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Abstract—In a cooperative network the user equipment (UE)
share information with each other for cooperatively achieving
a common goal. However, owing to the concerns of privacy or
cost, UEs may be reluctant to share genuine information, which
raises the information credibility problem addressed. Diverse
techniques have been proposed for enhancing the information
credibility in various scenarios. However, there is paucity of infor-
mation on modeling the UEs’ decision making behavior, namely
as to whether they are willing/able to share genuine information,
even though this directly affects the information credibility across
the network. Hence, we propose a game theoretic framework for
the associated information credibility modelling by taking into ac-
count the users’ information sharing strategies and utilities. This
framework is investigated under both a homogeneous model and
a heterogeneous model. The spontaneous information credibility
equilibria of both models are derived and analyzed, including
the closed-form analysis of the homogeneous model based on a
sophisticated evolutionary game model and on the reinforcement
learning based analysis of the heterogeneous model. Moreover, a
credit mechanism is designed for encouraging the UEs to share
genuine information. Experimental results relying on real-world
data traces support our utility function formulation, while our
simulation results verify the theoretical analysis and show that all
UEs are encouraged by the proposed algorithm to share genuine
information with a probability of one, when a credit mechanism
is invoked. The proposed modelling techniques may be applied in
diverse cooperative networks, including classic wireless networks,
vehicular networks, as well as social networks.

Index Terms—Information credibility, cooperative networks,
game theory, reinforcement learning, self-organizing networks.

I. INTRODUCTION

At the time of writing, cooperation is becoming a perva-
sive phenomenon in various networks, where the users or
equipment sharing the same interest may embark on coop-
eration to achieve a common target [1]. In a distributed self-
organizing network, each individual has limited access to the
global network’s status, but cooperation is capable of assisting
them in enhancing their judgement and decision making. For
instance, in cognitive radio networks, cooperative spectrum
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sensing can be invoked by a group of secondary users (SUs)
for enhancing the detection probability of the primary users
(PUs) [2]; in vehicular networks, vehicles may cooperatively
share the location or traffic status by information dissemination
in order to enhance both the security and the traffic flow [3];
in cellular networks, the base stations may cooperatively serve
all user equipment (UE) by sharing their channel information,
which improves the interference cancellation performance and
increases the spatial multiplexing gain [4]; in a heterogeneous
network, different network operators may cooperatively man-
age the UEs’ access for the sake of efficient load balancing,
for example by combining visible light communications in the
downlink with WiFi in the uplink [5].

In support of cooperation, one of the most crucial issues
is the information exchange/sharing, especially in distributed
scenarios [6]. Since each network entity can only acquire
local information, efficient information exchange enhances the
cooperation among neighbors. However, information sharing
is not gratuitous for each individual, in fact it may be quite
expensive under some circumstances. In such a case, due to
the natural selfishness and rational inclination of UEs in the
network, they may be reluctant to share genuine information,
for example for the sake of privacy preservation or cost
saving. In this paper, we propose a generalized game-theoretic
information credibility modelling framework for cooperative
networks by studying the UEs’ incentives and behaviors in
information sharing. This framework is expected to reveal
how a group of UEs adjust their individual actions during the
network’s operation, and how they can spontaneously achieve
convergence to a stable equilibrium after a few rounds of
interactions. The contribution of this paper can be summarized
as follows.

1) A homogeneous information sharing model is analyzed
based on a sophisticated evolutionary game, where the
information sharing strategies of all UEs are identical.
We provide the closed-form analysis of the evolutionari-
ly stable equilibrium and quantify the specific proportion
of UEs who would like to share genuine information.

2) Additionally, a more realistic heterogeneous model is al-
so analyzed, where the information sharing strategies of
all UEs are different. Based on the classic reinforcement
learning model, we characterize the heterogenous UEs’
spontaneous information credibility equilibrium.

3) Moreover, a credit mechanism is designed for encour-
aging the UEs to actively share genuine information so
as to enhance the information credibility. Experiments
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based on real-world data traces are conducted to verify
our utility formulation and simulations are conducted to
verify our theoretical analysis.

The rest of the paper is organized as follows. Our system
model is introduced in Section II. Based on the system model,
we present the homogeneous and heterogeneous information
sharing models in Sections III and IV, respectively. Each of
these sections commences with the utility function definition,
and then we analyze the credibility equilibrium, as well as the
credit mechanism conceived in Section IV. Section V provides
our simulation results and discussions. Finally, we conclude
the paper in Section VI.

II. RELATED WORKS

The information credibility issue has already been investi-
gated in various application scenarios [12]-[23]. Specifically,
in the early Internet era, peer-to-peer (P2P) networks encoun-
tered malicious recommendations and file sharing problems, as
exemplified by P2P transactions in [7] and by P2P virus prolif-
eration in [8]. Song et al. [7] proposed a P2P reputation system
based on fuzzy logic aided inferences by aggregating peer
reputations, which can better handle uncertainty, fuzziness
and incomplete information in peer-trust reports. Similarly, the
peer-trust reputation can also be used for limiting the P2P virus
prorogation problem of file exchanges [8]. The authors of [9]
proposed a credibility model by storing and evaluating each
witness’ past testimony-reporting, which effectively mitigated
the adverse influence of unfair testimonies. The credibility
was also a prominent issue in social swarming, where the
smart-phones can be requested by a center to report on
events observed in the physical world [10]. From the game
theoretic perspective, Canzian et al. [11] studied a general
interaction model between a system designer and a group of
users processing private information that the designer does not
have.

As for the qualitative analysis of credibility, Sun et al.
[12] utilized information theoretic techniques for quantifying
the information credibility and proposed a trusted routing
protocol for ad hoc networks. An information credibility
model conceived for wireless multicasting was studied in
the context of wireless network scenarios in [13], while the
security versus reliability analysis of opportunistic relaying
invoked in cooperative communication networks was carried
out in [14]. In cognitive radio networks, a protocol was devised
for mitigating the primary user emulation attacks and for
reducing the call-dropping probability [15]. Furthermore, the
concept of physical layer security was proposed for reducing
the information entropy leakage in wireless networks [16]. In
the context of the emerging topics of e-Health and the Internet
of Things (IoT), the information trustworthiness issues were
studied in [17] and [18], where the methodology advocated ex-
ploited both the subjective recommendations and the objective
observations gleaned.

The other important issue in cooperative networks is coop-
eration stimulation. In the literature, efforts have been made
for mathematically analyzing cooperation using game theory.
Chen et al. [19] proposed a general cooperation stimulation

mechanism based on indirect reciprocity theory, while Niu
et al. [20] proposed a cooperation stimulation strategy for
wireless multi-cast networks based on infinite repeated game
theory. To elaborate a little bit further, typically a credit
mechanism is involved in the modeling of cooperative stim-
ulation, such as the reputation based credit mechanism of
cognitive networks [21], the credit-based reward scheme of
delay-tolerant networks [22] and the credit pre-reservation
mechanism of online charging systems [23]. Similar to the
cooperation stimulation, the model employed in this paper can
be regarded as a genuine information sharing stimulation. In
contrast to the existing credit based cooperation stimulation
mechanisms, we associate the interaction probability with the
credit in this paper, which can restrict the interaction frequency
of the users having a low reputation, who would have limited
access to the others’ information.

Generally, all the aforementioned contributions were fo-
cused on designing specific algorithms for particular systems
in the interest of enhancing the information credibility or
trustworthiness attained. However, the role of the UEs’ actions
and decision making in dynamic information sharing have not
been taken into account, even though the grade of information
credibility is directly determined by the UEs’ decisions on
whether to share genuine information with each other. This
dilemma may be resolved with the aid of game theory by
modelling the learning and decision making problem by re-
lying on each UE’s actions and on the utility of information
sharing in the network. Moreover, the existing contributions on
information credibility [12]-[22] approached the problem from
a bottom-up perspective, i.e. by considering a particular aspect
in a specific scenario, whilst there is no general framework
that models this problem in a top-down manner. Against
this background, in this paper, we propose a generalized
game-theoretic information credibility modelling framework
for cooperative networks by studying the UEs’ incentives and
behaviors in information sharing.

III. SYSTEM MODEL

We consider a cooperative network supporting N selfish
UEs numbered {1, 2, ..., N}, each aiming for maximizing its
own utility. The UEs have the capability of acquiring new
information and are willing to share their information with
each other in order to make better-informed decisions. In this
model, it is assumed that the more trusted the information a UE
relies on, the better its decisions become. As shown in Fig. 1, at
the beginning of a time period, each UE acquires new informa-
tion with a probability of pa, where pa is a decreasing function
of the information acquisition cost. Given that new information
has indeed been obtained, the UE has to decide whether it
will truthfully and authentically share this information with
others. Alternatively, whether it will manipulate the shared
information to render it useless either due to privacy concerns
or with the objective of gaining an unfair resource allocation
advantage. Therefore, although all the UEs act in a cooperative
manner in the network, they occasionally may share random
or manipulated information for the sake of improving their
own utility. Following the information sharing phase, each UE
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Fig. 1. System model of a cooperative network.

utilizes its own information, as well as the shared information
to make a decision independently. Then, at the end of the time
period, the UE evaluates the performance attained as a result
of its decision and then adjusts its actions in preparation for the
next round. Here, we consider a practical scenario where a UE
is unable to ascertain the credibility of the shared information
gleaned, until the information is actually used for its decision
making and the resultant performance is actually evaluated.

Based on the aforementioned model, each UE can be
considered to have two possible actions/strategies, namely
that of sharing genuine or false information, which can be
denoted by G and F, respectively. It is possible that even
if a UE shared its genuine information, the quality of the
information is unsatisfactory and hence leads to a low utility.
However, in this paper, we do not consider this information
quality issue, rather we focus our attention on the information
credibility from a security perspective. As a matter of fact,
the above-mentioned low-quality information scenario can also
be regarded as adopting strategy F in our model. The mixed
strategy of each UE can be defined by Pi,G, representing the
probability of UE i opting for sharing genuine information,
and with 1 − Pi,G being the probability of supplying false
or useless information. Since a UE utilizes all the shared
information to make a decision, the amount of utility gleaned
by each UE depends on all other UEs’ strategies as to whether
it shares genuine information. Moreover, as mentioned, sharing
genuine information incurs some additional costs, which is
denoted by ci for UE i.

In the following sections, we will consider two models: a
homogeneous and a heterogenous model defined as follows.

• Homogeneous model: Every UE relies on the same mixed
strategy, but the specific manifestation of everyone’s pure
strategy in each time period can be different from each
other, as quantified by Pi,G. Meanwhile, each UE adopts
the same strategy in its interaction with all other UEs
without any discrimination, i.e. either sharing genuine
information with all others or sharing false information
with all others.

• Heterogeneous model: All UEs have different mixed
strategies and each UE adopts different strategies in its
interaction with different UEs. Hence UE i may share
genuine information with UE j, but false information
with UE k.

Again, we will conceive a general information sharing model,

without concentrating on the specific form of the information
and its utility. For instance, in cognitive radio networks, the in-
formation can be represented by the energy-detection samples,
while the utility can be constituted by the associated detection
probability; in vehicular networks, the information can be a
specific location and the utility can be the corresponding traffic
status; in social networks, the information may be constituted
by recommendations of a particular commodity, while the
utility can be the resultant user experience.

IV. HOMOGENEOUS MODEL: SPONTANEOUS CREDIBILITY
EQUILIBRIUM

In this section, we analyze the homogeneous information
sharing model in a cooperative network, where all the UEs
are identical in terms of both their mixed strategy and their
information acquisition/sharing costs and rewards. Hence, we
can omit the UE index in this section, by simply denoting
the mixed strategy as PG and information acquisition cost as
c. Note that when the number of UEs is sufficiently high, a
specific UE’s probability of sharing genuine information, PG,
is equivalent to the percentage of UEs adopting strategy G in
the network. As we will demonstrate, this homogeneous model
may assist us in deriving a closed-form analysis of both the
credibility evolution, as well as of the steady-state percentage
of UEs sharing genuine information. In the following, we
will first define the utility function of information sharing,
and then analyze the evolutionary equilibrium of the dynamic
information sharing process.

A. Utility Formulation

In a cooperative network, each UE utilizes the shared
information gleaned from each other to make decisions, where
the utility is closely related to the other UEs’ information
sharing actions, i.e. whether they are willing to share genuine
information. Assuming that there are n UEs sharing genuine
information at a specific time instant, the reward that each UE
can obtain by utilizing the information should be proportional
to n due to assuming that the positive externality property
holds, which we define as a non-decreasing function f(n) of
n. Naturally, in different application scenarios, the form of
f(n) is different. Again, for instance, in cooperative spectrum
sensing of cognitive radio networks, f(n) should be the
probability of SUs’ correctly detecting the PUs’ signals, which
can be formulated as [24]

f(n) = Q

(
−
(
1 + γs −

E

σ2
n

)√
nλsTs
2γs + 1

)
, (1)

where E is the threshold of the energy detector, σ2
n is the

variance of the additive white Gaussian noise, γs is the signal-
to-noise ratio given by the PU-power to SU-noise ratio when
the PUs are present, λs is the SUs’ sampling rate and Ts
is the sampling period, Q(x) is the Q-function. From (1), we
can see that the more users share genuine spectrum sensing in-
formation, the higher the detection probability becomes. Since
the probability is bounded by [0, 1], diminishing returns would
appear, when the number of users sharing genuine information
is sufficiently large. For Doppler-based cooperative positioning
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Fig. 2. Characteristic of the utility function.

in vehicle networks, f(n) should be the positioning accuracy,
which can be evaluated by the Fisher information as [25]

f(n) =
1

σ2
k

+
1

σ2
ω

n∑
i=1

[
∂ωi
∂k

]2
, (2)

where k may represent either the x-direction or y-direction, σ2
k

is the variance of the GPS-based location observation noise, ωi
is the Doppler shift of the signal with respect to its neighbour
i, and σ2

ω is the variance of the Doppler shift observation error,
which is assumed to be Gaussian. From (2), we can see that the
more users share genuine location information, the higher the
positioning accuracy becomes. Similarly, since the accuracy is
bounded by [0, 1], diminishing returns are achieve when the
number of users sharing genuine position information is high.
For collaborative filtering in an item recommender system in
social networks, f(n) should be the prediction accuracy, which
can be quantified by the mean absolute prediction error as [26]

f(n) =
1

|J |
∑
j∈J

∣∣∣∣r̄u + ∑n
i=1 su,i(ri,j − r̄i)∑n

i=1 |su,i|
− ru,j

∣∣∣∣ , (3)

where J is the item set, r̄u is the UE’s overall average rating,
su,i is the similarity between a user and his/her neighbour i
in the network, ri,j is UE i’s rating regarding item j, whilst
finally, ru,j is the user’s true rating in the testing dataset, i.e.
outside the training set. From (3), we can see that the more
users share genuine recommendations, the lower the prediction
error becomes, which is also bounded by [0, 1].

Again, although the specific forms of f(n) can be different
in diverse scenarios, it should obey the following properties
in most scenarios, as augmented by Fig. 2,

1) non-negative property, f(n) ≥ 0,
2) non-decreasing property, df(n)

dn ≥ 0,
3) saturation property, d2f(n)

dn2 < 0.
The first property simply implies that the reward should be
non-negative and should be zero, if no one shares genuine
information. The second property means that the more UEs
share genuine information, the more reward can be gleaned.
Finally, the third property suggests that when the amount of
genuine information is sufficient, any further increase of the
reward remains marginal. In order to construct a general mod-
el, in line with the three properties, we opt for the following

form of f(n) that has been widely used in economics [27]

f(n) = Γ− e−µn, if n ≥ 1. (4)

In the reward function, µ controls the speed of saturation for
the genuine information, while Γ represents the maximum
utility of a user, which is a normalized value in the model.
This tangible general exponential model can lead to convenient
closed-form analysis, which can help us better understand
both the model and the mechanism proposed in this paper. In
Section V, we will use real-world data to verify this specific
form of f(n), which will demonstrate that (4) represents a
general formulation of the tangible reward of sharing genuine
information among a group of users. In such a case, when there
are n UEs sharing genuine information, the utility function of
a truthful UE can be simply formulated as:

UG(n) = Γ− e−µn − c− g(N − n), (5)

where again, c is the cost of sharing genuine information
(such as privacy jeopardy or battery/resouce depletion cost)
and g(N − n) represents the deleterious effect of N − n
UEs sharing false information. Note that g(x) has to be a
monotonically increasing function of x. Since it represents
the deleterious effect of the users sharing false information,
it reduces the reward, but indeed, g(n) can be either additive
to f(n) in negative form, or a multiplier of f(n) within the
range of [0, 1]. In this paper, we only consider the additive
scenario. Nevertheless, our analytical method and our detailed
derivations can be readily extended to the multiplicative sce-
nario. However, we will not discuss the specific formulation of
g(x), since it will be cancelled during the derivation of (10).
Then, the corresponding utility function can be characterized
by

UF(n) = pa

(
Γ− e−µ(n+1)

)
+(1−pa)

(
Γ− e−µn

)
−g(N−n),

(6)
where we recall that pa is the information acquisition proba-
bility, while (n+1) in the exponent represents the n pieces of
genuine information plus the UE’s own genuine information,
which has not been shared with other UEs. Below, we will
analyze the credibility equilibrium based on this utility model.

B. Evolutionary Credibility Equilibrium

Since the UEs are naturally selfish, they always want to
acquire additional genuine information, but potentially without
contributing to the information acquisition and sharing owing
to its cost. Let us consider the scenario, where given that
there is a sufficiently high number of UEs sharing genuine
information, some inactive UEs may opt for sharing false
information for the sake of reducing their own cost. Gradually,
when less and less UEs share genuine information, the utility
of each UE may erode to an unsatisfactory level, which
in turn, may encourage more and more inactive UEs to
abandon their selfish strategy for the sake of increasing their
own utility. Eventually, through learning and evaluating the
utility improvements in several rounds of interactions with
others, each UE can reach a steady-state information sharing
strategy, which is a mixed strategy based on ensuring that
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its own utility is maximized. Since a homogeneous model is
considered here, a single UE’s stable strategy can lead to a
stable overall network state, where there is a fixed percentage
of UEs sharing genuine information in each time period. We
define this stable network state as the information sharing
credibility equilibrium, which is capable of reflecting the
statistical credibility of information across the entire network.
This credibility equilibrium is also capable of characterizing a
group of selfish UEs’ information sharing steady-state without
any sophisticated regulation, whilst simultaneously reflecting
their tradeoff between the cost of sharing genuine information
and the attainable reward.

Apparently, the credibility equilibrium is a result of mul-
tiple rounds of multiple UEs’ interactions, which cannot be
characterized by the traditional Nash equilibrium (NE) of
single-shot game interaction. Moreover, the UEs may adopt
out-of-NE strategies due to the uncertainty associated with
the others’ information sharing strategies. In such a case,
a robust equilibrium is desired for modelling the credibility
equilibrium. The evolutionary equilibrium constitutes a perfect
candidate for illustrating such an equilibrium of the periodical
dynamic interactions. In evolutionary theory, when some mu-
tants appear, the residential cells can choose either to become
a mutant or to maintain their previous status, according to the
so-called fitness evaluation including both its own property as
well as its interaction with the neighboring cells. Therefore,
the dynamics of the periodical information sharing within a
group of UEs is quite similar to the dynamics of periodical
mutant selection in a set of cells. In the following, we will
rely on the evolutionary equilibrium theory [28] for modelling
the credibility equilibrium of the information sharing in a
cooperative network. Some examples of evolutionary game
theory in network modelling include the information diffusion
[29], network selection [30], cognitive radio networks [31],
[32] adaptive filtering networks [33], P2P steaming [34] and
social networks [35].

Let us denote the credibility equilibrium as P ∗
G, which

represents the steady-state probability of a UE sharing its
genuine information across the network. According to the
definition of the evolutionary game and the evolutionarily
stable strategy [28], P ∗

G should satisfy both the NE property
and stability property described in the following definition.

Definition 1: In an information sharing network, the credi-
bility equilibrium P ∗

G should satisfy
1) NE property: Ui(PG, P

∗
G) ≤ Ui(P

∗
G, P

∗
G),

2) stability property: if Ui(PG, P
∗
G) = Ui(P

∗
G, P

∗
G),

Ui(PG, PG) < Ui(P
∗
G, PG),

where Ui(x, y) is UE i’s utility when it adopts strategy x while
other UEs adopts strategy y.

We can see that the first condition is the NE condition,
suggesting that no other strategy is capable of unilaterally
swaying the UEs into deviating from P ∗

G; while the second
condition guarantees the stability of the strategy, implying
that even if there exists some strategy PG that performs
equally well as P ∗

G, P ∗
G must be a better response-action to

PG than PG itself. Recall that our target in this section is
to calculate the steady-state equilibrium P ∗

G. To achieve that,
we first have to find an appropriate representation of the UEs’

interaction dynamics and then analyze the converged solutions
of the dynamics, which can be the specific candidates of the
credibility equilibrium.

Since all UEs are uncertain about the other UEs’ informa-
tion sharing strategies and utilities, each UE has to try different
tentative strategies for improving its own utility throughout the
different rounds of interactions and learn by inference from the
interactions using the intuitive methodology of understanding-
by-building. According to evolutionary game theory, the fol-
lowing differential equation, called replicator dynamics, can
be used for modelling the corresponding interactive dynamics
within a group of UEs [28],

ṖG = αPG
[
ŪG(PG)− Ū(PG)

]
, (7)

where ṖG is a mutated variant of PG, α is a positive coefficient,
ŪG(PG) is the average utility of these specific UEs, which
share genuine information and Ū(PG) is the average utility of
all UEs in the entire network. We can see that if the sharing
of genuine information can lead to a higher utility than the
average level, the percentage of altruistic UEs sharing genuine
information will increase and the rate of increase formulated
as ṖG/PG is proportional to the difference between ŪG(PG)
and Ū(PG). When each UE shares genuine information with
a probability of PG, the average utility ŪG(PG) of sharing
genuine information can be calculated according to (5) as
follows

ŪG(PG) =
N−1∑
n=0

(
N − 1

n

)
PnG (1− PG)

N−1−n

(
Γ− e−µ(n+1) − c− g(N − n)

)
, (8)

where
(
N−1
n

)
PnG (1−PG)

N−1−n is the configuration probabil-
ity that there are n UEs among the (N−1) other UEs sharing
genuine information. Similarly, the average utility ŪF(PG) of
sharing false information can be calculated according to (6)
as follows

ŪF(PG) =

N−1∑
n=0

(
N − 1

n

)
PnG (1− PG)

N−1−n (9)

·
[
pa

(
Γ− e−µ(n+1)

)
+ (1− pa)

(
Γ− e−µn

)
− g(N − n)

]
.

Thus, the resultant average utility of the entire network can
be calculated by

Ū(PG) = PGŪG(PG) + (1− PG)ŪF(PG)

= ŪF(PG) + PG
[
ŪG(PG)− ŪF(PG)

]
. (10)

Furthermore, by combining (7) and (10), as well as by using
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P ∗
G =


0, c

1−pa ≥ 1− e−µ,(
1− c

(1−pa)(1−e−µ) )
1

N−1

)
/ (1− e−µ) , 1− e−µ < c

1−pa < e−µ(N−1) − e−µN ,

1, 0 ≤ c
1−pa ≤ e−µ(N−1) − e−µN .

(12)

(8) and (9), we arrive at:

ṖG = αPG(1− PG)
(
ŪG(PG)− ŪF(PG)

)
= αPG(1− PG)

(
N−1∑
n=0

(
N − 1

n

)
PnG (1− PG)

N−1−n

[
(1− pa)

(
e−µn − e−µ(n+1)

)]
− c

)

= αPG(1− PG)

(
(1− pa)

(
1− e−µ

)
N−1∑
n=0

(
N − 1

n

)(
e−µPG

)n
(1− PG)

N−1−n − c

)
= αPG(1− PG)

(
(1− pa)

(
1− e−µ

)
(
1−

(
1− e−µ

)
PG
)N−1 − c

)
. (11)

When each UE reaches the steady state, any changes in the
information sharing strategy should converge to 0, i.e. we
have ṖG = 0. By equating the right-hand-side of (11) to
0, we can have three solutions, P ∗1

G = 0, P ∗2
G = 1 or

P ∗3
G =

(
1− c

(1−pa)(1−e−µ) )
1

N−1

)
/ (1− e−µ). Apparently,

the first two solutions, namely P ∗1
G = 0 and P ∗2

G = 1 represent
the boundaries, which correspond to the scenarios of having no
one sharing genuine information and having all UEs sharing
genuine information, respectively. While the third solution P ∗3

G
should be within the interval (0, 1), i.e. a portion of UEs
shares genuine information. Note that these three solutions
are not necessarily evolutionary credibility equilibrium, which
should satisfy the aforementioned NE property and stability
property. The following theorem shows the conditions of being
evolutionary credibility equilibrium for each solution.

Theorem 1: The N -UE evolutionary credibility equilibrium
when the information acquisition probability pa is constant
can be written as (12).

Proof: Please see the appendix.
Remarks: In (12), the term c

1−pa represents the expected
cost of a specific UE sharing genuine information. The phys-
ical interpretation of the condition for P ∗

G = 0 is that the
cost of sharing genuine information for each UE is higher
than the reward each UE can obtain, when there is a single
UE sharing genuine information. This implies that if the
network is currently in the undesirable state, when no UE
shares genuine information, no single UE has the incentive
to unilaterally change its strategy, since again the reward is
lower than the cost. By contrast, the physical meaning of the
condition P ∗

G = 1 is that, the information sharing cost is lower
than the increase of the reward, when the network’s status
evolves from (N − 1) UEs sharing genuine information to
all UEs. This means that if the network is currently in the
state of all UE sharing genuine information, no single UE

has the incentive to unilaterally change its strategy, since its
reward is higher than its cost. When the cost is in the middle
of the range corresponding to the second scenario of (12), the
probability of each UE sharing genuine information converges
to a fixed value, which means that there is a fixed percentage of
UEs sharing genuine information in each round of interaction.
This percentage is inversely proportional to the information
sharing cost c. Therefore, given the network settings specified
in terms of the parameters µ and Γ, in order to encourage more
UEs to share genuine information and hence to enhance the
final steady-state credibility equilibrium, the service provider
should control the information sharing cost in order to satisfy
the aforementioned third condition of (12).

V. HETEROGENEOUS MODEL: HOW CREDIT CAN HELP

In the previous section, we have studied the spontaneous
credibility equilibrium of a homogeneous model, where no
sophisticated regulation was carried out. By contrast, this sec-
tion will consider a heterogeneous information sharing model,
where all the UEs have different mixed strategies and each
UE adopts different strategies for interacting with different
UEs. More importantly, a credit mechanism is invoked in
this model for the sake of encouraging more UEs to share
genuine information across the network. However, for the sake
of smoothly increasing the grade of sophistication, we will first
study the spontaneous information credibility equilibrium of
this heterogeneous model without any credit mechanism. Since
in contrast to the homogeneous model, the heterogeneous
setting does not lend itself to a closed-form credibility equilib-
rium formulation, we will rely on the powerful reinforcement
learning algorithm for numerically finding its solution. Then,
we propose a credit mechanism, which can ensure that the
UEs actively share genuine information with each other.

A. Utility Formulation

Similar to the homogeneous model, UEs in the heteroge-
neous setting also share their information periodically with
each other for making decisions, following one of the two
possible strategies G and F, i.e. either sharing genuine infor-
mation or sharing false information. Again, in contrast to the
homogeneous model, each UE adopts different information
sharing strategies with respect to different UEs. Let us denote
UE i’s strategy vector si and action vector ai as

si = [si1, si1, . . . , siN ], (13)
ai = [ai1, ai1, . . . , aiN ], (14)

where 0 ≤ sij ≤ 1 represents the probability of UE i sharing
genuine information with UE j, aij = G or F represents UE
i’s specific action instantiated by sij corresponding to either
sharing genuine or false information with UE j, sii ≡ 1 and
aii ≡ G represents that UE i is always aware of its own
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genuine information. Moreover, in order to formulate different
strategies for the different UEs, each UE has to evaluate the
shared information in a pair-wise manner, instead of relying on
a population-based homogeneous model. In the homogeneous
model, since all users are considered to be identical, the utility
function is defined among a group of identical users, which
can help reveal the global equilibrium of the whole group.
By contrast, when it comes to the heterogenous model, since
all users can adopt different strategies in conjunction with
different utilities and the interaction also becomes a one-to-one
action, theoretically the global equilibrium cannot be reached
and thus the utility function is defined between two users. This
requires each UE to immediately process the information after
interacting with a specific UE and to evaluate the resultant
information utility, which can be used for updating its strategy
with respect to this specific UE. Let us define UE i’s utility
vector as

Ui = [Ui1, Ui1, . . . , UiN ], (15)

where Uij represents UE i’s utility after exchanging informa-
tion with UE j. According to the reward function defined in
(4), the utility Uij/ji(G,G) can be formulated as:

Uij/ji(G,G) = Γ− e−2µ − cij/ji, (16)

where Uij(x, y) represents UE i’s utility, when it adopts strat-
egy x, while UE j adopts strategy y, the information sharing
costs cij and cji are different for the different UEs in this
heterogenous model. Furthermore, the utilities Uij/ji(G,F)
and Uij/ji(F,G) are expressed as:

Uij/ji(G,F) = Γ− e−µ − cij/ji − g, (17)

Uij/ji(F,G) = Γ− e−2µ, (18)

where g is the delirious effect of the false information. It is
assumed that the UE always acquires new information in each
time period, since it is possible that no others share genuine
information with it in this heterogeneous model. For the utility
Uij/ji(F,F), we have

Uij/ji(F,F) = Γ− e−µ − g. (19)

B. Spontaneous Credibility Equilibrium: Reinforcement
Learning

When considering the spontaneous information sharing pro-
cess from an individual UE’s perspective, the network of all
other UEs can be regarded as an external environment. The
UE makes decisions and carries out its information sharing
actions for maximizing its utility in this environment, which is
a dynamic environment since all other UEs’ strategies are also
adjusted as a result of their interactions. Generally, each UE
learns from its interactions with the environment and adapts
to the environment by adjusting its strategies for the sake
of increasing its utility attained. Reinforcement learning is a
powerful tool conceived for tackling adaptive environment-
learning and decision-making problems [36]. In contrast to the
supervised learning associated with correct input/output pairs,
reinforcement learning was inspired by behaviorial psychology
and aims for maintaining a certain on-line performance by
striking a balance between the exploration of an uncharted

territory and the exploitation of current knowledge. It is
capable of learning an unknown environment’s statistics as
well as of taking actions in the environment so as to maximize
the cumulative reward, where the environment itself may be
changed by the agent’s actions. Reinforcement learning has
been widely adopted in communications and networks [37], in
control [38], in finance and economics [39], as well as in social
science [40]. Specifically, Xiao et. al. has initiatively applied
the reinforcement learning in network security modeling [41]-
[43].

In this reinforcement learning process, each UE should
periodically update its information sharing strategy si through
learning from its interactions with others, while the quantita-
tive characterization of its interactions is provided by the utility
gleaned from its interaction with others. Hence the challenge
is how to update UE i’s strategy si according to the utility Ui

inferred from the current interaction, as well as that obtained
during its past experiences. The reinforcement learning model
introduced the concept of perception based on the accumulated
utilities associated with its actions, which records both the re-
sults of all the past interactions as well as the new interaction’s
result, corresponding to the exploitation of past knowledge and
to the exploration of the new environment. Let us define UE
i’s perception matrix Pi as

Pi = [pi1,pi2, . . . ,piN ], (20)

pij = [pijG, pijF]
T , (21)

where pijG is UE i’s perception after sharing its genuine
information with UE j, and pijF is that of sharing false
information. At the end of each interaction, UE i first evaluates
its own utility and then uses this utility value for adjusting its
perception associated with the specific action just adopted and
keeps the perception of the complimentary action unchanged,
which can be expressed by

pt+1
ijG =

{
(1− ϵti)p

t
ijG + ϵtiU

t
ij , if atij = G,

ptijG, otherwise, (22)

pt+1
ijF =

{
(1− ϵti)p

t
ijF + ϵtiU

t
ij , if atij = F,

ptijF, otherwise, (23)

where the superscript t represents the time period, U tij is UE
i’s utility gained by exchanging information with UE j at time
instant t, while ϵti represents a sequence of averaging factors
controlling the discounting rate associated with

∑
t ϵ
t
i = ∞

and
∑
t(ϵ

t
i)

2 < ∞. Explicitly, physical interpretation of this
discounting rate is the weight of the newly acquired utility
in evaluating the perception. We assume that UE i has no
additional information about the other UEs’ actions or utilities
during the interaction, which is indeed typical case in practical
scenarios.

After updating the perception pij , UE i can exploit it for
constructing its next information sharing strategy with respect
to UE j, which will be used later for generating its information
sharing action as regards to UE j. A beneficial method is for
UE i to maintain a specific proven action that maximizes its
expected utility. Explicitly, if we have pijG > pijF, then UE i
would share genuine information with UE j, but it can only
infer the resultant perception pijG in the next round and so
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on. However, this conservative method may incur the risk of
inadequately exploring all other legitimate actions. Therefore,
the construction of both UE i’s reputation vector as well as
of its mixed strategy and of its action is associated with an
exploration method. A commonly adopted simple exploration
method is to pursue the specific action associated with the
best expected perception by default, but also occasionally
choose the other actions at random with a probability of
p. This method usually starts with a large value of p to
encourage suffeciently diverse initial exploration, which is
then gradually reduced in the vicinity of the optimum to
expedite convergence. In contrast to this simple method, the
more sophisticated Boltzmann exploration exhibiting a better
performance is also widely used in reinforcement learning
[36], where the already available perception is used for prob-
abilistically choosing an action according to the Boltzmann
distribution. Explicitly, in our model UE i’s strategy with
respect to UE j can be updated using the already available
perception by invoking:

stij =
eξ

t
jp

t
ijG

eξ
t
jp

t
ijG + eξ

t
jp

t
ijF
, (24)

where the positive coefficient ξtj controls the exploration level,
with ξtj → 0 leading to a 50% probability for both G and F,
while for ξtj → ∞ the action would concentrate only on the
pure G or F strategy, depending on which leads to a higher
perception.

To summarize, the reinforcement learning based credibility
equilibrium learning process can be interpreted as a process
in which each UE simultaneously probes the pure strategies
G and F with respect to the other UEs in order to learn about
its own bilateral utilities as well as perceptions, and updates
its estimation regarding the other UEs’ reputation as well as
adjusting its own interaction in the next round accordingly by
using the accumulated perception. The iteration evolving from
ptij to pt+1

ij can be illustrated by a chain of elementary steps:
the initial perception gives rise to a random mixed strategy
that determines the specific action by taking this specific
action, the utility is evaluated and then the perception can
be updated in the next round, and so on. The iterations can
be simply represented by ptij → stij → atij → U tij → pt+1

ij ,
as depicted in Fig. 3. Following this reinforcement learning
procedure, the UEs are expected to converge to a stable
credibility equilibrium in the network.

The dynamics formulated in (22) can be written in a
recursive vectorial form as follows

pt+1
ij − ptij = ϵt(qtij − ptij), (25)

where qtij = [qtijG, q
t
ijF] can be calculated by

qtijG =

{
U tij , if atij = G,
ptijG, otherwise, (26)

qtijF =

{
U tij , if atij = F,
ptijF, otherwise. (27)

If both sides of (25) are divided by a sufficiently small
coefficient ϵt, the recursive equation can be approximated by a
differential equation of continuous-time deterministic averaged

Perception with respect to each 

action and each user Pi

Information sharing: mixed 

strategy for each user si

Boltzmann distri-

bution in Eq. (28)

Information sharing: pure action 

(genuine or false) for each user ai

Random generator

Information sharing utility Ui

Utility evaluation

Perception 

learning using 

Eq. (26) (27)

Fig. 3. Reinforcement learning chain of the homogeneous model.

dynamics, i.e.,
Ṗi = E(Qi|Pi)−Pi, (28)

where E(·|Pi) is the expectation conditioned on the action aij ,
which is determined by pij as in (24). We can see that when
the reinforcement learning process becomes converged, i.e. we
have Ṗi = 0, then the perception should become equivalent
to the expected utility a UE can obtain. The convergence of
(28) is closely related to the exploration level ξt in (24), since
an aggressive exploration may lead to rapid convergence. The
following theorem gives a sufficient condition that ensures the
convergence of the proposed algorithm.

Theorem 2: The condition of convergence for the proposed
reinforcement learning scheme is that the exploration level ξ
should satisfy

ξ ≤ 1

2(e−µ − e−2µ + g)
. (29)

Proof: Please see the appendix.
Theorem 2 shows the convergence condition of the re-

inforcement learning algorithm. A larger ξ accelerates the
convergence but it should remain lower than some threshold,
which is related to the utility function. In practical scenarios,
ξ is chosen by the individual user, since the algorithm is fully
distributed. In contrast to the homogeneous model, which lent
itself to closed-form analysis of the steady-state equilibrium,
the dynamics of the heterogeneous information sharing model
in (28) cannot be characterized by a closed-form expression.
Hence it will be characterized by simulations in Section V.

C. Credit Mechanism

In human networks, everyone has a certain reputation or
credit record, which is generated and updated according to
one’s behavior in social networks. When a person interacts
with another one having a good credit/reputation, they would
be inclined to maintain contact. By contrast, nobody likes to
cooperate with people carrying a bad reputation. Similarly, in
a cooperative network, each UE is capable of constructing a
credit-belief through its interactions with other UEs. Moreover,
each UE determines, whether to share its information with
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another UE according to that UE’s credit. When a high-
credit UE discovers another UE with a credit lower than some
threshold, a high-credit UE would be uninclined to share any
information with the low-credit UE. In such a case, through
rounds of interactions, each UE’s credit can be gradually
inferred by the observation of shared information, leading
to the fact that the UEs having a low credit would obtain
less and less genuine information and eventually they would
have to change their information sharing strategy in order to
improve their reputation. In this section, we will propose a
credit mechanism and investigate how assigning credits can
help enhance the steady-state credibility equilibrium.

Similar to human networks, each of the UEs in a cooperative
network has a credit value that is commensurate with its past
behavior and also determines its future behavior. Let us define
the UEs’ reputation vector as

r = [r1, r2, . . . , rN ], (30)

where 0 ≤ ri ≤ 1 represents UE i’s credit/reputation in the
network. In human networks, a person’s future behavior tends
to be consistent with his/her past reputation, regardless of the
credit-level of the other persons he/she is interacting with.
In other words, a “tit-for-tat” behavior cannot help a person
to maintain his/her reputation. However, a reputable person
may opt for avoiding contact with the ones having a bad
reputation. Similarly, a UE’s information sharing strategy in
the cooperative network should also be consistent with its past
reputation and should be independent of the reputation of the
UEs it is confronted with. Therefore, UE i’ mixed information
sharing strategy should be independent of that of all others and
ought to be proportional to its own credit, i.e. we have:

si = [ri, ri, . . . , ri]. (31)

Nevertheless, when UE i has the knowledge of UE j’s credit
value through rounds of interactions, it can determine, whether
to share information with UE j in the future. Let us define UE
i’s interaction probability/decision with respect to the others
as

ρi = [ρi1, ρi2, . . . , ρiN ], di = [di1, di2, . . . , diN ], (32)

where 0 ≤ ρij ≤ 1 represents UE i’s probability of sharing
information with UE j, regardless, whether this is genuine
or false information, and dij = 0 or 1 represents whether to
share information with UE j in a specific round of interactions.
In such a case, at the beginning of each time period, UE i
determines both

• the information sharing decision di, namely whether to
share information with a specific UE, according to its
interaction probability ρi;

• and the information sharing action ai with respect to the
UEs its has chosen to share information with, i.e. whether
to share genuine or false information, according to its
strategy si and reputation ri.

Meanwhile, after several rounds of interactions, UE i should
update its interaction probability ρi according to its past
experience with others. It is expected that following these al-
ternating decision making and learning phases, the UEs having

a bad reputation would received less and less information from
the others and hence they would have to increase their credit
value by actively sharing genuine information hereafter.

We still have to resolve the problem of how each UE gener-
ates its interaction probability vector by learning the behaviors
of others. Here, we can also use reinforcement learning for
solving this problem, as in the previous subsection. Let us
define UE i’s perception of the others’ behavior as ψi, where

Ψi = [ψi1, ψi2, . . . , ψiN ]. (33)

The UE i’s perception ψi1 regarding UE j’s reputation can
be learned through evaluating the information utility gleaned
from UE j, which can be constructed by

ψt+1
ij =

{
(1− ϵti)ψ

t
ij + ϵtiU

t
ij , if dtij = 1,

ψtij , if dtij = 0.
(34)

The resultant perception can then be used for generating UE
i’s interaction probability. Apparently, the higher utility UE
i can infer through exchanging information with UE j, the
higher the interaction probability ρij should be, indicating a
proportional relationship between ρij and ψij . Here, we adopt
a normalized performance evaluation method as follows

ρtij =
eξ

t
iψ

t
ij

max
j

{eξtiψt
ij ,∀j}

, (35)

where the physical meaning of (35) is that UE i always
continues its interaction with the specific UE yielding the
highest utility. Furthermore, it uses this highest utility as a
reference, when UE i determines its probability of interaction
with others. In general, we can summarize the credit-based
reinforcement learning procedure as a chain

Ψt
i → ρti → dti→ Ut

i → Ψt+1
i ,

↓ ↑ (36)
rti → sti → ati

where the arrow between ρti and rti implies that when a UE
discovers that the number of others sharing information with it
falls below some threshold, the UE would consider to increase
its own credit value in order to enhance its reputation by
sharing more genuine information with the others. This credit
mechanism is summarized in Algorithm 1.

VI. SIMULATION RESULTS

In this section, we first use a pair of data traces to justify
the choice of the reward function f(n) defined in (4). The
essence of the utility function is the reward function f(n),
whilst the cost is constant. Therefore, we only characterize
the reward function using real-world data traces. In the first
data trace, we evaluate the relationship between the number
of users providing genuine rating information and the user’s
utility, which is defined as the recommendation quality. In the
second data trace, we evaluate the relationship between the
number of users providing genuine private data information
and the user’s utility. Finally, we conduct simulations to verify
both the proposed algorithms and our theoretical analysis.
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Algorithm 1 Credit mechanism for information sharing.
1: for each UE i do
2: /********** Initialization **********/
3: Initialize UE i’s credit value r0i and credit adjustment step size

∆ri.
4: Initialize UE i’s perception Ψ0

i = 0.
5: Initialize the number of interactive UEs i n0

i = 0 and the
threshold nT .

6: Setup the learning speed ϵi, the exploration level ξi and the
tolerance ζ.

7: /********** Information sharing interaction **********/

8: while
∑
j

(
ψtij − ψ

(t−1)
ij

)2

≥ ζ do

9: Calculate ρti by ρtij = eξ
t
iψ

t
ij/max{eξ

t
iψ

t
ij ,∀j}.

10: Determine dti using random number generator rand(ρti).
11: Set sti = rti and determine ati using rand(sti).
12: Information sharing, evaluate the utility Ut

i and store nti .
13: Update UE i’s perception Ψt

i using (34).
14: t = t+ 1.
15: end while
16: /********** Reputation adjustment **********/
17: if 1

t

∑
t n

t
i < nT then

18: ri = ri +∆ri.
19: end if
20: end for

A. Reward Function Verification

1) Recommender Systems: In recommender systems, the
more users share genuine ratings, the more reliable the rec-
ommendation becomes, which can be defined as the utility
for the users. More specifically, we utilize the Jester data set
[44] to evaluate this relationship, which contains about 4.1
million ratings of 100 jokes from 73,421 users. Since the
“genuine truth” is required for evaluating the recommendation
quality, we consider 720,000 ratings from the 7,200 users
who have rated all the 100 jokes. The user-item matrix R =
[rij ]7200×100 contains non-zero elements, and each row of R
is treated as the corresponding user’s interest vector. Based on
the matrix R, we construct a group of rating matrices {Ri,k}
with false rating information sharing, by manipulating ρk% of
the ratings matrix {Ri,k} to “0”, where ρk ∈ {0, 1, · · · , 90}.
Then, we apply the similarity-based collaborative filtering
algorithm to recover the original rating matrix as follows: a
recommendation vector r̂i = (r̂i1, · · · , r̂i100) is computed for
user i, where r̂ij is defined as

r̂ij =

{
rij , if rij ̸= 0,

hCFij (R) , if rij = 0,
(37)

where the recovered rating hCFij (R) is defined as:

hCFij (R) =

∑
k∈Neighbour(i)

rkjFsim (i, k)∑
k∈Neighbour(i)

Fsim (i, k)
, (38)

with Fsim (i, k) representing the similarity between user i and
user k, while Neighbour (i) representing the set of users
who are most similar to user i. The similarity Fsim (i, k)
is measured in terms of the vector cosine similarity metric.
As mentioned above, the users’ utility is defined as the
recommendation quality, which is calculated as follows. Let
pi = (pi1, · · · , piM ) denote user i’s interest, where pij
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Fig. 4. Recommender system.
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Fig. 5. Data mining.

represents user i’s true preference for item sj (j = 1, · · · ,M ).
The quality of r̂i is evaluated by a user-specific function
gi : RM → R, which is defined as

gi (r̂i) = 1−

√
M∑
j=1

(r̂ij − pij)
2

rmax

√
M

. (39)

A large gi (r̂i) implies having substantial similarity between
ri and pi, namely a high recommendation quality and a high
utility. Finally, let us define σR = 100 − ρk, which is the
percentage of users sharing genuine ratings. In such a case, for
each σR, we can evaluate the corresponding utility of each user
by implementing the collaborative filtering algorithm of (37-
38) and the recommendation quality evaluation of (39). Fig. 4
shows the relationship between the number of users sharing
genuine rating and the utility, from which we can see that the
relationship can be perfectly reflected by the reward function
f(n) defined in (4) by using the curve fitting toolbox provided
in MATLAB.

2) Data Mining: In data mining, the more users share
genuine data, the more value can be gleaned from it, which
can be defined as the utility of the users. In this context
we utilize the Adult data set [45], which consists of 32 561
records from a census database, and each record consists of
15 attributes. After removing the records with missing values,
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we use the remaining 30 162 records for our experiments.
In data mining, anonymization is a mandatory procedure to
protect the users’ information privacy. We developed a Java
program based on the open source anonymization framework
ARX of [46], which supports different types of privacy criteria
and provides multiple methods for quantifying the value of
information after anonymization and mining [47]. Here, we
opted for realying on k-anonymity as the privacy criterion and
the information value loss is evaluated by the recommended
default measure Loss [48]. The value of Loss ranges from
0 to 1, where a large value indicates a high information loss.
As mentioned above, our objective is to verify that the value
of the information increases with the number of users sharing
genuine data records. To achieve this objective, we randomly
select N genuine records in the Adult dataset and manipulate
the remaining 30162 − N records to render tham false in
order to simulate the information sharing process. Then, we
run the anonymization program on these data sets respectively
and record the corresponding information value 1 − Loss,
which is defined as the utility of the users. We observe
from the experimental results shown in Fig. 5 that again, this
relationship is perfectly fitted by the reward function f(n)
defined in (4).

B. Homogeneous Model

To verify the credibility equilibrium of the homogeneous
model, we simulate a group of UEs’ information sharing
inclinations in the network. It can be seen that the updating
of PG in (7) requires global information, such as the average
utility of sharing genuine information and the average utility
of all UEs. Since an individual UE has no access to such
global information in the distributed network, a beneficial
strategy for each UE is to adopt a specific mixed strategy for a
certain period, during which the utilities may be circulated for
constructing an average value from each UE’s own perspective.
Let us first discretize (7) as follows

P t+1
G = P tG + α

[
ŪG(P

t
G)− Ū(P tG)

]
. (40)

Assuming that UE i adheres to its mixed strategy P tG for a
while to estimate both ŪG(P

t
G) and Ū(P tG), let us define an

indicator function 1i(t, k) as

1i(t, k) =

{
1, if UE i shares genuine information,
0, if UE i shares false information. (41)

Then, after several rounds of interactions, the approximated
ŪG(P

t
G) and Ū(P tG) can be calculated by

ŪG(P
t
G) =

∑
k Ui(t, k)1i(t, k)∑

k 1i(t, k)
, (42)

Ū(P tG) =
1

|k|
∑
k

Ui(t, k), (43)

where Ui(t, k) is the utility obtained and evaluated by UE i
at time instant k.

We simulate such an iterative interaction process among
N = 20 homogeneous UEs in conjunction with setting
the utility function as Γ = 1 and µ = 0.1, as well as

Fig. 6. Impact of starting point on the steady-state credibility equilibrium
learning process.

Fig. 7. Impact of information sharing cost on the steady-state credibility
equilibrium.

Fig. 8. Impact of information acquisition probability cost on the specific
value of the steady-state credibility equilibrium.

relying on the step size α = 1. In Fig. 6, we show the
simulated dynamics of the information sharing process, when
the sharing cost of genuine information is c = 0.01, where
the y-axis is the probability of an individual UE sharing
genuine information. The simulations have been conducted
for different starting points, i.e. for different initial genuine
information sharing probability of P 0

G. We can see that the
final converged credibility equilibrium is independent of the
initial point, which is purely determined by the dynamics and
by the fixed point formulated in (7). In Fig. 7, we show the
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Fig. 9. Convergence performance of the reinforcement learning.

Fig. 10. Credibility equilibrium of the heterogeneous model.

impact of the genuine information sharing cost on the final
value of the steady-state credibility equilibrium, where the four
lines correspond to the four costs of c = 0.001, 0.005, 0.01
and 0.1, respectively. We can see that all the simulation
results are consistent with the theoretical values calculated by
(12), which verifies the correctness of our theoretical model.
Observe the trend that an increased information cost c can
lead to a reduced probability of each UE sharing genuine
information, which also matches the conditions derived in (12).
In Figs. 6 and 7, we have fixed the information acquisition
probability to pa = 0.8. By contrast, we show the impact of
the information acquisition probability on the specific value of
the credibility equilibrium for the genuine information sharing
cost c in Fig. 8. Explicitly, Fig. 8 shows that if all UEs actively
acquire information with a higher probability, the probability
of sharing genuine information would decrease, augmenting
the selfish inclination.

C. Heterogeneous Model

We first simulated the heterogeneous model without relying
on the credit mechanism, where all UEs are endowed with
different initial mixed genuine/false information sharing strate-
gies in the network. The reinforcement learning procedure
characterized in Fig. 9 is implemented with the aid of 20
heterogeneous UEs, where the utility function is set to Γ = 1
and we have µ = 0.1, while the discounting factor ϵti is simply
set to 1

n . In this heterogeneous simulation, we randomize the

information sharing cost of each UE ci within [0.01, 0.09].
Again, the learning curves are shown in Fig. 9, while the
y-axis quantifies the Euclidean distance between the mixed
strategies of two adjacent time instances, which is formulated
as log

(∑
i ||s

t+1
i − sti||2

)
. The three different lines correspond

to different settings of the exploration levels ξ. Observe in
the figure that the convergence performance of an aggressive
exploration using ξ = 0.1 is worse than that of a slow
exploration relying on ξ = 10.

We also show the converged credibility equilibrium asso-
ciated with each UE’s genuine information sharing cost in
Fig. 10, where the UE index was set to be inversely proportion-
al to the information sharing cost and the box chart represents
each UE’s information sharing strategies with respect to all the
other 19 UEs. The exploration of the reinforcement learning
model ensures that each UE has a non-zero probability of
of sharing genuine information, instead of adopting a pure
non-cooperative, selfish strategy. Generally, it can be seen in
Fig. 10 that the UEs having a higher user index and hence
a lower cooperation cost would share genuine information
with a higher probability upon approaching the creditability
equilibrium. Each box in Fig. 10 represents the 25% − 75%
percentile of each UE’s information sharing strategies with
respect to other UEs, the star ∗ above each box represents
each UE’s strategy with respect to UE 20, while the star ∗
below each box represents each UE’s strategy with respect to
UE 1. Finally, the square � in the middle of the box represents
each UE’s average strategy and the horizontal line indicates the
median. Apparently, when UE i shares information with UE
j having a high index and a low information sharing cost (i.e.
having a high probability of sharing genuine information), UE
i also provides genuine information with a higher probability
for UE j, which indicates an improved mutual trust. Observe
in Fig. 10 that this phenomenon is dominated by each UE’s
own information sharing cost.

The heterogeneous model combined with our credit mech-
anism is also simulated by running Algorithm 1 over 20
UEs, where the reputation adjustment step size was configured
according to 0.02

t with t being the time index. Fig. 11 shows
the dynamics of all UEs’ reputations during the learning
and interaction process, which also characterizes the UEs’
information sharing strategy. Although the UEs are initially
configured to have different reputations below 0.5, i.e. to
have a relatively low reputation, the final converged all “1”
reputation results corroborate the high efficiency of our credit
mechanism. As shown in Fig. 11, after the network becomes
converged, some UEs might selfishly deviate from their good
reputation at the index of 200, but they will promptly return
to a good reputation again, which verifies the robustness of
the proposed credit mechanism.

VII. CONCLUSIONS

In this paper, we studied a range of information credibility
issues of cooperative networks, where both a homogeneous
and a heterogeneous models were investigated. The credibility
equilibria were derived under these two models, either in a
closed-form expression based evolutionary game or using a
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Fig. 11. Dynamics of the UEs’ reputation.

reinforcement learning aided method. We also proposed a
credit mechanism for enhancing the information credibility.
Our simulation results showed that the cost of sharing genuine
information had a grave impact on the credibility equilibrium.
The proposed credit mechanism ensured that all UEs would
share genuine information after a few rounds of interactions.
Furthermore, ’defecting rogue’ UEs became capable of rapidly
recovering from sudden selfish deviations from cooperation.
In a nutshell, we proposed a framework for the information
credibility modelling of cooperative networks, which can be
applied in diverse practical scenarios to be explored perhaps
by you valued colleagues.

APPENDIX
PROOF OF THEOREM 1

Proof: In order to verify the conditions of those solutions
being evolutionary credibility equilibria, we need to first ana-
lyze the characteristics of the first-order derivative of function
Φ(PG) = ŪG(PG) − ŪF(PG). According to (8) and (9), we
have

Φ(PG) =

N−1∑
n=0

(
N − 1

n

)
PnG (1− PG)

N−1−n(1− pa)[
e−µn − e−µ(n+1)

]
− c. (44)

When PG ∈ (0, 1), the first-order derivative of Φ(PG) can be
calculated by

Φ′(PG) =

N−1∑
n=0

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n (45)

[n− (N − 1)PG] (1− pa)
[
e−µn − e−µ(n+1)

]
.

Let us define a threshold nth satisfying that nth ≤ (N−1)PG
and nth + 1 > (N − 1)PG. Then, we can re-write (45) by

Φ′(PG) =

nth∑
n=0

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n (46)

[n−(N − 1)PG] (1− pa)
[
e−µn − e−µ(n+1)

]
+

N−1∑
n=nth+1

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n

[n− (N − 1)PG] (1− pa)
[
e−µn − e−µ(n+1)

]
.

Since the term
[
e−µn − e−µ(n+1)

]
is a decreasing function

in terms of n, it holds that
[
e−µn − e−µ(n+1)

]
≥[

e−µnth − e−µ(nth+1)
]

when n ≤ nth and[
e−µn − e−µ(n+1)

]
<
[
e−µnth − e−µ(nth+1)

]
when n > nth.

In such a case, (46) satisfies that

Φ′(PG) <

nth∑
n=0

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n

[n− (N − 1)PG] (1− pa)
[
e−µnth − e−µ(nth+1)

]
+

N−1∑
n=nth+1

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n

[n− (N − 1)PG] (1− pa)
[
e−µnth − e−µ(nth+1)

]
= (1− pa)

[
e−µnth − e−µ(nth+1)

]N−1∑
n=0

(
N − 1

n

)
Pn−1
G (1− PG)

N−2−n [n− (N − 1)PG]

= (1− pa)
[
e−µnth − e−µ(nth+1)

]
·

d
[∑N−1

n=0

(
N−1
n

)
PnG (1− PG)

N−1−n
]

dn
= 0. (47)
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When PG = 0, we have

Φ′(0) = lim
ϵ→0

Φ(ϵ)− Φ(0)

ϵ
=

lim
ϵ→0

N−1∑
n=0

(
N−1
n

)
ϵn(1− ϵ)N−1−n(1− pa)

[
e−µn − e−µ(n+1)

]
ϵ

− (1− pa) (1− e−µ)

ϵ
=

lim
ϵ→0

(1− ϵ)N−1(1− pa) (1− e−µ)− (1− pa) (1− e−µ)

ϵ
+

lim
ϵ→0

(N − 1)ϵ(1− ϵ)N−2(1− pa)
(
e−µ − e−2µ

)
ϵ

= (N − 1)(1− pa)
(
2e−µ − e−2µ − 1

)
< 0. (48)

Similarly, when PG = 1, we have

Φ′(1) = lim
ϵ→0

Φ(1)− Φ(1− ϵ)

ϵ
= (49)

lim
ϵ→0

(1− pa)
[
e−(N−1)µ − e−Nµ

]
ϵ

−∑N−1
n=0

(
N−1
n

)
(1− ϵ)nϵN−1−n(1− pa)

[
e−µn − e−µ(n+1)

]
ϵ

= lim
ϵ→0

[
1− (1− ϵ)N−1

]
(1− pa)

[
e−(N−1)µ − e−Nµ

]
ϵ

−

lim
ϵ→0

(N − 1)ϵ(1− ϵ)N−2(1− pa)
[
e−(N−2)µ − e−(N−1)µ

]
ϵ

= (N − 1)(1− pa)
[
2e−(N−1)µ − e−Nµ − e−(N−2)µ

]
< 0,

where the last inequality is due to the decreasing func-
tion

[
e−µn − e−µ(n+1)

]
in terms of n. Therefore, combining

(47), (48), and (49), we can see that Φ′(PG) < 0 for all
PG ∈ [0, 1]. Based on this characteristic, let us verify the
conditions of the three solutions P ∗1

G = 0, P ∗2
G = 1 and

P ∗3
G =

(
1− c

(1−pa)(1−e−µ) )
1

N−1

)
/ (1− e−µ) being evolu-

tionary credibility equilibria as follows.

• Solution 1: P ∗1
G = 0

When a UE shares genuine information with probability PG,
while all other UEs share false information with probability
1, the average utility according to (10) is

Ū(PG, 0) = ŪF(0) + PG
[
ŪG(0)− ŪF(0)

]
, (50)

where

ŪG(0) =Γ− e−µ − c, (51)

ŪF(0) =Γ + pa(1− e−µ)− 1, (52)

according to (8) and (9), respectively. If c
1−pa < 1 − e−µ,

then it holds that ŪG(0) > ŪF(0) and thus all UEs would
transit to sharing genuine information for the sake of obtaining
higher utility ŪG(0). On the other hand, if c

1−pa > 1 − e−µ,
then it holds that ŪG(0) < ŪF(0) and thus all UEs would
remain current strategy, i.e. keeping sharing false information
for the sake of obtaining higher utility ŪF(0). While for the
boundary c

1−pa = 1 − e−µ, i.e. ŪG(0) = ŪF(0), it holds
that Ū(PG, 0) = ŪF(0) = Ū(0, 0), which means P ∗1

G = 0
satisfies the NE property in Definition 1. Let us further check

the stability condition. Since Φ(0) = ŪG(0)− UF(0) = 0 and
Φ′(PG) < 0 ∀PG ∈ [0, 1], we have Φ(PG) < 0 ∀PG ∈ [0, 1].
Thus, it holds that

Ū(PG, PG) = ŪF(PG) + PG
[
ŪG(PG)− ŪF(PG)

]
< ŪF(PG) = Ū(0, PG), (53)

which implies P ∗1
G = 0 also satisfies the stability property in

Definition 1. Therefore, the condition of P ∗1
G = 0 being an

evolutionary credibility equilibrium is c
1−pa ≥ 1− e−µ.

• Solution 2: P ∗2
G = 1

When a UE shares genuine information with probability PG,
while all other UEs share genuine information with probability
1, the average utility according to (10) is

Ū(PG, 1) = ŪF(1) + PG
[
ŪG(1)− ŪF(1)

]
, (54)

where

ŪG(1) = Γ− e−µN − c, (55)

ŪF(1) = Γ− e−µ(N−1) + pa

[
e−µ(N−1) − e−µN

]
, (56)

according to (8) and (9), respectively. If c
1−pa > e−µ(N−1) −

e−µN , then it holds that ŪG(1) < ŪF(1) and thus all UEs
would transit to sharing false information for the sake of
obtaining higher utility ŪF(1). On the other hand, if c

1−pa <

e−µ(N−1)− e−µN , then it holds that ŪG(1) > ŪF(1) and thus
all UEs would remain current strategy, i.e. keeping sharing
genuine information for the sake of obtaining higher utility
ŪG(1). While for the boundary c

1−pa = e−µ(N−1)−e−µN , i.e.
ŪG(1) = ŪF(1), it holds that Ū(PG, 1) = ŪF(1) = Ū(1, 1),
which means P ∗2

G = 1 satisfies the NE property in Defi-
nition 1. Let us further check the stability condition. Since
Φ(1) = ŪG(1)−UF(1) = 0 and Φ′(PG) < 0 ∀PG ∈ [0, 1], we
have Φ(PG) > 0 ∀PG ∈ [0, 1]. Thus, it holds that

Ū(PG, PG) = ŪF(PG) + PG
[
ŪG(PG)− ŪF(PG)

]
(57)

< ŪF(PG) + 1 ·
[
ŪG(PG)− ŪF(PG)

]
= Ū(1, PG),

which implies that P ∗2
G = 1 also satisfies the stability property

in Definition 1. Therefore, the condition of P ∗2
G = 1 being an

evolutionary credibility equilibrium is c
1−pa ≤ e−µ(N−1) −

e−µN .

• P ∗3
G =

(
1− c

(1−pa)(1−e−µ) )
1

N−1

)
/ (1− e−µ)

When UE i shares genuine information with probability PG,
while all other UEs share genuine information with probability
P ∗3
G , the average utility of UE i can be calculated by

Ūi(PG, P
∗3
G ) = PGŪG(P

∗3
G ) + (1− PG)ŪF(P

∗3
G ). (58)

Since ŪG(P
∗3
G ) − ŪF(P

∗3
G ) = 0 according to (11), we can

re-write (58) as

Ūi(PG, P
∗3
G ) = ŪF(P

∗3
G ) = Ūi(P

∗3
G , P ∗3

G ), (59)

which implies that P ∗3
G satisfies the NE property in Definition

1. Let us further check the stability condition. According to
(10), we have

Ūi(PG, PG) = ŪF(PG) + PG
[
ŪG(PG)− ŪF(PG)

]
, (60)



0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2017.2659078, IEEE Journal
on Selected Areas in Communications

15

and

Ūi(P
∗3
G , PG) = ŪF(PG) + P ∗3

G
[
ŪG(PG)− ŪF(PG)

]
. (61)

By combining (60) and (61), we have

Ūi(P
∗3
G , PG)−Ūi(PG, PG) =

(
P ∗3
G − PG

) [
ŪG(PG)− ŪF(PG)

]
.

(62)
Again, based on the characteristic of Φ′(PG) = ŪG(PG) −
ŪF(PG) < 0 ∀PG ∈ [0, 1], we have

1) if PG < P ∗3
G , then ŪG(PG) − ŪF(PG) > ŪG(P

∗3
G ) −

ŪF(P
∗3
G ) = 0;

2) if PG > P ∗3
G , then ŪG(PG) − ŪF(PG) < ŪG(P

∗3
G ) −

ŪF(P
∗3
G ) = 0.

Therefore, it holds that Ūi(P ∗3
G , PG) < Ūi(PG, PG) ∀PG ̸=

P ∗3
G , which indicates that P ∗3

G also satisfies the stability
property in Definition 1. This completes the proof of Theorem
1.

APPENDIX
PROOF OF THEOREM 2

Proof: Let us first introduce some definitions to further
reveal the physical meaning of (28). Firstly, we denote
Θi = {G,F} as the set of UE i’s pure strategy and denote
Θ =

∏
i∈N Θi as the space of all UEs’ pure strategy profile.

Meanwhile, let us denote Λi = [0, 1] as the set of UE i’s mixed
strategy, i.e. the probability of sharing genuine information,
and denote Λ =

∏
i∈N Λi as the space of all UEs’ mixed

strategy profile. Then, we consider the space of perception
Ξ =

∏
i∈N RΘi and a mapping χ : Ξ → Λ from all

UEs’ perceptions to the mixed strategy profile of all UEs,
χ(P) = [ϕij(Pi)]i∈N , where ϕij : RΘi → Λij is a continuous
mapping from UE i’s space of perceptions to its space of
mixed strategies to UE j, which is just the operation defined
in (24). Moreover, we introduce a self mapping Π : Ξ → Ξ
as a function of the perception

Π(P) = F [χ(P)] , (63)

where F : Λ → Ξ is a mapping from mixed strategy profile
to the perception, i.e. F (s) = [Fij(s)]i∈N and Fij(s) =
[FijG(s), FijF(s)]i∈N with s being the profile of all UEs’
mixed strategies. As a matter of fact, Fi(s) is UE i’s average
utility when it adopts a pure strategy, i.e.

FijG(s) = Ūij(G, s−i), FijF(s) = Ūij(F, s−i), (64)

where s−i denotes the strategy profile except UE i. Based on
those definitions, we can re-write the expectation term in (28)
as follows

E(qijG|P) = sijŪij(G, s−i) + (1− sij)pijG (65)
= ϕijG(P)ΠijG(P) + [1− ϕijG(P)] pijG.

By inserting (65) into (28), we have

ṗijG = ϕijG(P) [ΠijG(P)− pijG] , (66)

which is quite similar to the replicator dynamics in (7) of the
homogeneous scenario. Similar to Theorem 1, the convergence
of the reinforcement learning process should accompany with
the dynamics ṗijG in (66) approaching 0, i.e. ΠijG(P) = pijG.

In such a case, the condition of the mapping ΠijG(·) having a
fix point becomes the convergence condition of the proposed
reinforcement learning scheme.

Given two arbitrary perceptions P1 and P2 of, the differ-
ence of ΠijG(P1)−ΠijG(P2) can be calculated as follows:

|ΠijG(P1)−ΠijG(P2)| =
∣∣∣χi(P1)

[
Uij (G,G)− Uij (G,F)

]
−

χi(P2)
[
Uij (G,G)− Uij (G,F)

]
+

χj(P1)
[
Uij (G,G)− Uij (G,F)

]
−

χj(P2)
[
Uij (G,G)− Uij (G,F)

]∣∣∣
≤
∣∣∣[χi(P1)− χi(P2)

][
Uij (G,G)− Uij (G,F)

]∣∣∣+∣∣∣[χj(P1)− χj(P2)
][
Uij (G,G)− Uij (G,F)

]∣∣∣
= (e−µ − e−2µ + g)

[∣∣χi(P1)− χi(P2)
∣∣+∣∣χj(P1)− χj(P2)
∣∣]. (67)

According to the Boltzmann update rule in (24), we can derive
the difference of χi(P1)− χi(P2) as follows

|χi(P1)− χi(P2)| =
∣∣∣∣ eξp1iG

eξp1iG + eξp1iF
− eξp2iG

eξp2iG + eξp2iF

∣∣∣∣
=

∣∣∣∣∣ξ eξ(p1iG+p1iF)

(eξp1iG + eξp1iF)
2 (p1iG − p2iG)−

ξ
eξ(p1iG+p1iF)

(eξp1iG + eξp1iF)
2 (p1iF − p2iF)

∣∣∣∣∣
≤ ξ

eξ(p1iG+p1iF)

(eξp1iG + eξp1iF)
2 |p1iG − p2iG|+

ξ
eξ(p1iG+p1iF)

(eξp1iG + eξp1iF)
2 |p1iF − p2iF|

≤ ξ
2eξ(p1iG+p1iF)

(eξp1iG + eξp1iF)
2 ||P1i −P2i||∞

≤ ξ||P1i −P2i||∞, (68)

where the second equality is according to the mean value
theorem and the last step is due to 2eξ(p1iG+p1iF)

(eξp1iG+eξp1iF)
2 ≤ 1. By

inserting (68) into (67), we have

|ΠijG(P1)−ΠijG(P2)| ≤ 2ξ(e−µ − e−2µ + g)||P1 −P2||∞.
(69)

We can see that if ξ ≤ 1
2(e−µ−e−2µ+g) , the mapping Π

forms a maximum-norm contraction, which can guarantee the
existence of a unique fixed point. This completes the proof of
Theorem 2.
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