composition during inflammation are suggested by the loss of 

HDL-associated PON and PAF-AH, reduced HDL function, and an increased rate of apoA-I 

catabolism via phospholipase A2 [17,31].  

 

Clinical implications of the HDL-C/apoA-I ratio 

Decreased HDL-C and apoA-I concentrations are known to be associated with an increased risk of 

CVD. The association between low HDL-C concentrations and increased CVD risk being mediated 

through other factors, such as insulin sensitivity, HDL particle size, apoA-I content, or the ratio of 

lipid to apoA-I within the HDL particle, and affecting HDL function is plausible [32]. Pre-β-HDL and 

lipid-poor apoA-I particles are synthesized and secreted from both the liver and intestine, and pre-β-

HDL particles can bind to the hepatic and enterocyte ABCA1 transporters and modulate intracellular 

cholesterol levels in the liver and intestine [33]. These results support data showing that the ratio of 

lipid to apoA-I within the HDL particle may affect HDL function [34]. High TG and low HDL-C 

levels are well-known to increase CVD risk; however, data are limited from studies describing the 

association of HDL-C levels with CVD risk after adjusting for other CV risk factors, such as levels of 

apoA-I or other atherogenic lipoproteins [35]. In addition, functional studies that have dynamically 

assessed HDL function and CVD are very limited.  

Borja et al recently developed a rapid and precise assay employing electron paramagnetic resonance 

spectroscopy that measures the relative rate of HDL-apoA-I exchange (HAE). HAE provides a 



measure of the ability of HDL to remodel and release lipid-poor apoA-I [36,37]. The ratio of lipid-free 

to lipid-bound apoA-I measured by this assay provides a measure of the relative exchangeability of 

endogenous apoA-I and the dynamic nature of HDL particles. HAE is known to be impaired in 

patients with CVD [37]. In this study, they found that HAE was highly correlated with both total and 

ABCA1-specific cholesterol efflux capacity, and this relationship remained significant after 

adjustment for HDL-C or apoA-I in 77 subjects, concluding that the ability of HDL to exchange 

apoA-I and remodel is a significant contributor to serum HDL efflux capacity, independent of HDL-C 

and apoA-I per se [38]. 

In our previous studies investigating the association between HDL-C concentrations and coronary 

artery calcium scores (CACs) (marker of pre-clinical atherosclerosis) and all-cause mortality, we 

evaluated associations with the HDL-C/apo A-I ratio [8,9]. The purpose of controlling for apoA-I 

levels was to investigate the influence of varying the HDL-C to apoA-I ratio. In a cross-sectional 

study of 12,031 men from an occupational cohort, computed tomographic estimations of their CAC 

score (CACS) resulted in the stratification of the men into four groups according to their HDL-C 

levels [8]. The proportion of men with CACS > 0 decreased linearly from the 1st to 4th HDL-C quartile 

groups (13.9, 11.1, 10.4, and 9.7%; p < 0.001). When regression analyses were undertaken with CAC 

as the dependent variable, the odds ratio (OR) for CAC were significantly lower in the 2nd to 4th 

quartile groups, compared with the lowest quartile group. However, when apoA-I was included in the 

model, there was a marked change in the direction of the relationship, with a positive association 

between HDL-C concentration and CACS > 0. When the OR for CACS > 0 was analyzed according 

HDL-C/apoA-I ratio quartile groups, those in the highest HDL-C/apoA-I quartile showed an increased 

OR of CACS > 0 (1.21; 95% confidence interval, 1.06-1.63). In contrast, when the OR for CACS > 0 

was analyzed by apoA-I quartile group, those in the highest quartile group showed a significantly 

decreased OR compared with the lowest quartile group, and the results were not materially altered by 

adjusting for HDL-C level.  

 In another study by our group, involving 263,340 people (2002-2009), the association between risk 

of CVD-related, cancer-related, and all-cause mortality was analyzed according to HDL-C levels, 

apoA-I levels, and HDL-C/apoA-I ratios [9]. Although HDL-C level did not show a significant 

association with mortality risk, the apoA-I level was inversely associated with cancer mortality, after 

adjusting for risk factors. In addition, in the highest HDL-C/apoA-I quartile a significantly increased 

risk for CVD-related, cancer-related, and all-cause deaths was observed.   

These results suggest that the apoA-I level, rather than the HDL-C level, is important in affecting 

subclinical atherosclerosis and mortality. Furthermore, we suggest that an increased HDL-C/apoA-I 

ratio may be a surrogate marker for subclinical atherosclerosis and an increased mortality risk. The 



conceptual model of dividing the HDL-C concentration by the apoA-I concentration may reflect a 

variation in the amount of cholesterol per HDL particle. Our findings suggest that individuals with 

cholesterol-rich HDL particles (those with high HDL-C/apoA-I ratios) have an increased risk of 

subclinical atherosclerosis and mortality (Figure 1). In contrast, individuals with lipid-poor HDL 

particles (a low HDL-C/apoA-I ratio) have a lower prevalence of subclinical atherosclerosis and 

mortality. This suggests that cholesterol-poor HDL particles have a better capacity to accept 

cholesterol from peripheral tissues than do cholesterol-rich HDL particles, which have a limited 

capacity to accept more cholesterol and thereby increasing the risk of atherogenesis. These 

suggestions are supported by other data showing that HDL quality, rather than quantity, is important. 

In addition, lifestyle modifications and strategies for improving metabolic abnormalities may be great 

options for altering the HDL-C/apoA-I ratio (Figure 1). Also, studies have shown that selective 

delipidation procedures convert large HDL particles into small particles resembling small α, pre-β-1, 

and other pre-β forms, increasing the efficacy of plasma to stimulate cholesterol transfer from 

monocytes to HDL particles [39]. These studies also showed that selective HDL delipidation activates 

reverse cholesterol transport and tends to reduce diet-induced aortic atherosclerosis in monkeys, as 

assessed by intravascular ultrasound (IVUS).  

Previously reported studies show results similar to ours. The Prospective Epidemiological Study of 

Myocardial Infarction reported the absence of an association between HDL-C concentration and 

myocardial infarction, after adjusting for apoA-I, LDL-C, and TG levels [40]. In the Atherosclerosis 

Risk in Communities study, HDL-C levels were negatively associated with CVD risk following 

adjustment for apoA-I and apoB levels [41]. In another study, a post-hoc analysis of two prospective 

studies suggested that when apoA-I levels were kept constant in statistical models, a high HDL-C 

concentration and an increased HDL particle size conferred increased CVD risk [42].  

As for the implications of HDL-C/apoA-I ratio on clinical outcome, in 2,566 statin-treated patients 

with angiographic coronary artery disease who underwent serial evaluation of atheroma burden with 

IVUS, increasing ratio of HDL-C/apoA-I, but not HDL-C or apoA-I, showed association with less 

progression of percent atheroma volume and total atheroma volume [43]. In another study performed 

in 2,529 Chinese patients who underwent elective percutaneous coronary intervention (PCI), U-

shaped association was seen between quintiles of postprocedural peak cardiac troponin I elevation and 

HDL-C/apoA-I ratio, showing the lowest risk in the middle quintile of HDL-C/apoA-I ratio, although 

the mechanism for this association is still unclear [44].  

Recently, a mechanism for apoA-I-mediated atheroprotection was proposed, suggesting that apoA-I 

stimulates CETP and apoE secretion from lipid-loaded macrophages. ApoA-I has been shown to 

attenuate palmitate-mediated NF-κB activation by reducing Toll-like receptor-4 recruitment into lipid 



rafts. Therefore, targeting apoA-I overexpression might be a useful tool for combatting vascular 

inflammation [45]. A recently published results from AEGIS-I, a phase 2b clinical which evaluated 

the safety profile of CSL112, a reconstituted infusible formulation of apoA-I among subjects with 

acute myocardial infarction (AMI) [46]. Among 1,258 patients with AMI, 4 weekly infusions of 

CSL112 were feasible, well tolerated, and not associated with any significant alterations in liver of 

kidney function of other safety concern. The ability of CSL112 to acutely enhance cholesterol efflux 

was confirmed. Together with our results, these results emphasize that the apoA-I concentration is a 

better surrogate marker of CVD risk; we suggest that strategies for increasing apoA-I levels would 

reduce CVD risk and prevent CVD. In addition, HDL-C/apoA-I ratio could be considered as the novel 

surrogate marker for the prediction of the subjects with high CVD risk. 

 

Conclusion 

 In conclusion, our data and those of others suggest that the HDL-C/apoA-I ratio may be a novel 

surrogate marker for an increased risk of CVD, and all-cause and cancer mortality. Further work is 

needed to test the effect of this ratio in risk prediction studies. We suggest that an increased HDL-

C/apoA-I ratio may reflect cholesterol-rich HDL particles that have an impaired capacity to accept 

additional excess cholesterol from peripheral tissues and developing atherosclerotic plaques.  

 

Key points 

 Increasing evidence now shows “HDL particle functionality” is far more important in 
atheroprotection than is the HDL-C level, alone.  

 Apolipoprotein A-I (ApoA-I) is the major protein component of HDL  

 HDL-C to apoA-I ratio may give additional insight as a risk marker not just for CVD but also for 
all-cause and cancer mortality. 
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Figure 1. The clinical implication of HDL-C/ApoA-I ratio 

 


