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Highlights 30 

• When matched for nitrate content both beetroot juice and chard gels, known to 31 

be rich in nitrate, increased plasma nitrate and nitrite concentrations and 32 

reduced blood pressure to a similar extent. 33 

• Inter-individual variability to reach maximal plasma nitrite levels was 34 

considerable and should be taken into account when utilizing acute dietary 35 

nitrate supplementation. 36 

• Plasma concentrations of total nitrosated products were higher with beetroot 37 

juice than with chard gel despite comparable nitrate content. 38 

 39 

Abstract 40 

Dietary supplementation with inorganic nitrate (NO3
-) has been shown to induce a 41 

multitude of advantageous cardiovascular and metabolic responses during rest and 42 

exercise. While there is some suggestion that pharmacokinetics may differ depending 43 

on the NO3
- source ingested, to the best of our knowledge this has yet to be 44 

determined experimentally. Here, we compare the plasma pharmacokinetics of NO3
-, 45 

nitrite (NO2
-), and total nitroso species (RXNO) following oral ingestion of either 46 

NO3
- rich beetroot juice (BR) or chard gels (GEL) with the associated changes in 47 

blood pressure (BP). Repeated samples of venous blood and measurements of BP 48 

were collected from nine healthy human volunteers before and after ingestion of the 49 

supplements using a cross-over design. P lasma concentrations of RXNO and NO2
- 50 

were quantified using reductive gas-phase chemiluminescence and NO3
- using high 51 

pressure liquid ion chromatography. We report that, [NO3
-] and [NO2

-] were increased 52 

and systolic BP reduced to a similar extent in each experimental arm, with 53 

considerable inter-individual variation. Intriguingly, there was a greater increase in 54 
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[RXNO] following ingestion of BR in comparison to GEL, which may be a 55 

consequence of its higher polyphenol content. In conclusion, our data suggests that 56 

while differences in circulating NO2
- and NO3

- concentrations after oral 57 

administration of distinct NO3
--rich supplementation sources are moderate, 58 

concentrations of metabolic by-products may show greater-than-expected variability; 59 

the significance of the latter observation for the biological effects under study remains 60 

to be investigated.  61 

Key Words: nitrite, nitric oxide, dietary supplementation, blood pressure  62 

 63 

1. Introduction  64 

Dietary nitrate (NO3
-) supplementation has been demonstrated to positively influence 65 

parameters of exercise performance (2, 25, 36) and vascular health (26, 27, 50, 54). 66 

These effects have been achieved utilizing a variety of different vehicles for NO3
- 67 

delivery, including simple sodium (28) or potassium salts (23), NO3
--rich foods (44), 68 

concentrated beetroot juice (BR) (58), and chard gel (GEL) (37, 38). These studies 69 

have consistently shown that circulating plasma [NO3
-] and nitrite ([NO2

-]) 70 

concentrations are increased following ingestion of NO3
- supplements. Whilst the 71 

biological consequences of dietary NO3
- administration are not fully understood at 72 

present, it is known that NO3
- can be reduced to NO2

-, which is believed to be 73 

subsequently further converted to bioactive nitric oxide (NO) (1, 31). The entero-74 

salivary circulation plays a vital role in NO homeostasis with ∼25% of all circulating 75 

NO3
- taken up by the salivary glands and concentrated in the saliva (51). The 76 

reduction of NO3
- to NO2

- takes place in the oral cavity where commensal facultative 77 

anaerobic bacteria on the surface of the tongue reduce NO3
- to NO2

- via NO3
- 78 
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reductase enzymes (12, 29). Once swallowed, NO2
- reaches the stomach where a 79 

proportion is then converted to NO, with the remainder being absorbed into 80 

circulation via the intestinal tract (3, 32, 33).  81 

It is well-established that increases in plasma [NO3
-] and [NO2

-] following dietary 82 

NO3
- supplementation occur in a dose-dependent manner (4, 19, 21, 23, 58, 59), 83 

however the influence of the vehicle, if any, is less certain. Several studies have 84 

reported that plasma [NO3
-] and [NO2

-] -] reaches maximal quantities at ~ 1‒1.5 h and 85 

2.5‒3h, respectively, after ingestion of BR (23, 35, 54, 58). Recent work from our 86 

laboratory has shown that consuming GEL results in similar plasma NO3
- 87 

pharmacokinetics but plasma [NO2
-] reaches maximal levels more quickly (~1.5 h) 88 

after ingestion (37). It is currently unclear whether the variance in NO2
- 89 

pharmacokinetics between BR and GEL is simply due to the vehicle of administration 90 

or profoundly influenced by inter-cohort differences in the response to NO3
- 91 

supplementation. Understanding if the vehicle of NO3
- supplementation affects the 92 

fate of NO-related metabolites may allow for the optimization of dosing strategies for 93 

sports performance and other contexts.  Therefore, the purpose of this study was to 94 

compare the effects of ingesting BR and GEL on plasma NO metabolite 95 

pharmacokinetics and blood pressure (BP) pharmacodynamics in healthy individuals.  96 

 97 

2. Methods 98 

2.1 Participants 99 

Nine healthy adult males (age 28 ± 4 years, stature: 181 ± 8 cm, body mass: 83.4 ± 100 

10.4 kg) volunteered to take part in the study, which was approved by the School of 101 

Science and Sport Ethics Committee of the University of the West of Scotland. All 102 
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participants provided written informed consent and a medical questionnaire before the 103 

study began. Healthy males between the ages of 18 and 45 who were physically active 104 

(taking part in recreational activity a minimum of 3 times per week) were eligible to 105 

participate in the study. Participants were excluded if they were currently taking 106 

dietary supplements or any medication, regularly used mouthwash, were smokers, had 107 

a current illness or virus within the previous month, had a known disorder or history 108 

of disorders of the hematopoietic system, were hypertensive (≥140/90 mmHg) or had 109 

a family history of premature cardiovascular disease. All procedures were conducted 110 

in accordance with the Declaration of Helsinki. 111 

 112 

2.2 Experimental Design 113 

Our study had a simple randomized cross-over design. Participants visited the 114 

laboratory on two separate occasions with a minimum 7-day washout period and a 115 

maximum of 14 days between visits. Participants consumed either concentrated BR 116 

(Beet It Organic Shot, James White Drinks, Ipswich, UK) or GEL (Science in Sport, 117 

GO+ Nitrates, Lancashire, UK) during each trial. 118 

 119 

Participants were asked to refrain from the consumption of alcohol, caffeine, NO3
- 120 

rich foods as outlined by Hord and colleagues (22), and to avoid any strenuous 121 

exercise for 24 h before each trial. Participants were also asked to refrain from the use 122 

of anti-bacterial mouthwash and chewing gum for the duration of the study as they 123 

have been shown to disturb the oral bacterial flora required for the conversion of NO3
- 124 

to NO2
- in the saliva (17, 41). Compliance to these factors was determined at the start 125 

of each visit. 126 
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 127 

Following a 12 h overnight fast, participants reported to the lab in the morning where 128 

they were asked to void the contents of their bladder and lie supine on a medical bed. 129 

After 15 min, BP was determined using an automated sphygmomanometer (Omron 130 

M10, Kyoto, Japan) three times, at 1 min intervals. A cannula was then inserted into 131 

the antecubital vein of the arm or a superficial vein on the dorsal surface of the hand 132 

and the line was kept patent by regular flushing with intravenous 0.9% saline solution. 133 

A sample of venous blood was then collected in a vacutainer containing EDTA and 134 

immediately centrifuged at 4000 rpm at 4oC for 10 min (Harrier 18/80, MSE, UK). 135 

The plasma was extracted carefully ensuring the cell layer was not disturbed and 136 

immediately frozen at -80oC for later analysis of plasma [NO3
-], [NO2

-], and total 137 

nitrosospecies [RXNO]. Participants then ingested either the BR or GEL supplements 138 

within 1 min of pre supplementation blood sampling.  The GEL supplement 139 

comprised 120 ml of peach flavored sports gel containing 500 mg of NO3
- from 140 

natural chard and rhubarb sources. In the BR trial, participants ingested 117 ml of 141 

concentrated BR that also contained 500 mg of NO3
-. The NO3

- content of the 142 

supplements was later verified using high-pressure liquid ion chromatography 143 

(section 2.3).   144 

 145 

As outlined in Fig. 1 venous blood samples were collected simultaneously with 146 

measurements of BP pre-supplementation then at 1, 1.5, 2, 2.5, 3, 3.5 and 6 h post-147 

ingestion of each supplement. The measurement of BP was carried out in triplicate, 148 

with the measurement being performed as close as possible to blood draw. The BP 149 

Cuff was placed on the opposite arm to the cannula. Participants remained supine 150 
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from the first blood sample until the 3.5 h sample, after which they were allowed to 151 

sit at a desk, returning 30 min before the final sample. During the experimental trials, 152 

participants were provided with standardized meals, which had a low NO3
- content. 153 

Specifically, participants consumed a cereal bar after 1.5 h and a cheese sandwich 3.5 154 

h after ingestion of BR or GEL. Participants were provided with ad libitum access to 155 

tap water.  The volume consumed in trial 1 was recorded and kept consistent for trial 156 

2.  157 

 158 

2.3 Additional Experimental Arm 159 

The aforementioned procedures were conducted to address the primary objective of 160 

this experiment whereby doses of GEL and BR matched for NO3
- content were 161 

compared. Whereas the dose of GEL used in this experiment comprised two full gels 162 

as provided by the manufacturer (2 x 60g), 23 ml of BR was removed from one 70 ml 163 

bottle to ensure a matched NO3
- content. Given that both researchers and end-users are 164 

more likely to utilize the full 140 ml (e.g. (21, 58) the dose of BR used in this 165 

experiment was considered to be lacking in ecological validity. To this end, eight of 166 

the participants completed an additional experimental trial where they received 140 167 

ml of BR (600 mg of NO3
-, H-BR) with the procedures repeated as previously 168 

described.  169 

 170 

2.4 Analysis of Plasma NO Metabolites 171 

High-pressure liquid ion chromatography was used to determine plasma [NO3
-] and 172 

[NO2
-]. Due to high variability in the NO2

- measurements, which may relate to lack of 173 

specific sample processing without addition of N-ethylmaleimide prior to 174 
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centrifugation, the NO2
- data were re-analyzed using chemiluminescence and the latter 175 

was used in all calculations. Gas-phase chemiluminescence was used to determine 176 

plasma [RXNO].  Samples were thawed at room temperature in the presence of 5 mM 177 

N-ethylmaleimide and subsequently analyzed using an automated NOx detection 178 

system (Eicom, ENO-20, Kyoto, Japan, combined with a Gilson auto-sampler for 179 

[NO3
-])(46) and a NO analyzer (Sievers NOA 280i, Analytix, UK for [NO2

-] and CLD 180 

77AM sp, ECOphysicis, Durnten, Switzerland for [RXNO]) in conjunction with a 181 

custom-designed reaction chamber. NO2
- levels were determined using 1% potassium 182 

iodide in 5ml glacial acetic acid at room temperature for reduction of NO2
- to NO 183 

(42); RXNO levels were determined using the triiodide method (13). All samples 184 

were analyzed within 3 months of sample collection in order to minimize degradation 185 

of NO metabolites.  186 

 187 

2.5 Data Analysis 188 

All analyses were carried out using the Statistical Package for the Social Sciences, 189 

Version 22 (SPSS Inc., Chicago, IL, USA) or GraphPad Prism version 6 (GraphPad 190 

Software Inc., San Diego, USA) for kinetic analyses. For brevity, data from the 191 

additional H-BR trial are not displayed in figures. The sample size was determined a 192 

priori using a power calculation which revealed that a minimum of eight participants 193 

was required to detect differences in the time taken for NO2
- to peak between GEL and 194 

BR conditions. To establish the time to reach maximal [NO2
-] and [NO3

-] a log 195 

(Gaussian) non-linear regression model was applied to the data using the following 196 

equation: 197 

 Y=Amplitude*exp(-0.5*(ln(X/Center)/Width)^2). 198 
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Data are expressed as the change in the mean (Δ) ± standard error of the mean 199 

(S.E.M) as compared to baseline or the mean and 95% confidence interval (CI) for 200 

time to reach maximal values. The distribution of the data was tested using the 201 

Shapiro-Wilk test. A two-way repeated-measures ANOVA was used to examine the 202 

differences between condition and over time for plasma NO3
-, NO2

-, RXNO, and BP. 203 

Post-hoc analysis to determine the difference from the baseline was conducted using a 204 

paired samples t-tests with Bonferroni correction. Statistical significance was declared 205 

when P < 0.05.  206 

 207 

3. Results and Discussion 208 

Plasma [NO3
-] and [NO2

-] at baseline amounted to 26 ± 5.7 µM NO3
=, 95 ± 31.9 nM 209 

NO2
- for BR and 33 ± 3.4 µM NO3 -and 25 ± 6.7 nM NO2

- for GEL. As expected, oral 210 

NO3
- supplementation significantly increased plasma [NO3

-] and [NO2
-] in each 211 

experimental arm (P < 0.001) (Δ [NO3
-] with BR: 319.4 ± 32.1 µM, with GEL: 383.9 212 

± 35.7 µM, Fig. 2; Δ [NO2
-] with BR: 205.4 ± 51.9 nM, with GEL: 207.4 ± 58.1 nM, 213 

Fig. 3). The magnitude of the increase, however, was not different between BR and 214 

GEL (P > 0.10). In the H-BR arm, [NO2
-] and [NO3

-] increased to a greater extent 215 

than BR and GEL (Δ [NO2
-] 277 ± 161 nM, Δ [NO3

-] 457 ± 22 µM, both P < 0.01). 216 

Following ingestion of BR, [NO2
-] reached maximal values at 3 h (95%CI 2.1 ‒ 3.9 217 

h), which was not different to GEL (2.8 h, 95%CI 2.3 ‒ 3.2 h, P = 0.739). Likewise, 218 

the time taken for plasma [NO3
-] to reach maximal concentrations was not different 219 

between BR and GEL (BR: 1.4 h 95%CI 0.8 ‒ 1.9 h, GEL: 1.4 h 95%CI 0.7 ‒ 2.1 h, P 220 

= 0.737). In the H-BR arm, [NO2
-] and [NO3

-] reached maximal concentration in the 221 

plasma after 3.2 h (95%CI 2.1 ‒ 4.2 h) and 1.5 h (95%CI 0.9 ‒ 2.1 h), respectively. 222 
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These data collectively suggest that the vehicle of delivery, be it liquid or gel, does 223 

not impact the kinetics of the reduction of NO3
- to NO2

- or the maximal plasma 224 

concentrations of these metabolites. Nevertheless, it remains to be established 225 

whether NO3
- supplementation in solid forms, such as whole vegetables or 226 

concentrated BR flapjacks, results in different NOx pharmacokinetics.  227 

 228 

In the present study, plasma [NO2
-] and [NO3

-] reached maximal quantities within a 229 

similar timeframe to previous research with BR (19, 29, 40, 43). However, on this 230 

occasion [NO2
-] took substantially longer after GEL (2.8 h) compared with our own 231 

previous work (1.5 h) (37). Given that descriptive and anthropometric variables were 232 

similar between the two study cohorts, it seems likely that physiological variations 233 

between individuals may account for these differences in time. Although plasma 234 

[NO2
-] is likely to be substantially elevated in most individuals 2.5 h after ingestion of 235 

either BR or GEL, the peak may reasonably occur anywhere between 2.1 and 3.9 h. 236 

To further highlight this Figure 4 displays the individual variability in the plasma 237 

NO2
- response to both vehicles of supplementation. Another important factor to 238 

acknowledge when comparing different studies is the methods of analysis for NO 239 

metabolites. The sensitivity of chemiluminescence and HPLC has been highlighted 240 

with factors such as sample preparation, type of analyzer used, and duration of sample 241 

storage, all potentially influencing the result acquired (8, 42).  Whilst the precise 242 

mechanisms explaining the disparity in plasma [NO2
-] pharmacokinetics between 243 

these studies are unclear, we speculate that this may at least be partially explained by 244 

variances in the gut microbiota (14), pH of oral cavity and stomach (18, 43), and 245 

differences in the composition of  the oral bacterial flora required for NO3
- reduction 246 

(11, 18). The importance of the oral microbiome for NO3
- reduction has been clearly 247 
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established, with the oral reductase capacity substantially interrupted when using anti-248 

bacterial mouthwash (5, 41, 55) or spitting of saliva following NO3
- supplementation 249 

(30, 54). Equally, physical fitness has been suggested to affect the individual response 250 

to NO3
- supplementation (18). In contrast to the direct association between endothelial 251 

NO production (as measured by plasma NO2
-) and exercise performance (47, 53). 252 

Porcelli and colleagues (45) demonstrated that there was a negative association 253 

between aerobic capacity (VO2peak) and the increase in plasma [NO2
-] following 254 

ingestion of a NO3
- supplement. Although not measured in either the present study or 255 

our previous work on NO3
- pharmacokinetics (37), it is conceivable that individual 256 

differences in physical fitness, diet, or other lifestyle habits may contribute to the 257 

between-group variation reported here and elsewhere within the literature (18). 258 

Although it has not been thoroughly investigated, it is also conceivable that oral (and 259 

gut) microbial flora changes as a result of frequent NO3
- supplementation. It has been 260 

recently demonstrated following 2 weeks of NO3
- supplementation via BR there is an 261 

increase in salivary pH suggesting a role of NO3
- supplementation in altering 262 

composition of the oral microbiome (20).   263 

 264 

Whilst the NO3
- and NO2

- responses were similar between experimental arms, an 265 

unexpected finding was that ingestion of BR tended to increase plasma [RXNO] to a 266 

greater extent in comparison to GEL (Δ in BR: 408.1 ± 127.9 nM vs. Δ in GEL: 148.1 267 

± 35.1 nM, P = 0.08, Fig. 5.). Plasma [RXNO] at baseline amounted to 79.5 ± 13.1 268 

nM for BR and 71.9 ± 10.9 nM for GEL. There was, however, a high degree of 269 

variability in the change in [RXNO] between individuals and the small sample size 270 

likely explains why this finding was not statistically significant. The increase in 271 

[RXNO] was even greater in the H-BR trial (Δ563.8 ± 116.7 nM) at 2 h post ingestion 272 
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than in GEL (P = 0.004) and BR (P=0.03). Although plasma [RXNO] is not 273 

measured routinely in NO3
- supplementation studies, the magnitude by which 274 

[RXNO] increased following BR in the present study is greater than what has been 275 

previously reported [6]. Equally surprising was that the rise in [RXNO] exceeded that 276 

of [NO2
-] following ingestion of BR. The explanation for this is presently uncertain 277 

and while differences in supplementation regimen, NO3
- dose, and study participants 278 

may explain the disparity with previous research, further work is required to explore 279 

the changes in [RXNO] and [NO2
-] following ingestion of BR. 280 

 281 

What is also unclear is why ingestion of BR increases [RXNO] to a greater extent (at 282 

least in the H-BR trial) compared to GEL. Although care was taken to match the 283 

supplements for total NO3
- content, differences in the polyphenol content between 284 

beetroot and chard may account for this outcome (24, 57). Furthermore, alongside the 285 

primary sources of NO3
- the BR supplement contained additional ingredients 286 

including lemon juice and the GEL contained rhubarb juice, gelling agents, 287 

preservatives, and flavorings. While the total antioxidant and polyphenol content of 288 

BR has been defined (56, 57) there is no comparable data on GEL. The total 289 

polyphenol content of each supplement may be important for overall NO 290 

bioavailability. Ingestion of flavonoid rich apples, for example, has been shown to 291 

increase [RXNO] in healthy adults (6), and nitrated polyphenols are formed from 292 

acidified NO2
- under simulated stomach conditions (40). Moreover, it has been shown 293 

that polyphenols augment the reduction of NO2
- to NO in the gut (48, 49). Given that 294 

S-nitrosothiols (RSNO), a component of RXNO, act as a carrier and store of NO in 295 

the blood, a polyphenol-induced increase in the bioavailability of NO may reasonably 296 

be exhibited by an increase in total nitroso products following BR. The importance of 297 
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the polyphenol content of NO3
- supplements and the role of RXNO in the translation 298 

to consequent physiological outcomes has yet to be established. However, the high 299 

polyphenol content of BR (56, 57), may explain the greater reduction in oxygen 300 

consumption following BR compared to sodium NO3
- (15). RXNOs are protected 301 

from direct NO scavenging by reactive oxygen species allowing NO to be transported 302 

by e.g. serum albumin and red blood cells (7, 52). This establishes an NO reservoir 303 

for the sustained release of NO from these biological storage forms (9, 16, 34). 304 

Potentially allowing for the targeted delivery of NO to where it is required such as 305 

sites of ischemia during exercise.  306 

 307 

Systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP) at baseline were as 308 

follows SBP: 123 ± 2 mmHg, DBP: 70 ± 1 mmHg, MAP: 88 ± 1 mmHg for BR and 309 

SBP: 124 ± 2 mmHg, DBP: 73 ± 2 mmHg, MAP: 90 ± 2 mmHg for GEL. In the 310 

present study, both BR and GEL reduced SBP and MAP (Δ SBP with BR: -10 ± 2 311 

mmHg, P < 0.001, vs. Baseline; with GEL: -12 ± 2 mmHg, P < 0.001; Δ MAP with 312 

BR: -5 ± 2 mmHg, P = 0.012 vs Baseline; with GEL:  -7 ± 2 mmHg, P = 0.010, Fig. 313 

6). The magnitude of the reductions in SBP and MAP were not different between BR 314 

and GEL (P ≥ 0.12). Neither GEL nor BR significantly altered DBP (P = 0.18) nor 315 

was there any difference between experimental arms (P = 0.197).  Likewise, SBP (Δ -316 

11 ± 2 mmHg, P < 0.001) and MAP (Δ -8 ± 3 mmHg, P < 0.001) were reduced and 317 

DBP remained unchanged from baseline in the H-BR arm. It must be acknowledged 318 

that maintenance of the supine position for a prolonged period of time also likely 319 

contributed to a reduction in BP. Without a control condition, however, it is 320 

impossible to determine the extent of this effect. Nevertheless, these findings are 321 

consistent with previous literature demonstrating that ingestion of either BR or GEL 322 
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reduces SBP and MAP among healthy individuals (23, 37, 54, 58). The response in 323 

DBP appears to be more variable, however, although several previous studies have 324 

reported comparable data (2, 10, 23). Given the data presented here, it appears that the 325 

plasma [NO3
-] and [NO2

-] mirrors acute hemodynamic response to dietary NO3
- 326 

closely. Of notable interest, however, is that the changes in [RXNO] did not appear to 327 

be associated with the magnitude of the reduction in BP. This is in contrast to work by 328 

Oplander and colleagues (39) who demonstrated that reductions in BP were 329 

associated with an increased plasma availability of RXNO but not NO2
- following 330 

exposure of the skin to ultraviolet radiation. It is conceivable, therefore, that the 331 

method by which NO bioavailability is augmented will alter the mechanisms by 332 

which BP is reduced.  333 

 334 

4. Conclusion 335 

Our data suggests that dietary NO3
- supplementation via BR and GEL elicits similar 336 

plasma [NO2
-] and [NO3

-] pharmacokinetics when examined within the same 337 

participant cohort. Likewise, both BR and GEL are capable of reducing SBP and 338 

MAP with little difference in the magnitude of these effects. Nevertheless, we here 339 

present data demonstrating that the time course of ingesting the NO3
- supplements to 340 

maximal [NO2
-] in blood plasma is profoundly variable between individuals. This is 341 

of major relevance for researchers wishing to determine the same. We also report, for 342 

the first time, that ingesting BR leads to a greater availability of RXNO compared to 343 

GEL, which we speculate may be attributed to the higher polyphenol content of the 344 

BR supplement.  345 

  346 
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Figure Captions 533 

 534 

Figure 1: Study overview: time-points for beetroot juice/chard gel administration, 535 

venous blood sampling, blood pressure measurements and food intake. 536 

Figure 2: Changes in plasma nitrate concentrations following supplementation with 537 

BR and GEL (Δ Mean ± S.E.M). * Significant difference from baseline (pre-538 

supplementation) (P < 0.001).  539 

Figure 3: Changes in plasma nitrite concentrations following supplementation with 540 

BR and GEL (Δ Mean ± S.E.M). * Significant difference from baseline (pre-541 

supplementation) 542 

Figure 4: Individual plasma nitrite pharmacokinetics and Systolic BP for BR and 543 

GEL. Each participant is represented by the same different colour in each figure.  544 

Figure 5: Changes in total nitroso species concentrations following supplementation 545 

with BR and GEL (Δ Mean ± S.E.M). * Significant difference from baseline (pre-546 

supplementation)  547 

Figure 6: Systolic (A), diastolic (B) and mean arterial pressure (C) changes following 548 

supplementation with BR and GEL  (Δ Mean ± S.E.M). * Significant difference from 549 

baseline (pre-supplementation) 550 
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