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Abstract. The aim of this study was{to characterize the behaviour of
superparamagnetic particles in‘magnetic drug targeting (MDT) schemes. A 3-
dimensional mathematical model was developed, based on the analytical derivation
of the trajectory of a magnetized particle suspended inside a fluid channel carrying
laminar flow and in the viecinity of an external source of magnetic force. Semi-
analytical expressions to quantify the proportion of captured particles, and their
relative accumulationy(concentration) as a function of distance along the wall of the
channel were also derived:, These were expressed in terms of a non-dimensional ratio
of the relevant physical and physiological parameters corresponding to a given MDT
protocol.

The ability of thémalytical model to assess magnetic targeting schemes was tested
against numerical{simulations of particle trajectories. The semi-analytical expressions
were found to providegood first-order approximations for the performance of MDT
systems in which the magnetic force is relatively constant over a large spatial range.

The numerical/model was then used to test the suitability of a range of different
designs of permanent magnet assemblies for MDT. The results indicated that magnetic
arrays that emit a strong magnetic force that varies rapidly over a confined spatial
range arexthe most suitable for concentrating magnetic particles in a localized region.
By/comparison, commonly used magnet geometries such as button magnets and linear
Halbach arrays result in distributions of accumulated particles that are less efficient
for delivery.

The trajectories predicted by the numerical model were verified experimentally by
acoustically focusing magnetic microbeads flowing in a glass capillary channel, and
optically tracking their path past a high field gradient Halbach array.

Keywords: Magnetic drug targeting, Halbach array, Magnetic nanoparticle, Acoustic

radiation pressure, Particle trajectory, Targeted drug delivery
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1. Introduction

Targeted delivery of therapeutic agents has, in recent years, been{an active,area
of research, with magnetic drug targeting (MDT) being proposed as a particularly
promising technique for localizing therapy efficiently. Magnetically-loaded drug carriers
that can be non-invasively manipulated by an externally applied field, are,potentially
useful for a range of therapeutic or diagnostic applications where am “increased
local concentration at a specific treatment site has an enhancedweffect (Liibbe et al.,
1996, 11999; |Alexiou et all, 2000; Liibbe et all, 2001; Pankhurst etcal’; 2003; Dobson,
2006). There are, however, a number of challenges to overeome before the technique
can be considered clinically viable (Grief and Richardson, 2008 Laurent et al., 2014;
Shapiro et _al., 2015; Schleich et al), 2015). In particular,“while it i8 well recognized that
the carrier formulation needs to be optimized for the application(Pankhurst et al.,2009;
Mangual et al., 2010; |Stride et al., 2009; [Pouponneau et al;;52011), it is increasingly
apparent that the external magnet needs to be designed to generate a sufficient magnetic
force over the target range to remove a useful proportion®of carrier particles from the
hydrodynamic flow of the circulatory system (Driscoll et al., [1984; Hayden and Héfeli,
20006; [Sarwar et all, 2012; (Owen et al), 2014). Also, in order to optimize MDT as
a minimally-invasive drug delivery strategy, external magnets should be designed to
minimize off-target side effects, and'maximize the efficiency of drug delivered to the
target tissue.

For this reason, it is impertant to understand the performance of magnetic systems
by considering the dynamics of superparamagnetic particles in flow as they experience
the force applied by a spatially-varying magnetic field. Mathematical modelling of
magnetic particles in transpert has previously been used to study parameters related
to the capture efficiency (Cregg‘et all, 2008; INandy et _all, 2008; IMangual et all, 2010;
Garraud et al., 2016),. particle trajectories (Gleich et all, 2007; [Sharma et al., 2015;
Owen et all, 2015; [Tehrani et all, 2015; |Garraud et _al., 2016; |Zhou and Wang, 12016),
local concentrationwariations((Cao et _all, 2012; |Cherry and Eaton, 2014), extravasation
(Nacev et al), 2011a) and combinations of these (Bose and Banerjee, 2015a), as a
function of the.magnetic properties of the particle formulation, external magnet design or
factors related tothe physiological low. Understanding the dynamics of particle capture
and accumulation in magnetic drug targeting applications can be particularly useful
for informing the design and optimization of magnetic assemblies (Nacev et al., 2011a;
Shapiro et al., 2014, 2015). However, magnet optimization is usually assessed in terms
of the total magnetic force generated over a spatial range of interest (Alexiou et all,
2006; Hayden and Héfeli, 20006; Hafeli et al., 2007; [Takeda. et all, 2007; Sarwar et all,
2012; Barnsley et al., 2015, 12016), and simulation studies often do not consider whether
this leads to optimal delivery to the target volume.

In this paper, we develop a mathematical model for assessing the performance of
a given magnetic targeting scheme, in terms of the capture efficiency, accumulation
(concentration) distribution of captured particles and trajectories of magnetic particles
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influenced by different sources of magnetic field, over a range of physiologically felevant
flow rates. We consider first a simple spatial distribution for magnetic force and
derive an analytical expression for the trajectory of a magnetized particle in a laminar
flow in three dimensions. We then use this to derive a semi-analyticalsexpression for
the capture efficiency and accumulation distribution in terms of a @on-dimensional
ratio that encapsulates the relevant physical and physiological parameters for a given
MDT scheme. Our aim is to provide a simple metric for gauging the potential
effectiveness of a magnetic targeting scheme for a given target. " We subsequently
expand this model to numerically simulate particle trajectories in the presence of
arbitrary magnetic arrangements and verify our predicted 4rajectories experimentally
by acoustically focusing magnetic microbeads in a flow channel te a single trajectory,
and observing how their paths deflect in the presence of a‘high-field gradient magnetic
Halbach array. Finally, we examine simulated accumulation distributions to assess the
relative performance of magnetic designs that havereviously been considered for drug
targeting applications (Hayden and Hafeli, 2006; Hafeli etrall, 2007; McBain et al., [2008;
Barnsley et al., 2016). y

2. Methods

2.1. Mathematical formulation

We consider a spherical, superparamagnetic particle suspended in a flowing liquid under
the influence of an approximately.constant magnetic force generated by a linear Halbach
array (figure [Il). The magneti¢ foreeralong the channel is simplified to a step-function
bounded by a range, x\; from a starting position, o and acting in the —z-direction

N »
—|Ful k rolr<x9+2
FM@):{ 'd 0SSt (1)
0 To> x> xo+ Tm
In a steady flow, thefoerces acting on the particle are given by
dv
meffa = FM + Fg + Fbuoy + FD7 (2)

where meg is<the mass©of the particle including the added mass, v is the particle
velocity and thedour force terms on the right-hand side of the equation describe the
magnetic forees gravity, buoyancy, and the fluid drag force respectively. We assume that
Fyn > Fy +Fiygy and meg is sufficiently small that the particle reaches terminal velocity
extremely rapidly (so megdv/dt &~ 0). In a cylindrical channel carrying a laminar flow
and positioned so that the central axis coincides with the z-axis, the flow velocity of the
fluid is given by

B Y\ 2 272\ -
ve=2u (1= (4) = (3) )3 (3
where vy is the mean fluid flow velocity and R is the radius of the channel. Assuming

a Newtonian fluid, the drag force on the spherical particle is given by Stoke’s law:

Fp = 6mur (v —v), (4)
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Figure 1. The trajectories of particles within a flow channel of radius, R were
calculated numerically. Flow was inithe z-direction and the largest component of
the magnetic field was parallel to the z-axis:, The particles migrate under the influence
of a drag force, a magnetieforce, gravity and buoyancy. Unless otherwise stated, the
magnetic field was simulatedhassuming a nine-element, linear Halbach array, set zmag
from the centre of the flow channel. The shading highlights the spatial region bounded
by xo < z < xo + zapin (). The magnet was allowed to tilt around the trailing edge
by 6, which is defined-as'the angle between the upper surface of the magnet and the
bottom of the channel. Unless otherwise stated, # = 0 and the magnet surface was
parallel to the channel.

N

where p is the dynamic viséosity, of the fluid, r is the particle radius. Combining (2))
and () gives

F . .
V:VF+—M:UFi+UZk. (5)
O pr
The time-dependence of the position components, x (t) and z (¢) is then determined
by integrating tlie velogity components in (B) and setting a starting position vector

described by e(t = 0) = (20, y, 20), resulting in
24(t) = 20 +v,t

1 /1
Il?(t) :.%'0—{—22)At (1 — ﬁ (g (vzt)2+zovzt+y2+zg)> . (6)
We assume a no-slip condition so that the final resting position of the particle coincides
with where the particle makes contact with the bottom surface of the wall (as the
external force is directed towards —z), which occurs when z () = zx = —R4/1 — (%)2.

Therefore, the final resting position is given by

wen-22e((G) (555 (G-()) o
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which has one real solution for zy. The condition for which a particle can be considered
to be magnetically retained is that the final resting position is within the bounds of the
range of magnetic force, i.e. xy — 2o < x\.

We define the capture efficiency as the proportion of magnetized pasticles.injected
into the flow channel that are retained by the magnet. The capture efficiency was
determined numerically by considering the final resting positions of an ensemble of
particles initially distributed evenly about the cross section of the channel at{the starting
position, xy. This particular case is analogous to a “capture crossesection” (Cregg et all,
2008), i.e. the proportion of streamlines that terminate under #hie influence of the
magnet. Other initial distributions are considered in[Appendix,C| A number of different
combinations of parameters were tested and, in all cases, the capture efficiency was well
described by the following power law

N
where A = 0.601 and assuming that C.E. doesmot ex¢eedy100%. (This expression has
a similar form to one derived for a two-dimensional case by Nandy et al (Nandy et all,

v. T 0.522
C.E.(zy) = A4 (—ZEM> x 100%, (8)

2008), though their equation has an addifienal component which is sensitive to the
spatial variations of the field source they eonsidered). The accumulation distribution,
which we define as the proportion ef,particles that accumulate in a range of positions
between x £ %dx, is then

dC.E. (x) v, \ "0 s

and has units m™—!.

A S

2.2. Numerical simulations

Typically, the magneticforce profile of a realistic magnetic system is not well described as
a step-function. Inorder towpredict the capture efficiency and accumulation distribution
in MDT situations with 'a more physiologically relevant set of flow conditions and
physically attainable magnetic forces, numerical simulations were performed to generate
the trajectories ©f particles in a flow channel, under the influence of a position-
dependent magnetic force. Simulations were performed using console applications
written/in the ‘Cf programming language (Microsoft Corporation, Redmond, WA,
USA). Numerical simulations can be performed in 3-D with a much higher number of
particles thameomparable models solved using finite element methods (which can often
bel computationally prohibitive or highly mesh-sensitive and inaccurate when solving
for fuidgflow fields in 3-D geometries (Nacev et all, 2011a; Barnsley et all, 2016));
typical simulations involving 2000 particle trajectories and 14000 unique time iterations
d¢ompleted in 2 hours 40 minutes on a computer with an Intel(R) Core(TM) i7 processor
and 8 GB RAM. The trajectories were determined at each time interval, At by updating
the position, r;;; = r; + vAt, with v calculated from an expression of a similar form to
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(@), but also taking into account gravity, buoyancy, and the spatial variation of Fyr:

FM (I‘Z) + Fg + Fbuoy
67 pr '

v =vp(r;) + (10)

The magnetic force from an arbitrary arrangement of magnefized elements
was calculated using a model described and experimentally verified previously
(Barnsley et all, 2015), whereby the field, B (r) was determined by hreaking the magnet
into a 3-dimensional lattice of evenly-distributed point moments, and summing the
contributed dipole field at r from each moment. In a curl-free magnetic field, the
magnetic force on a particle with a magnetization, M and volume; V' 1s

Fy(r) =MV -V (B(r)). (11)
The normalized magnetic force, used here for convenience because it has the same units
as the field gradient (T/m), is
Fy M
= V(B 12
Msv Ms ‘ ( )‘ ? ( )
where M is the saturation magnetization of the particle.

For simplicity, M and B were assumed to bedparallel, and the particle was
superparamagnetic so that the magnetization,could be described using a Langevin
function, L (y) = coth (y) — 1/y,

MSVB)

= (13)

where kgT is the product “of, the Boltzmann constant and the temperature
(Bean and Livingston, [1959; [Williamsset all, [1993; Majetich et all, [1997).
For simulations using cylindrical ¢hannels, vy was described analytically using (3]).

M:MSL<

When a channel had a square cross-section, the flow profile was approximated by a
(z + iy)4 expression, following the formulation of Lekner (Lekner, [2007) and setting the
wall topology parameter 5 =1y

2
Vi & 20p (4@2“};22) cos (4¢) — M + 1) 1, (14)

4 w2

where w is the width of the channel and ¢ is the azimuthal angle. A “sticky” condition
was imposed for'the wall; whereby particles that have made contact with the wall were
assumeddtobe stable and no further updates were made to their position.

Numerical{ simulations were performed in which an ensemble of spherical
partieles modelling polystyrene microbeads loaded with a volumetric ratio («) of
superparamagnetic iron oxide clusters were evenly distributed at an injection point
(Tehrani et al), 2014; Bose and Banerjee, 2015b; [Lunnoo and Puangmali, 2015) in a
laminar flow contained within a straight channel aligned with the z-direction, and
allowed to flow past a linear Halbach array consisting of nine rectangular, permanent
magnet elements (figure[ll). The magnet array was positioned a distance zyag away from
the central axis of the channel and was designed so that, in the region of the channel
above the magnet, the magnetic force was approximately, spatially uniform, provided
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g Table 1. Parameters used in numerical particle tracing simulations.

; Symbol Description Default value Unit

9 U Fluid dynamic viscosity 8.9 x 1074 Pas

12 VA Fluid mean flow velocity 0.1 m/s

12 OF Fluid density 1000 kg/m?

13 R Fluid channel radius 0.25 x 1073 m

E' 1% Particle volume (47 /3) r? 2 m?

16 r Particle radius 0.5 x 1076 m

ig p Particle density Apre;0, + (15.0) ppoyéty  kg/m?

19 PFes04 Fe;04 density 5240 kg/m3

20 Prpolysty Polystyrene density 1050 kg/m?

g; « Volumetric ratio of Fe;Oy 0.1

23 Mpes0, Fe;0, saturation magnetization 4.74x10° A/m

24 MyareB NdFeB magnetization 1.018 x 10° A/m

gg dimag Magnet element dimensions o 5 79 5 mm?

27 Zmag Distance to magnet 3 mm

gg M Magnet array léngth 9x 2.5 mm

30 0 Magnet array tilt angle 0 °

31 Fy + Fouoy Gravity and buoyancy. (p—pr)Vyg N

gg g Gravity acceleration 10 m /s?

34

35

g? the channel radius, R was sufficiently small. The main component of the magnetic force
38 was aligned to the —z-direétion,nand gravity was directed perpendicular to both this
39 direction and the direction of flowg A particle was considered captured if, when it came
22 to rest at the channel wall, the magnitude of the magnetic force overwhelmed all others.
42 The accumulation distribution was estimated as the relative proportion of particles lying
43 within a range = £ %dx. This was done by taking the derivative, with respect to x, of
jg a cumulative distribution function of the proportion of particles that were stable before
46 reaching x (i.e7@f <w)«Inter-particle interactions were neglected.

j; Table [l gives the default values for simulation parameters. The magnet array tilt
49 angle, 6 was,defined.as the angle made between the bottom of the channel and the upper
50 surface/of the magnet. Of the 18 parameters in table[Il 14 are used to calculate the final
g; term_in ([I0). In most cases, the default values of these parameters were chosen to be
53 relévant to the experiments described in section[2.3l The effects of varying va, Fi (which
54 depends on zyag), R and 6 on capture efficiency and accumulation are investigated in
gg sectionB1] while section explores the performance of different magnet array designs.
57 The ability of different magnet designs to target magnetic particles to a partially
S8 occluded vessel was also investigated by simulating trajectories within a symmetrically
2(9) converging-diverging (or “pinched”) channel, shown in figure 2l(b). The flow velocity

inside a pinched channel was approximated following the derivation from Akbari et al
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(@) (b)
No occlusion With occlusion
T f
- .
POI Ko poL—T0 Ry
VF ° VE 5 °
i L 2R,
V ~

Figure 2. Simulated channel geometries, used to assess thesability of different magnet
designs to deliver particles to a given position of interest, (red eircle). (a) The flow
velocity in the straight channel with no occlusion and an inlet,radius, Ry is described
by @). (b) A “pinched” channel with a partial ocelusion has a flow velocity given by
([@&). At the position of interest, the channel radiugiis set tohalf the inlet radius, while
the total length of the occlusion is 4Ry.

(Akbari et all, 12010): y
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e (%)2 <1 . (Rg(/ff))z - (Riv)f) {7’ - dlzfcx) (R?x)j

where Ry is the radius at the chaumelsinlet and R (x) is the radius at z. The channel
has a constant slope on either side of the occlusion, dR (x) /dz.

2.3. Magnetic trajectory experiments

Numerical predictions of trajectories were verified experimentally by flowing polystyrene
magnetic microbead parti€les (2.0-29 x 1075 m, Spherotech, Inc., Lake Forest, IL,
USA) in a glass, square capillary channel primed with water (figure Bl). Microbeads
were diluted to a cénééntration©f 4 x 10> mL™! and injected into a steady-flow field
using a syringe pump. Andilute concentration was chosen to diminish the formation of
agglomerated beads in flew (superparamagnetic beads are observed to interact weakly
when separatedbeyond approximately six times their particle diameter (Oduwole et all,
2016)). Acoustic focusing of the microbeads into a single trajectory was achieved
by generating an ultrasomic standing wave (USW) field inside the fluid cavity of
the chanmnel using.a lead zirconate titanate (PZT) piezoelectric transducer driven at
2.55 — 2.65 MHz, using a linear frequency sweeping regime. Additional information
aboutsthe design of the ultrasonic manipulation setup is reported in The
trajectory of beads was magnetically deflected using a linear Halbach array constructed
frominine rectangular N42-grade NdFeB permanent magnet elements (Magnet Expert
Ltd., Tuxford, UK) arranged as per figure [l with dimensions given in table[Il Images of
the region of the channel adjacent to the magnet were acquired by an inverted microscope
(Ti Eclipse, Nikon Instruments Inc., NY, USA) with a x10 objective (Plan Fluor Phl
DLL, Nikon) and a digital camera (Digital Sight QilMc-U2, Nikon), operating in bright-
field mode.

fo)’%bl}@
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24 Syringe Microscope

25 pump objective

26 < — > Glass
capillary

29 PZT

Magnet
transducer &

39 positioned o g he viewing plane of the microscope deflects focused, magnetic
the channel. (d) A purpose-built MATLAB image processing

rapolate the top wall coordinates from the first 8 frames of the scan (before
bach array) since thresholding with magnetic particles accumulating at the wall
the channel was less reliable. The origin was taken as the midpoint between the top
nd bottom channel walls at the beginning of the first frame of the scan and particle
ntroid coordinates were recorded relative to this point. Non-magnetic particles that
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Figure 4. Magnitude of the (a) field and (b) nermalized forece of the nine-element
Halbach array shown in figure [l as a function of z atydifferent elevations, z from the
upper surface of the array. The shaded range/coincides with the region directly above
the magnet array, and marks the space bounded by xg and zy + x\ for calculation of
analytical trajectories.

&

satisfied the size and thresholding criteriazwere rarely detected and manifest as outliers
in the plots in figure @

Magnetic measurements were used to,characterize the magnetic behaviour of
the microbeads in suspension. Hysteresis loops of the microbeads were measured
using a MPMS Superconducting Quantum Interference Device (SQUID) magnetometer
(Quantum Design, Inc., SandBiego, CA, USA) at a temperature of 270 K (in order
to freeze the fluid) between +1-T» The effective superparamagnetic particle size and
volumetric loading of magnetite on mierobeads were determined by fitting (I3) to the
hysteresis loop in figure [Allzand these parameters were used to numerically predict the
experimental trajectories/reportediin section [3.2]

3. Results

3.1. Simulation results

Numerical simulations“were performed to ascertain the trajectories of magnetic
microbeads in assteady, laminar flow, under the influence of the magnet array shown in
figure [Il t6"investigate how the capture efficiency and accumulation distributions varied
with the flow vélocity, the magnetic force, the channel radius and the alignment of the
magnet. The field and force profiles emitted by the Halbach array along the direction
parallel with the upper surface, displayed in figure dl show that, for a short range
of z walues, the “step function” approximation used for the derivation in section 2.1
was reasonable. The results from the numerical simulations were compared with
predictions using the expressions for trajectories, C.E. and accumulation distribution
derived analytically.

Figure [f] compares the analytically derived trajectories described by (@) and the
simulated trajectories for average flow velocities of 10 and 20 mm/s and zpya, set to

Page 10 of 37
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X (mm)

Figure 5. Predicted trajectories of particles in a cylindrical channel (R = 0.25 mm)
initially set at various elévations, zo along the z-axis, under the influence of the nine-
element Halbach array andhan average laminar flow velocity of (a) 10 mm/s and
(b) 20 mm/s. The symbols represent the trajectory given by the numerical simulation,
while the line is déseribed by (@). The shaded region is the same as figure [ indicating
where the “step function” magnetic force (c.f. () operates.

3 mm. The normalized mégnetic forée for the analytical trajectories was taken as the
force directly above centre of'the array at zmag (Fm = 93.9 T/m). While the analytical
expression made reagenable estimates of the final resting position of particles in flow, a
few discrepancies are apparent, owing to the assumptions made in the derivation. The
analytical trajectories generally underestimated xy on the near (negative) side of the
magnet, and overestimated it on the positive side, which could be attributed to the
variation of Fy; (%) produced above the sides of the Halbach arrray. More importantly,
the trajectory of the partiele with the highest starting elevation shown in figure [Bi(a)
(20 = 2R#3) demonstrates how a particle could be both actuated and captured outside
of the bounds of &) when a more physically realistic profile of Fy; () was utilized. Once
a partiele was in a low flow regime, close to the channel wall, it slowed down significantly,
and relatively little external force was required to pull it to the wall.

In order to examine a wide range of possible trajectories, numerical simulations were
run by initially distributing an ensemble of particles evenly around the cross-section of
the flow channel upstream from the magnet, so that each particle had a unique starting
Yo, z0- Figure [fl(a) shows how the travel distance of simulated particles (relative to the
centre of the magnet, which defines = = 0) is related to their the initial position in the
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Final resting b)
position
0.2 1 I -15.0 mm 0.2 1
-10.0 mm
0.1- 0.1
2 -5.0 mm B
E 00 E 0.0+
N 0.0 mm N
0.1 0.1
5.0 mm
-0.2 4 I 10.0 mm -0.24
T T T T T 15.0 mm T T T T T
0.2 01 00 0.1 0.2 02 0.1 > 00 0.1 0.2
Y, (mm) Y, (mm)

Figure 6. (a) Colour-code to indicate the final resting positions (zf) of particles,
overlayed onto a map of their starting pesitions, in the yg-z¢ plane cross-section of
a cylindrical channel. The solid gray lines show, contours of starting yy-z¢ positions
that have the same final position, x¢. For/this numerical simulation, v4 = 20 mm/s
and Zmae = 3 mm. Gravity acted,in the —gy-direction, and the magnetic force vector
pointed in the —z-direction. Black particles left the flow before reaching the magnet,
while white particles passed over the.magnet uncaptured, exiting the flow at the outlet.
(b) The predictions of zgas,a function of y and zy given by the analytical expression
in (@), with the same value of vy andiFy; set to 93.9 T/m. Gravity was ignored in the
analytical case.

y-z plane at the injection point, with an average laminar flow velocity of 20 mm/s. The
colours indicate the final resting positions of the particles, z¢, relative to the centre of
the magnet. The particleg'that werefinitially furthest from the magnet (coloured white),
and therefore had furthest te travel before being trapped at the channel wall, tended to
pass over the magnet, reaching'the outlet uncaptured. Alternatively, particles that had
a very slow velocitymear the bottom of the channel (coloured black) were removed from
the flow by gravity before they reached the magnet. Analytical predictions for z; as a
function of y and 2y using (7)) for the same parameters are given in figure [6l(b), and are
qualitatively/similar to the results of the numerical simulation. In both data sets, the
proportion of\particles trapped by the magnet in each 5 mm segment along the length
of the channel (bounded by the counter lines) decreases with increasing x, indicating
that more particles were trapped on the leading edge side (negative x¢) of the magnet,
anddfewer made it to the trailing edge (positive xy).

Capture efficiencies were determined for a set of numerical simulations following the
method. described in section and were compared with the values predicted by (g]).
Eigure [7 shows how the capture efficiency varied as one of the experimental parameters,
ua, P, R or € was changed while the other parameters were fixed to their default values
(table [M). The agreement attained between the simulation results and the analytical
predictions indicates that the formulation derived in section 211 can provide a good
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Figure 7. The capture efficiency predicted by numerical simulations (symbols) and
the semi-analytical expression of (8) (lines), displayed after varying (a) average flow
velocity, (b) magneticforee, (c¢) channel radius and (d) alignment of the magnet. The
fixed, default parameters areigiven in table [I1

N
first-order approximation for the ¢apture efficiency in regions where the magnetic force
is (relatively) spatiallysuniform.

The discrepancy imnfigure [f(a) at low flow velocities was due to the influence of
gravity in the numerical simulations causing a relatively large proportion of particles
to be removed from flow by gravity before reaching the magnet. At flow velocities less
than 10 mm/sfmo pasticle made it to the outlet of the channel; particles were either
forced out of flow by gravity before reaching the magnet, or captured by the magnet
once they-reached it. If simulations with these conditions did not include gravity, the
capture efficiengy would be 100%, as suggested by the analytical expression. Figure[l(c)
shows that, as the channel size increased, so did the deviation between the two models.
This was attributed to the fact that, as the channel size increased, the assumption of
a spatially uniform magnetic force was no longer valid, and the magnetic force at the
bottom of the channel, closer to the magnet, became significantly stronger than the
forcerat the top of the channel. The effect of varying the magnet array tilt angle, 6 is
displayed in figure [[(d). For 6 > 22.5°, the capture efficiency didn’t vary significantly,
but the accumulation distribution (figure 8(d)) did.

Accumulation distributions, calculated for a subset of numerical simulations using
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Figure 8. A comparison, of thepaccumulation distributions for a subset of the
simulations described in figuréy[ll The symbols give the results of the numerical
simulations, while(the lines are deseribed using ([@). The shaded region is the same
as that defined in figurefdl

the method described in section 2.2l are shown in figure § and are compared with
the profiles predicted by (@) For all tested parameter sets, (@) goes to infinity at
the leading edge of #he magnet, &, highlighting a major discrepancy between the two
models. Almost all distributions exhibited a peak in density in a region close to the
leading edge of the magnet and, downstream from this point the agreement between the
numerical simulations and the analytical derivation was reasonably good in most cases
where the magnetic foree was spatially uniform. Exceptions to this can be observed
in figure B(b), where'theérchannel was far from the magnet, and the normalized force
was smallgmand in figure [B{(c) for large channel radii, where the forces at the top and
bottom! of the ghannel were significantly different. Notably, in many simulations, a
significant, proportion of particles were captured in a region prior to the bounds of the
spatial extent of the magnet. Also of note, the peak in density usually occurred in
a comsistent position for almost all distributions (z ~ —8.5 mm) and, provided the
simulations were performed in a space where the magnetic force could be approximated
by ({@ll);, the shapes of the profiles overlapped very closely when normalized to the peak
density. This suggests that, while the proportion of captured particles is sensitive to
physiological flow conditions inside the body (encapsulated in the parameters vs and R),
the relative spatial distribution of particles that are successfully captured is determined
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by the profile of the magnetic force (Fy (r)). This means that particle distributions
could be tuned and optimized for a given application by engineering the spatial profile
of the magnetic force, so that the greatest density of captured particles'would coineide
with the desired region of interest. One attempt to do this is shown in figuref8(d), by
varying #. By tilting the magnet away from the channel, so that the foree was localized
in the region above the trailing edge of the magnet, the peak positien'of aceumulation
distribution was shifted closer to the position z = x\. However, fewer particles were
captured overall.

~

3.2. Experimental results

The numerically predicted trajectories of particles undegsthe influence of laminar flow
and magnetic force were verified experimentally by flowing magnetic microbeads in a
glass square capillary channel with an internal width of 0.3 mm and focusing them using
acoustic radiation forces generated by a USW field, upstream from a linear Halbach
array. The USW field was created by a PZT transducer ¢oupled to the glass channel
approximately 8 mm away from the Halbach"array, to separate the regions of the
channel exposed to acoustic and magnetie forces (Appendix B)). Thus, the contribution
of acoustic radiation forces was considered megligible when modelling the trajectory of
particles exiting the active area of the transducer. The fluid velocity inside the channel
was described using (I4]), with the average veloeity, va varied between 2 and 15 mm/s
(a range of flow velocities seen in intratumoral blood flow (Shimamoto et al), [1987)).
Starting positions used to calculate numerical trajectories were determined by averaging
the elevation and distance to/the wall.of particles upstream from the influence of the
magnet. The magnet position relative to the channel was measured from scanned images
recorded using a fluorescent mieroscope, with the magnet-to-channel distance, zpya, set
at 3.9 or 4.6 mm (corresponding to field gradients of 45 and 23 T/m above the centre
of the array).

Figure [0 showsthe measured trajectories compared with the numerical predictions,
based on a microbead with the magnetic properties measured in [Appendix Al For
each condition, reasonable agreement was found between the measured and predicted
trajectories. /The shaded regions in figure [ represent the region of the channel adjacent
to the magnet, but for low flow rates and /or higher magnetic forces, it was both observed
and predicted that'the trajectory would begin to deflect towards the magnet before the
particles. reached this area. At faster flow velocities, particles were less well focused due
to them spending less time in the acoustic field of the transducer, resulting in a greater
spread of particle positions around the predicted trajectories. For example, at 2 mm/s
and 45, T/m (figure @(a)), focusing confined the particles within a trajectory about
0.032 mm wide (4+20) before being actuated by the magnet, resulting in a 1.2 mm spread
of posttions for particles that were forced to the wall by the magnet. By comparison,
a 15 mm/s average velocity resulted in a 0.056 mm wide trajectory, and a 8.1 mm
spread of final particle positions for the same magnetic force (figure@(d)). Variations in
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Figure' 9. FExperimental positions of magnetic microbeads focused into a single

trajectory by acoustic radiation forces and deflected by a linear Halbach array were
imaged using microscopy (blue symbols) and compared with numerical predictions (red
lines). The distance between the centre line of the glass capillary channel and the face
of the magnet (zmag) Was set to (a)-(d) 3.9 mm and (e)-(h) 4.6 mm. The average
velocity in the capillary, va was varied between 2 and 15 mm/s. The shaded area
represents the part of the channel adjacent to the Halbach array. The position-axis
gives the distance along the channel away from the trailing edge of the piezoelectric

transducer.
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30 Figure 10. Designs of various permanent magnet shapes and arrays, with dimensions
31 in mm. Commonly availabletuniformly magnetized shapes are shown in (a)-(c);
32 (d) exhibits a permanent magnet cube which is diagonally magnetized along a face.
33 (e) Uniform and (f), orthogonally magnetized arrays, optimized for magnetic force at a
34 3 mm range. All arrays have the same volume as the linear Halbach array above, and,
where appropriate,the same spatial extent, xy.

particle size and magneti¢ loading may have also contributed to distributions in particle
40 positions about the predicted trajectory, as they would impact on both acoustic and
41 magnetic forces.

44 3.8. Comparison of magnetic systems

46 Simulations were performed to investigate how accumulation distributions would differ
with different permanenthmagnet designs, in order to determine which shapes and
49 arrangements result’in the greatest concentration of particles in a localized region of
50 interest. Figure [I0] shows the six magnet designs explored here. All designs were
constrained to have the same magnet volume as the linear Halbach array and, in the
53 cage of the button and rod magnets, the same spatial extent along x. For the cone
54 magnet, the diameter and height were set to be equal. The cube magnet (figure [0(d))
56 had a magnetization vector that pointed along a face diagonal, and was orientated on
57 its edge so that M pointed along z. The arrays in figure [[0((e) and (f) were designed
using a force optimization routine for arbitrary shapes (Barnsley et all, 2016) and a
60 position of interest set zm,s = 3 mm away from the upper surface of the magnet. One

design consisted of a single, uniform magnetization, while the other was a Halbach
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Figure 11. (a) Field and (b) normalized force of the various arrays displayed in
figure [0} along the z-axis at a distance zmage=,3 min from the face. The shaded
region gives the extent, xp = 22.5 mm, commiensurate,with that of the linear Halbach
array in section B.11
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Figure 12. [Accumulation distributions for simulations with the default simulation
parameters for wa, zmag, I& and 6, using the various magnets shown in figure The
shaded region highlights the default extent of x1, which is also the length of the button
and rod.magnets. (a) Profiles resulting from a channel with no occlusion; (b) profiles
fromd a channel with a partially occluded geometry shown in figure 2{b). The dark gray
linerat * = 0'marks the position of interest at the centre of the occlusion.

array assembled using six segments with different, orthogonally aligned, magnetization
directions.

The field and force profiles generated at a distance zp,; = 3 mm from the upper
surfacerof eachimagnet are displayed if figure [[1l, which shows that the uniform button
and cone magnets are not well suited to apply a high field gradient in a localized region
(the field and force from the button magnet are strongest at the edges). The two
optimized magnets generate the strongest fields in the centre of the channel, particularly
the Halbach array, which has a full width at half maximum (FWHM) in force of 8.54 mm.

Numerical simulations were performed using the different magnet designs with the
default values for va, Zmag, R and 6 (table ). The channel was positioned so that
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4

> Table 2. Capture efficiencies of different magnet designs in the absence and presence
? of a partial occlusion. Simulations were performed with the default values for va, Zmag;
8 R and 6 in table[[l The design of the linear Halbach array is shown in figure [l 'while
9 the design of all other arrays is displayed in figure [I0l

12 Magnet design No occlusion (%) With occlusion (%)

ig Linear Halbach array 29.27 24.20

14 Button magnet 11.54 9.86

15 Cone magnet 7.01 5.55 ~

i? Rod magnet 18.61 15.10

18 Diagonal cube magnet 12.07 9.69

19 Optimized uniform magnet 16.61 13.44

32 Optimized Halbach array 22.60 17.93

22

23

;g the maximum flow axis was zmag = 3 mm from the upper face of the magnet array.
26 Accumulation distributions in figure indicate that the optimized arrays are better
g suited for localizing particles in greater demsity around the region directly above the
29 centre of the magnet. Of the uniform magnets; the button magnet was notable because
30 most accumulation took place above.the edges of the cylinder, where the forces were
g; strongest, and almost no particles were, collected towards the middle. The rod behaved
33 similarly to the step-force (linear Halbach array) above, capturing more particles at the
34 leading edge of the magnet, but still capable of distributing particles in the region bound
gg by 1, suggesting that these designs eould be practical for applications in which particles
37 need to be delivered to a large, diffuse area. These include diagnostic or biosensing
gg applications involving a combhation of active and magnetic targeting strategies for
40 precisely locating and imaging tumours (Gunasekera et all, 2009; [Schleich et al., 2014;
41 Xu et al., 2016). Theé cone and cube magnets were able to concentrate particles to
jé a confined region clese to. their upper edges, but the peak linear density was not
44 competitive with that of the two optimized arrays, owing to the fact that the generated
45 force profiles persisted only over a very short-range compared with the optimized arrays
46

47 (Barnsley et/all, 2015).

48 The ability of each magnet design to deliver particles to a partial occlusion is
49 assesseddin figuredfI2(b). In all cases, the accumulation distribution at the site of the
22 occlusion is less than the “no occlusion” case in figure [[2(a), as the flow velocity in
52 the marrowsregion of the channel is significantly greater, and the distance from the
gi bottom of®he channel to the magnet has increased, reducing the peak magnetic force
55 insidesthe€hannel. Table 2 details the capture efficiencies from the simulations shown
56 in figure [[21 While the optimized magnets are still the best of the tested designs at
g; delivering particles to the position of interest, they are also the designs most relatively
59 compromised by the presence of the occlusion.

60 Notably, even when the accumulation distribution was tightly localized, it was still
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Figure 13. Accumulations distributions collectéd by the ‘optimized Halbach array
(figure [[0(f)) varying (a) channel velocity and (b) channel radius. zmas was fixed to
3 mm. The insets show the capture efficiency/as a function of the varied parameter.

skewed slightly towards the leading edge of thé applied field/force. Figure shows
how the accumulation distribution varies as a function of two physiologically-relevant
parameters, vy and R in a channel with‘norecclusions@Again, when vy was varied (and
all magnet related parameters were fixed); the'shape of the accumulation distribution
changed only very slightly. The agcumulation distributions displayed in figure [I3a)
overlap almost entirely when normalized to'the peak density, with the position of the
peak shifting by just ~ 1.4 mm over threelorders of magnitude in v (the mean FWHM
of all distributions was 8.9 &+ 0:Llunm). The shape of the distribution did change with
R, particularly at large valuesfowardy2.5 mm (figure I3[(b)), owing to the fact that the
bottom of the channel was only 0.5 mm from the magnet, and the force profiles at the
top and bottom of the chafinel Wwete very different.

4. Discussion

Magnetic targeting in a, channel was considered mathematically using a numerical
and semi-analyfical model for the trajectories of an ensemble of superparamagnetic
particles subject to a set of external forces inside a straight, cylindrical channel and a
channel with a partial ocelusion, both containing laminar flow. For the semi-analytical
derivationi"a constant magnetic force was considered to act over a fixed spatial range
inside the channel, allowing for the derivation of expressions for capture efficiency and
accumulation distribution of magnetic particles in the channel, assuming an evenly-
distributedirange of trajectories at the starting position. In this derivation, the capture
efficiency is well described in terms of a non-dimensional parameter representing the
ratio between factors that promote capture (magnetic force, Fy; and length of magnet,
xy) and factors that mitigate capture (average flow velocity, va, channel radius, R
and viscosity u). Nandy et al (Nandy et al), 2008) also derived the capture efficiency
of magnetic particles in flow, finding that for this case the capture efficiency was also
well described by a power-law for a non-dimensional ratio of a similar form to (§))
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(with slightly different coefficients). However, their derivation was for twofspatial
dimensions, with an infinite third dimension perpendicular to the direction ofsflow and
magnetic force, which was generated by a spatially-varying line dipole. . Given that
all of the factors that comprise the non-dimensional ratio can be readily, characterized
for a given magnetic drug targeting set up, a simple calculation canéprovide a good
first-order approximation for capture efficiency in regions where the’magnetic force
is relatively constant, which is useful for determining the total quantity of a drug
that can be delivered. Alternatively, where the desired quamtities,are/either well-
characterized or constrained, knowing the required magnetic parametas to achieve an
intended capture efficiency is useful for the design stage of both thesxternal magnet
and the magnetic carrier properties, particularly given that the applied magnetic
force typically decays rapidly with distance from the magnet, and increases with the
total magnet volume (Alexiou et all, 2006; Hayden and Héfeli, 2006; Héfeli et all, 2007;
Barnsley et all, 2016). As an example, our previou§ design for a double layer Halbach
array (Barnsley et all, [2015) produced a field gradient,of 85 T /m at a distance of 2 mm,
and 12 T/m at 20 mm. Even at this range, this/still provides a useful force (using
[®) and for the default particle and channel parameters in table [Il a capture efficiency
exceeding 10% would be expected for flow velogities up to 130 mm/s), but beyond this,
the rapid drop in force (and, therefore, capture efficiency) with tissue depth exhibited by
most magnets highlights one of the mainrehallenges with conventional magnet systems
for MDT.

Particle sizes in the meSoscopic size range (nanometres to microns) are seen as
advantageous due to a favourable ratio between magnetic and Stokes’ drag force for
improved magnetic targeting (Kozissnik and Dobson, 2013) and also the ability to
formulate composites to carty a combination of drugs or be compatible with multiple
targeting strategies (Wadajkar ettall, 2012; [Schleich et all, [2014). However, smaller
particles (e.g., free drug macromelecules and nanoparticles) are preferable for delivery,
as they are better ablénto extravasate from the circulatory system, and accumulate
in tumours (Matgumura and Maeda, 1986; Maeda, 2012). Modelling on nano-sized
magnetic particles has previously been used to account for observations seen in clinical
trials when the'propertiés of the nanoparticles (i.e., size and magnetic moment) were
well characterized (Nacewet all, 2011ah).

For simplicity, the analytic formulation considered a Newtonian fluid in a straight
channel, but bleod is non-Newtonian, contains red blood cells and vessels are only
approximately straight over short distances; these aspects are typically described using
a blunted flow velocity profile (Nacev et all,20114), added viscosity terms in large vessels
(Zhang and Kuang,2000) and networked vessel geometries (Grief and Richardson, 2005;
Ritter et al., 2004; Bose and Banerjee, [2015a) respectively. While these features weren’t
considered in this study, they can be easily accounted for using the numerical model.
The numerical model is particularly useful for understanding the relative spatial
accumulation of particles along the length of the channel in the vicinity of a given
magnetic field source. Simulations for a linear Halbach array (which produces an
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approximately constant magnetic force in a spatial region close to the face of the array)
suggest that, when particles flow in one direction inside a straight channel pastéhe array;,
most of the particles are captured towards the leading edge of the array. ,The relative
profiles of the accumulation distributions described in section 3.1l are mostly determined
by the spatial variation of the magnetic forces within the channel; where parameters
that do not influence the magnetic force are varied (in particularg@y), the absolute
peak value of the accumulation distribution changes, but the shapes of the distributions
are mostly the same (overlapping when normalized to the same peak walue). Therefore,
understanding the spatial variation of the magnetic field and forces gena"ated by a given
magnetic field source is critically important for predicting the ultimate localization of
magnetic carriers in the vessel network around the target.

The simulation results comparing external magnethdesigns suggest that for
assemblies in which either the magnetic field or for¢e is approximately constant over
a large spatial range, captured particles are more likely to accumulate in the region of a
vessel closer to the edge of the magnet, rather than tewards the middle. Similar effects
have been utilized in microfluidic devices with external ma?znets to manipulate particles
by tuning field profiles (Gassner et all, 2009; |Cao et.aly; 2013). For MDT, this can be a
problem in a realistic vessel geometry around a.target, which can often be tortuous and
ramified, meaning that, if most particles are captured in regions corresponding to the
edges of a magnet, efficient delivery'to a single target site may not be possible, mitigating
the primary advantage of using a magnetic system for drug delivery. Essentially, a
magnetic system that is not‘well designed and/or carefully orientated would remove
the greatest proportion of partielesifrom flow before they even reach the target. This
is particularly problematic with buttonymagnets (one of the most commonly available
magnet geometries); the strong,edge/effects and weak central force arguably make it
the least appropriate magnetsshape for MDT applications. Magnetic systems that are
able to confine magnetie forces to/a rapidly-varying peak-force region appear to perform
better in localizing a'high concentration of captured particles to a well-defined site. Of
the tested magnetic arrangements, the shapes “optimized” (Barnsley et al., 2016) for
magnetic force appear to perform the best for localized accumulation, although it should
be noted that«the peak.accumulation distribution does not scale linearly with magnetic
force. This would represent the most efficient accumulation profile for drug delivery to
a solid, spatially-confined region of diseased tissue.

This highlights the importance of imaging to provide active feedback of the
accumulation of captured particles, to ensure that the alignment of external forces
results in good co-localization between drug carriers and the target region during
therapy (Shapiro et all, 2015; [Schleich et all, 2015). Carrier formulations utilizing iron
oxide nanoparticles are seen as particularly favourable because iron oxide generates
negative contrast in magnetic resonance imaging (MRI) (Pankhurst et al), 2003;
Das et all, 2008), but many systems proposed for magnetic targeting (permanent
magnet or electromagnet arrays) are fundamentally incompatible with MRI instruments
due to safety reasons (Schenck, 2000), and while magnetic delivery using MRI

Page 22 of 37



Page 23 of 37

©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - PMB-104865.R1

Understanding the dynamics of superparamagnetic particles 23

gradient coils is actively being researched (Mathieu et al., 2006; Martel et ali, 2007,
Mathieu and Martel, 2009; [Pouponneau et al., 2011), conventional MRI gradient coils
aren’t designed to generate sufficient magnetic force to capture nanoscopic particles-in
particularly high flow regimes, meaning that MRI is often used as a diagnestic tool
after therapy (Chertok et al), 2008; Wadajkar et all, [2012; [Fan et al.,42013). Imaging
protocols that are based on magnetic particle imaging (MPI) (Gleichrand Weizenecker,
2005; Sattel et all, 2009; Biederer et all, 2009) or ultrasound imaging using €arriers that
are simultaneously responsive to acoustic and magnetic stimuli” (Stxidest all, 2009;
Liu et al., 2011; Fan et al., 2013; (Crake et all, 2015; [Lee et al., 2015; could be seen
as means to monitor carrier concentration and localizatiomnduring therapy that are
compatible with the intense magnetic forces generated by magnetic drug targeting
systems.

Particle trajectories for superparamagnetic beads within physiologically relevant
flow regimes have been studied previously using numerical models (Gleich et all,
2007; Nandy et all, 2008; [Sharma et al., 2015; /Zhou and Wang, 2016). In order to
experimentally verify the numerical predictionsmade using’ our model, we used acoustic
focusing to study the motion of magnetie,microbeads/along a single trajectory in the
vicinity of a linear Halbach array. Good agreement was found between the observed
particle positions and numerical predictions, on the length scales of our experiment,
with no fitting parameters outsidé of thesmagnetic microbead properties which were
measured by magnetometry (Appendix Aj). Given the relative simplicity and robustness
of the technique to create a ®ingle trajectory, acoustic focusing within a channel is a
useful method to study the response of magnetic carriers influenced by a range of flow
conditions and magnetic forces relevant for MDT. However, as the present technique
relies of optical detection of particle positions, an alternative approach would be required
to validate trajectories of nano-sized particles.

5. Conclusion

An analytical expression for the trajectory of a superparamagnetic particle under the
influence of a.magnetic force and laminar flow was derived in three dimensions, which
was then used to derive semi-analytical expressions for the capture efficiency and
accumulation distribution of particles in terms of a non-dimensional ratio of the most
relevant physical and physiological parameters for a given magnetic targeting scheme.
The results of mumerical simulations of an ensemble of magnetic particles in flow,
actitated by a linear Halbach array emitting an approximately constant magnetic force
over.a known spatial range were compared with the predictions from the analytically
derived expressions. This demonstrated that the analytical treatise can provide good
first-order assessments of the viability of MDT situations.

The numerical model was used to assess a range of different external magnet system
designs and orientations to examine which configurations are most capable of capturing
alarge proportion of magnetic carriers under various flow conditions, and accumulating
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Figure A1l. M-H curve for polystyerene magnetieamicrobead particles measured at
270 K between +1 T at a concentration of 4 x0% mL .. The symbols represent the
magnetic measurement and the red line représents a fit to the data using a Langevin

function (c.f. ([I3))).

- 4
them in a confined, localized region. While the rélative accumulation distributions in

different flow velocities were found to depend primarily on the magnetic force profile,
the relationship between the magnetic foree profile and accumulation distribution was
nontrivial. It was found that, of the,tested magnetic systems, assemblies that provide
a large peak magnetic force that rapidly varies over a confined region perform best at
concentrating magnetic carriexs to a target region. Experiments showed good agreement
between the trajectories predictediby the numerical model and observed by acoustically
focusing magnetic microbeadsdn a glass capillary channel, which were deflected towards
a high field gradient Halbach agay.
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Appendix A« Magnetic measurements

Measurements of the magnetization curve of polystyrene magnetic microbead particles
acquired using a SQUID magnetometer are shown in figure [AIl The observed magnetic
respomse was fitted using a Langevin function, as described by (I3]), assuming that
the magnetic phase was magnetite (M; = 470 x 10* kA/m (Margulies et all, [1996)).
An effective superparamagnetic cluster size of 8.6 nm and weight loading of 16.2%
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Figure B1. Normalized pressure distribution through the thickness of the device
obtained from 1D impedance transfer model, at a resonant frequency of 2.639 MHz.
Blue = transducer; red = bottom glass surface;green = fluid cavity; black = top glass

surface.
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(volumetric ratio of 4.9%) were obtained, which weresused in the numerical simulations
of trajectories in section

Appendix B. Acoustic manipulation of microparticles

In this section we describe the assembly, operation and characterisation of the acoustic
manipulation device employedfto foeus magnetic microbeads into a single trajectory
by means of acoustic radiation forces.| The device comprised of a squared cross-section
borosilicate glass channel#(length:y 400 mm, internal width: 300 pum, wall thickness:
150 pm; VitroCom, Ilkley, UK); which was acoustically coupled to a piezoelectric
transducer (24.8 x 86/x I'mm34PZ26, Meggit PLC, UK) using a thin layer of epoxy
resin (RX771C/NC, Robnor Resins Ltd., UK) cured at 30°C for 24 h. The transducer
was positioned at a distance of 11.4 mm from the inlet of the channel, and was
actuated by a radio frequency (RF) power amplifier (55 dB, Electronics & Innovation,
Ltd., USA) driven hy & sine-wave from a programmable signal generator (33220A,
Agilent Technoloégies/Inc.; JUSA). An oscilloscope (HM2005, Hameg Instruments GmbH,
Germany)was used'to monitor the applied voltage and the operating frequency.

A [one-dintensional (1D) impedance transfer model implemented in MATLAB
was_employed to identify the operating ultrasound frequency (Hill et all, 2002), while
numerical gimulations were performed using COMSOL Multiphysics 5.2 (Acoustic-
Piezoelectric Interaction module, COMSOL, Inc, Burlington, MA, USA) to determine
the two-dimensional (2D) acoustic pressure field.

The 1D model treats the device as a planar resonator (i.e., with plane waves
travelling in the thickness direction only) and provides a relatively accurate identification
of the thickness resonance frequencies of a multi-layered structure (Hill et all, 2002).
The model predicted a half-wave resonant frequency at ~ 2.64 MHz, with the pressure
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Figure B2. Contours of magnitude of acoustic pressure in the fluid cavity
of the channel, normalised with respect to the maximum value. Values were
determined numerically (using the Aeoustic-Piezoelectric Interaction module in
COMSOL Multiphysics)ar.(a) and (b) correspond to a zoomed-out and zoomed-in
view of the pressure field in, the fluid cavity, respectively. The gray region represents
the position of the transducer.

minimum (corresponding to the focusing position of the microparticles) located at
140 pm from the bottom surfaee of the fluid cavity (figure [BI).

The resonant frequeney detetmined from 2D numerical simulations was equal to
2.67 MHZ, which was very close to the 1D prediction. Moreover, numerical simulations
confirmed the presenee of oneypressure node, which was located at approximately the
mid-plane of the fluid eavity, (see figure [B2). Notably, figure [B2(b) shows that the
acoustic pressure/ field ‘was highly localised in a region of the fluid cavity above the
transducer, suggesting that acoustic radiation forces acting on the microbeads could
be considered negligible as soon as the beads exited the acoustically active area of the
channel.

In order tosachieve robust device operation across the range of flow rates
investigated and minimise the risk of device going out-of-resonance, the transducer was
actuated using’ a frequency sweeping regime (2.55 — 2.65 MHz) at a sweep period
of (50 ms.< At this operating regime, microparticles experienced forces acting both
horizontally and vertically towards the centreline of the channel, which originated from
gradients in the potential and kinetic acoustic energy densities respectively, as reported

previously in very similar resonant cavities (Mishra et all, 2014).
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Appendix C. Capture effic

[<e)
<

A semi-analyti¢al expression for capture efficiency was derived by considering the
propextion. of final resting positions of an ensemble of particles, determined using (),
combinations of parameters with an even initial distribution, the capture efficiency was

found to be well described by (8)).

initially distributed evenly about the cross-section at the starting position. For all tested
in thissappendix.

50
51
52
53
54
55
56

Three other initial distributions were tested, described

57
58
59
60

The even, or uniform, distribution is shown in figure[CTI|(a). The other distributions

were determined using probability distribution functions (PDF), p(0) where o =

Y2 + 22 is the initial radial distance from the central axis of the channel. The PDFs
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Figure C2. Capture efficiencies determined usingdifferent combinations of the non-
dimensional parameter (v,ay) / (vaR) and the different, initial distributions shown in

figure [CI]
were: .
1
Radially uniform : plo) = I (3.1a)
2
Linearly decreasing : p(oh= o (1 — %) (3.10)

Gaussian : p(o)= m exp (—2 <}%>2> . (3.1¢)

All values of p are equally likely for the radially uniform distribution, while for the
linearly decreasing distributionj*the,probability of a particle starting at the centre is
greatest and at the wall is zero. The Gaussian distribution has a standard deviation
of R/2 and the erf (1) term aecounts for the fact that the probability of a particle
at the channel wall (0 = R) isthot zero. All PDFs total 1 when integrated from
the centre of the channel to. the wall. Probabilistic particle distributions plotted in
figure [CTI(b)-(d) display2000 particles, but 25000 particle trajectories were calculated
to determine the @apture efficiencies exhibited in figure [C2l Figure shows how all
tested distributions depend on the non-dimensional parameter, (v,zy) / (vaR) and the
initial distribution. The uniform (black) curve was fitted to the power law in (§). As
the accumulation distribution can be determined from the derivative of C.E. (x) with
respect tomm, this would suggest that the accumulation distribution would also depend
on the initial particle distribution.
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