
Eerland, W J et al 2017 Cambridge Rocketry Simulator – A Stochastic Six-Degrees-
of-Freedom Rocket Flight Simulator. Journal of Open Research Software, 5: 5, DOI:
https://doi.org/10.5334/jors.137

Journal of
open research software

SOFTWARE METAPAPER

Cambridge Rocketry Simulator – A Stochastic
Six-Degrees-of-Freedom Rocket Flight Simulator
Willem J. Eerland, Simon Box and András Sóbester
University of Southampton, GB
Corresponding author: Willem J. Eerland
(w.j.eerland@soton.ac.uk)

The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design
and operational applications. The software consists of three parts: The first part is a GUI that enables
the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates
the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynam-
ics and the atmospheric conditions. The third part generates visualizations of the resulting trajectories,
including nominal performance and uncertainty analysis, e.g. a splash-down region with confidence bounds.
The project is available on SourceForge, and is written in Java (GUI), C++ (simulation core), and Python
(visualization). While all parts can be executed from the GUI, the three components share information via
XML, accommodating modifications, and re-use of individual components.

Keywords: Java; C++; Python; rocket; simulation; simulator; stochastic; design
Funding Statement: The authors gratefully acknowledge the funding provided under research grant
EP/L505067/1 from the Engineering and Physical Sciences Research Council, and the support of industry
sponsor Cunning Running Software Ltd. The research data and code generated as part of this study is
available at https://doi.org/10.5281/zenodo.161850

(1) Overview
Introduction
The Cambridge Rocketry Simulator is designed for use
with unguided rockets including model rockets, High
Power Rockets (HPR), and sounding rockets. Typically,
these will perform a sub-orbital flight, collect some
data, and deploy a parachute for recovery to Earth. The
software models the flight dynamics of the rocket in
six-degrees-of-freedom and of the parachute descent in
three-degrees-of-freedom. It has a range of uses. Firstly, it
can guide the design process. For example, it allows the
engineer to select the appropriate size motor for a desired
apogee; or to design the fins for an appropriate margin
of stability; or to optimise the timing of stage separa-
tion or parachute deployment. Secondly, it enables the
operator to predict the landing location, which helps in
determining the required launch safety exclusion zone,
as well as facilitating the retrieval of the reusable com-
ponents of the rocket. In order to map uncertainties in
the dynamics and the atmospheric conditions into con-
fidence bounds around the predicted landing location,
a Monte Carlo approach is combined with a numerical
integration scheme.

Most research performed on predicting the tra-
jectories of projectiles is done by numerical inte-
gration. The exception is the work of Chudinov [8],

who predicts the trajectories by applying an ana-
lytical solution. While this approach is beneficial in
terms of computation costs, the prediction is lim-
ited to modelling a point mass with a quadratic drag
force. At the other end of the spectrum, there are
advanced simulators such as that described by Sahu
[17], where the authors use advanced coupled compu-
tational fluid dynamics/rigid body dynamics to pre-
dict the rocket behaviour even as it enters supersonic
speeds. However, as the additional computational cost
is significant due to the calculation of unsteady aero-
dynamics associated with supersonic flight, it is com-
putationally costly to perform an uncertainty analysis
of parameters via a Monte Carlo method. While there
are other methods available for non-linear uncertainty
propagation, the Monte Carlo method is capable of
handling large state spaces and arbitrary input dis-
tributions, making it the most widely used approach.
That does not take away that advanced simulations
remain invaluable when testing the performance of
new control methods, as performed by Gomez and
Miikkulainen [12], who test their control method for
a finless rocket via simulations. Uncertainty propaga-
tion is also useful for Impact Point Prediction (IPP),
where the impact point of a projectile is determined
while it is in-flight. Yuan et al. [20] incorporates the

https://doi.org/10.5334/jors.137
mailto:w.j.eerland@soton.ac.uk
https://doi.org/10.5281/zenodo.161850

Eerland et al: Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight SimulatorArt. 5, p. 2 of 6

uncertainty due to the presence of wind to increase
the accuracy on the confidence bounds on the land-
ing location. Rogers [16] applies an uncertainty analy-
sis not only to predict the impact point, but also to
guide the rocket such that it avoids objects and reaches
the target location without collision. With the excep-
tion of the analytical solution, all research is done via
a six-degrees-of-freedom rocket model and parameters
describing the projectile’s properties.

There are various software packages that facilitate con-
ceptual studies of rocket design, including commercial
solutions such as RockSim [1], open-source solutions
such as OpenRocket [13], and even computer games
such as the Kerbal Space Program [18]. All these pack-
ages simulate the performance of a rocket under nominal

conditions, returning the expected performance to the
user. While RockSim Pro does display confidence bounds
around the predicted landing location to the user, it is
only available to USA citizens.

The Cambridge Rocketry Simulator has four advantages
over these software packages. Firstly, it is free and open-
source [6]. Secondly, the physics model is verified, peer-
reviewed, and published [5]. Thirdly, by using a Monte
Carlo wrapper, it incorporates uncertainties in both rocket
dynamics and atmospheric conditions, making it possible
to produce a splash-down area with confidence bounds.
Finally, the atmospheric model supports a 3-dimensional
wind vector, air density, and air temperature, all as a func-
tion of altitude. These atmospheric data may be populated
from a recent meteorological forecast to maximize the

Figure 1: A schematic representation of the three components and the corresponding programming languages.

Figure 2: GUI for designing a rocket. It contains all the basic components required to design a rocket.

Eerland et al: Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator Art. 5, p. 3 of 6

accuracy of predictions. And with the introduction of the
third version of the Cambridge Rocketry Simulator, as pre-
sented in this paper, parts of the Graphical User Interface
(GUI) from Open-Rocket [13] are integrated to assist the
user in their rocket design. The software package is useful
in predicting the trajectories of rockets in academic activi-
ties [3, 19, 7, 10], or when sampling the atmosphere using
sounding rockets. Without the prediction of the trajecto-
ries, or more specifically, the confidence bounds of the
landing location, you may never get permission from the
aviation authorities to launch your rocket [9]. Furthermore,

the output of the simulator, the rocket trajectories, have
been used in the trajectory modelling research described
by Eerland, Box, and Sóbester [11].

The remainder of this paper covers the implementa-
tion and architecture, quality control, the availability, and
reuse potential of the software.

Implementation and architecture
The software package consists of three components, each
written in a different language to suit their individual pur-
pose: A GUI, a simulator, and a visualisation module. A

Figure 3: Mean trajectories of both stages of a two-stage rocket including a staged parachute descent. The 1 and 2 σ
bounds of confidence in landing position are also shown.

Figure 4: Landing position confidence bounds from Figure 3 along with the individual landing locations of
25 Monte Carlo iterations.

Eerland et al: Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight SimulatorArt. 5, p. 4 of 6

schematic representation of the three components, and
how they interact, is presented in Figure 1.

The GUI used to design the rocket is coded in Java,
where the start-up file SwingStartup.java is located at
gui/Swing/Src/net/Sf/openrocket/Startup/. This starts the
design page as seen in Figure 2, where the user can select
the different components to build the rocket. More details
about the GUI, and the corresponding internal structure
can be found in Niskanen [14]. The example here shows
a two-stage rocket. Once the rocket is designed, all the
parameters are passed to the simulator core (written in
C++) via an Extensible Markup Language (XML) data-
sheet. These parameters are required in the simulation,
and consist of the moments of inertia, centre of pressure,
drag coefficient, and the thrust curve. A full list of param-
eters and a description of the components are available in
the user guide uSer_guide.pdf, which is located at doc/.

The core of the physical simulation, the rocketc source
code, is located in cpp/ which includes a Makefile that
compiles the binary and moves it to the simulator
folder, found in Simulator/. The Java GUI calls the simu-
lation binary, after which the simulation starts by read-
ing the input XML generated by the Java code. The XML
file Simulationinput.xml can be found in the Data folder at
data/. Upon completion of the simulation an output XML
file Simulationoutput.xml is generated in the same folder.

This output of the simulation is then input to the
Python visualization code which is located in plotter/.
This presents the user with an overview of the flight tra-
jectories and the splash-down area. The splash down-area
includes confidence bounds, as seen in Figures 3 and 4.

When running the software under Linux, the three
folders, Simulator/, data/, and plotter/, are expected to
be located in the users home directory ∼/.camrocSim/.
Therefore, to prepare the system for execution from
source code, a script called prepare_linux.Sh is included in
the repository. This copies the three relevant folders to
this location. The information presented in this section,
and build instructions for Windows, are available in the
readme.md file found in the repository.

Quality control
The performance of the simulator has been evaluated by
comparison to telemetry data recorded in rocket flights as
described by Box, Bishop, and Hunt [5].

The performance and stability of the GUI and the visual-
iser have been tested in two rounds of user-testing, includ-
ing cross-platform testing, which was done on Ubuntu
14.04 Trusty Tahr and Windows 10.0 (Build 10240).

Furthermore, there are unit tests available for the
GUI and simulator, using JUnit for the GUI (Java), and
GoogleTest for the simulator (C++). Instructions on how
to run these are included in the readme.md file.

(2) Availability
Operating system
The Cambridge Rocketry Simulator is able to function on
any operating system that supports a standard Java and
Python installation, which includes Linux and Windows.

In all systems the simulator can be set-up by checking out
the code repository. Detailed instructions on how to start
the program and continue development are included in
the documentation.

Programming language
Java ≥ 1.7
Python ≥ 2.7
C++ ≥ C++ 98

Additional system requirements
No special requirements.

Dependencies
The following C++ library is a required dependency:

Boost ≥ 1.58

The following Python libraries are a required dependency:

numpy ≥ 1.5
matplotlib ≥ 1.1
scipy ≥ 0.16.0

List of contributors
1. Willem Eerland (developer).
2. Simon Box (developer).
3. The project includes sources from OpenRocket [13]

(GNU GPL).

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/zenodo.

161850
Licence: GPL v3
Publisher: Zenodo
Version published: 3.1
Date published: 19/10/2016

Code repository
Name: SourceForge
Persistent identifier: https://sourceforge.net/p/cam-

rocsim/code/ci/b888389c281788805b2680190dcda3b
706dd8327/

Licence: GPL v3
Version published: 3.1
Date published: 19/10/2016

Language
English

(3) Reuse potential
The modular design of the Cambridge Rocketry Simulator’s
source code makes it inherently reusable. The GUI may be
reused for applications where rocket design is required
but simulation and visualization are not. The simulator
itself – as described above – is a stand-alone program call-
able from the command-line, accepting a XML simulation

https://doi.org/10.5281/zenodo.161850
https://doi.org/10.5281/zenodo.161850
https://sourceforge.net/p/camrocsim/code/ci/b888389c281788805b2680190dcda3b
706dd8327/
https://sourceforge.net/p/camrocsim/code/ci/b888389c281788805b2680190dcda3b
706dd8327/
https://sourceforge.net/p/camrocsim/code/ci/b888389c281788805b2680190dcda3b
706dd8327/

Eerland et al: Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator Art. 5, p. 5 of 6

input file as its single parameter. Therefore this can be
ported into other applications.

Furthermore, individual classes of the simulator have
reuse potential. For example the rkf45.cpp class is a gen-
eral ordinary differential equation solver which imple-
ments the fourth/fifth order Runge-Kutta algorithm with
Fehlberg step-size control [15]. This may be used in any
dynamics simulation application.

Similarly, the vmathS.cpp class may be used for modelling
the six-degrees-of-freedom dynamics of rigid bodies. In
particular the implementation of quaternions in this class
is helpful for modelling unconstrained rotation without
the need to deal with the singularities that arise when
using Euler angles [2].

To assist users and developers, there is a user guide
(uSer_guide.pdf) available in the doc/ directory. This includes
information on the required structure of the XML files,
and instructions on how to launch the simulator and plot-
ter via the command line.

The website Cambridge Rocketry [4] is devoted to pro-
ducing open-source software for simulating high power
rockets, where besides the Cambridge Rocketry Simulator,
an Octave/Matlab version of the simulator core named
the Cambridge Rocketry Toolbox is available. The pre-
ferred method for contributors to contact the develop-
ers is via the SourceForge webpage https://sourceforge.
net/p/camrocsim/, where questions can be asked on the
forum, and the developers may be contacted directly.

Acknowledgements
The authors thank the two anonymous reviewers whose
comments and suggestions helped improve this manu-
script and software.

Competing Interests
The authors have no competing interests to declare.

References
1. Apogee 2008 RockSim v9. URL: http://www.

apogeerockets.com (visited on 31/01/2017).
2. Baraff, D 1997 “An introduction to physically based

modeling: Rigid body simulation I – Unconstrained
rigid body dynamics”. In: SIGGRAPH ’97 Tutorial notes.

3. BBC 2011 Rocket launch for Bolton students on Mull
of Galloway. URL: http://www.bbc.co.uk/news/
uk-england-manchester-14760906 (visited on
31/01/2017).

4. Box, S 2011 Cambridge Rocketry. URL: http://
cambridgerocket.sourceforge.net (visited on
31/01/2017).

5. Box, S, Bishop, C and Hunt, H 2010 “Stochastic
six-degree-of-freedom flight simulator for passively
controlled high-power rockets”. In: Journal of
Aerospace Engineering 24.1, pp. 31–45. DOI: https://
doi.org/10.1061/(ASCE)AS.1943-5525.0000051.
eprint: http://eprints.soton.ac.uk/73938/.

6. Box, S and Eerland, W J 2016 Cambridge Rocketry
Simulator. URL: https://sourceforge.net/p/
camrocsim/ (visited on 31/01/2017).

7. Buchanan, G et al 2015 “The Development of Rocketry
Capability in New–Zealand World Record Rocket and
First of Its Kind Rocketry Course”. In: Aerospace 2.1,
p. 91. ISSN: 2226–4310. DOI: https://doi.org/10.3390/
aerospace2010091

8. Chudinov, P S 2003 “Analytical investigation of point
mass motion in midair”. In: European Journal of Physics
25.1, p. 73. DOI: https://doi.org/10.1088/0143-
0807/25/1/010

9. Commercial Space Transportation 2007 Supplemental
Application Guidance for Unguided Suborbital
Launch Vehicles (USLVs). Tech. rep. Federal Aviation
Administration (FAA), URL: https://www.faa.gov/.

10. Courtney, M and Courtney, A 2009 “Measuring
thrust and predicting trajectory in model rocketry”.
In: arXiv preprint, arXiv:0903.1555. URL: https://arxiv.
org/abs/0903.1555.

11. Eerland, W J, Box, S and Sóbester, A 2016 “Modeling
the dispersion of aircraft trajectories using Gaussian
processes”. In: Journal of Guidance, Control, and
Dynamics. DOI: https://doi.org/10.2514/1.G000537.
eprint: http://eprints.soton.ac.uk/399818/.

12. Gomez, F J and Miikkulainen, R 2003 “Active
Guidance for a Finless Rocket Using Neuroevolution”.
In: Genetic and Evolutionary Computation – GECCO
2003: Genetic and Evolutionary Computation
Conference Chicago, IL, USA, July 12–16, Proceedings,
Part II. Ed. by Cantú-Paz , E. et al. Berlin, Heidelberg:
Springer, July, pp. 2084–2095. ISBN: 978-3-540-
45110-5. DOI: https://doi.org/10.1007/3-540-
45110-2_105

13. Niskanen, S 2015 OpenRocket. URL: http://
openrocket.sourceforge.net (visited on 31/01/2017).

14. Niskanen, S 2013 OpenRocket technical documentation.
Tech. rep. URL: http://openrocket.sourceforge.net
(visited on 31/01/2017).

15. Press, W, Teukolsky, S, Vetterling, W and Flannery, B
2007 Numerical Recipes. Cambridge University
Press.

16. Rogers, J 2014 “Stochastic Model Predictive Control
for Guided Projectiles Under Impact Area Constraints”.
In: Journal of Dynamic Systems, Measurement, and
Control 137.3 (Oct.), pp. 034503–8. DOI: https://doi.
org/10.1115/1.4028084

17. Sahu, J 2008 “Time-accurate numerical prediction
of free-flight aerodynamics of a finned projectile”. In:
Journal of Spacecraft and Rockets 45.5, pp. 946–954.
DOI: https://doi.org/10.2514/1.34723

18. Squad 2011 Kerbal Space Program. URL: http://www.
kerbalspaceprogram.com (visited on 31/01/2017).

19. TU Delft 2016 DARE: Delft Aerospace Rocket
Engineering. URL: http://dare.tudelft.nl (visited on
31/01/2017).

20. Yuan, T, Bar-Shalom, Y, Willett, P and Hardiman, D
2014 “Impact point prediction for thrusting
projectiles in the presence of wind”. In: Aerospace
and Electronic Systems, IEEE Transactions on 50.1,
pp. 102–119. DOI: https://doi.org/10.1117/
12.930875

https://sourceforge.net/p/camrocsim/
https://sourceforge.net/p/camrocsim/
http://www.apogeerockets.com
http://www.apogeerockets.com
http://www.bbc.co.uk/news/uk-england-manchester-14760906
http://www.bbc.co.uk/news/uk-england-manchester-14760906
http://cambridgerocket.sourceforge.net
http://cambridgerocket.sourceforge.net
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000051
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000051
http://eprints.soton.ac.uk/73938/
https://sourceforge.net/p/camrocsim/
https://sourceforge.net/p/camrocsim/
https://doi.org/10.3390/aerospace2010091
https://doi.org/10.3390/aerospace2010091
https://doi.org/10.1088/0143-0807/25/1/010
https://doi.org/10.1088/0143-0807/25/1/010
https://www.faa.gov/
https://arxiv.org/abs/0903.1555
https://arxiv.org/abs/0903.1555
https://doi.org/10.2514/1.G000537
http://eprints.soton.ac.uk/399818/
https://doi.org/10.1007/3-540-45110-2_105
https://doi.org/10.1007/3-540-45110-2_105
http://openrocket.sourceforge.net
http://openrocket.sourceforge.net
http://openrocket.sourceforge.net
https://doi.org/10.1115/1.4028084
https://doi.org/10.1115/1.4028084
https://doi.org/10.2514/1.34723
http://dare.tudelft.nl
https://doi.org/10.1117/12.930875
https://doi.org/10.1117/12.930875

Eerland et al: Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight SimulatorArt. 5, p. 6 of 6

How to cite this article: Eerland, W J, Box, S and Sóbester, A 2017 Cambridge Rocketry Simulator – A Stochastic Six-Degrees-
of-Freedom Rocket Flight Simulator. Journal of Open Research Software, 5: 5, DOI: https://doi.org/10.5334/jors.137

Published: 16 June 2016 Accepted: 26 January 2017 Published: 21 February 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.137
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References

