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Abstract—The ’super-WiFi’ network concept has been pro-
posed for nationwide Internet access in the USA. However, the
traditional mains power supply is not necessarily ubiquitous in
this large-scale wireless network. Furthermore, the non-uniform
geographic distribution of both the based stations and of the tele-
traffic requires carefully considered user-association. Relying on
the rapidly developing energy harvesting techniques, we focus
our attention on the sophisticated access point selection strategies
conceived for the energy harvesting aided super-WiFi network.
Explicitly, we propose a solar radiation model relying on the
historical solar activity observation data provided by the Uni-
versity of Queensland, followed a beneficial radiation parameter
estimation method. Furthermore, we formulate both a Markov
decision process (MDP) as well as a partially observable Markov
decision process (POMDP) for supporting the users’ decisions
on beneficially selecting access points. Moveover, we conceived
iterative algorithms for implementing our MDP and POMDP
based AP-selection, respectively. Finally, our performance results
are benchmarked against a range of traditional decision-making
algorithms.Index Terms—Super WiFi network, access point selection
algorithm, energy harvesting model, MDP, POMDP.

I. INTRODUCTION

The concept of super-WiFi network was proposed by the
United States Federal Communications Commission (FCC)
for the creation of ubiquitous wireless Internet access [1],
which aims for exploiting the lower-frequency white spaces in
the television frequency band in order to create a nationwide
wireless network [2], [3]. The super-WiFi network is expected
to support sophisticated new services, such as intelligent
transportation systems (ITS) [4] and telemedicine systems
(TELEMED) [5], whilst relying on intelligent devices and
inspiring new services.

However, the ambitious task of building a nationwide net-
work faces numerous challenges. Specifically, it is unrealistic
to expect the availability of mains power for all access points
(AP), especially in rural areas. The provision of power supply
for the super-WiFi network is one of its gravest challenges.
Furthermore, how a user wishing to establish a session makes
a well-informed AP selection is another open challenge, given
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the non-uniform AP and user distribution [6], [7], [8]. Each
AP has its well-defined, unique state, including its energy
condition, user access condition, quality of service (QoS)
requirement, etc. The above-mentioned heterogeneous char-
acteristics of the APs as well as of the users bursty tele-traffic
demands require new wireless access protocols specifically
designed for the super-WiFi system.

Despite the above-mentioned challenges, some solutions
have been found, which led to successful experimental super-
WiFi developments, demonstrating that it is feasible to tackle
the aforementioned problems. The energy harvesting concept
provides an ideal replacement for traditional rechargeable
batteries or for the mains supply by harvesting energy from
the surrounding ambient sources [9], [10], such as vibration,
solar energy, thermal sources, etc. These alternatives eliminate
the need for a mains power connection, making the AP truly
tetherless and allowing flexibility in terms their positioning.
As regards to AP selection, a range of sophisticated strategies
have been conceived for large-scale wireless access networks
relying for example on game theory [11], [12], on price
theory [13], [14], on Markov decision processes (MDP) [15],
etc. Most of them aim for balancing the traffic load of the
APs, as well as for providing an improved QoS [16], [17],
[18].

However, the aforementioned studies on solar energy radia-
tion models focused their attention on the theoretical models,
rather than on real solar activity observation data. Moreover,
the users’ access strategy has been oblivious of the near-
instantaneouls energy harvesting conditions. Inspired by the
above-mentioned open problems, in this paper, we conceive
sophisticated AP selection strategies for an energy harvest-
ing aided super-WiFi network. Our original contributions are
summarized as follows:
• The historical solar radiation observation data provided

by the University of Queensland [19] is invoked for
conceiving a solar radiation model as well as an algorithm
for estimating the available solar radiation power.

• Moreover, we construct a super-WiFi system model re-
lying on a queue-based user access model as well as a
dynamic battery state model. The system’s state transition
probability matrix is formulated as well.

• Relying on our solar radiation model and system model,
both a MDP as well as a partially observable Markov
decision process (POMDP) based AP selection algorithm
is proposed, followed by our performance analyses. Fur-
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thermore, we conceive iterative MDP- and POMDP-based
AP-selection algorithms.

The remainder of this article is structured as follows. The
state-of-the-art in energy radiation models as well as in optimal
access strategies is detailed in Section II. The model of the
super-WiFi network and a MDP-based AP selection algorithm
are discussed in Section III. In Section IV, a measurement-
based solar radiation model is proposed, including its pa-
rameter estimation method. Moreover, an iterative POMDP-
based AP selection algorithm as well as its implementation are
also discussed. In Section V, simulation results are provided
for characterizing both our MDP and POMDP AP selection
algorithms, followed by our conclusions in Section VI.

II. STATE-OF-THE-ART

A variety of energy radiation models have been proposed
in the literature for solar-powered wireless access networks
[20]-[24]. Generally, the solar energy radiation models can
be categorized as deterministic and stochastic radiation mod-
els. In [20], Tacca et al. proposed a cooperative data link
relying on automatic repeat request (ARQ) protocols for
energy harvesting sensor networks based on deterministic solar
radiation models, where they assumed that the transmitters
are capable of accurately predicting the solar energy arrival
instants and the resultant energy. By contrast, Niyato et al. [21]
modeled the solar radiation state transitions as a continuous-
time Markov chain and considered the impact of clouds
on the intensity of solar radiation in terms of the cloud
sizes and wind speed. Based on the solar radiation model,
they presented an analytical queuing model to investigate the
QoS performance of a solar-powered wireless sensor network
(WSN). Moreover, a solar energy prediction model based on
an exponentially weighted moving-average filter was proposed
by Kansal et al. [22], where the harvested energy availability
varied as a function of time in a non-deterministic manner.
Lei et al. [23] constructed a birth-and-death chain in order
to characterize the solar radiation state transition process and
optimized their single-hop transmission policy of replenishing
the sensors. Furthermore, an independent and identically dis-
tributed (i.i.d.) Bernoulli model was invoked for characterizing
the energy harvesting process by Aprem et al. [24], who
conceived minimum-outage power control policies for ARQ-
aided wireless energy harvesting sensor nodes. However, all
the aforementioned studies of solar energy radiation stipulated
idealized simplifying hypotheses. However, in practice mod-
eling mismatch may occur, when the solar energy radiation
conditions change during the prediction interval. Therefore, it
is imperative to construct a more precise solar radiation model
based on real solar activity observation data, since a more
accurate energy harvesting/consumption model facilitates an
improved power management and access control performance.
Accordingly, the new data-driven energy harvesting model
proposed in this paper relies on accurate statistical analysis
of the real solar radiation patterns, which is beneficial for the
design of the large-scale super-WiFi system conceived and
characterized in this treatise.

Given the specific energy supply pattern of solar-powered
wireless access networks, it is necessary to develop new

wireless protocols. Inspired by this requirement, some pre-
liminary studies on how to conceive optimal access strategies
are summarized as follows. In [25], Todd et al. highlighted
the current shortcomings of IEEE 802.11 when used in solar-
powered wireless mesh networks, which necessitates a cost-
effective sustainable energy harvesting/consumption mecha-
nism. Moreover, in [26], Xu et al. summarized the existing
access strategies relying on the MDP family, namely on
discrete time MDP (DTMDP) [27], continuous time MDP
(CTMDP) [28] [29], POMDP [30] [15], etc. and analyzed
their open challenges as well as potential solutions. Fur-
thermore, since the access to multiple base stations can be
readily formulated as a game, Chen et al. [30] introduced the
fundamental concepts of game theory, with an emphasis on
wireless access networks. To elaborate, the potential benefits
of games in wireless access networks were originally revealed
by Neel et al. [31], with the objective of optimizing the
attainable network performance. Yang et al. [32] formulated
the wireless network selection problem as a stochastic game
with negative network externality1 and proposed a modified
value iteration algorithm for arriving at the optimal decision.
In [33], a cooperative pricing model was presented, where the
cooperation may involve either all or a limited subset of the
service providers. Meanwhile, Niyato et al. [33] proposed a
scheme for sharing the revenue among the service providers in
a fair manner based on an N-person coalition game. However,
none of the aforementioned studies on optimal access strategy
have considered the realistic energy harvesting situation, where
the APs of the super-WiFi system, considered are supplied by
solar power. Therefore, in this paper, we focus our attention
on the influence of both the supported users’ states and the
access points’ battery states. Both a MDP as well as a POMDP
AP selection strategy is proposed for our super-WiFi system,
which are based on a realistic energy harvesting model derived
from measured solar activity.

III. AP SELECTION STRATEGY BASED ON MDP

A. System Model

In this subsection, we focus our attention on mathemati-
cally modeling the super-WiFi system. As shown in Fig. 1,
the super-WiFi system contains K densely and uniformly
deployed APs supplied by solar energy. The APs are connected
to the servers and support the users through the wireless back-
haul. Each AP has its own coverage D and broadcasts a
constant beacon signal to announce its presence at regular
intervals. Meanwhile, one of the users receives the short bea-
con message from the surrounding APs and chooses the most
appropriate one to establish the data-transmission connection.
In our paper, we use a MDP model to formulate the users’
AP selection strategy, where we make the assumption that
each AP supports a maximum of UM users. Hence, a new
access request reaching the ith AP will be denied, when the

1Negative network externality has the opposite effect on stability compared
to positive network externality. For example, it may create a negative feedback
and exponential decay, which drives the network towards equilibrium, and it
is responsible for maintaining stability, hence preventing the network states
from tending to infinity.
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Fig. 1. The System Model of Super-WiFi Systems and the Internal Structure
of Widely-used Solar Cells.

number of its supported users is Ui = UM . Moreover, the new
arriving users are capable of accessing one of available APs
within their coverage and stay connected until the relevant
services have been satisfactorily completed. Fig. 1 has shown
the internal structure of widely-used solar cells as well, where
the APs’ battery capacity is quantized into BM discrete levels.

The QoS of the ith AP is directly linked to the number of
supported users, namely Ui, as well as with its battery capacity,
Bi. According to the preliminary work of Ho and Zhang [34],
the QoS of the ith AP may be deemed to be proportional to
the reward of its supported users, which is defined as follows:

Ri =

Ui∑
n=1

Wi log

(
1 +

PT (n,Bi)/N0∑
j 6=n PI(dj)/N0 + 1

)
, Ui 6= 0,

(1)
where we have Ui ∈ {u|u = 0, 1, ..., UM} and Bi ∈ {b|b =
0, 1, ..., BM −1}, and Wi represents the channel’s bandwidth.
When Ui = 0, then Ri = 0. PI(dj) denotes the other users’
interference power, which is assumed to be a function of the
distance between user j and the AP dj . The APs’ dissipa-
tive transmission power PT (Ui, Bi) =

∑Ui

n=1 PT (n,Bi) is
a monotonically increasing function of the number of users
Ui. Specifically, PT (Ui, Bi) only represents the dissipative
power during the process of serving Ui users. For each end-
to-end link, the data transmission power PT (n,Bi) is a fixed
value, which may not impose any interference on the other
users. Furthermore, PT (n,Bi)/N0 and PI(dj)/N0 denote the
signal-to-noise power ratio (SNR) of the accessing user n and
interference-to-noise power ratio (INR) of the associated user
j, respectively, where N0 is the noise power. We assume that
both the battery charge as well as the users’ reward remains
constant during each time slot. In the following, we will
specifically analyze the battery state, the user access process,
as well as the expected reward of the users.

B. Battery State Model

The battery state constitutes the critical consideration, when
making an AP selection. Furthermore, we should strike a trade-
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Fig. 2. The current density versus the voltage V of the solar cell, as well
as the output power of the cell versus its voltage V (The short-circuit current
density JSC = 13.364mA/cm2, the open-circuit voltage VOC = 0.7631V,
as well as the illuminated area SI = 0.05cm2 [35]).

off between the battery-level quantization accuracy and the
AP selection algorithm complexity. For example, if four levels
of battery states (BaS) are considered, we have BM = 4,
i.e. BaS0 (Empty), BaS1 (Not sufficient), BaS2 (Adequate),
as well as BaS3 (Full). Given the short duration T of each
time slot, again the battery state can only change between
the adjacent states at the end of each time slot. Naturally,
the battery charge is improved by the solar energy harvesting
mechanism and it is reduced by transmitting packets.

The power harvested is influenced both by the solar illu-
mination intensity and by the energy harvesting efficiency,
and it determines the next time slot’s battery state. Fig. 2
shows the relationship between the current density J(V ) and
the solar cell’s output voltage V in the classic photoelectric
configuration depicted in the bottom right corner of Fig. 1. An
idealized relationship can be inferred from [35]:

J(V ) = JSC − JO
(
e

qV
KTK − 1

)
, (2)

where Boltzmann’s constant is K = 1.38 × 10−23 J/K, the
temperature is TK = 300 K, and the electron charge is q =
1.6 × 10−19C. Furthermore, JSC represents the short-circuit
current density and JO is the saturation current density. Then
the resultant output power, PW , of the solar cell shown in
Fig. 2, obeys:

PW = SI · J(V ) · V, (3)

where SI denotes the solar cell’s illuminated area at each
AP, which is assumed to be a constant. Let us introduce
the parameter η to indicate the energy harvesting efficiency,
which is assumed to be constant. Then the harvested power
PH becomes:

PH = η · PW = η · SI · J(V ) · V. (4)

The relationship between the battery energy E and the voltage
in a capacitor having the capacity of C is E = 1

2CV
2. Then

the BM battery states can be deduced by partitioning the
maximum battery energy Emax into four intervals. Therefore,
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we have an estimated battery voltage for the kth AP given by:

Vk =

√
2Bk bEmax/BMc

C
, (5)

where the symbol b·c represents the rounding function and Bk
is the battery state of the kth AP. Based on the aforementioned
analysis, the harvested power PH of Equation (4) is rewritten
as:

PH(Bk) = η ·

JSC − JO
exp

q
√

2BkbEmax/BMc
C

KTK

−1


·
√

2Bi bEmax/BMc
C

.

(6)
Let us now focus our attention on the battery state transitions.
In our battery model, PT (Uk, Bk) is the transmission power
and a constant PD represents the sum of all other power
consumption , such as the wireless backhaul dissipation, the
beacon signal power, the AP’s signal-processing based dissi-
pation, etc. During each time slot, an extra amount of PDT
energy consumption is considered. Given that the harvested
power PH(Bk) has been measured for the kth AP, the battery
state transition probability from BaSi to BaSj during each
time slot obeys:

Ψk(j|i)

=



Pr
(
PH(Bk)− PT (Uk, Bk)− PD > Emax

BMT

)
, if j = i+ 1,

Pr
(
PT (Uk, Bk)− PH(Bk)− PD > Emax

BMT

)
, if j = i− 1,

1−
BM−1∑

m=0,m 6=i
Ψk(m|i), if j = i,

0, if |j − i| > 1,
(7)

where we have 0 ≤ j ≤ BM − 1 as well as 0 ≤ i ≤ BM − 1.
Considering a realistic case, two schemes have been conceived
in order to reduce negligible error of battery discretization.
Specifically, the APs are capable of automatically adjusting
the discretization resolution BM versus the time slot T , which
guarantees satisfying an appropriate energy threshold and
hence it is beneficial. Moreover, a self-inspection based battery
state update mechanism is used by the APs with the objective
of reducing the accumulated error.

C. User Access Model

In this subsection, we consider two different types of users.
Specifically, the active mobile phone users are capable of
deciding upon which one of the available APs within their
reach they want to access. By contrast, the passive users, which
can only access the specific AP assigned by the system control
center. If the selected AP reaches its maximum user-access
restriction, the access request of the next active user n will
be denied and the user will be assigned to another available
AP by a greedy access protocol, which aims for achieving the
maximum possible immediate reward. Thus, the choice of the

stand-by AP is determined by evaluating:

APi = arg max
i,Bi<BM ,Ui<UM

Wi log

(
1 +

PT (n,Bi)/N0∑
j 6=n PI(dj)/N0 + 1

)
.

(8)
The user-arrival process and user-service process of each AP

can be represented by the classic M/M/UM queueing model.
When considering the kth AP, its active as well as passive
users’ arrival process obeys a Poisson distribution having the
same arrival rate of λk, k = 1, 2, ...,K, whilst the departure
rate of all users is negative exponentially distributed with a
departure-rate parameter of µ. During a sufficiently short time
slot T , we may readily assume that only a maximum of one
user can request access to or depart from a certain AP having
adequate energy. Therefore, the state transition probability of
the users associated with the kth AP between adjacent time
slots can be defined as:

Φk(j|i, i ≤ UM − 1) =


λk, if j = i+ 1,
iµ, if j = i− 1,

1− λk − iµ, if j = i,
0, if |j − i| > 1,

(9)

or

Φk(j|i, i = UM ) =

 iµ, if j = i− 1,
1− iµ, if j = i,

0, if |j − i| > 1.
(10)

Let us denote the super-WiFi system’s user association state
as U = (U1, U2, ..., UK), and its system battery state as
B = (B1, B2, ..., BK). Moreover, we represent the super-
WiFi system’s state by S =< U,B >, which contains both
the user association state and the battery state. Hence, the
overall system state is represented by the 2K-element vector
S = (U1, B1, U2, B2, ..., UK , BK). Given the independence of
both the APs as well as of the pair of system sub-states, the
system’s state transition probability is given by:

P (S′|S) =

K∏
k=1

Φk(U
′

k|Uk, Bk, A)Ψk(B
′

k|Uk, Bk, A)

=

K∏
k=1

Φk(U
′

k|Uk, A)Ψk(B
′

k|Bk, A).

(11)

D. MDP Decision-making Model

The active/passive users’ AP selection is based on a
decision-making process, which is governed by the specific
utility value expected in the system’s steady state after an
infinite number of time slots. Furthermore, the decision-
making during each time slot is simply based on the current
system state, rather than on a set of past system states. Let
Rt(St) represent the system’s total reward at the tth time slot
within the current system state St, which implies that we have

Rt(St) =
K∑
k=1

Rtk. Thus, the system’s reward V (S) expected

in its steady state after the elapse of an infinite number of time
slots can be expressed as:

V (S) = E[

∞∑
t=0

γtRt(St)], (12)
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where γ is a discount factor obeying 0 < γ < 1, which reflects
the life cycle2 of the decision-making process.

Naturally, we have constructed a basic MDP model, which
can be described as the four-tuple < S,A,P,R > detailed
below:
• System state set S: a set of all the possible system states,

i.e. S ∈ S, where the 2K-element state vector is S =
(U1, B1, U2, B2, ..., UK , BK);

• User action set A: A ∈ A, where A represents the users’
actions in terms of which available APs they request
association with;

• State transition matrix P: S×A→ S′ , where the operand
′×′ represents the Cartesian product, while S

′
(U
′
, B
′
) ∈

S′ = S is the system’s state during the next time slot.
The transition probability is given by P (S

′ |S,A);
• The system’s immediate reward set R: S×A→ R, where
R(S,A) ∈ R represents the immediate reward under the
access action A, when the current state is S.

Given the above definitions, the AP selection strategy is
based on a decision-making process. We denote the strategy
by Π, which represents a mapping from the system’s state set
to the user action set, which is formulated as Π : S→ A. Given
the selection strategy Π, the system’s expected reward in its
steady-state after an infinite number of time slots becomes:

V Π(S|S0) = E[

∞∑
t=0

γtRt(St,Π(St))|S0], (13)

where S0 is the initial system state. Equation (13) can be
rewritten as the following function to be evaluated:

V Π(S | S0) = R(S0,Π(S0))+γ
∑
S′∈S

P (S
′
|S0,Π)V Π(S

′
|S0).

(14)
Let us now define what we might refer to as an action value
function (AVF) in the form of:

QΠ/A(S,A) = R(S,A) + γ
∑
S′∈S

PA(S
′
|S,A)V

Π
(S
′
), (15)

which indicates that an already communicating user takes
action A during the system state S, while accepting the
strategy Π, when it finds itself in other system states. Then,
the optimal strategy can be deduced from:

Π∗(S) = arg max
A∈A

Q(S,A), (16)

yielding:

Π∗(S) = arg max
A∈A

{R(S,A) + γ
∑
S′∈S

PA(S
′
|S,A)V

Π
(S
′
)}.

(17)
Meanwhile, we have:

V Π∗(S) = max
A∈A
{R(S,A) + γ

∑
S′∈S

PA(S
′
|S,A)V

Π∗

(S
′
)}.

(18)
Let Π∗(S) represent the optimal strategy, while V Π∗(S) be

2In the process of decision making, the influence of environment should
be considered. The impact on the target is reduced as a function of the time-
elapse. The life cycle reflects the above phenomenon.

Algorithm 1 Iterative Algorithm
• Initialization
V 0
k (S)← 0, for all S ∈ S and k = 1, 2, ...,K;

Π0(S)← 1, for all S ∈ S.
• Iteration
while max

S
| V tk (S)− V t+1

k (S) |> ε do
for all S ∈ S and k = 1, 2, ...,K,
V t+1
k (S)← Rk(S) + γ

∑
S′
Pk(S′|S,Πt)V tk (S′);

Πt+1(S)← arg max
A∈A

V Πt+1

(S),

where S
′

is the next time slot system state.
end while
• Output
Π∗(S)← Πt+1(S);
V ∗(S)← max

A∈A
V Π∗(S).

the corresponding optimal expected reward. Because no other
strategy exists, which would offer a higher expected reward,
the optimal strategy can reach the Nash-equilibrium. For any
other strategy Π

′
(S), which we refer to as an ε-optimal

strategy, we have:

V Π
′

(S)− V Π∗(S) ≤ ε, ∀S ∈ S. (19)

In order to solve the MDP formulated in Equation (13), we
propose the iterative Algorithm 1.

IV. POMDP AP SELECTION STRATEGY BASED ON A
SOLAR-ACTIVITY MEASUREMENT AIDED ENERGY

HARVESTING MODEL

The POMDP models an agent-based decision-making pro-
cess, in which the system dynamics are determined by a
MDP, where the agent is unable to directly observe some
of the underlying states. Specifically, it has to maintain a
probability distribution over the set of legitimate states based
on a set of observations and observation probabilities. In
Section III, we assumed that both the battery states as well
as the user access states are completely observable. However,
Equation (4) represents an inaccurate estimate of the harvested
solar power, which was formulated under the hypothesis of
a fixed energy harvesting efficiency of η as well as under
the idealized relationship of Equation (2). However, the solar
radiation model has a grave influence on the battery states, thus
critically affecting the final decision-making. Therefore, we
first construct a solar radiation model relying on the historical
solar activity observation data, followed by the conception of
a POMDP AP selection strategy for the proposed super-WiFi
system.

A. Data-driven Solar Radiation Model

Solar radiation intensity changes over time in a year, as
influenced by the weather conditions. The radiation sensors
have a limited sampling rate, which makes it hard to simulta-
neously record the solar radiation intensity and to accurately
estimate the system’s battery state. In this subsection, we focus
our attention on modeling the solar radiation as well as on
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Fig. 3. Statistical analysis of historical solar radiation observation data
provided by the University of Queensland, Australia [19].

estimating the real-time radiation intensity relying on historical
solar radiation observation data.

The historical solar radiation observation data was provided
by the University of Queensland, Australia [19], where the
power harvested from solar radiation was recorded from
5:00am to 19:00pm, during the interval from 2013 to 2014.
Moreover, the sampling frequency was 1/min. Fig. 3 presents
some of the historical observation data. In subgraph 3(a), the
time series of the average daily harvested power is sketched
over the whole year of 2013. Subgraph 3(b) depicts the
variation tendency of the average daily harvested power during
both June as well as September. Subgraph 3(c) concentrates
on the power variation tendency within a day from 5:00am to
19:00pm. Furthermore, the power harvested within the same
one-hour period of different months is shown in subgraph 3(d),
respectively, along with their hourly averages. Finally, sub-
graph 3(e) indicates the relationship between the normalized
harvested power and the normalized temperature. We may
conclude that as expected, the weather conditions have a
significant impact on the harvested solar power. Moreover, the
average daily harvested power fluctuates slowly within a short
time interval, but varies substantially in a long term.

Therefore, in a short period of time, say, within an hour,
the real-time harvested solar power can be modeled as:
P tH = θ + κ, where θ is constant for an hour, while κ is

a small perturbation. Moreover, multiple factors, such as the
effective irradiation area, the clouds’ distribution, the sensors’
operating status, etc. may independently affect the harvested
power. Relying on the central-limit theorem, the perturbation
κ can be regarded as being Gaussian distributed, i.e., we have
κ ∼ N (0, σ2). Furthermore, the distribution of PH can be
written as PH ∼ N (θ, σ2). Given a set of observation data
X = [x0, x1, ..., xM−1], it is critical to accurately estimate θ
and σ2. Upon introducing the notation of Λ = [θ, σ2]T, we
have:

p(X; [θ, σ2]
T
) =

1

(2πσ2)
M/2

exp

{
− 1

2σ2

M−1∑
i=0

(xi − θ)2

}

=
1

(2πσ2)
M/2

exp

{
− 1

2σ2

(
M−1∑
i=0

xi
2 − 2θ

M−1∑
i=0

xi +Mθ2

)}
= g(T (X), [θ, σ2]

T
)× h(X).

(20)

Equation (20) represents a Neyman-Fisher factorization [36]
of p(X; [θ, σ2]

T
), where we have both h(X) = 1, as well as

the sufficient statistics of

T (X) =


M−1∑
i=0

xi

M−1∑
i=0

xi
2

 . (21)

For all the Λ=[θ, σ2]T values we have:∫
ν[T (X)]p(T (X); Λ)dT (X)=0, (22)

if and only if ν[T (X)] = 0. In other words, T (X) satisfies
completeness. Upon introducing

T1(X)=

M−1∑
i=0

xi, (23)

as well as

T2(X)=
M−1∑
i=0

xi
2, (24)

we can construct the unbiased vector of:

y[T (X)] =

[
1
M T1(X)

M
M−1 ( 1

M T2(X)− ( 1
M T1(X))2)

]

=


1
M

M−1∑
i=0

xi

M
M−1 ( 1

M

M−1∑
i=0

xi
2 − ( 1

M

M−1∑
i=0

xi)
2)

 , (25)

where we have E[y(T (X))] = [θ, σ2]
T. Therefore, the corre-

sponding estimates may be formulated as:

θ̂ =
1

M

M−1∑
i=0

xi, (26)

as well as

_
σ

2
=

M

M − 1

 1

M

M−1∑
i=0

xi
2 −

(
1

M

M−1∑
i=0

xi

)2
 . (27)
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The corresponding estimation errors are given by var(θ̂) = σ2

M

and var(σ̂2) = 2σ4

M . Hence, we can obtain the distribution of

the harvested solar power in the form of PH ∼ N (θ̂,
_
σ

2
).

Specifically, having more observation data as well as a lower
perturbation contributes a more accurate harvested power
distribution estimation.

In next subsection, we construct a POMDP decision-making
model relying on the above measured solar radiation model.

B. Battery State Model

Given a short time slot T , EC represents the energy
consumption during a time slot. Hence, we have EC =
PT (Uk, Bk)T + PDT = (UkP0 + PD)T , where P0 is the
unit transmission power and PD represents all the other power
consumption components, such as the wireless backhaul’s dis-
sipation, the beacon signal power, etc. Moreover, EH indicates
the energy harvested under the assumption that the fluctuation
of the harvested power level is quasi-static over the infor-
mation transmission interval, i.e. we have EH = ηPH(X)T ,
where X = [x0, x1, ..., xM−1] represents the observation data
of solar radiation. At the end of each time slot, an energy
replenishing process takes place at each APs, hence we have:

Et+1
R = min{EtR + EtH − EtC , Emax}, (28)

where Et+1
R indicates the residual energy reserved for the

next time slot. In light of the discrete states of the POMDP
model, it is necessary to discretize the continuous battery
charge value. Again, a rounding function b·c is invoked for
linearly segmenting the battery energy value into BM levels,
i.e. we have BM = bEmax/(P0T )c + 1. The battery state
of the kth AP at the end of time slot t can be expressed
as Btk = bEt+1

R /(P0T )c. In order to reduce negligible error
of battery discretization, the APs are capable of automatically
adjusting the discretization resolution BM versus the time slot
T , which guarantees satisfying an appropriate energy thresh-
old. Moreover, a self-inspection based battery state update
mechanism is used by the APs with the objective of reducing
the accumulated error. Based on this, the users requesting
access to it can judge, whether the battery charge is sufficient
for reliable information transmission.

Therefore, we arrive at:

j ≤ EH − EC
P0T

≤ j + 1, (29)

where we have j = bEH−EC

P0T
c, where the integer j as well

as (j + 1) represent the battery energy variation lower and
upper bound, respectively. Let ∆Bk = Bt+1

k − Btk indicate
the difference between the two battery states of the kth AP.
Thus, the probability that the battery state will change by an
amount of ∆Bk in terms of the harvested energy as well as
the users’ action A can be formulated as:

Pr(∆Bk = i|EH , A, j)

=


EH−EC

P0T
− j, if i = j + 1,

(j + 1)− EH−EC

P0T
, if i = j,

0, otherwise.

(30)

After some further manipulations, we arrive at:

Pr(∆B = i|A) =∫ iE0+EC

(i−1)E0+EC

Pr(∆B = i|EH , A, i = j + 1)Γ(EH)dEH+∫ (i+1)E0+EC

iE0+EC

Pr(∆B = i|EH , A, i = j)Γ(EH)dEH ,

(31)
where the unit transmission energy of E0 = P0T , as well as
Γ(EH) ∼ N (T θ̂, T 2_σ

2
) are derived from the solar radiation

model of Equation (26) and (27). Then, the battery transition
probability of the kth AP from BaSi to BaSj can be
calculated as:

Ψk(j|i) =

{
Pr(∆B = j − i|A), if j ≤ BM − 1,∑∆Bmax

∆B=BM−1−i Pr(∆B|A), if j = BM − 1,
(32)

where Pr(∆Bmax|A) is a sufficiently small value. When we
have j = BM−1, the battery is fully charged and all the extra
harvested battery energy has to be discarded.

C. User Access Model

As formulated in Section III-C, the users’ arrival/departure
at/from a certain AP between adjacent time slots obeys a
revised birth and death process, respectively. In order to
simplify our discourse, new users requesting access to any
of the super-WiFi APs obey the same arrival rate λ, while µ
represents their identical departure rate. Under the hypothesis
of adequate battery energy charge and a sufficiently short time
slot T , for any candidate AP k, we can rewrite Equation (9)
and (10) as:

Φk(j|i, i ≤ UM − 1) =


λ, if j = i+ 1,
iµ, if j = i− 1,

1− λ− iµ, if j = i,
0, if |j − i| > 1,

(33)

and

Φk(j|i, i = UM ) =

 iµ, if j = i− 1,
1− iµ, if j = i,

0, if |j − i| > 1,
(34)

where Φk(j|i) is the probability traversing from state i to ad-
jacent state j. However, when energy depletion is encountered,
i.e., we have Et−1

R +EtH −EtT < 0, then we arrive at j = 0.

D. Transition Probabilities of the System

The K APs of our super-WiFi system have states constituted
by both the user-association states as well as by the battery
states. As defined in the MDP, let U = (U1, U2, ..., UK) denote
the user-association states, while B = (B1, B2, ..., BK) repre-
sents the AP battery states, where Uk ≤ UM and Bk≤BM−1.
Furthermore, the super-WiFi system state can be written as a
2K-element vector S = (U1, B1, U2, B2, ..., UK , BK), which
includes both the K APs’ user-association states and the K
APs’ battery states. Relying on Equation (32), (33) and (34),
as well as assuming the independence of each AP’s two sub-
states, in contrast to Equation (11), the system’s state transition



8

probability is given by

P (S
′
|S) =

K∏
k=1

Φk(U
′

k|Uk, A)Ψk(B
′

k|Bk, A). (35)

E. POMDP Decision-making Model

In this subsection, we assume that the requesting access
users only have partial knowledge of the entire super-WiFi
system’s state, which is refered to as the observed state
O. Relying on the above definitions and hypotheses, we
construct the POMDP decision-making model as a seven-tuple
< S,A,O,P,Ω,F,R >, which is detailed below:

• System state set S: a set of all the possible system
states, i.e., S ∈ S, where the 2K-element state vec-
tor is formulated as S = (U1, B1, U2, B2, ..., UK , BK).
card(S) = (UMBM )K ;

• User action set A: a set of all the possible users’ actions,
with A ∈ A, where A represents the users’ specific
actions, in terms of which of the available APs they
request access to;

• Observed state set O: a set of all the possible observed
system states, i.e., O ∈ O;

• State transition matrix P: S×A→ S′ , where the operand
′×′ represents the Cartesian product, while S

′
(U
′
, B
′
) ∈

S′ = S is the system’s state during the next time slot.
The transition probability is P (S

′ |S,A);
• Belief state vector Ω: Ω = {ω(S)|S ∈ S}, where ω(S)

is the belief probability vector reflecting the grade of
similarity between the current observed state O ∈ O and
the legitimate system state S;

• Observation function matrix F: Ω × A × S′ → O,
where F (O,Ω, A, S

′
) = Pr(O|Ω, A, S′) represents the

probability that the observed state becomes O at the next
time slot in terms of the user’s action A;

• Immediate reward set of the system R: S×A→ R, and

R(S,A) ∈ R, where R(S|A) =
K∑
k=1

Rk(S|A) indicates

the immediate reward as a consequence of access action
A under current state S.

The belief probability ω(S
′
) for a certain observed state O

can be updated based on the following Bayesian formula:

ω(S
′
) = Pr(S

′
|O,A,Ω)

=
Pr(O|S′ , A,Ω)Pr(S

′ |A,Ω)

Pr(O|A,Ω)

=

Pr(O|S′ , A,Ω)
∑
S∈S

Pr(S
′ |A,Ω, S)Pr(S|A,Ω)

Pr(O|A,Ω)

=

Pr(O|S′ , A,Ω)
∑
S∈S

Pr(S
′ |A,S)Pr(S|Ω)

Pr(O|A,Ω)

=

F (O,Ω, A, S
′
)
∑
S∈S

P (S
′ |A,S)ω(S)

Pr(O|A,Ω)
,

(36)

where we have:

Pr(O|A,Ω) =
∑
S′∈S

Pr(O,S
′
|A,Ω)

=
∑
S′∈S

Pr(S
′
|A,Ω) Pr(O|S

′
, A,Ω)

=
∑
S′∈S

∑
S∈S

Pr(S
′
|A,S)ω(S) Pr(O|S

′
, A,Ω)

=
∑
S′∈S

F (O,Ω, A, S
′
)
∑
S∈S

P (S
′
|A,S)ω(S).

(37)
Thus, the POMDP can be reduced to a belief MDP in terms of
the belief state vector Ω [37]. Therefore, the expected reward
of the system relying on strategy Π after an infinite number
of time slots can be written as:

V Π(S|S0) = E[

∞∑
t=0

γtRt(St,Π(St))ω(St)|S0], (38)

where S0 is the initial system state. After a number of
simplifications, Equation (38) is reduced to:

V Π(S | S0) =
∑
S0∈S

R(S0,Π(S0))ω(S0)

+ γ
∑
S′∈S

P (S
′
|S0,Π)V Π(S

′
|S0).

(39)

Hence, the optimal strategy is given by:

Π∗(S) = arg max
A∈A

{
∑
S∈S

R(S,A)ω(S)+

γ
∑
S′∈S

PA(S
′
|S,A)V

Π∗

(S
′
)}.

(40)

Moreover, we have:

V Π∗(S) = max
A∈A
{
∑
S∈S

R(S,A)ω(S)+

γ
∑
S′∈S

PA(S
′
|S,A)V

Π∗

(S
′
)}.

(41)

The above formula can appear rather complex at the first sight.
However, as shown in [38], V Π∗(S) is a piecewise linear and
convex function, which is composed solely of line segments
or hyperplanes. Hence, it can be simplified to:

V Π∗(S) = max
k
{
∑
S∈S

ω(S)αk(S)}, (42)

for a set of vectors α = {α1, α2, ...}, where we have αk =
[αk1 , α

k
2 , ..., α

k
card(S)]. Each vector represents the coefficients

of one of the linear segments of a piecewise linear function.
Relying on this α-vector based representation, we have found
an appealing technique of representing the reward function
for the belief state space. This simpler representation is the
key element of the POMDP solution technique. Since each
set of αk vectors may be regarded as a set of parameters
specifying a hyper-linear function, there is a dominated hyper-
plane structure in the model. Moreover, the partitions of the
belief space during the time slot t can be calculated in terms
of all the dominating vectors αt−1 of the previous time-slot.
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Algorithm 2 Energy Function-based Algorithm
• Initialization
ω(S0)← ω(S0), where ω(S0) is the initial belief vector;
Π(S0)← 1, for all S ∈ S.
• Procedure
repeat

1. Estimate the belief vector:
ω(St+1)← Pr(St+1|O,A, ω(St));
2. Calculate the energy function in the time slot t:
H[ω(St+1),Π(St)];
3. Choose the suboptimal decision via:
Π∗ (St)← arg max

Π
E[H(ω(St+1),Π(St))],

where ω(St+1) is the corresponding belief vector if we
choose decision Π;
4. Update the belief vector:
ω(St+1)← Pr(St+1|O,Π∗ (St) , ω(St)).

until Terminated

Accordingly, the reward action that is optimal can be derived
from (36), (37) and (42).

The optimal POMDP solution can be readily calculated
in an off-line procedure, if the number of system states is
small. However, the POMDP method has its limitations when
K, UM , and BM are large, as well as when the parameters,
such as the users’ arrival rate λ, departure rate µ, etc. change
rapidly. Let us now elaborate on how to reduce the complexity
and how to expedite the calculations. The problem in Equation
(42) can be reformulated as:

V ∗(S) = max
Π
{
∞∑
t=0

E[H(ω(St),Π(St))]}, (43)

where the expectation E[·] takes into account the probability
of receiving different observations, while H[ω(St),Π(St)]
represents the system’s energy function. Thus, given the belief
vector ω(St), our super-WiFi system’s energy function is given
by:

H[ω(St),Π(St)] =
∑
S∈S

ωt(S)

K∑
i=1

min
Π
{EtiR + EtiH − EtiC , Emax}.

(44)

Then, a suboptimal solution can be conceived by maximizing
the system’s next-time-slot energy function, yielding:

Π∗ (S) = arg max
Π

E[H(ω(St+1),Π(St))]. (45)

This algorithm (43)∼(45), detailed in Algorithm 2, aims
for optimizing the energy transfer function rather than the
system’s expected long-term reward. This philosophy relies
on the assumption that the more energy the super-WiFi system
harvests, the more rewards the rational users can glean. This
algorithm is an altruistic one, which may sacrifice its own
individual reward in order to arrive at the system’s optimum
state. Furthermore, this algorithm is capable of adapting to
sudden environmental changes.
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Fig. 4. Convergence analysis of the proposed MDP AP selection algorithm.
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Fig. 5. Comparison of the expected reward versus both the arrival rate as
well as departure rate. (Relative expected rewards are derived from the three
user’s expected rewards normalized by the reward with the myopic regime.)

V. SIMULATION RESULTS

A. Simulation Results of the MDP AP Selection Strategy

In this subsection, the performance of the proposed AP
selection strategy based on the MDP is illustrated in com-
parison to both the myopic strategy of [39] and to a random
strategy. Specifically, the myopic strategy requires the users
to access the specific AP providing the maximum immediate
reward, which is formulated as ΠM (S) = arg max

i,1≤i≤K
Ri(S).

By contrast, the random strategy grants an identical access
probability for each requesting user, which is encapsulated in
Pr(ΠR(S) : access i) = 1/K.

Based on the super-WiFi system model of Section III, it
is necessary to carefully select the salient simulation param-
eters. First, we divided the battery charge into four discrete
isometric battery levels, yielding BM = 4. Furthermore, we
set: PI , PT , PH and N0 as: PT /N0 = 10, PI/N0 = 10,
Emax/(BM × T ) = 6, as well as maxPH/N0 = 6, 7, ..., 10
in conjunction with a different energy harvesting efficiency.
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Fig. 6. The reward gleaned by three AP selection strategies under different
illumination intensities (kw/m2).

We denote the different energy harvesting efficiencies as
η = 6ηunit, 7ηunit, ..., 10ηunit, respectively. The simulations
were repeated 10000 times to avoid random errors.

The convergence analysis of the proposed MDP value
iterative algorithm was illustrated in Fig. 4. Fig. 4(a) illustrates
the sum of | V t+1

k (S) − V tk (S) |2, for all k, as well as
S ∈ S, while Fig. 4(b) shows the number of strategy errors
during the subsequent iterations | Πt+1(S)−Πt(S) |2. Beyond
the 15th iteration, the selection strategy may be deemed to
be fully converged. Moveover, the figure also shows that
our MDP value iterative algorithm converges according to a
near-exponential trend, which appears as a linear trend on a
logarithmic axis.

In Fig. 5, the expected reward versus the arrival rate λk
of the requesting users, and versus the departure rate µ was
evaluated. Let us consider the situation associated with K = 3,
as well as with the arrival rates of λ1 = λ2 = λ3. Furthermore,
assuming Ui = 0, 1, ..., 4, i.e., UM = 4 and BM = 4,
the energy harvesting efficiency becomes η = 10ηUnit.
Fig. 5(a), where we have µ = 0.1 and subgraph 5(b), where
λk = 0.1, k = 1, 2, 3, showed that the proposed AP selection
strategy based on MDP exhibited a clear advantage both over
the myopic one, as well as over the random strategy in terms
of the total expected reward. The random strategy performed
the worst. Specifically, the myopic regime’s total expected
reward was normalized to 1 as a reference. Because of the
limitation of UM = 4, increasing the requesting users’ arrival
rate had nearly no impact on the reward. However, as depicted
in Fig. 5(b), the total expected reward was reduced upon in-
creasing the departure rate of the already communicating users,
which indicated that users would stay shorter in the super-
WiFi system. Moreover, when µ became high, the proposed
strategy only had a modest advantage over the other two,
which highlighted the important role of having an immediate
reward.

Fig. 6 shows the performance of three AP selection algo-
rithms under different average illumination intensities. Let us
set λ1 = λ2 = λ3 = 0.1, µ = 0.1, K = 3, BM = 4, as
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Fig. 7. The convergence analysis of proposed POMDP AP selection
algorithm.

well as Ui = 0, 1, ..., 4. Observe in Fig. 6 that all the three
strategies had a higher total expected reward in the presence
of a more intense solar radiation. Moreover, the proposed AP
selection algorithm based on the MDP exhibited a substantial
advantage over the other two algorithms.

B. Simulation Results of the POMDP AP Selection Strategy

In this subsection, the convergence of the POMDP iterative
algorithm is illustrated in Fig. 7, where the y-axis represents
the α-vector error, which reflects the difference of the super-
WiFi system’s expected reward between two consecutive iter-
ations. Moreover, the discount factor of Equation (38) is set
to γ = 0.9. The Bellman stopping criterion of [40] is used
to determine when to stop the iteration process. As we can
see from Fig. 7, the POMDP model converges exponentially
under certain conditions, depending on the system parameters.
The reference benchmark solar intensity in the legend is given
by Wr = 1kW/m2.

The efficiency of the AP selection algorithms is compared
in terms of the system’s access efficiency ξ, i.e., ξ = NS/TS ,
where NS is the total number of successful access attempts
during the entire simulation time TS . Again, in this paper,
we rely on the observed solar radiation data provided by
the University of Queensland, Australia [19] and make the
assumption that the simulation time is TS = 10, 000s, with
each time slot having a length of T = 200ms. Moreover,
the energy harvesting efficiency is η = 75% [41], while
the transmission power requested for serving a single user is
40mW.

In order to fully characterize our AP selection ef-
ficiency, several algorithms are compared, including the
classic carrier sensing multiple access/collision detection
(CSMA/CD), the carrier sensing multiple access/collision
avoidance (CSMA/CA)3, as well as the random access algo-
rithm. We use the same acronym CSMA/CD and CSMA/CA

3Strictly speaking, the CSMA/CD and CSMA/CA in this paper are different
from the Ethernet’s data link layer protocols. Here, both of them represent
the access control mechanisms.
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Fig. 8. The relationship between the system access efficiency and users’
arrival rate as well as solar radiation intensity with one AP (K = 1, UM = 3,
BM = 8).

for convenience as in the Ethernet’s data link layer, but it
is important to note that ”carrier sensing” here means that
one of the users senses the surrounding APs by receiving
the short beacon message from the APs, instead of checking
the strength of the physical carriers. Our CSMA/CD method
blocks any new requests when detecting a collision, and then
the classic exponential back-off algorithm is used. Explicitly,
after n failures, a gradually increasing number of sleeping
time slots will be chosen from the range of 0 and 2n − 1.
Furthermore, the CSMA/CA method would access the AP after
the user receives the acknowledgement (ACK) from a certain
AP in the most recent time slot and becomes aware that a
successful service is available. In terms of the random access
algorithm, the users simply select one of the surrounding APs
with an equal probability.

In Fig. 8, we consider the situation having only a single AP,
i.e., K = 1, as well as a maximum number of communicating
users of UM = 3, and a maximum number of battery states of
BM = 8. Fig. 8(a) shows the relationship between the arrival

The users' arrival rate λ
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Fig. 9. The relationship between the system access efficiency and users’
arrival rate as well as solar radiation intensity with multiple APs (K = 2,
UM = 1, BM = 3).

rate and the system’s access efficiency for a departure rate
of µ = 0.05, as well as for the solar radiation parameters
of θ= 1Wr, σ2 = 0.5Wr. Again, Wr represents the reference
benchmark solar intensity. The performance of the proposed
POMDP is superior to that of the others, while the overall
performance Algorithm 2 is mediocre. Furthermore, we can
see that the CSMA/CD has a good performance, when the
system is not too busy, but the performance degrades sharply
upon increasing the users’ arrival rate. In Fig. 8(b), we focus
our attention on the influence of the solar radiation intensity
in conjunction with the users’ arrival rate of λ = 0.4. A
prominent point is that even when the solar intensity is high,
the system’s access efficiency tends to be saturated for the
three traditional algorithms, instead of further improving their
efficiency. This is because these algorithms do not make full
use of the energy harvesting information available in the super-
WiFi system. As demonstrated in Section IV-E, when the solar
intensity is high, the performance of the proposed suboptimal
Algorithm 2, which substantially reduces the complexity,
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remains nearly identical to that of the POMDP.
In Fig. 9, multiple APs (K = 2) are considered with the

maximum number of admitted users being UM = 1, as well as
having a maximum number of battery states given by BM = 3.
The departure rate is µ = 0.05. We can conclude from
Fig. 9(a) that a highly loaded system makes the CSMA/CD
method almost useless, when the users’ arrival rate reaches
a certain value. As shown in Fig. 9(b), where λ = 0.4, the
system’s access efficiency recorded for all the AP selection
algorithms only increases with the solar radiation intensity
in a relatively small range. However, the performance of the
CSMA/CD, CSMA/CA, as well as of the random selection
algorithm remains unchanged, regardless of the increase of the
solar radiation intensity. Moreover, the suboptimal Algorithm
2 is capable of outperforming the POMDP method at a strong
solar radiation intensity, which may be deemed to be the result
of the approximations and hypotheses inherent in the POMDP
model.

VI. CONCLUSIONS

The super-WiFi system has a vast array of compelling
applications in both civilian and military missions. In this
paper, we focused our attention on the AP selection strategies
of energy harvesting aided super-WiFi systems, as well as on
a measurement-based solar radiation model. Furthermore, in
order to construct a capable large-scale super-WiFi system,
both a MDP as well as a POMDP AP selection algorithm was
proposed. Additionally, we conceived iterative methods for the
solution of both the MDP and POMDP. Finally, performance
evaluations were provided. Through our extensive simulations,
our proposed algorithms were shown to achieve significant
gains with respect to the conventional approaches, which
confirmed the efficiency of the MDP and POMDP AP selection
algorithms.
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