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The inclusion of heavy quarks, such as the charm quark, poses difficulties in Lattice QCD

simulations. These need to be overcome in order to make predictions of hadronic observ-

ables including a charm quark such as the decay constants fD and fDs . We first establish

the region of validity of simulating heavy quarks with domain wall fermions (DWFs) in

a feasibility study. We then carry out dynamical simulations with RBC/UKQCD’s

Nf = 2 + 1f ensembles at three lattice spacings (a−1 = 1.73− 2.77 GeV) including two

physical pion mass ensembles. From this we make a prediction for the decay constants

fD and fDs and, using experimental input, the corresponding CKM matrix elements.

In the first part of this work we investigate the suitability of domain wall fermions

(DWF) as a lattice regularisation for heavy quarks. We generate four quenched QCD

gauge ensembles with the tree-level improved Symanzik gauge action and inverse lattice

spacings in the range 2.0 − 5.7 GeV. On these we carry out an exploratory study to

identify a region in the DWF parameter space that displays minimal cut-off effects. We

find this region for the domain wall height M5 = 1.6 allowing for bare heavy quark

masses satisfying amh . 0.4, independent of the lattice spacing. Below this limit we

maintain desirable features of DWF such as approximate chiral symmetry and O(a)-

improvement. Based on this, we carry out a detailed scaling study of the decay constants

of heavy-strange pseudoscalar mesons and the dispersion relation of heavy-heavy and

heavy-strange pseudoscalar mesons. We find mild a2 discretisation effects for the heavy-

strange decay constants and the heavy-strange dispersion relation. The cut-off effects

for the heavy-heavy pseudoscalar dispersion relation are somewhat more pronounced.

On our ensembles we find a4 effects for heavy masses beyond the charm quark mass and

large momenta (|p| ∼ 1.6 GeV). The findings of the pilot study establish the basis for

simulations of charm quarks with domain wall fermions.

In the second part of the presented work we simulate heavy-light and heavy-strange

pseudoscalar mesons on RBC/UKQCD’s 2 + 1f ensembles with pion masses as low
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as 139 MeV and inverse lattice spacings ranging from 1.73 GeV to 2.77 GeV. From

this data we extract the decay constants fD and fDs . We devise two different fit

ansätze to process this data and carry out a full systematic error analysis. We find

fD = 208.7(2.8)stat

(
+2.1
−1.8

)
sys

MeV, fDs = 246.4(1.9)stat

(
+1.3
−1.9

)
sys

MeV and fDs/fD =

1.1667(77)stat

(
+60
−46

)
sys

.

Finally, using experimental input we extract the corresponding CKM matrix elements.

We find |V |cd = 0.2185(50)exp.

(
+35
−37

)
lat

and |V |cs = 1.011(16)exp.

(
+11
− 9

)
lat

where the first

error comes from the experimental input and the second from our determination of the

decay constants. We compare our results with the existing literature and find good

agreement between our central values and competitive errors. This work constitutes the

basis of RBC/UKQCD’s wider charm physics program.
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Chapter 1

Introduction

The aim of particle physics is to probe our understanding of the forces governing nature

at the smallest length scales. We have a well established theoretical model of the known

fundamental particles called the Standard Model (SM), which describes their interactions

under the strong, the weak and the electromagnetic forces. Whilst this model is in good

agreement with experimentally measured observables, it still stands in contrast to some

observations that indicate shortcomings. For example, it fails to explain dark matter

and dark energy. This implies that there is yet unknown New Physics (NP), which

particle physicists hope to discover and understand.

To date, we lack a clear indication of discrepancies between theoretical predictions (from

the SM) and experimental measurements. This situation might change with the accumu-

lation of more experimental data at current and future experiments, and the associated

increase in precision. However, to be able to draw conclusions from this we also need

to reduce the theoretical uncertainty to a comparable precision. One way in which the

validity of the SM can be tested is by over-constraining its parameters by studies of

different processes which involve the same parameters.

Many predictions from the SM can be made to high precision by analytical calculations,

however there are some, in particular concerning processes involving the strong force at

low energies, for which this is not the case. In such cases one has to resort to alternative

methods, such as effective theories or other non-perturbative tools. Methods concerned

with large scale numerical simulations of non-perturbative dynamics are described col-

lectively by the fields of Lattice Quantum Field Theories (LQFTs), which in the case of

the strong interaction is Lattice Quantum Chromodynamics (LQCD).

In this work, we develop a formalism that allows us to simultaneously simulate charm

quarks and physical light quarks, whilst maintaining control over all systematic errors.

This is done by first carrying out a pilot study in chapter 5 to test our mechanism,

which is then used in large scale simulations including ensembles with physical pion

1



2 Chapter 1 Introduction

masses. From these simulations we make a prediction for quantities (the decay constants)

associated with charmed mesons. In combination with experimentally measured data

and other known inputs, this leads to the determination of two of the fundamental

parameters of the SM.

The main result of the pilot study is the region of parameter space in which we can

simulate heavy quarks with Moebius domain wall fermions (MDWF), defined by

M5 = 1.6 and

amh . 0.4.
(1.1)

Here M5 is a parameter specific to our choice of discretising the fermions action, called

domain wall fermions (DWFs), whilst a is the lattice spacing and mh is the mass of the

heavy quark in bare units.

Our main prediction from simulations with physical pion masses are the D and Ds decay

constants fD and fDs , respectively, their ratio and the Cabibbo-Kobayashi-Maskawa

(CKM) matrix elements |Vcd| and |Vcs|. The numerical results are

fD = 208.7(2.8)stat

(
+2.1
−1.8

)
sys

MeV

fDs = 246.4(1.9)stat

(
+1.3
−1.9

)
sys

MeV

fDs
fD

= 1.1667(77)stat

(
+60
−46

)
sys

and

|Vcd| = 0.2185(50)exp(+35
−37)lat

|Vcs| = 1.011(16)exp(+11
− 9)lat.

(1.2)

Combined with determinations of other CKM matrix elements this allows for a test of

the unitarity of the CKM matrix and therefore of the SM.

Whilst these are quantities that have been computed in the past, to date there is only

one other result that simulates directly at physical pion masses [18] and our result is

amongst the most precise determinations. Furthermore, our mechanism extends beyond

the physical value of the charm quark mass and could, in the future, be used to extrap-

olate to predictions for mesons containing a b quark. Finally, our set-up allows for the

inclusion of charm quarks in the wider RBC/UKQCD physics programme, allowing for

other quantities to be determined.

The remainder of this thesis is structured as follows: In chapter 2 a brief introduction

to the SM and its properties is presented. In chapter 3 we will introduce Lattice QCD

and its methods, followed by a more detailed discussion of our particular formulation

of Lattice QCD, namely domain wall fermions (DWFs) in chapter 4. In chapter 5 we

will introduce and summarise the results of the pilot study which explores the possible

parameter space of our simulations. Having found an optimal point in this parameter
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space, in chapter 6 we then present the study of the decay constants at physical pion

masses, which produces the main results of this thesis. Finally, we summarise our results

and outline possible applications and future work in chapter 7.

I note that the following three chapters do not present original work but rather sum-

marise knowledge I have obtained from textbooks, reviews, lectures and discussions. I

want to explicitly acknowledge some quantum field theory (QFT) textbooks [9, 19, 20],

lattice quantum chromodynamics (LQCD) text books [21–24] and reviews published by

the Particle Data Group (PDG) [1]. I want to particularly highlight that I obtained a

significant part of the knowledge presented in this chapter from Part III of the Mathe-

matical Tripos which I took in 2011/12.





Chapter 2

The Standard Model of Particle

Physics

The Standard Model (SM) describes the interactions of the known fundamental (as

opposed to composite) particles under the strong, the weak, and the electromagnetic

forces. The SM is based on symmetries, which we can observe in nature. In particular,

it is a quantum gauge theory, meaning it is described by a local gauge group. It is

defined by constructing the most general Lagrangian that satisfies these symmetries.

In the following, we will first outline the underlying symmetries of the SM (section 2.1),

then we will introduce the particle content of the SM in section 2.2, before constructing

the Lagrangians of the electroweak sector and the strong sector in sections 2.3 and 2.4,

respectively. From this we will derive the CKM matrix in section 2.5 and discuss how

we can determine these in practice in section 2.6. Finally Heavy Quark (HQ) physics is

discussed in section 2.7.

2.1 Symmetries of the Standard Model

The SM Lagrangian includes all Lorentz invariant terms, whilst also being gauge invari-

ant under SU(3)C , SU(2)L and U(1)Y gauge symmetries.

There are also three important discrete symmetries called parity (P), charge conjugation

(C) and time reversal (T). Parity reverses the spatial coordinates of each point in space-

time, whilst time reversal reverses time, i.e.

xµ = (x0,x)
P→ xµP = (x0,−x)

xµ = (x0,x)
T→ xµT = (−x0,x) .

(2.1)

5
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Charge conjugation interchanges particles with their antiparticles. If an interaction

obeys any of the above discrete symmetries, it means that physical processes do not

change under this transformation.

Experimentally, it is found that the strong force and electromagnetism obey parity as a

symmetry, but the weak interaction does not [25, 26]. We will see how this is reflected

in the Lagrangian of the weak interaction in section 2.3. It was postulated that the

weak interaction might still conserve combined charge conjugation and parity (CP), but

is was shown experimentally in 1964 that this is not the case [27]. However, the strong

and the electromagnetic forces obey CP symmetry and all three forces obey combined

CPT symmetry.

The SM is a quantum gauge theory, and therefore has a local gauge group. This gauge

group is

SU(3)C × SU(2)L × U(1)Y, (2.2)

where C stands for colour, L stands for left-handed weak isospin and Y stands for

Hypercharge. Throughout this chapter we will see how these symmetries give rise to

the force carriers of the SM and reproduce the known interactions. Any term that is

included in the Lagrangian of the SM is required to leave said Lagrangian invariant

under any of these symmetry transformations.

SU(2)L×U(1)Y is referred to as the electroweak sector [28–30] and will be discussed in

section 2.3. Whilst this is a symmetry of the Lagrangian, it is spontaneously broken by

the vacuum. This phenomenon is called electroweak symmetry breaking (EWSB) [31–

34] and gives rise to a number of interesting properties. In particular, this gives rise to

the CKM matrix [35, 36], which will be introduced and discussed in section 2.5. SU(3)C

is the gauge group of quantum chromodynamics [37], which gives rise to the strong force.

Its properties will be discussed in section 2.4.

2.2 Particle Content

In this section, we will give a brief introduction of the fundamental particles present in

the SM. Particles with odd-half-integer spin (1/2) are known as fermions, particles with

integer spin (0, 1) as bosons. The fermions come in three generations and are further

split into leptons and quarks. The leptons are comprised of the charged leptons (electron

e, muon µ and tau τ), each of which has a corresponding neutral neutrino (νe, νµ, ντ ).

Composite particles that contain bound states of quarks are called hadrons. The known

hadrons are mesons (containing a quark and an anti-quark) and baryons (containing

three quarks). Table 2.1 presents a summary of these particles and their interactions.
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Particles strong weak EM spin el. charge

F
er

m
io

n
s charged leptons (e, µ, τ) 7 3 3 1/2 -1

neutral leptons (νe, νµ, ντ ) 7 3 7 1/2 0
up-type quarks (u, c, t) 3 3 3 1/2 +2/3

down-type quarks (d, s, b) 3 3 3 1/2 -1/3
B

os
on

s
photon (γ) 7 7 3 1 0

W± 7 3 3 1 ±1
Z 7 3 7 1 0

gluons (g) 3 7 7 1 0
Higgs 7 3 7 0 0

Table 2.1: The known particles of the SM and some of their properties.

2.3 Higgs and Electroweak Theory

The electroweak part of the SM corresponds to the SU(2)L × U(1)Y part of the gauge

group (2.2). As hinted at in the name, the electroweak theory [28–30] combines the

theory of the weak interaction with Quantum Electrodynamics (QED). We have already

mentioned that the weak interaction breaks parity, so we will need to ensure that this

feature is reproduced by the SM. In the following we will show how spontaneous sym-

metry breaking (SSB) [31–34] causes the symmetry group SU(2)L×U(1)Y to break into

U(1)EM due to the Higgs potential. We will show how this gives rise to the gauge bosons

for the weak (W±, Z0) and the electromagnetic force (γ). In 2012, the Higgs boson was

independently discovered by two experiments at CERN, namely by the ATLAS [38] and

CMS [39] groups, confirming the final missing piece of the SM.

2.3.1 Gauge Fields and the Field Strength Tensor

For the remainder of this chapter (unless stated otherwise), the Einstein summation

convention is used, meaning that repeated indices are summed over. We will start

by introducing the terms of the Lagrangian that are purely gauge dependent. The

corresponding term in the Lagrangian is

Lgauge(x) = −1

4
Fµν(x)Fµν(x), (2.3)

where the field strength tensor Fµν is defined as

Fµν = [Dµ, Dν ] , (2.4)

and the covariant derivativeDµ depends on the underlying gauge symmetry. For SU(2)×
U(1) we have

Dµ = ∂µ + igAaµ(x)τa + i
1

2
g′Bµ(x)Y. (2.5)
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Here τ i = σi/2 are the SU(2) generators, defined in terms of the Pauli matrices σi and

the index i = 1, 2, 3. Some properties of these generators are listed in Appendix A.1.1.

Y is the generator of U(1)Y , called weak-hypercharge. The gauge fields Aµ(x) and Bµ(x)

are elements of SU(2)L and U(1)Y respectively, g and g′ are the couplings of the gauge

fields.

2.3.2 Fermions in the Standard Model

In the SM, a fermion ψ of mass m is introduced by including a term of the form

LDirac = ψ(x)
(
i /D −m

)
ψ(x) (2.6)

in the Lagrangian. Here /D = γµDµ, where γµ are the Dirac gamma matrices obeying

the Clifford algebra as described in Appendix A.2 and Dµ is the covariant derivative

appropriate to the fermions under consideration, e.g. (2.5) for the case of the electron.

We can decompose fermions into a left-handed and a right-handed part, such that

ψ = ψL + ψR

ψL = P−ψ =
1

2

(
1− γ5

)
ψ

ψR = P+ψ =
1

2

(
1 + γ5

)
ψ,

(2.7)

where γ5 = iγ0γ1γ2γ3. The Dirac part of the Lagrangian (2.6) then becomes

LDirac = ψ
(
i /D −m

)
ψ

=
(
ψLi /DψL + ψRi /DψR

)
−m

(
ψLψR + ψRψL

)
.

(2.8)

Equation (2.8) remains invariant under a rotation of the left-handed and right-handed

components by the same phase α, ψL,R → eiαψL,R. This U(1) symmetry is known as a

vector symmetry with the conserved Noether current JµV = ψγµψ associated with fermion

number. So for the case of leptons, this shows that the lepton number is conserved.

We will now treat left-handed and right-handed fermions differently. We place the left-

handed ones into SU(2)L doublets and the right-handed ones into SU(2)L singlets. We

will see that this ensures that the weak interaction does not obey parity in section 2.3.4.

For mf = 0 we additionally have a so-called chiral symmetry or axial symmetry U(1)A,

where left-handed and right-handed components rotate with a different phase, i.e. ψ →
eiαγ

5
ψ. This is most easily seen in the chiral basis in which γ5 is diagonal. The form

the gamma matrices take in this basis is presented in Appendix A.2. The associated

Noether current for this process is JµA = ψγµγ5ψ with divergence ∂µJ
µ
A = 2imψγ5ψ, so

it is only conserved in the massless limit.
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2.3.3 Electroweak Symmetry Breaking

In addition to the field strength tensors associated with the SU(2)L and U(1)Y gauge

groups the electroweak sector includes the Higgs field φ, which enters the Lagrangian as

LEWSB = (Dµφ)† (Dµφ)− V (φ)

V (φ) = −µ2 |φ|2 + λ |φ|4 ,
(2.9)

where µ and λ are positive real coefficients and φ is the Higgs fields which is a complex

scalar field of the group SU(2)L. Dµ is the covariant derivative for SU(2)L×U(1)Y . We

can choose the gauge such that φ = 1√
2

(
φ+

φ0

)
becomes φ = 1√

2

(
0

φ0

)
where φ0 is real.

V (φ) has a non trivial minimum at |φ| 6= 0 and hence acquires a vacuum expectation

value (vev) v

〈φ〉 =
1√
2

(
0

v

)
=

1√
2

 0√
2µ2

λ

 . (2.10)

Note that transformations

φ→ eiα
i(x)τ ieiβ(x)/2φ, (2.11)

with α1 = α2 = 0 and α3 = β leave 〈φ〉 invariant, leaving an intact symmetry even

after acquiring the vev, i.e. after spontaneous symmetry breaking. This gives rise to one

massless gauge boson - the photon.

We now substitute the definition of the covariant derivative (2.5) and the transformation

(2.11) into the Lagrangian (2.9) at the point defined by (2.10) and collect terms quadratic

in the fields. From this we obtain the masses of the gauge bosons. With the re-definitions

of the fields and the generators

W±µ =
1√
2

(
A1
µ ∓ iA2

µ

)
with τ± = τ1 ± iτ2

Z0
µ =

1√
g2 + g′2

(
gA3

µ − g′Bµ
)

with cos2 θW τ
3 − sin2 θWY

Aµ =
1√

g2 + g′2

(
gA3

µ + g′Bµ
)

with Q = τ3 + Y,

(2.12)

we find the coefficients of the quadratic terms in these redefined fields to be

mW = g
v

2

mZ =
√
g2 + g′2

v

2

mA = 0.

(2.13)

So we find one massless gauge boson Aµ (the photon) and three massive gauge bosons

(W± and Z). The charge associated with the remaining U(1)EM symmetry is the electric
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charge Q, which can be determined by noting that Q = τ3 + Y 1. Here the quantum

numbers τ3 and Y are the third component of the weak-isospin and the weak hypercharge,

respectively.

Note that at tree-level we can relate the masses mW and mZ by

mW = mZ cos θW , (2.14)

where θW is the Weinberg angle defined by

tan θW =
g′

g
, sin θW =

g′√
g2 + g′2

, cos θW =
g√

g2 + g′2
. (2.15)

Using this, the covariant derivative for leptons can be written as

Dµ = ∂µ −
1g√

2

(
W+
µ τ

+ +W−µ τ
−)− ig

cos θW
Zµ
(
τ3 − sin2 θWQ

)
− ieAµQ, (2.16)

where we defined the unit charge e = |e| = g sin θW .

Within the SM, neutrinos are massless (even though there is now experimental evidence

of small neutrino masses [40, 41]). We have seen in (2.8) that the mass term connects

left-handed and right-handed parts of a fermion. This means a massless particle (such

as the neutrino) has no way to flip chirality and can therefore remain purely left-handed.

Recall further (compare table 2.1) that neutrinos only interact weakly, whilst charged

leptons interact weakly and electromagnetically, but not strongly. The W boson only

couples to left-handed fermions [28–30]. The electroweak theory is constructed by treat-

ing the electron and the neutrino in the same way, by placing the purely left-handed

neutrino and the left-handed part of the electron in a doublet le(x), which forms a repre-

sentation of the SU(2) group called weak-isospin. The right-handed part of the electron

is put into an weak iso-singlet re(x)

le(x) =

(
νe(x)

eL(x)

)
re(x) = eR(x).

(2.17)

Ensuring that eL and eR carry an electric charge of −e and νl is electrically neutral

implies that

Qle =

(
0 0

0 −1

)
le Qr = −r. (2.18)

Given Q = τ3 + Y 1 and τ3 = σ3

2 we can conclude eigenvalues for νL, eL and eR, which

are listed in table 2.2
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fermion τ3 Y Q

νL 1/2 −1/2 0
eL −1/2 −1/2 −1
eR 0 −1 −1

uL 1/2 1/6 2/3
uR 0 2/3 2/3
dL −1/2 1/6 −1/3
dR 0 −1/3 −1/3

Table 2.2: The electroweak quantum numbers of the fermions of the SM

2.3.4 Interactions between Leptons and Gauge Bosons

To incorporate all generations, we will now extend our definition of le and r to L and R:

L(x) =
(
le(x) lµ(x) lτ (x)

)
R(x) =

(
re(x) rµ(x) rτ (x)

)
.

(2.19)

The different generations only differ in their masses, so in particular the quantum num-

bers listed in table 2.2 are the same for all generations.

After EWSB the part of the Lagrangian that governs interactions between the leptons

and the gauge bosons is given by

Llept
int = gLγµW a

µτ
aL− g′

(
1

2
LγµBµL+RγµBµR

)
= g

(
Jµ+W+

µ + Jµ−W−µ + Z0
µJ

µ
Z

)
+ eAµJ

µ
EM .

(2.20)

The four currents are given by

Jµ+
W =

1√
2

(νLγ
µeL)

Jµ−W =
1√
2

(eLγ
µνL)

JµZ =
1

cos θW

 ∑
P=L,R

Pγµ
(
τ3(P ) + sin2 θWY (P )

)
P


JµEM =

∑
P=L,R

PγµQ(P )P.

(2.21)

The first two currents only couple to left-handed particles and hence have the J = V −A
structure typical for the weak interaction. Here V and A stand for the vector and axial
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quark mass/MeV MS-scale charge/e I Iz S C B T
up (u) 2.3+0.7

−0.5 2 GeV 2/3 1/2 +1/2 0 0 0 0

down (d) 4.8+0.5
−0.3 2 GeV −1/3 1/2 −1/2 0 0 0 0

strange (s) 95± 5 2 GeV −1/3 0 - -1 0 0 0
charm (c) 1.275± 0.025× 103 mc 2/3 0 - 0 1 0 0

bottom (b) 4.180± 0.03× 103 mb −1/3 0 - 0 0 -1 0
top (t) ∼ 1.7× 105 mt 2/3 0 - 0 0 0 1

Table 2.3: The six quarks of the SM and their masses and quantum numbers.
The light quarks up and down have isospin quantum numbers whilst the heavy
quarks have quantum numbers Strangeness (S), Charm (C), Bottom (B) and
Top (T ) [1].

current respectively defined by

Jµ(x) = ψ1(x)γµ (1− γ5)ψ2(x)

Vµ(x) = ψ1(x)γµψ2(x)

Aµ(x) = ψ1(x)γµγ5ψ2(x),

(2.22)

where ψ1(x) and ψ2(x) are fermions. We note that V and A transform differently under

parity, i.e. V − A
P→ V + A, so parity is not conserved under the weak interaction,

in agreement with what we set out to describe. However, V and A also transform

opposite to each other under charge conjugation, so combined CP is conserved. Another

observation is that no flavour changing neutral currents (FCNC) are present.

2.4 Quantum Chromodynamics

We now turn to Quantum Chromodynamics (QCD), i.e. the gauge field theory of quarks

and gluons and their interactions, also known as the strong force. The properties of the

six known quarks such as their masses and their quantum numbers are summarised

in table 2.3. In this section and the corresponding appendices we will summarise the

relevant features and definitions needed for the purpose of this thesis.

2.4.1 QCD Lagrangian

QCD is described by the SU(3)C part of (2.2) [37, 42]. The Lagrangian density of QCD

is given by

LQCD = −1

4
FCµν(x)FC µν(x) +

∑
f

ψf, a(x)
(
i /Dab −mfδab

)
ψf, b(x), (2.23)
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where the index f runs over the Nf = 6 flavours that are present in the theory, here

the 6 quarks. Both terms of (2.23), the field strength tensor and the fermionic part, are

similar to terms we encountered in the previous section. In the following we will explain

their ingredients in more detail.

The gauge group SU(3) has 8 generators tC = 1
2λ

C , where λC are the Gell-Mann

matrices and the index C runs from 1 to 8. The generators tC are traceless anti-

hermitian 3 × 3 matrices. Their elements can be written as tCab where a, b = 1, 2, 3 and

a, b are referred to as colour indices. The 8 generators of SU(3) are listed in Appendix

A.1.2. In the following, unless stated otherwise, lower case Greek letters (µ and ν) run

over the space time components t, x, y, z (labelled 0 to 3), lower case Roman letters (a, b)

are colour indices that run from 1 to 3 where NC is the number of colours defined by

SU(NC) so NC = 3 for QCD. Finally upper case Roman letters (C) run over the 8

generators tCab of the gauge group, which are themselves 3× 3 matrices.

The potential or gauge field Aµ can be decomposed into its components as

Aµ,ab(x) = ACµ (x)tCab. (2.24)

For any group element g(x) of the local gauge group G, i.e. g(x) ∈ G = SU(3), it

transforms as

Aµ(x)→ A′µ(x) = g(x)Aµ(x)g−1(x)− 1

gs
(∂µg(x))g−1(x), (2.25)

where gs is not to be confused with a group element but is the coupling constant. Under

the same local gauge transformation g(x) ∈ SU(3) fermions ψ(x)f transform as

ψf,a(x)→ ψ′f,a(x) = gab(x)ψf,b(x). (2.26)

Similarly to the electroweak case (compare (2.5)), we construct the covariant derivative

Dµ such that the Lagrangian remains invariant under the gauge transformation (2.25).

One obtains

Dµ = ∂µ + gsAµ = ∂µ + gsA
C
µ t
C , (2.27)

where the colour indices are suppressed. By construction equations (2.25), (2.26) and

(2.27) ensure gauge invariance of the Lagrangian.

Now we can define the gluonic field strength tensor Fµν (compare (2.4)) as

Fµν = [Dµ, Dν ] ,

FCµν = ∂µA
C
ν − ∂νACµ + gs[Aµ, Aν ]C

= ∂µA
C
ν − ∂νACµ + gsif

ABCAAµA
B
ν ,

(2.28)
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where fABC are the structure constants of SU(3) and Fµν = FCµνt
C . This already illus-

trates one of the most important implications of (2.23). Due to its non-abelian structure,

QCD allows for gluon self-interactions; i.e. 3-gluon vertices (ggg) with coupling strength

proportional to gs, and 4-gluon vertices (gggg) with coupling strength proportional to

g2
s , are present.

In principle, one could also add a theta term proportional to θεµνρσF
µνF ρσ to the

Lagrangian (2.23). Whilst this term obeys gauge and Lorentz invariance it would break

CP invariance for QCD. However, experimentally, this term seems to be absent with

bounds of |θ| . 10−10 [1, 43]. This is known as the strong CP problem.

From (2.23) we can see that QCD has 6 + 1 fundamental parameters (Nf = 6 quark

masses and the coupling gs). This means that after fixing the quark masses and the

coupling constant gs, QCD is fully defined.

2.4.2 Confinement and Asymptotic Freedom

In QCD the value of the coupling constant gs or equivalently the coupling strength αs,

defined by

αs(µ) =
g2
s(µ)

4π
, (2.29)

depends on the renormalisation scale µ at which a process is considered. We define the

β function as

β(αs) = µ2 dαs
dµ2

, (2.30)

where µ is the energy scale of the process under consideration. If the (arbitrary) renor-

malisation scale µ2 is taken to be close to the typical momentum transfer Q2 of a process,

the value of the coupling constant g at this scale indicates the effective strength of the in-

teraction. This behaviour with scale can be understood from the Renormalisation Group

Equation (RGE) of the coupling strength. This results in the QCD β function [1, 20]

β(αs) = −33− 2nf
12π

α2
s +O(α3

s). (2.31)

Note that nf here is the effective number of (approximately) massless flavours, i.e. the

number of flavours satisfying mf � µ. Measurements of the coupling strength as a

function of the energy scale are shown in figure 2.1 [1].

One important feature of (2.31) is that for nf ≤ Nf = 6 the leading term is negative.

This implies that for large energy scales µ the coupling constant gets small leading to

the phenomenon known as Asymptotic Freedom [44, 45].

From figure 2.1 we can see that at low energy scales Q the coupling strength increases,

yielding strong interactions at low energies. This causes the phenomenon of confine-

ment [46], i.e. the behaviour that quarks are very tightly bound and only appear in
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QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 2.1: Experimental evidence for the running of the strong coupling con-
stant. The figure is taken from ref [1].

bound states which form colour singlets. In particular, this implies that the standard

perturbative approach of ordering processes by powers of the coupling constant is inap-

plicable in this regime.

2.4.3 Symmetries of QCD

In addition to gauge and Lorentz invariance, the Lagrangian (2.23) displays further

symmetries. Recall that fermions can be split into left-handed and right-handed parts

and that the only term in the Lagrangian that mixes the two is proportional to the mass

of the fermion. We have already seen that fermions obey a U(1)V vector symmetry

ψL,R → eiαψL,R(x). For the case of QCD, flavour is a conserved quantity so each of the

Nf = 6 flavours are individually conserved. The electroweak sector allows for flavour

changing currents so quark flavour is not a conserved quantity in the SM, but the total

number of quarks is. Similar to the lepton number in the case of leptons, we define the

baryon number B, which is conserved in QCD, as

B =
1

3

∑
f

Qf, V . (2.32)

We have also seen before that a massless fermion (mf = 0) possesses an additional

U(1)A axial or chiral symmetry ψL,R → eiαγ5ψ. This symmetry rotates left-handed and
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right-handed components with a different phase, and is most easily seen in the chiral

basis. The form the gamma matrices take in this basis is presented in Appendix A.2.

For N massless flavours these symmetries can be generalised to a flavour symmetry

by placing the flavours into a multiplet and allowing for simultaneous left-handed and

right-handed rotations, yielding U(N)L×U(N)R [47, 48]. This symmetry group can be

decomposed as SU(N)L×SU(N)R×U(1)A×U(1)V . We have already seen that U(1)V

gives rise to baryon number conservation ((2.32)). When quantising the theory, one finds

that in addition to the term imψγ5ψ, an additional term proportional to εµνρσF
µνF ρσ

arises in the divergence of the axial current [49, 50]. This is called the axial anomaly

and means that U(1)A is not a symmetry, even in the massless limit.

The fact that quarks have a non-vanishing mass, breaks chiral symmetry explicitly, but

the three (two) lightest quarks are (much) lighter than the typical interaction scale of

QCD (typically defined by ΛQCD ≈ 250− 700 MeV [1]), so QCD possesses approximate

chiral symmetry. We introduce the mass matrix

M = diag(mu,md,ms) (2.33)

and place the three quark fields into a multiplet to write the Dirac part of the lightest

three flavours of the QCD Lagrangian (2.23) asψu(x)

ψd(x)

ψs(x)

(i /D −M) (ψu(x) ψd(x) ψs(x)
)

= Ψ(x)
(
i /D −M

)
Ψ(x). (2.34)

One can show that the associated Noether currents of SU(3)A × SU(3)V are

Ja,µA = iΨ(x)γµγ5λ
a

2
Ψ(x) and

Ja,µV = iΨ(x)γµ
λa

2
Ψ(x),

(2.35)

respectively, and have divergences

∂µJ
a,µ
A = iΨ {M, λa}Ψ and

∂µJ
a,µ
V = iΨ [M, λa] Ψ.

(2.36)

Here the λa are the generators of the symmetry group, in the case presented here SU(3)

(cf. Appendix A.1.2). Whilst we considered three light quarks here (SU(3)), the same

discussion holds for restricting to only two quarks considered to be light (SU(2)), i.e.

only considering the up and the down quark as light.

For mass degenerate quarks, i.e. mu = md = ms = m the commutator [M, λa] vanishes

and SU(3)V becomes an exact symmetry. In the limit of SU(2) this symmetry is called
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isospin.

The first line of (2.36) is called the non-singlet axial Ward Identity (AWI) and its right-

hand-side only vanishes for zero quark masses. For degenerate but non-zero quark masses

the left-hand-side of the AWI becomes proportional to the pseudoscalar density [47].

Since mu, md and (to a lesser degree) ms are small compared to the typical interaction

scale of QCD, the AWI is only slightly broken. From Goldstone’s theorem we expect

pseudo-Goldstone bosons corresponding to the broken generators of SU(N)A. When

considering SU(3) these are the eight pseudoscalar mesons which can be written as

multiplets of SU(3)V [47, 51, 52], often expressed as
1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K
−

K
0 −

√
2
3η

0

 . (2.37)

Since the masses of the up and the down quarks are small, chiral symmetry should only be

slightly broken. One can show that if this symmetry is approximately intact there should

be a negative parity partner for the nucleon N∗, however this is not seen in experiments,

indicating that spontaneous chiral symmetry breaking (SχSB) must occur [1, 9, 51, 52]

(in addition to explicit chiral symmetry breaking by the quark masses).

2.4.4 Interactions between Quarks and Gauge Bosons

Quarks interact via the weak, strong and electromagnetic force. To allow for interactions

between quarks and electroweak gauge bosons, in analogy to the above, we put pairs of

left-handed quarks into SU(2) doublets and the right-handed parts into SU(2) singlets.

We differentiate between up-type quarks u, c, t and down-type quarks d, s, b. We define

UL = (uL, cL, tL) UR = (uR, cR, tR)

DL = (dL, sL, bL) DR = (dR, sR, bR).
(2.38)

We now form SU(2) doublets QiL = (U iL D
i
L) where i labels the generation, i.e.

QTL =
(
U iL Di

L

)T
=
(

(uL dL), (cL sL), (tL bL)
)T

, (2.39)

whilst the entries of UR and DR form singlets.

The sums in the electromagnetic and neutral currents (JµEM and JµZ) from (2.21) now run

over P ∈ {L,R,QL, UR, DR}. The charged currents Jµ+
W and Jµ−W get additional con-

tributions of 1/
√

2
(
ULγ

µDL

)
and 1/

√
2
(
DLγ

µUL
)
, respectively. The corresponding

values of Q, Y and τ3 are listed in table 2.2.
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2.4.5 Interactions between Fermions and Higgs

Let us now focus on the Higgs-Yukawa term for fermions, i.e. the terms that couple the

scalar φ to the fermions. We have seen previously that a mass term necessarily mixes

left-handed and right-handed components, but due to the different quantum numbers

of left-handed and right-handed components, a simple mass term would not be gauge

invariant. Instead, we introduce terms of the form

Le
Yukawa = −λele · φ eR + h.c., (2.40)

mixing left-handed and right-handed components. There the dot product is between the

SU(2) doublets φ and ψL. When the scalar field assumes a vacuum expectation value

(vev) v, this gives rise to fermion masses. In (2.40) we assumed a single generation.

Substituting in the vev, for the case of the electron we get

Le
Yukawa = − 1√

2
λeveLeR + h.c., (2.41)

so

me =
1√
2
λev. (2.42)

We can generalise this to multiple generations of leptons (labelled by l) by writing

Llepton
Yukawa = −

∑
l

λlLl · φRl + h.c. . (2.43)

For quarks the same principle holds, but since there are two types of right-handed quarks,

there are two terms in the Yukawa term of the Lagrangian. We obtain

Lquark
Yukawa = −

√
2

λijd QiL,aφaDj
R︸ ︷︷ ︸

(I)

−λiju Q
i
L,aεabφ

†
bU

j
R︸ ︷︷ ︸

(II)

+ h.c., (2.44)

where εab is the antisymmetric tensor of SU(2) (a, b ∈ {1, 2}) and i, j ∈ {1, 2, 3} label

the three generations of quarks. We can note that CP transforms (I) and (II) into

their hermitian conjugates, so as long as λijd and λiju are real the Yukawa term of the

Lagrangian is CP invariant.

Contrary to the lepton sector, different generations are connected by the matrices λijd
and λiju . However, these can be diagonalised using unitary matrices to obtain a basis of

mass eigenstates:

λu = TuΛuS
†
u

λd = TdΛdS
†
d,

(2.45)
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where the matrices Λu,d are now diagonal and Su,d, Tu,d ∈ U(3). Now transform the

fields as
U iL 7→ T iju U

j
L U iR 7→ Siju U

j
R

Di
L 7→ T ijd D

j
L Di

R 7→ Sijd D
j
R

(2.46)

and note that the two components of the SU(2) doublet QL transform differently. Then

at the vev, one obtains

Lquark
Yukawa = −vDi

LΛijd D
j
R − vU

i
LΛiju U

j
R + h.c.

= −
∑
i

(
mi
DD

i
LD

i
R +mi

UU
i
LU

i
R

)
,

(2.47)

where mi
D,U = vΛiiD,U (no summation) are the quark masses. However, the transfor-

mation (2.46) will have to be carried out for the entire Lagrangian, in particular for

the weak currents. This gives rise to the famous CKM matrix [35, 36], which will be

discussed in the next section.

2.5 The Cabibbo-Kobayashi-Maskawa Matrix

We will now apply the rotations (2.46) to the weak currents, e.g

Jµ+
W = U

′i
Lγ

µD
′i
L → U

j
LT

ji†
u γµT ikd D

k
L = U

j
Lγ

µV jk
CKMD

k
L. (2.48)

The matrix T ij†u T jkd = V ik
CKM is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [35,

36]. It relates the mass eigenstates d, s, b to flavour eigenstates d′, s′, b′.d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 = VCKM

ds
b

 . (2.49)

In the SM the CKM matrix is unitary, i.e. it satisfies

V †CKMVCKM = VCKMV
†
CKM = 1. (2.50)

This leads to conditions of the form∑
D=d,s,b

|VUD|2 = 1 for U ∈ {u, c, t}
∑

U=u,c,t

|VUD|2 = 1 for D ∈ {d, s, b}
∑

D=d,s,b

VU1DV
∗
U2D = 0 for U1 6= U2∑

U=u,c,t

VUD1V
∗
UD2

= 0 for D1 6= D2.

(2.51)
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Figure 2.2: Schematic illustration how unitarity can be represented as a unitar-
ity triangle. For further explanations, refer to the text.

The former two equations arise from the diagonal entries of (2.50), the latter two from

the off-diagonal entries. If the left-hand side of either of the first two equations adds up

to a number different than one this would indicate new physics (NP). If they add up to

less than one, one possible interpretation is a hint for a fourth generation. The second

type of equation can be interpreted as a so-called unitarity triangle. To see this, pick for

example D1 = d, D2 = b in the last equation of (2.51) and consider VUdV
∗
Ub as a vector

in the complex plane. Then the unitarity constraint implies

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ⇒ VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

= −1. (2.52)

If this equation holds, this traces out a closed triangle in the complex plane with lengths

1,
∣∣∣ VtdV ∗tbVcdV

∗
cb

∣∣∣ and
∣∣∣VudV ∗cdVcdV

∗
cb

∣∣∣ as shown in figure 2.2 which is taken from the PDG [1]. Experi-

mental data combined with theoretical predictions can predict the lengths of these sides

of this triangle as well as the angles. Unitarity corresponds to the triangle being closed.

A complex 3 × 3 matrix has 9 complex, or equivalently 18 real parameters. Unitarity

provides 9 constraints, leaving the CKM matrix with 9 degrees of freedom: 3 rotations

and 6 phases. We can use relative phases of the quark fields to absorb 5 of these 6

phases into redefinitions of the quark fields, leaving one physical phase in the CKM

matrix. This implies that λiju and λijd can be complex and hence, the Yukawa term of

the Lagrangian allows for CP -violation in the Standard model. This is the only known

source of direct CP violation in the SM.

The CKM matrix is often parameterised in terms of the 4 remaining degrees of free-

dom [53, 54]. Most commonly used is the Wolfenstein parametrisation. This introduces

3 real parameters (λ, A and ρ) and one complex phase η. Up to O(λ4) the CKM matrix
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Figure 2.3: Current uncertainties in the unitarity triangle plotted in the ρ̄ − η̄
plane. The plot is taken from [2].

then reads

VCKM = 1 +

 −λ2/2 λ Aλ3(ρ− iη)

−λ −λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 0

+O(λ4). (2.53)

The variables ρ and η can be related to more convenient variables ρ and η, which ensure

that ρ + iη = − (VudV
∗
ub) / (VcdV

∗
cb). Since ρ = ρ

(
1 + λ2 + · · ·

)
, the parametrisation

(2.53) is the same for both choices [1, 2, 54, 55]. A global fit combining theoretical and

experimental data and imposing unitarity currently gives [1, 2, 56]

λ = 0.22537(61)

A = 0.814
(

+23
−24

)
ρ = 0.117(21)

η = 0.353(13).

(2.54)

The fact that η is different from zero, means that there is indeed a complex phase and

the CKM matrix does allow for CP violation.

The current status of the various constraints is collected by the CKM-fitter collabora-

tion [2]. The latest values as shown by this collaboration are presented in figure 2.3.
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W+

l+

νl

Figure 2.4: Pictorial representation of the decay D+ → l+νl at leading order in
αEM. The shown gluons are non-perturbative and indicate strong interactions.

2.6 Extracting CKM Matrix Elements

To test the unitarity of the CKM matrix by means of equations of the type (2.51), we

need to determine the CKM-matrix elements from first principles. Equation (2.48) shows

that the elements of the CKM matrix indicate the strength of a particular interaction.

For example, consider the leptonic decay D+
s → l+νl with q = d, s at leading order. A

schematic diagram for this process, without electromagnetic interactions, is shown in

figure 2.4.

Since the mass of the W boson (m±W = 80.385(15) GeV [1]) is significantly larger than

the typical energy of a weak process considered in this work, we can construct an effec-

tive Lagrangian by integrating out the W boson propagator. The effective interaction

Lagrangian of the weak interaction is given by

LW = −GF√
2
Jα(x)†Jα(x), (2.55)

where GF is the Fermi constant and Jα(x) is given by (2.22).

The decay rate Γ of the leptonic decay D+
(s) → l+νl is given by

Γ(D+
(s) → l+νl) =

G2
F τD(s)

8π
|Vcq|2 f2

D(s)
m2
lmD(s)

(
1− m2

l

m2
D(s)

)2

+O(αEM) +O(αEW).

(2.56)

Here the meson mass mD(s)
, the lepton mass ml and the mean lifetime τD(s)

are known

experimental inputs, whilst the decay rate Γ is measured experimentally. If the value of

the CKM matrix is precisely known experimentally or from some other calculation, the

SM prediction (2.56) can be tested. If the CKM matrix element is not precisely known,

then theoretical predictions of the decay constant fD(s)
combined with the experimental
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Figure 2.5: Historic development of the determination of Vub (left) and Vcb
(right) from inclusive (red squares) and exclusive (blue circles). The shown data
is compiled from the world averages presented in ref [1] and previous editions [3–
7].

measurement of Γ yield a value of the CKM matrix element under consideration. Fur-

thermore, the same CKM matrix element can appear in more than one process. E.g.

Vcd appears in D+ → l+νl and D0 → π−l+νl as well as the decays of their respective

antiparticles. Ignoring electromagnetic interactions between the quarks and the W bo-

son, the quarks and the leptons, and the W boson and the leptons, (i.e. considering the

minimal order in αEM ) we can schematically write an experimental observable Γ as a

product of a CKM matrix element VCKM , weak and electromagnetic contributions and

strong contributions, in particular,

Γexp. = VCKM (WEAK) (EM) (STRONG) . (2.57)

The weak and electromagnetic contributions can be calculated perturbatively, whilst the

strong contributions are calculated non-perturbatively on the lattice.

Unitarity of the first row and column of the CKM matrix have been extensively tested

and at the current precision the data is compatible with unitarity [57]. In the other

two columns(rows) there are still larger uncertainties, which need to be reduced for a

precise test of the SM. Most famously, as shown in figure 2.5, there is a persistent tension

between the determination of the world average of the CKM matrix elements Vub (left)

and Vcb (right) from inclusive (unspecified final state) and exclusive (specified final state)

processes [1].
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2.7 Heavy Quarks

The SM has six quarks: up (u), down (d), strange (s), charm (c), bottom (b) and top

(t). Table 2.3 summarises their masses and quantum numbers [1] and shows that their

masses differ over many orders of magnitude. Whilst SU(2) (SU(3)) still appears to

be a good flavour symmetry for the light up and down (up, down and strange) quarks,

the charm, bottom and top quarks are too massive to be considered “light”. The top

quark has a mean half-time of τ ∼ 10−24 s and is expected to decay too quickly to form

bound states [58]. Contrary to the top quark, the charm and the bottom quarks - which

are often referred to as Heavy Quarks(HQ) - do form bound states and produce a wide

range of experimentally measurable processes.

Heavy quarks have been studied in many different experiments including (but not limited

to) CLEO (CLEO-I, CLEO-II, CLEO-III and CLEO-c at Cornell University, Ithaca, NY,

1979-2008), Belle (K.E.K., Tsukuba, Japan, 1999-2010), BaBar (SLAC, California, 1999-

2008). Currently BES III (Beijing, China, 2008-current) and LHCb (CERN, Geneva,

Switzerland, 2010 - current) as well as the multi-purpose experiments ATLAS and CMS

explore the properties of particles including charm and bottom quarks and in the near

future (∼2018) with Belle II a new B-factory is expected to start taking measurements.

With this large variety of experimental efforts in charm and bottom physics it is impor-

tant that the theoretical predictions arising from the SM are continuously improved to

match the experimental precision.

There are a number of effective theory approaches [23, 59] for treating bound states that

contain Heavy Quarks. These include heavy quark effective theory (HQET) and non-

relativistic QCD (NRQCD). HQET [60–66] applies to systems with one heavy quark of

mass mH and one or more light quarks. In the static limit (mH →∞) the heavy quark is

stationary at the center of the coordinate system. HQET then expands around this point

in powers of 1/mH . Since the energy scale, Λ, of the light quarks is of the order of a few

hundred MeV, the expansion parameter in HQET for a charmed meson is Λ
mc
≈ 1/5 and

may not be a good approximation at leading and subleading order [67, 68]. NRQCD [69]

is concerned with quarkonia states (containing a heavy quark and its antiquark) QQ and

expands in the (non-relativistic) quark velocity v.

Whilst these effective theory approaches have a small expansion parameter for the case of

the bottom quark, the charm quark is in a region where one has to check the convergence

of the effective theory. In addition, effective theories introduce additional parameters

that would need to be tuned for numerical simulations, which is costly. Furthermore, for

numerical simulations, some cancellations rely on the light quarks to be simulated with

the same action as the charm quark (e.g. GIM mechanism [70]), which would not be

possible if an effective theory approach is chosen for the charm quark. For this reason

we aim to make predictions for charm quantities from direct simulations. However, the

mass of the charm quark is at the limit of what is achievable in current simulations, so
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we need to assess in detail whether simulating the charm quark directly is feasible. We

will first investigate this for our choice of fermion discretisation in chapter 5.





Chapter 3

Lattice Quantum

Chromodynamics

In this chapter we will introduce the basic features of Lattice QCD. After a brief motiva-

tion in section 3.1, in section 3.2 we will outline how to discretise QCD. More specifically

we will focus on the gauge field in 3.3 and on the fermion fields in 3.4. In section 3.5

we will discuss how to include dynamical fermions into our simulations. We will outline

how we can assign physical scales to the simulated data in section 3.6. In section 3.7

we will explain how we can extract hadronic observables from the simulations. Finally,

section 3.8 gives a brief summary of the systematic errors that arise in lattice QCD

simulations. As this chapter is a review and not original work, it relies on a number of

sources from which I obtained my knowledge. In addition to the cited original work,

this includes [21–24] as well as knowledge obtained in lectures, discussions, workshops

and conferences.

3.1 The Need for Lattice QCD

As mentioned above (recall figure 2.1 in 2.4.2), at low energies QCD is non-perturbative.

This means that the “standard” approach (called perturbation theory) of calculating di-

agrams ‘order-by-order’ in the coupling constant is bound to fail. To overcome this

problem various approaches have been devised. These include QCD sum rules [71–73]

(for a summary, see e.g. ref [74]), AdS/CFT (AdS/QCD) approaches [75] and effective

theories such as Heavy Quark Effective Theory (HQET) [60–62, 66] and chiral pertur-

bation theory (χPT), just to name a few.

Whilst most other approaches are based on some further ad hoc model assumptions

and/or are limited in the range where they are applicable, Lattice QCD (LQCD) is able

to provide ab initio predictions. LQCD numerically simulates QCD starting directly

27
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on the Lagrangian level and all systematic errors can be systematically improved pro-

vided sophisticated algorithms, understanding of the underlying discrete field theory,

and sufficient computing power. So Lattice Quantum Chromodynamics is a systemat-

ically improvable tool to make ab initio predictions about the nature of QCD in the

regime where the coupling is strong.

3.2 The Idea of Lattice QCD

The expectation value of an observable in the path integral formalism in Minkowski

space is given by

〈O〉 =
1

Z

∫
D[Φ]O(Φ) exp (iS[Φ]), (3.1)

where Φ is short for all involved fields and Z is determined by requiring 〈1〉 = 1. We can

Wick rotate [76] (t → iτ) the path integral (2.23) into Euclidean space [46, 77]. Upon

Wick rotation the path integral turns into

〈O〉 =
1

Z

∫
D[Φ]O(Φ) exp (−SE [Φ]), (3.2)

where SE is real and positive. However, (3.2) is infinite dimensional and therefore ill-

defined. This is overcome by restricting the degrees of freedom to a finite (though very

large) number of degrees of freedom by placing the theory on a finite lattice. As we will

see, this allows for numerical Markov Chain Monte Carlo (MCMC) simulations of QCD

and therefore for the estimation of hadronic observables.

The minus sign in (3.2) enables us to re-interpret the factor exp (−SE [Φ]) as a Boltzmann

weight, allowing for a statistical estimation of 〈O〉. This is done by sampling the phase

space with a MCMC simulation to obtain a set ofN field configurations Ti and estimating

the integral numerically as

〈O〉 ≈ 1

N

∑
i

O(Ti) +O

(
1√
N

)
. (3.3)

Provided the Ti are drawn with the correct probability, i.e.

P (Ti) ∝ exp (−SE [Ti]) (3.4)

and sample all of the phase space correctly (ergodicity), this gives a statistical estimate

of the expectation value of the observable O [46, 78].

We render (3.2) finite dimensional by introducing a 4-dimensional lattice of length Lµ

in the µ direction and a finite lattice spacing a. It is conventional to choose the cubical

spatial volume, i.e. Lx = Ly = Lz ≡ L and a larger time extent T . From this we obtain

a 4-volume V4 = L3 × T and a spatial volume V3 = L3. Formally, the lattice is defined
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as the set of points

Λ =
{
anµ : ni = 0, 1, . . . , N − 1;n4 = 0, 1, . . . , NT − 1, nµ ∈ N0

}
, (3.5)

where N and NT are integers. Derivatives are replaced by finite differences and integrals

by Riemann sums, i.e. ∫
d4x f(x)→ a4

∑
n∈Λ

f(n). (3.6)

Note that this renders the path integral finite-dimensional. By placing the simulation

into a finite volume we need to choose appropriate boundary conditions (BCs). It is

customary to work with periodic BCs but anti-periodic, open and twisted [79, 80] BCs

have also been used.

The finite volume causes momentum modes to be quantised, whilst the discrete nature

of the lattice causes momenta to be restricted to the Brillouin zone. The set of accessible

Fourier momenta Λ̃ for the case of periodic BCs is restricted to

Λ̃ =

{
pµ =

π

aXµ
nµ : −Xµ ≤ nµ < Xµ, nµ ∈ Z

}
. (3.7)

QCD has ultraviolet (UV) divergences which need to be removed. This is usually done

by first regulating the theory by introducing a maximum momentum Λ or a cut-off and

then matching this regularised theory to some renormalisation scheme. On the lattice

the regularisation is automatically enforced, since the inverse lattice spacing provides a

cut-off and therefore acts as a UV regulator. In addition, the finite volume introduces

an infrared (IR) regulator. The correct physics is therefore recovered in the limit where

the cut-off is taken to infinity.

In the case of QCD, we have two types of fields: fermionic fields q and q live on the

lattice sites, whilst gauge fields Uµ live on the links between neighbouring sites. This

is illustrated in figure 3.1 [1] and will be discussed in more detail in the subsequent

sections of this chapter. In addition to the finite volume and the finite lattice spacing,

a further discrepancy between the lattice simulation and nature is the symmetry of

space-time. The lattice reduces Poincaré symmetry to that of a hypercube. For states

with non-vanishing momentum this symmetry is reduced even further. In any lattice

simulation we need to carefully and systematically remove those effects, i.e. we must

understand how to obtain the value an observable O takes in nature from measured

values of O(a, V ). To do this, we need to keep all physical parameters that define the

theory fixed, meaning we take the continuum limit along a line of constant physics. The

extrapolation to vanishing lattice spacing is called the continuum limit.
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Figure 3.1: Schematic illustration of a two dimensional lattice taken from ref
[1].

3.3 Discretising QCD

Recall the QCD action (2.23) (suppressing colour indices and considering only a single

fermion flavour)

SQCD =

∫
d4xLQCD

=

∫
d4x

(
−1

4
FCµνF

C, µν + ψ
(
i /D −mf

)
ψ

)
= SG[A] + SF [ψ,ψ,A].

(3.8)

In the last line of (3.8) we have split the action into the pure gauge part SG and the

fermionic part SF . After rescaling gAaµ → Aaµ for later convenience, the Euclidean

versions of these read

SG =
1

2g2

∫
d4xFCµν(x)FCµν(x)

SF =

∫
d4xψ

(
γEµDµ +m

)
ψ,

(3.9)

where γEµ refers to the Euclidean version of the gamma matrices which are summarised

in Appendix A.2. Note that in Euclidean space there is no distinction between upper

and lower indices. Further note that the pre-factor in SG now explicitly involves the

coupling.

When discretising the action (3.9) we replace continuous derivatives ∂µ by finite differ-

ences. This is not a unique choice, since one can choose the forward (∂µ), backward (∂∗µ)
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or symmetric ((∂µ + ∂∗µ)/2) derivative. We define

∂µφ(x) =
1

a
(φ(x+ aµ̂)− φ(x))

∂∗µφ(x) =
1

a
(φ(x)− φ(x− aµ̂)) ,

(3.10)

where µ̂ is a unit vector in the µ direction. For brevity, we will now set a = 1, but will

reintroduce it again when considering the leading order of discretisation effects.

Recalling that the gauge transformations (2.25) and (2.26) have been constructed to

ensure gauge invariance of the action, we require this to also hold for the discretised

version. On the lattice we choose an SU(3) element Ω(x) for each lattice site x. So in

analogy with (2.26) we then get

ψ(n)→ ψ′(n) = Ω(n)ψ(n)

ψ(n)→ ψ
′
(n) = ψ(n) Ω†(n).

(3.11)

However, the discretised form of the kinetic term mixes fields at neighbouring sites and

introduces terms like ψ(n)ψ(n+ µ̂), which would no longer be gauge invariant since

ψ(n)ψ(n+ µ̂)→ ψ(n) Ω†(n) Ω(n+ µ̂)ψ(n+ µ̂). (3.12)

Instead we introduce a new field Uµ(n) with a direction µ and require that

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n) Ω†(n+ µ̂). (3.13)

Uµ(n) is called a link variable and can be understood as linking the lattice site x to the

lattice site n+ µ̂, as illustrated in figure 3.1. Now the quantity

ψ(n)Uµ(n)ψ(n+ µ̂) (3.14)

is gauge invariant. We are now in a position to define the discretised fermion action.

Using the symmetric discrete derivative and replacing the integral by a sum over all

lattice sites we get

SF [ψ,ψ, U ] =
∑
n∈Λ

ψ(n)

[∑
µ

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2
+mψ(n)

]
. (3.15)

Note that this does not use the Einstein summation convention. For convenience we

define a backwards pointing link U−µ as

U−µ(n) = U †µ(n− µ̂). (3.16)

Using (3.11) and (3.13) it is easy to verify that gauge invariance is satisfied. Fermions

described by (3.15) are called näıve fermions - more about this later.
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The link variables Uµ(n) are related to the lattice gauge fields Aµ by

Uµ(n) = exp (iAµ(n)). (3.17)

Unlike the continuum theory, we treat the Lie algebra-valued fields Aµ(n) as the funda-

mental degrees of freedom as opposed to the Lie group-valued fields Uµ(n).

Now that we have defined the link variables Uµ(n) we need to construct a discrete version

of the gauge action in (3.9) that is built from these objects. To do this, first notice that

taking the product of the link variables along any path Pxy from x to y

P [Pxy] =
∏
Pxy

Uµ(n) = Uµ(x)Uµ1(x+ µ̂1) · · ·Uµk−1
(y − µ̂k−1) (3.18)

transforms as

P [Pxy]→ Ω(x)P [Pxy] Ω†(y) (3.19)

since all intermediate matrices Ω cancel. In particular, there are two types of gauge

invariant objects that can be built from this. The first option is to attach quark fields

on either side of P , the second one is to choose P to be a closed loop and to take the

trace over the matrices Ω. The simplest choice for such a closed loop is the plaquette

Uµν(x) (compare figure 3.1), defined by

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (3.20)

From this we can construct the Wilson gauge action [46] SG[U ] as

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

<[tr(1− Uµν(n))]. (3.21)

Reintroducing a, substituting (3.17) and (3.20) into (3.21) and Taylor expanding Aµ(n+

ν̂) as

Aµ(n+ ν̂) = Aµ(n) + a ∂νAµ(n) +O(a2), (3.22)

demonstrates the equivalence to the continuum version (3.9) in the limit a → 0. More

precisely

SG[U ] =
a4

2g2

∑
n∈Λ

∑
µ,ν

tr(Fµν(n)Fµν(n)) +O(a2), (3.23)

so the leading discretisation errors are O(a2).

We have now constructed a discrete version of the QCD action (3.9), which reproduces

the continuum action in the limit a→ 0.

One can modify these to improved actions to eliminate the leading O(a) lattice artefacts.

Such improved gauge actions include the tree-level improved Symanzik gauge action [81,

82] and the Iwasaki gauge action [83–85].
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3.4 Fermion Actions and Chiral Symmetry

In this section we will discretise the fermion action. We will first investigate the proper-

ties of näıve fermions as formulated in (3.15). We will find that these lead to unphysical

additional particles called doublers. We will then see how these can be removed by

adding the Wilson term [46] and how this leads to the loss of chiral symmetry. We will

briefly introduce the Nilsen-Ninomiya theorem [86] which will lead us to chiral fermions

and the domain wall formulation discussed in chapter 4.

3.4.1 Näıve Fermions

Recall the fermion action SF [ψ,ψ, U ] for a single flavour with massm as defined in (3.15).

We can rewrite this bilinear into matrix form introducing the näıve Dirac operator

D(n|m) connecting lattice sites n and m. We define it as

SF [ψ,ψ, U ] = a4
∑
n,m∈Λ

∑
a,b

∑
α,β

ψ(n)a
α
D(n|m)ab

αβ
ψ(m)b

β
. (3.24)

In addition to the space-time indices n and m, the Dirac operator also carries Dirac

indices (Greek letters) and colour indices (Roman letters). Comparing (3.15) and (3.24)

we find the näıve form of the Dirac operator to be

D(n|m)ab
αβ

=
∑
µ

(γµ)αβ
Uµ(n)ab δn+µ̂,m − U−µ(n)ab δn−µ̂,m

2a
+mδαβ δab δn,m. (3.25)

In the free case (Uµ(n) = 1) this operator can be inverted analytically to obtain the

propagator of a free fermion. We start by transforming the Dirac operator into Fourier

space. One obtains

D̃(p|q) =
1

|Λ|
∑
n,m∈Λ

e−ip·naD(n|m)eiq·ma

=
1

|Λ|
∑
n,m∈Λ

e−i(p−q)·na

(∑
µ

γµ
eiqµa − e−iqµa

2a
+m1

)
= δp,qD̃(p),

(3.26)

where |Λ| = N3 ×NT is the total number of lattice sites and D̃(p) is

D̃(p) = m1 +
i

a

∑
µ

γµ sin pµa. (3.27)

The inverse of (3.27) is given by

D̃(p)−1 =
1m− ia−1

∑
µ γµ sin pµa

m2 + a−2
∑

µ sin2 pµa
. (3.28)
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The inverse of the position space Dirac operator is found by transforming D̃(p)−1 back

into position space, i.e.

D−1(n|m) =
1

|Λ|
∑

Λ̃

D̃(p)−1eip·(n−m)a, where p ∈ Λ̃. (3.29)

The inverse of the Dirac operator is the quark propagator. Since poles in the propagator

correspond to physical particles and therefore the simulated particle spectrum, we now

investigate the poles of the massless (m = 0) free propagator in momentum space.

Contrary to the continuum formulation which has exactly one pole at p = 0, we find

that the lattice formulation of näıve fermions has 16 poles in the Brillouin zone Λ̃ (since

sin2 (pµa) vanishes for pµ = 0 and pµ = π/a). This means instead of one physical particle

(with a pole at pµ =
(
0, 0, 0, 0

)
) we describe 15 additional particles, the doublers.

These unphysical particles will need to be removed from the theory.

3.4.2 Wilson Fermions

Since we need to take the continuum limit a → 0 to recover the continuum theory, we

may add any irrelevant (i.e. higher dimensional) operators, i.e. terms that disappear in

this limit. The first suggestion for how to remove doublers came from Wilson [46] and

makes use of this property. Wilson proposed to add a dimension-five term, such that

the momentum space Dirac operator becomes

D̃(p) = D̃näıve(p) + 1
1

a

∑
µ

(1− cos (pµa)) , (3.30)

where we momentarily wrote out the factors of a. For pµ = 0 this term does not

change the propagator, leaving the physical pole unchanged. However, each momentum

component with pµ = π/a behaves as an additional mass term and adds a contribution

of 2/a to the propagator, causing the additional particles to become infinitely heavy and

therefore to decouple from the theory in the limit of a→ 0. We can find the form of the

Wilson term for the case of the free theory by Fourier transforming the additional term

in (3.30) back into position space to obtain

D(n|m)Wilson = D(n|m)näıve − a
∑
µ

δn+µ̂,m − 2δn,m + δn−µ̂,m
2a2

. (3.31)

The additional term is proportional to a discretised Laplacian. In the presence of a

gauge field these derivatives can be made gauge invariant by inserting link variables

as before (compare (3.15)) leading to the forward and backward covariant derivatives

(recall that we set a = 1)

Dµ(n)ψ(n) = Uµ(n)ψ(n+ µ̂)− ψ(n)

D∗µ(n)ψ(n) = ψ(n)− Uµ(n− µ̂)ψ(n− µ̂).
(3.32)
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With this the Wilson Dirac operator then reads

D(n|m)Wilson
ab
αβ

=
∑
µ

(γµ)αβ
Uµ(n)ab δn+µ̂,m − U−µ(n)ab δn−µ̂,m

2a
+mδαβ δab δn,m

−
∑
µ

Uµ(n)ab δn+µ̂,m − 2δn,m δab δαβ + U−µ(n)ab δn−µ̂,m
2a

=

(
m+

4

a

)
δn,m δab δαβ −

1

2a

±4∑
µ=±1

(1− γµ)αβ Uµ(n)abδn+µ̂,m.

(3.33)

We have now formulated a theory in which the doublers decouple in the continuum

limit, but as we shall see this comes at the expense of chiral symmetry. Whilst this is

not a problem in principle and can be recovered in the continuum, it poses problems

for renormalisation procedures, since it induces mixing between different operators that

is otherwise not present. It also affects cut-off effects, in particular, the leading order

discretisation errors of a theory that possesses chiral symmetry is O(a2), so simulations

are automatically O(a)-improved. Therefore, maintaining chiral symmetry is a desirable

feature of a chosen fermion discretisation.

3.4.3 The Nielsen-Ninomiya Theorem and its Implications

We will now return to chiral symmetry as outlined in section 2.4.3. We recall that

the massless continuum fermion action remained invariant under transformations of the

form

ψ → eiαγ5ψ ψ → ψeiαγ5 . (3.34)

This invariance holds if the massless Dirac operator D anti-commutes with γ5, so the

condition for chiral symmetry can be rewritten as

{D, γ5} = Dγ5 + γ5D = 0. (3.35)

Recalling the Wilson fermion action (3.31), it is apparent that the Wilson term does not

obey chiral symmetry, even for vanishing quark masses. Moreover, the Nielsen-Ninomiya

Theorem [86] states that it is impossible to find a Dirac operator in an even-dimensional

Euclidean space-time that satisfies all the following conditions simultaneously. Our

presentation of the Nielson-Ninomiya theorem follows the formulation of ref [87] in ref

[22].

1. D̃(p) is a periodic, analytic function of pµ. This ensures the locality of the coordi-

nate space Dirac operator.

2. D̃(p) ∝ γµpµ for a |pµ| � 1. This ensures that the Dirac operator has the desired

continuum form as the continuum limit is approached.
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3. D̃(p) is invertible everywhere except pµ = 0. This condition ensures that it is

possible to calculate a propagator and the absence of doublers in the theory.

4. D̃(p) satisfies (3.35). This is the statement that guarantees chiral symmetry.

There are a number of different fermion formulations that will give up one of these

conditions. We have already encountered Wilson fermions which do not obey chiral

symmetry. Näıve fermions have 16 doublers. Staggered fermions [88] have four tastes and

Creutz fermions [89] reduce the number of particles simulated by the fermion propagator

to two. In chapter 4 we will see how domain wall fermions can circumvent this theorem

by generalising the condition for chiral symmetry.

3.5 Dynamical Fermions and Ensemble Generation

We have seen how to discretise the gauge field in section 3.3 and the fermionic part in

the previous section. Before moving on to extracting hadronic observables we need to

address how to simulate dynamical fermions, i.e. fermions that exist in the gluonic sea.

When considering the fermion action (3.24) one can see that it is quadratic in the quark

fields. So we can integrate the quark fields in the partition function Z (compare (3.2))

analytically [90, 91]. Taking into account that fermions obey Fermi-Dirac statistics (i.e.

anti -commute) and therefore are represented by Grassmann variables, we find that

Z =

∫
D[Ψ,Ψ, U ] exp

−SG[U ]−
Nf∑
f

SF [Ψf ,Ψf , U ]


=

∫
D[U ]

Nf∏
f

det [Df [U ]]

 exp (−SG[U ]).

(3.36)

The sea quarks are captured in the Nf factors of the determinant of the Dirac operator

with the corresponding mass of the fermion. When simulating dynamical fermions, the

probability distribution that is sampled is

P ∝

Nf∏
f

det [Df [U ]]

 exp (−SG[U ]), (3.37)

so the determinant is absorbed into the probability distribution and acts as a weight

factor [21, 78]. This poses algorithmic challenges, since unlike the gauge action, the

determinant is highly non-local, i.e. includes the gauge fields at all points of the lattice.

So depending on whether sea-quarks are neglected (the quenched approximation) or

included, different algorithms are more or less suited to generate the Markov Chain of

gauge configurations. We will list the algorithms which were employed for the generation



Chapter 3 Lattice Quantum Chromodynamics 37

of the ensembles mentioned in this thesis. Amongst others, algorithms relevant to Lattice

QCD include the heat-bath algorithm [92], over-relaxation [93–95] and hybrid Monte

Carlo [96] (HMC). In practice we simulate commuting pseudo fermions Φ [97] by noting

that

detD =

∫
D[Φ] exp

(
−Φ(n)D−1(n|m)Φ(m)

)
. (3.38)

So given a starting field configuration T′, this configuration is then evolved as a Markov

Chain to create trajectories Ti with the correct probability distribution, as given by

(3.37). The sum of all these trajectories is called an ensemble. At the beginning of

generating an ensemble, the system needs to thermalise before reaching an equilibrium.

After that one needs to address the autocorrelation between successive trajectories in the

algorithm. For this one typically looks at the behaviour of a (slowly varying) observable

O and calculates the autocorrelation time τint. One then restricts the configurations in

the ensemble to be for example every τintth trajectory.

On all ensembles used in the remainder of this thesis we determined the autocorrelation

time τint of the so-called topological charge Qtop. This is assumed to couple strongly to

the slowest evolving mode of the algorithm [98]. The topological charge is defined as

Qtop =
1

32π2
a4
∑
n,µ,ν

tr
[
Fµν(n)F̃µν(n)

]
. (3.39)

However, for algorithms which are invariant under parity (such as the ones we are using),

it has been shown that it is sufficient to look at the slowest varying parity invariant

mode [98]. So for our purposes we can consider τint(Q
2
top) rather than τint(Qtop) which

varies more rapidly.

3.6 Scale Setting

Full QCD has 7 parameters that need to be fixed: the 6 quark masses and the coupling

constant. The large number of orders of magnitude separating the light and the heavy

quarks (compare table 2.3) makes is very difficult to include all 6 quarks in a single

simulation. Instead simulations are often restricted to a smaller number of sea quarks,

i.e. Nf = 2, Nf = 2 + 1 or Nf = 2 + 1 + 1 flavours. The 2 refers to the fact that up

and down quarks are treated as mass-degenerate light quarks. This reduces the number

of parameters even further. For example, in our Nf = 2 + 1 flavour simulations we

need to fix three parameters: the coupling constant, the light (degenerate up and down)

quark mass and the strange quark mass. For example, this can be done by using the

values mπ, mK and mΩ as physical inputs to set the values of ml, ms and a respectively.

Furthermore, since this thesis is concerned with charm physics we also need to fix the

charm quark mass (e.g. using mD, mDs or mηc), even though for the remainder of this

thesis we will only consider valence charm quarks.
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State JPC Γ Mesons

Scalar 0++ 1 a0, f0, ...
Pseudoscalar 0−+ γ5 π, K, D, Ds, ηc...
Axial vector 1++ γiγ5 a1, f1,...

Vector 1−− γi ρ, ω,...
Tensor 1+− γiγj b1, h1 ,...

Table 3.1: Quantum numbers for bilinear operators of the form (3.40) in the
continuum [1, 9]. J is the spin, P and C are parity and charge conjugation
respectively. The presented list is only exemplary and presents some of the
lightest states as well as states of particular interest to this work.

Once we have set the scale a using some physical input (such as mΩ) we can also

relate this to a more precisely measurable gluonic quantity. There are a number of such

quantities e.g. the Sommer scale [99] or the Wilson flow [100, 101].

3.7 Extraction of Hadronic Observables

A lattice calculation evaluates the path integral (3.2) numerically by carrying out a

measurement on each configuration and from this deduces a stochastic estimate of the

expectation value of an observable O (compare (3.3)). Now that we have discretised

the action and produced ensembles with the correct probability distribution, it remains

to address the properties of the operators O of which we want to deduce expectation

values. We then need to connect the expectation values 〈O〉 to hadronic observables.

3.7.1 Operators and Observables

Different hadrons differ by their quantum numbers such as spin (J), parity (P ) and

charge conjugation (C). To deduce hadronic matrix elements we need to identify in-

terpolating operators that create states with the correct quantum numbers from the

vacuum. In nature we only observe colour singlets, so we will construct such states.

The most general mesonic form for a local colour-singlet operator O at some position

xop = (xop, top) is given by local quark bilinears of the form

O(xop) = ψf1(xop)Γψf2(xop). (3.40)

Here Γ is some Dirac structure, and f1 and f2 refer to the flavour of the respective quark

fields. Table 3.1 lists some of the different choices of Γ and the quantum numbers that

are induced by these.

In this thesis we will be concerned with properties of pseudoscalar mesons such as pions,

kaons and the D and Ds mesons and the ηc meson. This means that we will consider
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Dirac structures Γ for pseudoscalars (γ5), axial vector currents (γµγ5) and vector currents

(γµ). We project to an operator of definite momentum using a discrete Fourier Transform

(FT)

Õ(pop, top) =
1√
|Λ3|

∑
n∈Λ3

O(x, top)e−ix·pop , (3.41)

where |Λ3| is the number of lattice sites in the three-volume V3. Given periodic boundary

conditions, the (discrete) values the spatial momentum pop is allowed to take are

p ∈ 2π

L
n where ni ∈ {−Xi/2 + 1, · · · , Xi/2}. (3.42)

The observables under consideration will be masses (m) and energies (E(p)) and matrix

elements. In particular, we will calculate the Euclidean matrix element 〈0| A4 |P (p)〉 of

a pseudoscalar meson P . From this we extract the decay constant fP which enters the

decay rate (compare e.g. (2.56)) using

〈0| A4 |P (p)〉 ≡ EP (p)fP . (3.43)

This holds exactly for the conserved axial vector currentA. However, as will be discussed

later in chapter 4, we can instead use a local version A of this current which then needs

to be renormalised (compare (4.15)).

The next point that needs to be addressed is how physical quantities such as masses,

energies and matrix elements can be deduced from expectation values of these operators.

Consider the expectation value of the product of two interpolating operators, one (O†src)
that creates a state at some source (src) position and one (Osnk) that destroys said state

at some sink (snk) position. By translational invariance we can fix the source position

to be the origin xsrc = (0, 0). We then insert a complete set of states
∑

n
|n〉〈n|
2En

with

E0 ≤ E1 ≤ E2 · · · to get

C2(p, t) ≡
∑
x

e−ip·x
〈

0
∣∣∣Osnk(x, t)O†src(0, 0)

∣∣∣0〉
=
∑
x

e−ip·x
∑
n

1

2En(pn)

〈
0
∣∣∣Osnk(x, t)

∣∣∣n〉〈n∣∣∣O†src(0, 0)
∣∣∣0〉

=
∑
n

∑
x

e−ip·x
1

2En(pn)

〈
0
∣∣∣ eHt−iP·xOsnk(0, 0)e−Ht+iP·x

∣∣∣n〉〈n∣∣∣O†src(0, 0)
∣∣∣0〉

=
∑
n

∑
x

ei(pn−p)·x 1

2En(pn)

〈
0
∣∣∣Osnk(0, 0)

∣∣∣n〉〈n∣∣∣O†src(0, 0)
∣∣∣0〉 e−En(pn)t

=
∑
n

1

2En(pn)

〈
0
∣∣∣Osnk(0, 0)

∣∣∣n〉〈n∣∣∣O†src(0, 0)
∣∣∣0〉 e−En(pn)t

∣∣∣
pn=p

=
∑
n

Zsnk,nZ
∗
src,n

2En(p)
e−En(p)t,

(3.44)
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where we have defined Zi,n = 〈0| Oi |n〉 for i = src, snk and assumed the temporal extent

T of the lattice to be sufficiently large that we can consider the initial and final state

well separated. So for sufficiently large t, all states with En > E0 are exponentially

suppressed. So the dominating state is the ground state of the particle, i.e. with the

lowest energy which has the quantum numbers induced by O. Assuming we are in

the region of t where the ground state of the desired particle dominates, we can fit

the correlator data to the functional form (3.44) and extract the energies and matrix

elements. Due to the boundary conditions, we will also have a backwards travelling part

with the same exponential e−En(T−t). The sign of this distribution depends on the time-

reversal behaviour of the observables, in particular for Osnk = Osrc the contributions

have the same sign whilst for e.g. Osnk = γ5, Osrc = γ4γ5 the contributions have the

opposite sign. The former case amounts to a cosh [(T/2− t)E(p)] time behaviour, whilst

the latter leads to sinh [(T/2− t)E(p)].

3.7.2 Propagators

We now tackle the question of how to compute
〈
Osnk(x)O†src(0)

〉
in practice. For sim-

plicity, we consider the same operator O(x) = u(x)γ5d(x) which creates a charged pion

at the source and the sink and place the source position at the origin. We calculate

the expectation value of this operator creating a pion from the vacuum at xsrc = (0, 0),

propagating to the sink xsnk = (xsnk, tsnk) where it annihilates into the vacuum again.

From Wick’s theorem [102] we know that the time ordered product T is the sum of all

possible contractions. For simplicity we project to p = 0 and consider Osnk = Osrc =

uγ5d. We obtain

C2(t)|p=0 =
∑
x

〈
0
∣∣∣ T O(x, t)O†(0, 0)

∣∣∣0〉
=
∑
x

〈
0
∣∣ T u(x, t)γ5d(x, t) d(0, 0)γ5u(0, 0)

∣∣0〉
=

1

Z

∫
D[ψ,ψ, U ]e−SE [ψ,ψ,U ]

∑
x

u(x, t)γ5d(x, t)d(0, 0)γ5u(0, 0)

=
1

Z

∫
D[ψ,ψ, U ]e−SE [ψ,ψ,U ]

∑
x

tr[γ5Sd(0, 0|x, t)γ5Su(x, t|0, 0)],

(3.45)

where we have used γµγ
†
5γµ = −γ5 and {γµ, γ5} = 0 (cf Appendix A.2). More generally,

for two flavour off-diagonal quarks (i.e. a charged current; compare (2.48)) we get

C(t)|p=0 =
〈

[q1(x)Γsnkq2(x)] [q1(0)Γsrcq2(0)]†
〉

= ± 1

Z

∫
D[ψ,ψ, U ]e−SE [ψ,ψ,U ]

∑
x

tr[ΓsnkSq2(0|x)ΓsrcSq1(x|0)],
(3.46)
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where the ± depends on the exact structure of Γsrc and Γsnk. Most of the mesons we

will consider are flavour off-diagonal, i.e. have two distinct valence quarks (in particular

this is true for D and Ds), and therefore do not have quark-disconnected diagrams. In

the case of flavour diagonal valence quarks there are additional possibilities for the Wick

contractions, i.e. quark-disconnected pieces, that need to be taken into account. In the

case of the (fictitious) ηs and the ηc and J/Ψ, such quark-disconnected contributions

exist and must in principle be considered.

So to carry out a measurement on a given configuration, the key ingredient to calculating

masses and matrix elements is to invert the Dirac operator D to find the propagator.

The equation that needs to be solved for this (using the Einstein summation convention)

is

D(n|m)ab
αβ
S(m|r)bc

βε
= δac δαε δn,r. (3.47)

The Dirac operator is a large object, so to calculate its inverse we need to make use of

numerical solvers. However, contrary to the Dirac operator, which is a large but sparse

matrix, the propagator is not sparse. It is a square matrix of size (|Λ| × 4spin × 3colour)
2.

A lattice typical to the presented work has spatial extent N = 48 and temporal extent

NT = 96. Even numerically it is not feasible to calculate this inversion exactly in full.

Instead we only calculate one column of the inverse matrix by solving the linear equation

(suppressing spin and colour indices into vector/matrix notation)∑
y,t

D(x, t|y, t′)ψ(y, t′) = η(x, t). (3.48)

Here D is the Dirac operator of the used fermion discretisation, η is the source vector

and ψ is the desired solution vector, which is the propagator from the source to all

other points. We solve the above twelve times for each source position - once for each

combination of spin and colour. The exact choice of possible source vectors η will be

discussed in section 3.7.4. From solving (3.48) we obtain the solution vector ψ(y, t) as

ψ(x, t) =
∑
y,t′

S(x, t|y, t′)η(y, t′), (3.49)

which is the column of the propagator from the source to all other points.

Having found D−1
q1 (x|xsrc), (3.46) suggests that we also need to find the propagator

D−1
q2 (xsrc|x) from all points x back to the source position xsrc. However, we can utilise

γ5-hermiticity present in nearly all incarnations of the Dirac operator, which relates D†

to D as

D† = γ5Dγ5. (3.50)
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This property also holds for the inverse Dirac operator, allowing to efficiently compute

two point functions by noting that

S†(x, t|0, 0) = γ5S(0, 0|x, t)γ5. (3.51)

Large efforts within the lattice field theory community are directed at finding efficient

algorithms to solve the linear equation (3.48), tailored to the exact form of the chosen

fermion discretisation and therefore the form of the Dirac matrix. We will just briefly

mention two such solvers, which have been used in the data generation for the works

presented here. The first one is the Conjugate Gradient (CG) algorithm [103] (reviewed

for example in ref [104]) which is an iterative method suitable for symmetric, positive

definite matrices. The second one is the Hierarchically Deflated Conjugate Gradient

(HDCG) algorithm, developed by P. Boyle [105]. This was vital in particular for the

calculation of many physical light quark propagators, which are numerically very costly

as the Dirac matrix becomes more and more ill-conditioned as the quark masses are

reduced.

When computing heavy quark propagators with CG-type algorithms round-off errors

can affect the result [106]. To ensure that this is not the case, we implemented and

monitored the time slice residual [106] defined as

rt = max
t

( |Dψ − η|t
|ψ|t

)
, (3.52)

where D is the Dirac operator, η the source vector and ψ the solution vector. The norm

|x|t is defined as the norm of the vector x restricted to the time slice t.

3.7.3 Effective Mass

Recall that LQCD simulations always provide statistical estimates of observables which

therefore have a statistical uncertainty. This means that (3.44) suggests that there

is a time slice tmin from which onwards the excited state contamination is sufficiently

suppressed to be subleading to the statistical uncertainty. In the region of tmin < t <

T − tmin one assumes the correlation function to be dominated by the ground state. So

in this region we can fit the data to the ansatz (3.44) and extract the energy and the

matrix elements of the ground state. One problem that needs to be addressed is how to

find this time slice tmin. To achieve statistical accuracy it is desirable to be able to choose

this value as small as possible, since the signal-to-noise ratio grows over time [107, 108].

Ways of achieving this are presented in section 3.7.4.

The effective mass meff(t) provides a visual measure to test whether or not a correlation

function is dominated by the ground state for a given time t. There are a number of
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Figure 3.2: left : Example of a pseudoscalar meson correlation function C(t)
(top panel) and the associated effective mass ameff (bottom panel) on the
coarser physical pion mass ensemble of RBC/UKQCD (mπ = 139 MeV, a−1 =
1.73 GeV; later introduced as C0). The example here is shown for a light-light
meson. right : The top panel shows the relative error on the same correlation
function as a function of time, whilst the bottom panel simply zooms into the
plateau region of the effective mass.

different ways to define this quantity. Taking into account the backwards travelling

contribution, (3.44) is modified to

C2(t)|p=0 =
∑
n

Z∗src,n Zsnk,n

En
e−EnT/2

eEn(T/2−t) ± e−En(T/2−t)

2
, (3.53)

where Zsrc and Zsnk are the matrix elements between the QCD vacuum and the operator

at the source and the sink respectively as defined before. Equation (3.53) can be rewrit-

ten in terms of a hyperbolic cosine or hyperbolic sine, respectively. In the following we

will denote cosh and sinh as func. The convention for the effective mass that is used in

the remainder of this thesis is given by ameff satisfying

C(t+ a)

C(t)
=

func
[
(t+ a− T

2 )meff

]
func

[
(t− T

2 )meff

] . (3.54)

The main feature of the effective mass is the fact that the exponential decay is removed

so that a visual inspection of the data becomes more feasible.

The left-hand side of figure 3.2 shows the behaviour of the correlation function and the

effective mass as a function of time for the example of a light-light meson on one of

RBC/UKQCD’s physical pion mass ensembles. The right-hand side of the same figure

shows the relative error of the correlation function as well as a zoom into the region

where the effective mass plateaus. We can clearly identify a plateau towards the centre

of the lattice, starting from time slices tmin/a ∼ 15. This suggests that in this region the

correlation function is dominated by the ground state and the excited states have decayed
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away. This means that one can now fit the expected functional form, as suggested by

(3.44) to the data obtained for t ∈ [tmin, tmax] where tmax is usually chosen to be T/21.

Naturally, one needs to verify that small perturbations of tmin and tmax have no influence

on the obtained fit results to assess systematic errors arising from the choice of fit range.

3.7.4 Sources and Smearing

Figure 3.3 shows that for mass non-degenerate mesons the signal-to-noise ratio grows

exponentially [107, 108] with time, so it is desirable to decrease tmin as much as possible.

Rewriting the matrix elements as Zn for brevity, we can re-express (3.44) as

C2(t) =
∑
n

1

2En
|Zn|2 e−Ent

=
1

2E0
|Z0|2 e−E0t +

1

2E1
|Z1|2 e−E1t + · · ·

=
1

2E0
|Z0|2 e−E0t

(
1 +

E0

E1

|Z1|2

|Z0|2
e−∆Et + · · ·

)
.

(3.55)

We see that the contamination of excited states at a given time t depends on the dif-

ference ∆E = E1 − E0 between the energy of the lowest lying state E0 and the next

higher state with the same quantum numbers E1. This implies a bound in tmin below

which one no longer fits the pure ground state. Additionally, this difference E1 − E0

decreases as the quark masses get heavier, leading to less suppression of the excited

states and correspondingly later plateaus than in the case of light quarks. To reliably

extract hadronic observables from this, one can fit the n first excited states. This leads

to an increase in fit parameters and one has to be careful that the choice of tmin does

not influence the fit result. Alternatively one can choose a spatially extended or smeared

source that approximates the spatial form of the physical ground state wave function

more closely than a naive point source. This results in decreasing the ratio |Z1|2 / |Z0|2

in (3.55) and therefore suppresses the contamination of excited states stronger for earlier

time slices.

However, if one is interested not only in energies but also in the matrix elements (as in

the case of the decay constants), one has to take care to extract the matrix elements from

local operators, i.e. not smeared ones. This can still be achieved when using smeared

sources, e.g. by placing the operator of interest at the sink and smearing the sources.

Alternatively one can produce correlation functions with smeared as well as local sources

and fit them simultaneously. This increases the number of fit parameters in the fit, but

also the amount of data that enters the fit. One type of such spatially extended sources

extensively used throughout this thesis is Gaussian smearing [109]. The idea here is to

1Data points at the centre of the temporal extent of the lattice are prone to be undersampled and
typically have large error bars. For such cases - which we will frequently encounter as we increase the
mass splitting between the two quark masses - we often choose tmax < T/2.
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apply a smearing operator H to the source in a gauge-covariant fashion. The smearing

operator we use has 2 parameters: the number of Jacobi iterations N that the smearing

operator H is applied and the smearing radius r, defined in the following. The smearing

operator acts in colour space (so we suppress the trivial Dirac indices) and is defined by

[Hη]a (n) =
∑
b

∑
m

(
δn,mδab +

r2

4N
∆[U ]ab(n,m)

)
ηb(m), (3.56)

where ∆[U ] is the gauge covariant Laplace operator in the spatial directions, i.e.

∆[U ](n,m) =
3∑
j=1

2δn,m − Uj(n, t)δn+ĵ,m − Uj(n− ĵ, t)†δn−ĵ,m. (3.57)

In the above we have suppressed colour indices into matrix/vector notation for notational

convenience. The smeared source ηS now is found from applying the smearing operator

H N times to the original source ηL where a summation over all space points is implicit

(since we keep t fixed), i.e.

ηS = HNηL. (3.58)

In the limit of N → ∞ this becomes a Gaussian of width r. Note that we can also

smear the quark field after the inversion, i.e. at the sink. For a meson consisting of

two flavour off-diagonal quarks, having unsmeared and smeared sources and sinks this

allows for 24 = 16 combinations of the smearing.

The effect of smearing can be seen in the left-hand side of figure 3.3. The figure shows the

effective mass for a strange-heavy meson on the ensemble Q3 (introduced later, compare

table 5.1). In all four cases, the source and the sink of the strange quark are local,

whilst the source (1st index) and sink (2nd index) of the heavy quark can be local (L)

or smeared (S). One can clearly see an earlier approach to the plateau for the smeared

cases, allowing for the inclusion of earlier time slices into the fit.

So far we considered point sources, i.e. sources which are located on a single site of

the lattice (compare 3.47) and are sensitive to local fluctuations of the gauge field. In

addition they do not make use of the entire volume [110], so to maximise the information

extracted one would need to place many point sources across the volume and hence have

to perform many inversions of the Dirac operator. An increase in precision can be

obtained from using Nhit stochastic sources ηaα(x, tx) (for fixed tx) with colour and spin

indices a and α, respectively and sitting at the site x, provided their (hit-)expectation

value satisfies

〈
η(n)
a,α(x, tx)η

(n)†
b,β (y, tx)

〉
n
≡ 1

Nhit

Nhit∑
n=1

η(n)
a,α(x, tx)η

(n)†
b,β (y, tx)

Nhit→∞→ δabδαβδx,y (3.59)

in the large-hit-limit (i.e. the limit Nhit → ∞). Furthermore, it is worth noticing

that the gauge and the hit average commute, so even by only placing as few as a single
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Figure 3.3: Impact of source/sink smearing and Z2-Wall sources illustrated for
a heavy-strange pseudoscalar meson. left : Effect of smearing on the observed
plateau on the ensemble Q3 from the quenched pilot study with point sources.
The first letter in the legend refers to whether the source of the heavy quark is
local (L) or smeared (S)). Similarly the second letter refers to the sink. right :
Same cost comparison of the statistical accuracy of the correlation function
between a point source and a Z2-Wall source on the ensemble C0.

stochastic source on each configuration the correct large hit behaviour is recovered [110].

Placing such stochastic sources across the entire spatial volume allows for full volume

averaging. One distribution D which has been advocated [111, 112] is that of complex

Z2 × Z2 numbers, i.e.

D =

{
z ∈ 1√

2
(±1± i)

}
. (3.60)

Recall the definition of the two-point correlation function (of flavour off-diagonal oper-

ators) projected to zero momentum in terms of the propagators (compare (3.46)) and

insert a delta function in spin, colour and space-time into it. Assuming that the large

hit limit is satisfied, we obtain

C(tx, ty) =

〈∑
x,y

tr[ΓsnkSq2(y, ty|x, tx)ΓsrcSq1(x, tx|y, ty)]
〉

g

=

〈∑
x,y,z

tr
[
ΓsnkSq2(y, ty|x, tx)

〈
η(x)η†(z)

〉
n

ΓsrcSq1(z, tz|y, ty)
]〉

g

∣∣∣∣∣
tx=tz

=

〈∑
x,y,z

tr
[
ΓsnkSq2(y, ty|x, tx)η(x)η(z)†Γsrcγ5S

†
q1(y, ty|z, tz)γ5

]〉
n,g

∣∣∣∣∣
tx=tz

=

〈∑
x,y,z

tr
[
ΓsnkSq2(y, ty|x, tx)η(x)Γsrcγ5 [Sq1(y, ty|z, tz)η(z)]† γ5

]〉
g,n

∣∣∣∣∣
tx=tz

.

(3.61)

Here 〈·〉g and 〈·〉n represent the gauge average and the large hit limit, respectively.

Further, we omitted the hit index (n) of the source vectors η(n)(x) as well as suppressed
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Figure 3.4: Schematic quark flow diagram for a general mesonic two point
function.

spin and colour indices into vector/matrix notation. In the second line we inserted a

delta function in spin, colour and space and assumed the large hit limit (3.59) to be

satisfied. In the third line we used γ5-hermiticity of the propagator(3.51) and the fact

that the large hit limit and the gauge limit commute. We also assumed that the source

vectors η(n)(x) are diagonal in spin space, and noted that (Γsnkγ5)† is diagonal in colour

space, so the multiplication of these two terms can be interchanged.

Equation (3.61) shows that for a given time slice tsrc, we can use the same noise vector

for both propagators, introducing noise only once. It also means that we only need to

invert the Dirac matrix once per flavour. So at the expense of introducing noise, we

can sample the full 3-volume of the source time-plane with one inversion. This is known

as the one-end-trick [110, 113]. In the remainder of this thesis, these sources will be

referred to as Z2-Wall sources [110]. Other noise reduction techniques include low-mode-

averaging [114, 115], all-mode-averaging [116–118], deflation [119] and distillation [120]

but will not be discussed in detail as they go beyond the scope of this thesis.

The limitation of Z2-Wall sources is the fact that we lose the possibility of projecting

to momenta other than zero. This is not a problem for observables such as masses

and decay constants, but for example for dispersion relation studies we have to restrict

ourselves to point sources. It is worth noticing that we can (and will) combine the two

methods and produce Gaussian smeared Z2-Wall sources to have the benefit of both

strategies.

Figure 3.4 is a schematic QCD quark flow diagram summarising the constructions we

use for a generic meson two point function. We first pick a source time-plane tsrc and -

for the case of Z2-Wall sources - ηaα(x), which is diagonal in spin, randomly drawn from
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the distribution D at every spatial position x. In the case of a point source we simply

choose one site and place the source there. We then optionally apply Gaussian smearing

at the source (Lsrc
i for local or Ssrc

i for smeared) before solving the equation (3.48) for

each flavour f present in the problem, hence producing all propagators of interest (q1

and q2 in the figure). We can then again apply the smearing to the sink position of

the propagator (Lsnk
i for local or Ssnk

i for smeared). Here i labels the propagator under

consideration. Finally we insert all desired spin structures Γsrc and Γsnk at source and

sink and project to the desired momenta (p = 0 for Z2-Wall sources).

3.7.5 Statistical Methods - Resampling

Whilst for observables which are directly measured (primary observables), it is possible

to assign a statistical error directly, this becomes more difficult for deduced or secondary

observables, particularly if they are determined non-linearly from the underlying data.

This is usually done by resampling. In this thesis we will adopt the bootstrap resampling

method [121, 122], (which is a generalisation of the jackknife resampling method), which

we will briefly outline in the following.

Assume that Nconf independent measurements have been taken. We will create NBoot

bootstrap samples. Each bootstrap sample is found by randomly drawing Nconf mea-

surements from the Nconf measurements that were carried out, but with replacement.

We now treat the Nboot samples as our measurements and every treatment to the data

is carried out bootstrap sample-by-bootstrap sample. The statistic error for any quantity

(primary or secondary) can now be determined from the bootstrap distribution of this

quantity. We stress, that the error assigned by any resampling method is an estimate,

i.e. has an uncertainty itself [123].

3.7.6 Correlator Fits

In all cases the data is first folded before further processing, i.e. symmetrised around

t = T/2 and then only the range 0 ≤ t ≤ T/2 is considered. Within this range an

interval [tmin, tmax] is chosen and the data of time slices inside this interval will enter

into the fit. Fits are performed as a numerical iterative procedure by means of a least

square fit of the data to the functional form f(t) that we expect. In particular, we

minimise χ2 defined by

χ2 = (C(ti)− f(ti)) cov−1
ij (C(tj)− f(tj)) . (3.62)

Here C(ti) is the value of the correlation function on the time slice ti and cov the

covariance matrix. From these fits we then extract the parameters that enter the func-

tional form (3.53), in particular we obtain matrix elements and energies. The estimated
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covariance matrix that enters the fit is defined as

covij =
1

A

N∑
k=1

(
C(k)(ti)− 〈C(ti)〉

)(
C(k)(tj)− 〈C(tj)〉

)
, (3.63)

where N is the number of measurements that enter the fit, C(k) is the kth measurement

of the correlation function and the normalisation A depends on the exact resampling

that is used to obtain the statistical errors. In particular, A = N(N − 1) if the raw data

is used, A = N/(N − 1) for Jackknife resampling and A = N for Bootstrap resampling.

In the limit of infinite data (N → ∞) the estimated covariance converges to the true

covariance matrix. With finite statistics, the covariance matrix may be poorly estimated

and ill-conditioned (i.e. numerically close to singular). In this case a correlated fit (as

defined by (3.62)) often does not converge and one restricts the covariance matrix (3.63)

to its diagonal part before inverting. This is referred to as an uncorrelated fit.

An indication for the goodness-of-fit is the reduced χ2,

χ2
red = χ2/d.o.f, (3.64)

where d.o.f is the number of degrees of freedom, i.e. the difference between the measured

data points that enter the fit and the number of parameters the fit needs to determine.

For a correlated fit, the value of χ2 in combination with the number of degrees of freedom

also has a probabilistic interpretation to asses how good the fit is. For a correlated fit

and a sufficiently large number of degrees of freedom to a known fit function, most

probable value is χ2
red = 1.

In the case where we neglect correlations by performing an uncorrelated fit, even though

the data has inherent correlations, there is no probabilistic interpretation of the value

of χ2 but merely serves as an indication.

3.8 Systematic Errors

Additional to the inherent statistical error, the lattice methodology necessarily intro-

duces some systematic errors that need to be removed and controlled. The finite volume

causes ‘around-the-world’ effects, i.e. self-interactions between particles at lattice sites

n and their counterpart across the boundary of the system. For a given particle of mass

m these effects are expected to be exponentially suppressed by e−mL [124]. This means

that the lightest hadron of the system determines the volume needed to keep these finite

volume effects at bay, which in any dynamical simulation is the pion. It is found that

for mπL & 4 finite volume effects are at the percent level [125].

Some discretisation errors are expected to grow as powers of amq where mq are the quark

masses [1]. It follows that discretisation effects will grow quickly as the mass mq of the
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heaviest quark under consideration is increased. To be able to simulate large values of

the quark mass without introducing large discretisation errors, small lattice spacings

are needed [126, 127]. To ensure control over discretisation errors, it is important to

calculate the same physical observables on lattices with different lattice spacings and

then fit this to a polynomial in the lattice spacing a to extrapolate to a = 0. This

is known as a continuum limit. A number of lattice discretisations ensure automatic

O(a)-improvement, meaning discretisation errors proportional to the lattice spacing are

not present. In this case the first term that needs to be fitted when determining lattice

artefacts are O(a2). This is the case for domain wall fermions, which will be discussed

in detail in the next chapter.

The constraints imposed by simultaneously keeping discretisation and finite volume er-

rors under control become more and more restrictive as the ratio between the lightest

and the heaviest simulated mass decreases. In particular the pion mass mπ and the bare

heavy quark mass mh are required to satisfy

L−1 � mπ < mh < a−1. (3.65)

This enforces a bound on the range of masses and energies that can be simulated on a

given ensemble and is one of the reasons why ensembles with physical pions masses have

only recently become feasible. Further systematic errors arise from the assumptions one

makes in lattice QCD simulations. Up to date, most collaborations treat the up and

the down quark as mass degenerate (strong isospin) and ignore electromagnetic effects

(weak isospin). Throughout the remainder of this thesis these assumptions will also be

made here.



Chapter 4

Domain Wall Fermions on the

Lattice

In the previous chapter we have seen that a Dirac operator satisfying (3.35) is not suitable

to simulate chiral symmetry on the lattice. We will now generalise this condition of chiral

symmetry and introduce domain wall fermions ([128] and further developments in refs

[129–132]) to see how we can circumvent the Nielsen-Ninomiya Theorem [86].

This chapter is organised as follows. After briefly outlining how a fifth dimension can

circumvent the Nielson-Ninomiya Theorem in section 4.1 we will discuss the formulation

of domain wall fermions in section 4.2. Finally we will outline the relation between

DWFs and the Ginsparg-Wilson relation in section 4.3.

4.1 Effects of a Domain Wall in an Infinite Fifth Dimension

Assume a fermion that lives in 5 dimensions. The usual 4 infinite space-time dimensions

with coordinates x, y, z, t as well as a fifth dimension with coordinate s. Furthermore,

we will assume an s-dependent mass term that flips sign at s = 0, i.e.

m(s) =

+m s > 0

−m s < 0
. (4.1)

We assume that the gauge field with which the fermion interacts lives in the 4 usual

space-time dimensions. The Dirac equation this fermion Ψ needs to satisfy then reads

[
/D + γ5∂s +m(s)

]
Ψ(xµ, s) = 0, (4.2)

51
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where D is some 4-d Dirac operator. We can now transform (4.2) into an eigenvalue

problem by separation of variables, assuming a solution of the form

Ψ(xµ, s) =
∑
n

[an(s)PR + bn(s)PL]ψn(x), (4.3)

where

PR,L = P± =
1± γ5

2
. (4.4)

Substituting this into (4.2) one obtains

[∂s +m(s)] an(s) = αnbn(s)

[−∂s +m(s)] bn(s) = αnan(s)(
/D + αn

)
ψn(x) = 0,

(4.5)

for some eigenvalues αn. We can now note, that for αn = 0 the last line is the Dirac

equation for a massless fermion. Furthermore, for the case of αn = 0 the equations for

an(s) and bn(s) decouple and are easily solved to give

an(s) = Ae−
∫ s
0 m(s′)ds′ = Ae−

∫ s
0 m|s|ds′

bn(s) = B e+
∫ s
0 m(s′)ds′ = B e+

∫ s
0 m|s|ds′ .

(4.6)

However, the solution bn(s) is not normalisable and therefore not a physical solution.

So, in summary, there is an infinite tower of fermions ψn(x) with masses |αn| > 0

(bulk modes) and a single massless right-handed fermion exponentially localised near

the defect at |s| = 0.

On the lattice we will always have to choose a finite fifth dimension. This implies that

we will necessarily have more than one defect, e.g. choose a compact fifth dimension

of extend 2s0 with periodic boundary conditions (Ψ(s) = Ψ(s+ 2s0)) and a mass term

m(s) = m |s| /s with two defects (at s = 0 and s = s0). Now, contrary to before, both

solutions are normalisable and we find two exponentially localised massless chiral modes;

the previous right-handed mode at s = 0 and a left-handed mode at s = ±s0. How-

ever, recalling that terms breaking chiral symmetry mix left-handed and right-handed

components and that these modes are exponentially localised a distance s0 apart this

residual chiral symmetry breaking is expected to be small. We will define a measure for

this residual chiral symmetry breaking, called the residual mass in the next section.

4.2 Domain Wall Fermions on the Lattice

Following on from the previous section, the idea in the formulation of domain wall

fermions is to simulate a 5-dimensional lattice with chiral fermions bound to a 4-

dimensional slice of this fifth dimension. However, in a numerical simulation we are not
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able to simulate a continuous or infinite fifth dimension. So we extend the 4-dimensional

lattice volume Λ defined in (3.5) to a 5-dimensional volume Λ5 = Λ × Ls where Ls is

the finite extent of the fifth dimension

Λ5 = {(anµ, s) : anµ ∈ Λ; s ∈ 0, · · · , Ls − 1} . (4.7)

The action for a 5-dimensional fermion Ψ (single flavour) of mass mf reads (spin and

colour indices are suppressed into matrix/vector notation)

SDWF [Ψ,Ψ, U ](mf ,M5) =
∑

(n,s),(m,t)∈Λ5

Ψ(n, s)DDW
5 (n, s|m, t;mf ,M5)Ψ(m, t), (4.8)

where the gauge fields Uµ(n) live in the 4-dimensional space. We will see that mf is

indeed the fermion mass and will discuss the impact of the domain wall height M5

subsequently. We note that to cancel a bulk infinity that arises in the Ls → ∞ limit,

we also include a bosonic Pauli-Villars type term into the action which is given by [133]

SPV [Φ,Φ, U ](1,M5) = Φ(n, s)DDW
5 Φ(n, s|m, t; 1,M5)Φ(m, t). (4.9)

The domain wall Dirac operator DDW
5 can be decomposed into two parts, one that is

parallel and one that is orthogonal to the 4-dimensional space-time slices:

DDW
5 (n, s|m, t;mf ,M5) = δs,tD

‖(n|m;M5) + δn,mD
⊥(s|t;mf ). (4.10)

The orthogonal term connects the sites in the fifth dimension and is given by

D⊥(s|t;mf ) = δs,t − (1− δs,Ls−1)PL δs+1,t − (1− δs,0)PR δs−1,t

+mf (PL δs,Ls−1 δ0,t + PR δs,0 δLs−1,t) .
(4.11)

We can see that the surface terms are eliminated by the term 1 − δs,Ls−1 and 1 − δs,0,

respectively. We note that the only term that mixes the 4-dimensional slices at s = 0

and s = Ls−1 is proportional to the constant mf which resembles a mass term (compare

(2.8)). In particular, for mf = 0 the boundaries are not directly connected since the

only terms that mix the 4-dimensional slices at s = 0 and s = Ls − 1 are proportional

to mf , in agreement with our interpretations as the fermion mass.

We define the 4-dimensional fermion fields ψ and ψ from the fields at the boundaries of

the fifth dimension, as

ψ(n) = ψL(n) + ψR(n) = PLΨ(n, 0) + PRΨ(n,Ls − 1)

ψ(n) = ψL(n) + ψR(n) = Ψ(n, 0)PR + Ψ(n,Ls − 1)PL.
(4.12)
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So the 4-dimensional fermion is constructed as a superposition of a left-handed mode at

s = 0 and a right-handed mode at s = Ls − 1. The scalar density is now given by

ψ(n)ψ(n) =
[
Ψ(n,Ls − 1)PL + ψ(n, 0)PR

]
[PLΨ(n, 0) + PRΨ(n,Ls − 1)]

= Ψ(n,Ls − 1)PLΨ(n, 0) + Ψ(n, 0)PRΨ(n,Ls − 1).

= ψR(n)ψL(n) + ψL(n)ψR(n).

(4.13)

However, due to the finiteness of the fifth dimension, there are additional contributions

that mix the left-handed and the right-handed modes due to the propagation through

the fifth dimension, leading to a residual chiral symmetry breaking. This gives rise to a

small mass term called the residual mass. More about this later.

The parallel term is the usual Wilson Dirac operator as defined in (3.33), however we

replace the mass m by −M5 where the new parameter M5 is the domain wall height.

We define the local four-dimensional axial and vector currents as

V a
µ (n) = ψ(n)taγµψ(n)

Aaµ(n) = ψ(n)taγµγ
5ψ(n).

(4.14)

These are related to the conserved currents Vaµ(n) and Aaµ(n) by multiplicative renor-

malisation constants ZV and ZA respectively, i.e.

ZAAaµ(n) = Aaµ(n)

ZV V a
µ (n) = Vaµ(n).

(4.15)

For exact chiral symmetry these renormalisation constants are related by ZA = ZV [134].

The conserved vector current is uniquely defined by

Vaµ(n) =

Ls−1∑
s=0

jaµ(n, s), (4.16)

where

jaµ(n, s) =
1

2

[
ψ(n+ µ̂, s)(1 + γµ)U †n,µt

aψ(n, s)− ψ(n, s)(1− γµ)Un,µt
aψ(n+ µ̂, s)

]
.

(4.17)

The conserved axial current (for mf = 0 and Ls =∞) we use is derived in ref [135]. The

axial current satisfies the partially conserved axial Ward identity (PCAWI). In particular

Aaµ has a non-zero divergence [131] and satisfies

∆µAaµ(n) = 2mfJ
a
5 (n) + 2Ja5q(n), (4.18)
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where

Ja5 (n) = −Ψ(n,Ls − 1)PLt
aΨ(n, 0) + Ψ(n, 0)PRt

aΨ(n,Ls − 1)

= ψ(n)γ5t
aψ(n) ≡ P a(n)

Ja5q(n) = −Ψ(n,Ls/2− 1)PLt
aΨ(n,Ls/2) + Ψ(n,Ls/2)PRt

aΨ(n,Ls/2− 1),

(4.19)

and ∆µf(n) = f(n)− f(n− µ̂). In particular the current Ja5q(n) is defined at the mid-

point of the fifth dimension and is sensitive to the residual chiral symmetry breaking

effects from the propagation of the left-handed and right-handed modes across the fifth

dimension and Ja5 (n) is the pseudoscalar density. We quantify this effect of residual

chiral symmetry breaking by the residual mass which we will now define from expec-

tation values of (4.18). In practice we measure correlation functions projected to zero

momentum, given by∑
n

a 〈∆µAµ(n)P (0)〉 =
∑
n

〈[2amfP (n) + 2J5q(n)]P (0)〉

= 2amf

∑
n

〈P (n)P (0)〉+ 2
∑
n

〈J5q(n)P (0)〉

= 2
∑
n

〈P (n)P (0)〉
(
amf +

∑
n 〈J5q(n)P (0)〉∑
n 〈P (n)P (0)〉

)
.

(4.20)

We can see that the second term in the last line of (4.20) has the form of a mass term.

We define the effective residual mass ameff
res(t) to be exactly this quotient, i.e.

ameff
res(t) =

∑
n 〈J5q(n, t)P (0, 0)〉∑
n 〈P (n, t)P (0, 0)〉 . (4.21)

So to extract the residual mass amres we look for a plateau region in (4.21), and fit the

data to a constant. As long as the value of mres is sufficiently small compared to mf

the four dimensional fermions as defined by (4.12) are chiral to a good approximation.

4.3 The Ginsparg-Wilson Equation

The first step of resolving how chiral fermions might be simulated in a doubler free

theory arose from the rediscovery of the Ginsparg-Wilson equation [136], suggesting a

modification to (3.35) that disappears in the continuum, namely

D(x|y)γ5 + γ5D(x|y) = aD(x|z)γ5D(z|y). (4.22)
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Left and right multiplying this by D−1(x′|x) and D−1(y|y′) respectively and relabelling

x→ x′ and y → y′ one obtains

γ5D
−1(x|y) +D−1(x|y)γ5 = aγ5δ(x− y). (4.23)

So for x 6= y this reduces to the condition for chiral fermions (3.35) whilst for x = y this

gives rise to a contact term on the right-hand side.

The importance of the Ginsparg-Wilson equation comes from the fact that we can define

a modified chiral transformation which reproduces the continuum one in the limit of

a→ 0, namely

ψ → eiαγ5(1−a
2
D)ψ ψ → ψeiα(1−a

2
D)γ5 . (4.24)

If D is a Dirac operator obeying (4.22), then this is a symmetry of the massless action.

Using the generalised γ5 (γ̂5) and generalised projectors (P̂R,L)

γ̂5 = γ5(1− aD)

P̂R =
1 + γ̂5

2

P̂L =
1− γ̂5

2
,

(4.25)

and noting that

DP̂R,L = P̂L,RD, (4.26)

we can split the spinor into a left-handed and a right-handed part, analogous to the

continuum definitions

ψL,R = P̂L,Rψ ψR,L = ψPR,L. (4.27)

As in the continuum theory, the massless part of the fermion action does not mix left-

handed and right-handed components, whilst the mass term does.

There are two commonly used formulations that make use of the Ginsparg-Wilson rela-

tion (4.22). The first one, domain wall fermions was presented above and approximates

(4.22), recovering exact chiral symmetry in the limit Ls → ∞. The second one are the

overlap fermions [137, 138]. It is possible to show that they are equivalent in the limit

of Ls →∞ [139, 140].

Overlap fermions are found to be computationally more expensive than domain wall

fermions. Furthermore, recently a re-formulation of the traditional Shamir domain wall

fermions (SDWF) [129–132] was found to obtain the same level of residual chiral symme-

try breaking with a smaller extent of the fifth dimension [141–143]. These are referred

to as Moebius domain wall fermions (MDWF). The exact formulation of the domain

wall fermions used in the subsequent chapters is described in ref [144].



Chapter 5

Heavy Quarks - A Pilot Study

with Domain Wall Fermions

Recalling the discussion about effective theory descriptions of systems containing heavy

quarks (HQET and NRQCD) from section 2.7 one could imagine to try and make pre-

dictions from these instead of full relativistic QCD simulations. On the lattice there is

one further approach of dealing with heavy quarks, namely the relativistic heavy quark

(RHQ) action [145–147]. In addition to it not being clear a priori whether HQET and

NRQCD converge fast enough for the charm quark, NRQCD has the shortcoming that

it is impossible to take a well defined continuum limit (a → 0). This introduces a

systematic error that is difficult to estimate and control. Whilst the RHQ action can

in principle be used to make predictions for quantities containing charm quarks, it re-

quires tuning of more parameters as well as additional calculations of renormalisation

constants.

As advertised in chapter 4, DWFs are automatically O(a)-improved, which is of par-

ticular importance since quantities containing heavy quarks can be affected by strong

cut-off effects. Furthermore, it simplifies the renormalisation procedure. However, ac-

cessible lattice spacings in state-of-the-art ensembles are limited due to critical slowing

down [98, 148, 149]. In this chapter, we will establish a formulation of domain wall

fermions that allows for the simultaneous simulation of light and charm quarks. We

designed the following pilot study to determine a region in the domain wall parame-

ter space in which one can feasibly simulate heavy quarks (charm and beyond) whilst

keeping discretisation effects under control.

After a brief phenomenological motivation (section 5.1), we will outline our strategy

in section 5.2. Section 5.3 introduces the ensembles used in this study. Section 5.4

summarises the initial scan in parameter space leading to the run set-up presented in 5.5

for further investigation of the scaling of some basic observables. Section 5.6 summarises

our findings, leading to the conclusions presented in section 5.7.

57
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5.1 Phenomenological Motivation

Experimentally there is a wide activity in charm and bottom physics. For example, in

the case of leptonic decay rates of D and Ds mesons, experiments such as CLEO-c [150–

153], BESIII [154], Belle [155] and BaBar [156] have produced a wide range of results.

Meanwhile, LHCb is still ongoing and Belle II will soon start taking measurements.

With such a projected increase in experimental data, we need to work to reduce the the-

oretical uncertainties to fully exploit the experimental results. For example, as discussed

previously (compare section 2.5), we need theoretical input of the decay constants to

extract the CKM-matrix elements from this.

There are a number of different calculations on the lattice which require a valence charm

quark (fD, fDs , D and Ds semi-leptonic decays, contributions to the Hadronic Vacuum

Polarisation (HVP),...). Additionally, there are also an increasing number of 2 + 1 + 1f

simulations. To exploit symmetry arguments such as the Glashow-Iliopoulos-Maiani

(GIM) mechanism [70], it is important to use the same discretisation between the charm

and the lighter quarks. Finally if we manage to push the heavy quark mass beyond

the charm quark mass and towards the regime of bottom physics, we might be able to

provide a fully relativistic description of b-like quarks. Even if we are unable to reach

as far as the mass of the b-quark, Methods such as the ratio method [157, 158] can be

used to make contact with the physical bottom mass.

5.2 Outline of the Pilot Study

The main purpose of this study is to investigate whether there is a region in the domain

wall parameter space (M5,Ls) for which we can find desirable features to simulate heavy

quarks, in particular charm. Amongst these desirable features we hope to find that basic

observables such as the decay constants fD and fDs have small discretisation effects. We

also investigate how well the dispersion relation is reproduced by the lattice data. As

part of this study we establish an upper bound in the bare input quark mass ammax
h

below which our discretisation is suitable.

To keep the numerical cost feasible and with view of having a testing ground we decided

to carry out this pilot study in a quenched theory. This neglects the need to calculate

the (expensive) determinants in (3.36). It also allows for cheaper algorithms such as

over-relaxed [94, 95] heat-bath [92] in the production of the gauge ensembles. No sea-

quark masses need to be tuned and the reach in the lattice spacing is extended by brute

force. So we can mitigate critical slowing [98, 148, 149] to some extent. Because we

are mainly interested in the effect of the heavy quark, we can reduce the cost even

further, by simulating a small volume of L ≈ 1.6fm. It is desirable to keep this volume

fixed amongst the different ensembles, to ensure the same finite size effects and to have
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Figure 5.1: Topological charge evolution and histograms of the different en-
sembles. From left to right the lattice spacing decreases from a−1 = 2.0 GeV
(left) to a−1 = 5.7 GeV. The exact parameters are given in tables 5.1 and 5.2.
The first row shows the topological charge as measured on every Nsepth (com-
pare values in table 5.1) trajectory. The bottom row shows the corresponding
histograms.

similar accessible Fourier momenta (compare (3.7)). Since a quenched theory does not

approximate nature well, results from this study are only taken as a guideline, but we

expect that the qualitative features carry over to the dynamical case.

The pure gauge ensembles generated for this study are presented in section 5.3. On

these gauge ensembles we calculated mesonic two point functions of two mass degenerate

heavy quarks (heavy-heavy meson) for a variety of different values of (M5, Ls) presented

in section 5.4. For the optimal choice found here we then did a full scaling study of the

meson dispersion relation (section 5.6.3) (heavy-heavy and heavy-strange mesons) and

the decay constants (section 5.6.4) (heavy-strange mesons).

5.3 Ensembles

Since the main purpose of this study was to establish the cut-off effects of heavy-light

quantities, the main aim for the ensemble generation was a large range in lattice spac-

ings1. To achieve this whilst keeping the computational cost bearable, we simulated pure

gauge configuration in a comparably small constant spatial volume of L ≈ 1.6 fm. The

chosen gauge action is tree-level improved Symanzik [81, 82] and was generated with

the Heat-bath algorithm [92, 94, 95]. We generated SU(3) ensembles at β = 4.41, 4.66,

4.89 and 5.20. The coarser three ensembles were produced with CHROMA [159] (with

added heat-bath routines), whilst the finest ensemble was generated by a code which is

1The ensembles were generated by Marina Kristić Marinković (Q1-Q3) and Francesco Sanfilippo (Q4)
under supervision of Andreas Jüttner and Peter Boyle. This includes the numerical ensemble generation,
the measurement of the Wilson flow and the topological charge and the determination of autocorrelation
times.
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Name β L3 × T/a4 Nsweeps τint(Qtop) τint(Q
2
top) Nsep Nconfs

Q1 4.41 163 × 32 10k 15(3) 10.5(1.6) 100 100
Q2 4.66 243 × 48 20k 160(60) 74(22) 200 100
Q3 4.89 323 × 64 600k 200(100) 170(80) 500 111
Q4 5.20 483 × 96 1.4M 28000(13000) 12000(4000) 40000 59(36)

Table 5.1: Ensemble properties of the quenched gauge ensembles: Lattice sites,
number of sweeps, autocorrelation time and number of configurations. On the
fine ensemble additional configurations were generated later, so some measure-
ments take the original 36 configurations whilst others have the full statistics of
59.

Name β Plaquette w0/a a−1[GeV] L[fm]

Q1 4.41 0.62637(3) 1.767(3) 2.037(08) 1.550(6)
Q2 4.66 0.651421(12) 2.499(8) 2.861(09) 1.655(5)
Q3 4.89 0.671257(5) 3.374(11) 3.864(12) 1.634(5)
Q4 5.20 0.694149(4) 5.007(28) 5.740(22) 1.650(6)

Table 5.2: Ensemble properties of the quenched gauge ensembles: Plaquette,
Wilson flow measurement, Lattice spacing and physical volume. Note that the
uncertainty of wphys

0 is propagated into the uncertainty of physical quantities.

specifically optimised for the IBM BG/Q [160]. We gratefully acknowledge the use of

the IRIDIS High Performance Computing Facility in Southampton (generation of the

ensembles Q1-Q3) and computing time on the BG/Q in Edinburgh, granted through

the STFC funded DiRAC facility (generations of the ensemble Q4 and all subsequent

measurements).

Throughout the ensemble generation the topological charge Q (compare (3.39)) was

monitored (measured with the GLU package [161]).

The square of the topological charge Q2
top is assumed to couple strongly to the slowest

evolving mode in the evolution of the algorithm [98] (cf. section 3.5). The autocor-

relation time of Q2
top was then calculated. In the following we restrict ourselves to

trajectories spaced by Nsep ≥ 2 τint(Q
2
top) [123]. The values of τint(Q

2
top) (measured in

number of sweeps), Nsep and the resulting number of configurations are given in table

5.1. The topological charge Qtop measured on these configurations is shown in figure 5.1

The lattice spacing was determined using the Wilson flow [100, 101] taking the value

wphys
0 = 0.17245(99)fm [144]2. The main ensemble parameters are listed in table 5.2.

5.4 Scan of the Domain Wall Parameter Space

In a first step we scanned the domain wall parameter space (M5, Ls) and the heavy

quark masses amh. To this end we calculated heavy-heavy two-point functions for a

2Note that the value in [10] differs as it used wphys
0 = 0.176(2)fm from [101]
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Figure 5.2: Scan in M5 for a range of heavy quark masses on the coarsest en-
semble (Q1). The vertical blue dotted line is the normalisation point, whilst the
solid blue line is the physical charm mass defined by the ηc = 2.9836(6) GeV [1].

variety of values of (M5, Ls, amh) on the coarsest two ensembles. In the remainder

of this chapter we will ignore quark disconnected contributions to ηc (compare section

3.7.2). This is justified since these are expected to be small [162] and since this study is

designed to give a qualitative understanding of the limitations of domain wall fermions

to simulate heavy quarks. On the coarsest ensemble (Q1) we simulated values of M5 ∈
{1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9}, keeping Ls = 12 fixed and varying 0.1 < amh < 0.9.

As discussed in section 4.2 decay constants need to be renormalised by a renormalisation

factor ZA (compare (4.15)). Since we are not interested in making physical predictions

from the quenched theory, we instead build ratios to cancel the renormalisation con-

stants. These renormalisation constants are mass-independent in the limit of a → 0,

so any mass dependence they display at a finite lattice spacing can be interpreted as a

discretisation effect. To do this we build the ratio

fhh(mηc)

fhh(mref)
≡ fhh

f ref
hh

, (5.1)

where we chose mref = 1.5 GeV. To obtain f ref we simply linearly interpolate the values

around mhh ∼ 1.5 GeV to this value. The results of this first scan are shown in figure

5.2. We observe the appearance of a kink when going beyond a certain critical mass

amcrit
h which depends on the value of M5 which is typically around amcrit

h & 0.4. Recall
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Figure 5.3: Overlay of three values of M5 for the two coarsest ensembles Q1
(closed symbols) and Q2 (open symbols). The left panel shows the entire range,
whilst the right panel zooms into the region around the physical charm quark
mass. Again the vertical blue dotted line is the normalisation point, whilst the
solid blue line is the physical charm mass defined by the ηc = 2.9836(6) GeV [1]

.

the existence of bulk modes in the fifth dimension (cf. (4.6) in section 4.1) and that

their behaviour depends on the values of M5 and mf . Beyond this critical value (i.e.

at the location of the ‘kink’) the displayed behaviour is non-physical. Such a limitation

of domain wall fermions is expected from the free theory [163, 164] due to the energy

scales of the bulk modes not being well separated from the energy scale of the desired

state. For these reasons we restricted ourselves to the region in amh up to this kink.

We observe that in the region far below the charm quark mass, the different curves are

close to each other, whilst for amh ∼ amc a significant effect is observed. This indicates

that discretisation effects are strongly M5 dependent. Also the reach in the heavy-heavy

pseudoscalar mass before the appearance of this kink depends strongly on the chosen

value of M5. For example, M5 = 1.9 (the upwards facing green triangles) just about

allows to reach charm (for the present lattice spacing), whilst M5 = 1.6 (black stars) or

M5 = 1.2 (green squares) allow to reach further in the heavy quark mass.

In a second run we reproduced a subset of the M5 (M5 ∈ {1.4, 1.6, 1.8}) values on the

next finer ensemble (Q2). A flat continuum limit is indicated by values on Q1 and Q2

which lie on top of each other. The result of this scan is presented in figure 5.3. It can

clearly be seen that the values M5 = 1.4 and M5 = 1.8 indicate large cut-off effects with

opposite signs, whilst for M5 = 1.6 the approach to the continuum appears to be flatter.

This was found to be the optimal choice (black stars) amongst the simulated values.

It now remains to investigate this behaviour and see whether other quantities are linked

to this behaviour around amh & 0.4. As introduced in (4.21) the residual mass mres

gives an indication of the residual chiral symmetry breaking. For domain wall fermions

to approximate chiral symmetry well, this quantity is required to remain small. For
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Figure 5.4: left : Effective residual mass as a function of time for a variety of
input quark masses for a choice of M5 = 1.6 and Ls = 12 on the coarsest
ensemble (Q1). right : The residual mass taken from the central time slice as a
function of the bare input quark mass for varying values of M5 on the coarsest
ensemble (Q1).

sufficiently large times the time dependence of the numerator and denominator should

cancel, so that we expect the effective residual mass (i.e. the value of the residual mass

as a function of the time slice) to plateau in that region. As can be seen from the left-

hand panel of figure 5.4, this is indeed the case for small input quark masses. However,

for an input quark mass of amh > 0.4 the effective residual mass does no longer plateau

and does not remain bounded. This happens to be in the same region where we observe

the kink in figures 5.2 and 5.3. Lacking a plateau to which we can fit a constant, we

instead take the central time-slice as an indication of the value of the residual mass.

The described behaviour persists for all values of M5 as can be seen from the right-hand

panel of the same figure (note the logarithmic scale on this panel). For this reason we

restrict our future simulations to values of amh . amcrit
h = 0.4. Attempts to increase

the extent of the fifth dimension reduced the absolute value of the residual mass but did

not change the qualitative behaviour observed in the left panel of figure 5.4.

So we have established an upper bound on the input quark mass (amcrit
h & 0.4) as well

as a choice of the domain wall height (M5 = 1.6), yielding indications of small cut-off

effects. Finally, even on the coarsest lattice spacing, we are able to reach the physical

value of the charm quark mass whilst observing the upper bound described above. For

amh ≤ 0.4 by inspection figure 5.4 gives values of amres < 0.0005 which corresponds to a

residual mass in physical units of mres < 1 MeV. Since (for otherwise fixed physics) the

residual mass decreases as we approach finer lattice spacings (compare e.g. ref [144]),

we chose Ls = 12 to be a sufficiently safe bound. In summary our choices are

M5 = 1.6

amh . am
crit
h = 0.4

Ls = 12.

(5.2)
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Name β smearing radius ams amh

P Z2 P Z2 start step stop

Q1 4.41 2.8 4.5 0.034, 0.036 0.036, 0.037 0.1 0.05 0.4
Q2 4.66 4.0 6.0 0.024, 0.026 0.024, 0.026 0.066 0.033 0.396
Q3 4.89 8.8 7.5 0.018, 0.020 0.018, 0.020 0.07 0.04 0.39
Q4 5.20 11.7 11.7 0.011, 0.013 0.0118, 0.0133 0.04 0.04 0.28

Table 5.3: Simulated strange and heavy input quark masses amh and the choices
of smearing radii for heavy quark masses. The simulated bare quark masses are
quoted in lattice units for the MDWF action. The heavy quark masses starting
from “start” with a step of “step” and ending at “end” are simulated. rP

sm and
rZ2
sm refer to the choice of the smearing parameter for the Gaussian smearing of

the source/sink of the propagators for the point and Z2 noise sources, respec-
tively. For the Gaussian smearing we employed 400 smearing iterations. All
measurements are carried out with MDWF with parameters Ls = 12.

With this set of parameters we will now carry out a series of studies on all four ensembles

to investigate the exact continuum limit scaling.

5.5 Run Set-Up

We are interested in the pseudoscalar dispersion relation as well as the pseudoscalar

decay constants. We therefore decided to do two separate studies: the first study employs

point sources propagators to allow for definite momentum projections whilst the second

one uses stochastic sources [110] leading to better statistics due to volume averaging

and is representative of our strategy for the dynamical Nf = 2 + 1 runs at physical

pion masses. For the point source data set we projected to momenta ap = 2π
X n with

|n|2 = 0, 1, · · · , 3.

Given the small volume, we employed Gaussian source/sink smearing [109, 165] (compare

section 3.7.4) to improve the overlap of the ground state with the vacuum. Whilst Z2

sources are just point sources distributed over a large volume, the effect of smearing is

the same between the two. Finding the optimal smearing radius was an iterative process,

so the chosen smearing radii differ between the two studies. Once a smearing radius was

determined on the coarsest ensemble, it was then scaled by the ratio of lattice spacings

for the other ensembles. Table 5.3 lists the smearing radii and the bare simulated strange

and heavy quark masses. For cost reasons we only simulated local strange quarks, but

simulated and contracted all combinations of local and smeared heavy quarks. In all

cases we monitored the time slice residual as defined in (3.52).
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Name β P Z2

Nconfs Nhits Nmeas Nconfs Nhits Nmeas

Q1 4.41 100 8 800 100 2 200
Q2 4.66 100 8 800 100 1 100
Q3 4.89 111 8 888 111 1 111
Q4 5.20 36 8 288 59 2 118

Table 5.4: Number of measurements for the simulations with point sources (P)
and Z2-Wall sources (Z2). Nconfs is the number of configurations on which
we have measured, Nhits is the number of different measurements on the same
configuration.

5.6 Analysis

To investigate the continuum scaling of the dispersion relation and the decay constants,

we produced strange-strange, strange-heavy and heavy-heavy two-point functions. From

fitting these to the expected functional form (compare (3.53)) we extract masses, energies

and decay constants. This is described in section 5.6.1. We then fix the strange quark

mass for all strange-strange and strange-heavy observables as outlined in section 5.6.2.

In a final step we interpolate the observables at the physical strange quark mass to

reference heavy meson masses (mDs or mηc) before taking the continuum limit. This is

done for the pseudoscalar dispersion relation in section 5.6.3 and for the pseudoscalar

decay constants in section 5.6.4.

As mentioned previously, we generated two distinct data sets corresponding to the two

source types. The statistics for the two data sets are listed in table 5.4. In the case

of the point sources, the origin was translated in space and time between consecutive

measurements to sample more of the lattice volume. In both studies measurements on

the same configuration but on different source positions were binned into one effective

measurement. For the point source correlation functions we averaged all possible spatial

orientations of p for a given p2. I.e. for n2 = 1 we average (±1, 0, 0), (0,±1, 0) and

(0, 0,±1).

5.6.1 Correlation Function Fits

There is an important difference in our simulations for the decay constants and the

dispersion relation. For the former we are interested in matrix elements and therefore

need to resolve the individual amplitudes Zsrc and Zsnk as introduced in equation (3.53).

In the study of the latter, we are interested in the masses and energies only, so we

can restrict ourselves to fitting the time behaviour without disentangling the product

ZsrcZsnk.
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Figure 5.5: Example correlation function fit for a strange-strange meson on Q1
in the dispersion relation study. The left (right) plot corresponds to the lighter
(heavier) simulated strange quark mass. In each case, the top panel corresponds
to the correlator data that is actually fitted, whilst the bottom panel denotes the
effective mass as defined in (3.54). The lines in both plots are the fit results, the
larger symbols are data points that enter into the fit. Here a and p correspond
to A and P in (5.3), respectively; LLLL indicates that both operators are local
at source and sink.

For strange-heavy mesons we have 4 smearing combinations (heavy quark local/smeared

at source/sink). For the decay constant analysis we choose

{Γsrc,Γsnk} ∈ {P ≡ γ5, A ≡ A4 = γ4γ5}, (5.3)

again leading to 4 different combinations. In the following we will drop the subscript 4

and take it to be understood that A refers to the time component of the axial vector

current. All combinations of smearings and the Dirac structures (used here) induce

states of the same energies, so the correlation functions can be fitted simultaneously.

Let us recall the most general functional form (at sufficiently large t) of the correlation

function

〈Osnk(t)Osrc(0)〉 =
ZacsrcZ

bd
snk

2m

(
e−mt ± e−m(T−t)

)
, (5.4)

where the gamma structure in Osrc, Osnk can be P or A and a (c) correspond to the

source smearing (L or S) for the first (second) quark field and b (d) to the sink smearing.

For the decay constant analysis we are interested in the local matrix element
〈
0
∣∣ALL

µ

∣∣Ds

〉
(compare (3.43)), where LL corresponds to both quark fields being local at the operator.

The simplest way to achieve this would be to insert A at the source and the sink and

leave all quark fields local at source and sink, however the signal quality is a lot better

for other correlators, so a combined fit of multiple correlators is favourable. Figure 5.5

shows the example of a correlation function fit for the case of a strange-strange meson on

the coarsest ensemble. The results for the correlation function fits for the strange-heavy

mesons for the decay constant as well as the dispersion relation study are summarised
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Figure 5.6: Example of the interpolation to the physical strange quark mass for
the ensembles Q1 (left) and Q4 (right) in the point-source study. The red data
points are the simulated strange quark masses and the corresponding ηs masses.
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lattice units. The magenta data point shows the result of the fit determining
amphys

s .

Name β P-source Z2-source

am1
s am2

s amphys
s am1

s am2
s amphys

s

Q1 4.41 0.034 0.036 0.03454(43) 0.036 0.037 0.03455(63)
Q2 4.66 0.024 0.026 0.02434(22) 0.024 0.026 0.02416(36)
Q3 4.89 0.018 0.020 0.01774(17) 0.018 0.020 0.01805(33)
Q4 5.20 0.011 0.013 0.01165(22) 0.0118 0.0133 0.01145(31)

Table 5.5: Simulated strange quark masses on all ensembles for Z2-Wall sources
(left) and point sources (right) as well as the physical value in both cases.

in Appendix B in tables B.1 to B.4 and B.5 to B.8, respectively.

5.6.2 Interpolation to the Physical Strange Quark Mass

To be able to take a continuum limit of strange-heavy quantities such as fDs we need

to ensure that the strange quark mass that is used reproduces the same physics on each

ensemble. So on each ensemble we fix the bare strange quark mass by using the fictitious

particle ηs consisting of a strange and an anti-strange quark but no disconnected con-

tributions. A value for the mass of this ηs is given in [166] to be mηs = 0.6858(40) GeV.

We first find the physical strange quark mass by linearly interpolating mηc(ams) to this

value and then interpolate O(ams) to this value for all observables O which include a

strange quark. The results of this interpolation are summarised in table 5.5 and an ex-

ample is shown in figure 5.6. Note that the values obtained for the two different source

types are compatible within stochastic errors.
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Now that we have found the physical strange quark mass we linearly interpolate all

quantities involving a strange quark to this value.

5.6.3 Dispersion Relation

We know that in the continuum the dispersion relation implies that the energy E of a

particle is related to its spatial momentum p and its mass m by

E2(m,p) = m2 + p2. (5.5)

We want to test whether our discretisation of the heavy quark can reproduce this result

in the continuum limit. At finite lattice spacing this relation is modified to

sinh2

(
aE

2

)
= sinh2

(am
2

)
+

3∑
i=1

sin2
(api

2

)
. (5.6)

Recall that the Fourier momenta accessible on a lattice of spatial extent L are limited to

Λ̃, i.e. p = 2π
L n where n is a vector of integers. This implies that the slightly different

volumes (compare table 5.2) of the different ensembles cause slightly different momenta.

We correct for this by defining a reference volume Lref = 1.648fm and interpolating the

simulated momenta psim to the Fourier momenta allowed in this volume. This correction

is done according to

Eref = 2a−1 sinh−1

√√√√sinh2

(
aEsim

2

)
−

3∑
i=1

sin2

(
apsim

i

2

)
+

3∑
i=1

sin2

(
apref

i

2

)
. (5.7)

Figure 5.7 shows the simulated data and the correction to the reference momenta. We

can see that the heavy-strange mesons are only mildly affected by lattice artefacts, whilst

for heavy-heavy mesons with large heavy quark masses the lattice artefacts become

significant. We can also see that lattice artefacts grow with the momentum. We note

that even on the coarsest ensemble (a−1 ∼ 2 GeV) we are nearly able to reach the

physical value of the charm quark mass.

We now introduce reference masses

mref
sh = 1.3 GeV, 1.6 GeV, 1.9690 GeV(= mphys

Ds
) and 2.4 GeV

mref
hh = 2.0 GeV, 2.5 GeV, 2.9836 GeV(= mphys

ηc ) and 3.5 GeV
(5.8)

to fix the heavy quark mass to be the same on the different ensembles and interpolate

the data to these reference values. This means we now have obtained a set of energies

E at the same momentum p with the same orientation at the same reference mass and

- if present - with the same strange quark mass. We are now in the position to carry

out the continuum limit for each reference mass and each momentum using two different
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Figure 5.7: Dispersion relation of heavy-strange (left) and heavy-heavy (right)
mesons on the coarsest ensemble (Q1). The coloured data points correspond to
the simulated data at the given momenta and heavy quark masses. The dotted
coloured lines corresponds to the expected continuum dispersion relation. The
solid black lines indicate the physical values of the Ds (left) and the ηc mesons
(right). The black vertical dash-dotted lines introduce the reference momenta
defined by Lref with the momentum-corrected data points on top (coloured
crosses).

ansätze
E2(a = 0) = E2(a) + C2a

2 and

E2(a = 0) = E2(a) +D2a
2 +D4a

4.
(5.9)

Figure 5.8 shows examples of such continuum limits for the case of a heavy-strange

meson at the physical Ds (left) as well as for a heavy-heavy meson at mref
hh = 2.5 GeV

(right). We note that the correlator quality of the ensemble Q3 was poor for large

momenta (|n|2) leading to large error bars. The solid red and dash-dotted blue lines

show a continuum limit according to the first equation of (5.9) including all ensembles

and only the finest three, respectively. The green dotted line are a continuum limit fit

to all data points using the second line of (5.9). We can see that in the case of the

heavy-strange mesons (left), the continuum behaviour is very flat even at the largest

simulated momentum and the physical Ds meson mass. For heavy-heavy mesons the

continuum limit is flat and well behaved for the smallest (top right) and the largest

(bottom right) momentum. However, O(a4) effects become present for the coarsest

ensemble at n = (1, 1, 0) (middle right). However, leaving out the coarsest ensemble of

fitting the O(a4) effects gives acceptable results. The fact that the largest momentum

appears to be less affected by discretisation effects, might arise due to the larger error

bars.

Figure 5.9 shows the continuum limit for all reference masses and all momenta. The

dotted lines depict the continuum dispersion relation for a meson of the given mass. We
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Figure 5.8: Examples of the continuum limits of the pseudoscalar dispersion
relation for heavy-strange (left) and heavy-heavy (right) mesons for the three
different reference momenta (increasing from top to bottom) at the physical
charm quark mass. The black circles correspond to the data at finite lattice
spacings. Note that the large error bar for the ensemble Q3 in the right col-
umn arises from poor quality of the correlator data at large momenta. The red
diamonds and the corresponding solid line and error band show the result of
the continuum limit extrapolation using all four ensemble and assuming O(a2)
effects only (compare the first line of (5.9)). The blue squares, the dash-dotted
line and the blue error band show the results of the same fit-ansatz but ne-
glecting the coarsest ensemble. The green dotted lines show the results of a
fit-ansatz including O(a4) effects (second line of (5.9)). Finally the star is the
energy of the meson computed using the continuum dispersion relation (5.5)
and the meson rest mass.
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Figure 5.9: Continuum extrapolated results for the heavy-strange (left) and
heavy-heavy (right) meson energy as a function of the momentum for the differ-
ent reference masses. Each dotted line depicts the continuum dispersion relation
(5.5) for the associated reference mass. All fit result shown arise from the fits
of the form presented in the first line of (5.9). For the heaviest reference mass
(msh = 2.4 GeV andmhh = 3.5 GeV respectively), only the three finer ensembles
enter the continuum limit since the heavy mass reach of the coarsest ensemble
is not sufficient. This results in the larger error bars.

see that the continuum dispersion relation is reproduced by our lattice data, in particular

for heavy-strange mesons. This is promising for dynamical studies of heavy-light mesons.

5.6.4 Decay Constants

In this section we examine the behaviour of heavy-strange decay constants. This is one

of the prime quantities that we aim to make a prediction for from the full 2 + 1f theory.

To do this we define the quantity ΦP

ΦP = fP
√
mP , (5.10)

where P is a pseudoscalar meson, and fP and mP are the decay constant and meson

mass of P respectively. Heavy Quark Effective Theory predicts that in the static limit

(mP → ∞), ΦP tends to a constant and that one can expand ΦP near the static limit

as a polynomial in 1/mP . For the purpose of the work presented here, we do not

make use of HQET and therefore neglect any matching between HQET and our data.

However, we still find it convenient to consider the quantity Φ rather than the decay

constant itself, since it behaves more linearly in the inverse heavy meson mass as we

will see later. We stress, that this is purely a choice and that no assumptions of HQET

enter in the decay constant study. Having interpolated the decay constant data to the

physical strange quark mass we now follow a similar procedure as in the dispersion
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relation study and introduce reference heavy meson masses to fix the heavy quark mass

to be the same on all ensembles. One further complication arises from the need to

renormalise the decay constant data before being able to combine data from different

ensembles. Since this is only an exploratory study and since we do not aim to make

any phenomenologically relevant predictions from the data presented in this chapter,

we decided to eliminate the need to renormalise the data by following the approach

presented in section 5.4. So in addition to the reference masses (5.8) we introduce a

normalisation mass mnorm
sh = 1.0 GeV and define the ratio Rsh to be

Rsh(mref
sh ) =

f ref
sh

√
mref
sh

fnorm
sh

√
mnorm
sh

. (5.11)

Figure 5.10 shows the continuum limits of Rsh at the various reference masses. We

consider two different approaches to the continuum limit, namely

R1(a) ≡ R(a = 0) +D2 a
2,

R1(a) ≡ R(a = 0) + E2 a
2 + E4 a

4.
(5.12)

The results are illustrated in figure 5.10 as solid and dashed lines with error bands,

respectively, and the resulting fit coefficients are listed in table 5.6.

For the two lightest reference masses, 1.3 and 1.6 GeV, the slope of the continuum limit

is compatible with zero. For higher masses the continuum limit starts exhibiting a

significant slope. In fact, the dimensionless term D2a
2/R (a = 0), which indicates the

fractional amount of discretisation errors, is around 3% for the physical Ds meson on the

coarsest ensemble (a−1 ≈ 2 GeV), and of O (2%) on the next finest one (a−1 ≈ 2.9 GeV).

At the level of statistical precision achieved here the fits reveal only a very mild sensitivity

to higher order (O(a4)) coefficients: E4 is compatible with zero within one standard

deviation. These results are promising indicate that we are able to simulate D and

Ds meson decay constants in the full 2 + 1f theory without having to remove large

discretisation effects.

5.7 Conclusion

In our choice of the domain wall action we find a region in parameter space (M5 =

1.6, amh . 0.4) which allows for the simulation of the physical charm quark mass on

lattices with inverse lattice spacings as small as a−1 ∼ 2 GeV. We tested the continuum

limit behaviour of some basic quantities of interest such as the dispersion relation and

the decay constants. We recover the correct continuum behaviour of the dispersion

relation for heavy-strange and heavy-heavy mesons for the first three accessible Fourier

momenta. In the case of heavy-strange mesons, the approach to the continuum of the

dispersion relation is very flat and for our level of precision can be well described by
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mref
sh [GeV] Ra=0

D2[GeV2] -
χ2/dof p

E2[GeV2] E4[GeV4]

1.3
1.223(05) 0.08(05) 0.15 0.86
1.219(09) 0.17(16) -0.37(64) 0.02 0.89

1.6
1.418(09) 0.01(08) 0.07 0.93
1.417(16) -0.04(28) 0.1(1.0) 0.12 0.73

mDs
1.616(14) -0.23(11) 0.43 0.65
1.631(25) -0.53(43) 1.1(1.5) 0.43 0.51

2.4
1.819(27) -1.16(32) 1.71 0.19
1.902(71) -3.9(2.1) 17(14) - -

Table 5.6: Results of the continuum limit extrapolation for the heavy-strange
decay constants. For a given reference mass, the first line summarises the results
for the linear extrapolation in a2, the second line the quadratic extrapolation in
a2. We also show corresponding results for the χ2/dof and p-values. Note that
obeying amh . 0.4 bounds the reach in the heavy quark mass such that for the
reference mass 2.4 GeV only the three finer ensembles are considered. Since this
leaves no degrees of freedom in the fit, we cannot assign a value for χ2/dof or a
p-value.

O(a2) effects. As the bare input charm quark mass increases, heavy-heavy mesons show

O(a4) effects for large momenta. The heavy-strange decay constants also show a flat

approach to the continuum up to the physical charm quark mass. Since we expect

these features to carry over to the dynamical case, these results are encouraging for the

simulation of charm quarks with domain wall fermions. In addition to allowing for an

additional parameter choice (M5) influencing the approach to the continuum, this allows

to incorporate the GIM [70] mechanism for simulations with DWF light quarks, as has

been recently demonstrated [167].

The outcomes of this chapter constitute the foundation for the next chapter, as it enables

us to study the decay constants of D and Ds mesons in a dynamical theory with Nf =

2 + 1 on the RBC/UKQCD ensembles with physical pion masses [144].
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Chapter 6

D and Ds Decay Constants from

Nf = 2 + 1 Lattice QCD

After a brief review of the literature in section 6.1, we present our study of the de-

cay constants D and Ds mesons, yielding a prediction for fD and fDs as well as the

corresponding CKM matrix elements [12]. For the purpose of this study we simulated

light-light, light-heavy, strange-heavy and heavy-heavy pseudoscalar mesons on 7 differ-

ent ensembles with pion masses ranging from 139 to 430 MeV and inverse lattice spacings

ranging from 1.73 to 2.77 GeV. These ensembles are described in section 6.2. The set-up

of our simulation of the heavy quark was strongly guided by the findings of the pilot

study presented in the previous chapter and is summarised in section 6.3. From fits

to the correlation functions we extracted masses and matrix elements and hence decay

constants as described in section 6.4. In section 6.5, we then inter/extrapolate the data

to physical quark masses (ml, ms and mc) and vanishing lattice spacing. We assess the

outcome of this analysis and give a quantitative estimation of the systematic errors in

section 6.6. Finally, we extract the corresponding CKM matrix elements and compare

our results to the published literature in section 6.7.

6.1 Review of Previous Results

Experimentally the quantities |Vcd| fD+ and |Vcs| fD+
s

can be determined (compare sec-

tion 6.7). The current global averages, stated by the Particle Data Group (PDG) [168]

are

|Vcd|fD+ = 45.91(1.05) MeV and |Vcs|fD+
s

= 250.9(4.0) MeV, (6.1)

combining the results from CLEO-c [152, 169–174], BES [175], Belle [176] and BaBar [177].

On the theoretical side, a number of lattice calculations of fD+ and fD+
s

have been

published in the past, using a variety of different fermion discretisations. In particular,

75
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Figure 6.1: Summary of lattice predictions for fD and fDs (left) and their ratio
(right) [8]

the choice of the charm quark discretisation ranges from highly improved staggered

quarks [178], the Fermilab approach [145], the overlap operator [137], Osterwalder-

Seiler fermions [179] to Wilson fermions [46]. The Flavour Lattice Average Group

(FLAG) [8, 57, 180] summarises these results and publishes global averages (based on

selection criteria). Figure 6.1 is taken from the most recent report of the Flavour Lat-

tice Averaging Group (FLAG) [8] and shows the current status of lattice predictions for

fD and fDs and their ratio, summarising the results from refs [18, 158, 162, 181–194].

The results are ordered by the number of flavours in the sea, in particular results for

Nf = 2 + 1 [162, 185–187] and Nf = 2 + 1 + 1 [18, 181, 183] are stated. Given that

theoretical predictions of fD and fDs have now reached sub-percent precision, indepen-

dent determinations of these quantities are vital. It is important to note that for a given

number of sea flavours the most precise results (refs [18, 183] for Nf = 2 + 1 + 1 and refs

[162, 187] for Nf = 2 + 1) are based on an overlapping set of gauge configurations and

are therefore not completely independent results. We aim to carry out an independent

computation of these decay constants with domain wall fermions in the sea as well as

in the valence sector. In particular we will use the physical pion mass ensembles of the

RBC/UKQCD collaborations [144] and utilise the charm quark discretisation presented

in the previous chapter.

6.2 Ensembles

The ensembles used for this study are summarised in table 6.1. All ensembles use the

Iwasaki gauge action [83–85] and have 2+1 flavours in the sea. One of the main improve-

ments of recent lattice QCD calculations, is the inclusion of (near) physical pion mass

ensembles. We make use of two such ensembles [144] labelled C0 (‘C’ for ‘coarse’) and

M0 (‘M’ for ‘medium’). This eliminates the need for a large chiral extrapolation, which

to date is a source of large systematic uncertainties. Whilst these ensembles existed prior
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β Name L3 × T/a4 a−1[GeV] L [fm] mπ[MeV] mπL

2.13 C0 483 × 96 1.7295(38) 5.4760(24) 139 3.863(05)
2.13 C1 243 × 64 1.7848(50) 2.6532(15) 340 4.570(10)
2.13 C2 243 × 64 1.7848(50) 2.6532(15) 430 5.790(10)

2.25 M0 643 × 128 2.3586(70) 5.3539(31) 139 3.781(05)
2.25 M1 323 × 64 2.3833(86) 2.6492(19) 300 4.072(11)
2.25 M2 323 × 64 2.3833(86) 2.6492(19) 360 4.854(12)

2.31 F1 483 × 96 2.774(10) 3.4141(24) 235 4.053(06)

Table 6.1: This table summarises the main parameters of the used ensembles.
All of these use the Iwasaki gauge action with 2 + 1 flavours in the sea.

to this work, to obtain a controlled continuum limit we created a gauge ensemble at a

third lattice spacing (labelled F1, ‘F’ for ‘fine’). Aiming for an inverse lattice spacing of

a−1 ∼ 2.8 GeV and physical pion masses whilst maintaining the constraint of mπL & 4

(compare section 3.8) requires N & 80 which was not computationally feasible. Instead

we chose to allow for a slightly heavier pion mass of mπ ∼ 235 MeV, allowing for a

lattice with N = 48 sites per spatial direction. This however forces us to have a small

extrapolation in the pion mass. Therefore, to investigate the pion mass dependence

of the observables, we also included RBC/UKQCD’s older 2 + 1f ensembles with pion

masses between 300 MeV and 430 MeV labelled C1, C2 [195, 196] and M1, M2 [197].

The scale is set in one global fit that includes further ensembles not listed here. The

physical inputs to determine the light and strange quark masses and the scale are mπ,

mK and mΩ respectively. The details of this global fit are described in ref [144] and we

repeated this fit after including results for ω0, t0, fπ, mπ, fK and mK for the ensemble

F1, leading to the values listed in table 6.2. On all ensembles the Wilson flow [100, 101]

was measured. As an outcome of this global fit we obtain the physical light and strange

quark masses as well as the value wphys
0 = 0.8742(46) GeV−1 [144] to relate measurements

of the Wilson flow to physical units.

Table 6.2 lists the parameters of the light and strange quark sector. The S/M column

refers to Shamir [129, 131] or Moebius [141] domain wall fermions. M5 and Ls are the

domain wall height and the extent of the fifth dimension as described before. amsea
l and

amsea
s are the degenerate up/down mass and the strange quark mass that propagate in

the sea. amphys
s and a−1 are outputs of the global fit described in [144] with the addition

of the new fine ensemble. There are peculiarities to note from this table:

(a) Even though β is the same amongst all the coarse (medium) ensembles there is

a slight shift in the lattice spacing between the physical point ensemble C0 (M0)

and the non-physical pion mass ensembles C1, C2 (M1, M2). This is due to the

change in action from Shamir to Moebius. However, the parameters of the Moebius

domain wall fermions were chosen, such that the approach to the continuum limit
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Name S/M M5 Ls amsea
l amsea

s amphys
s a−1[GeV]

C0 M 1.8 24 0.00078 0.0362 0.03580(16) 1.7295(38)
C1 S 1.8 16 0.005 0.04 0.03224(18) 1.7848(50)
C2 S 1.8 16 0.01 0.04 0.03224(18) 1.7848(50)

M0 M 1.8 12 0.000678 0.02661 0.02540(17) 2.3586(70)
M1 S 1.8 16 0.004 0.03 0.02477(18) 2.3833(86)
M2 S 1.8 16 0.006 0.03 0.02477(18) 2.3833(86)

F1 M 1.8 12 0.002144 0.02144 0.02132(17) 2.774(10)

Table 6.2: Ensemble parameters for the light sector of RBC/UKQCD’s Nf =
2 + 1f Iwasaki gauge action ensembles.

as well as the leading oder discretisation effects agree, making it feasible to combine

data from both incarnations of the domain wall action into the same analysis1 For

the purpose of this work, we simply take the lattice spacings as defined in table

6.1.

(b) There is a mistuning between the strange quark mass amsea
s in the sea and the

physical strange quark mass amphys
s . Whilst we have partially quenched the strange

quark mass to its physical value on the ensembles C1, C2, M1 and M2, we simulated

the unitary sea quark mass on the remaining ensembles (C0, M0, F1). However,

this mistuning is at most 5% and we will discuss in section 6.5.1 how this is taken

into account.

6.3 Run Set-Up

For the physical point ensembles (C0, M0) and the fine ensembles (F1) the physical

strange quark mass was not known yet at the beginning of runs relevant to this work.

We therefore simulated the unitary (i.e. ams = amsea
s ) strange quark mass. Contrary to

this, for the auxiliary ensembles (C1, C2, M1, M2) the physical strange quark mass was

known prior to these runs, so we directly simulated the physical strange quark masses

amphys
s .

Recall from chapter 5 that we found the optimal region in the domain wall parameter

space for heavy quarks to be M5 = 1.6, Ls = 12 and amh . 0.4. For this reason

we simulated the heavy quarks with these values for a number of heavy quark masses

satisfying the bound amh . 0.4. The exact choice of all simulated masses is summarised

in table 6.4. On the coarser physical point ensemble we additionally simulated one

data point above this bound, i.e. amh = 0.45 to check whether this bound indeed

applies. When consulting the residual mass (compare (4.21)), which served as indicator

1More detail concerning this can be found in ref [144].
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Figure 6.2: The time behaviour of the residual mass for the coarser physical
pion mass ensemble (C0). The bound established in the quenched study of
amh ≤ 0.4 still holds in the dynamical case.

Name start step stop hits N total

C0 420 20 2160 48 88 4224
C1 4690 40 8650 32 100 3200
C2 3050 20 5050 32 101 3232

M0 1200 20 2780 32 80 2560
M1 770 20 2410 32 83 2656
M2 580 20 2080 16 76 1216

F1 4000 40 7240 48 82 3936

Table 6.3: Number of measurements and trajectories on which we measured.
Measurements were carried out between start and stop in intervals of step. N
is the total number of configurations, hits the number source positions of the
stochastic noise sources.

for unphysical behaviour in the quenched study we find that this does indeed plateau

for amh ≤ 0.4 but no longer plateaus for amh > 0.4. This is shown in figure 6.2.

Table 6.3 summarises the number of measurements on each of the ensembles. To improve

the statistical signal we employed Z2-Wall sources [110] (c.f. section 3.7.4) on a large

number of time planes, shown by the column hits in table 6.3. This was made possible by

the use of the HDCG algorithm [105] for the light (including strange) quark sector. All

heavy quark propagators were inverted with a standard CG solver [103]. The stopping

criterion was chosen, by monitoring the time slice residual (compare (3.52) in section

3.7.2) to ensure convergence.
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Name aml ams ambare
h

C0 0.00078 amsea
s 0.3, 0.35, 0.4, 0.45

C1 0.005 amphys
s ,amsea

s 0.3, 0.35, 0.4

C2 0.01 amphys
s 0.3, 0.35, 0.4

M0 0.000678 amsea
s 0.22, 0.28, 0.34, 0.4

M1 0.004 amphys
s ,amsea

s 0.22, 0.28, 0.34, 0.4

M2 0.006 amphys
s 0.22, 0.28, 0.34, 0.4

F1 0.002144 amsea
s 0.18, 0.23, 0.28, 0.33, 0.4

Table 6.4: Moebius domain wall parameters for the heavy quarks of all ensem-
bles. All quoted values for amh are bare quark masses in lattice units. As
described in the text, the value indicated in red was only used to verify our as-
sumptions about the applicability of the quenched pilot study to the dynamical
case.

6.4 Correlation Function Fits

As described in sections 3.7.4 and 3.7.6 we need to determine the range t ∈ [tmin, tmax]

for each correlation function in which we fit the data to the functional dependence to

then extract masses and decay constants. Correlation functions typical for this work are

shown in figure 6.3 and figure 6.4.

Note that the scale is the same for all top panels in figures 6.3 and 6.4. We find that

the data is very clean for correlation functions of two mass-degenerate quarks (figure

6.3), but gets very noisy as the difference in mass between the two quarks increases

6.4 as expected from the Lepage argument [107, 108]. In particular this implies that

the D meson is far noisier than the Ds meson and that data on M0 is noisier than on

C0. Additionally, we observe that the signal-to-noise ratio also gets poorer as the light

quarks approach the physical values, so the ensembles presented here have the worst

plateaus of this study. Since the simulations leading to the data presented here, were

part of a larger measurement program, with the light quark propagators being used for

a number of different applications which required local interpolators, Gaussian source

and sink smearing would have been prohibitively expensive [16, 198–200].

By a first visual inspection of figure 6.4 we note that due to the constraint amh . 0.4

we are unable to reach the physical charm quark mass on the coarse ensembles (amPS ∼
0.97 ⇒ mPS ∼ 1.7 GeV). However, on the medium ensembles (amPS ∼ 0.89 ⇒ mPS ∼
2.1 GeV) we are able to go slightly beyond the physical charm quark mass.

Since our primary interest are the decay constants of D and Ds mesons, we need to

extract ZA ≡ 〈0|A4 |P 〉 for P = D,Ds. From the top panels in figures 6.3 and 6.4 we

can see that the operator insertions 〈aa〉 and 〈pa〉 give larger errors than 〈ap〉 and 〈pp〉.
So we fit the correlation function data of the latter two (〈ap〉 and 〈pp〉 where the first

operator is inserted at the sink and the second one at the source) to the functional form
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Figure 6.3: left : Coarser physical point ensemble (C0). right : Finer physical
point ensemble (M0). The top plots show the pion, whilst the bottom plots show
the heaviest simulated mass point (amh = 0.4) for the connected part of the ηc.
In each plot the top panel shows the relative error on the correlation function
for all four combinations of operators listed in (5.3). The bottom panel shows
the effective mass for the combinations ap and pp only, as these are statistically
more precise.

of the correlation function. We can also see that the signal deteriorates in the center of

the lattice. We found that restricting to tmax < T/2 aids in the fit of the correlation

function. The correlation function of the 〈pp〉 channel settles into the ground state later

than the 〈ap〉 channel which will play a role when considering excited state fits.

The underlying data was folded (compare section 3.7.6) in all cases. Following this, the

fitting strategy for this study was threefold:

1. Uncorrelated ground state fits:

The first approach was to fit the ground state in an uncorrelated fashion to have

a benchmark for further more evolved fitting procedures.

2. Correlated ground state fits:

Where possible we investigated correlated fits. This becomes a problem when data
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Figure 6.4: left : Coarser physical point ensemble (C0). right : Finer physical
point ensemble (M0). The top plots shows heavy-light correlation functions
(D-like), whilst the bottom plots show heavy-strange correlation functions (Ds-
like). In all cases the simulated heavy quark satisfies amh = 0.4. In each plot
the top panel shows the relative error on the correlation function for all four
combinations of operators listed in (5.3). The bottom panel shows the effective
mass for the combinations ap and pp only, as these are statistically more precise.

that enters the fit has large errors leading to large uncertainties in the covariance

matrix. This can lead to an ill-conditioned covariance matrix and therefore unsta-

ble fits. We investigated a number of ways to try and circumvent this as will be

discussed in this section.

3. Uncorrelated excited state fits:

To be able to reduce the value of tmin we chose to fit not just the ground state

but also the first excited state for the cases where we are interested in the matrix

elements rather than just the masses, namely for the heavy-light and the heavy-

strange correlation functions.

Given the complications we found for correlated fits (numerically ill-conditioned covari-

ance matrix) we did not consider correlated excited state fits.
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Figure 6.5: Variation of fit parameters for the example of the heaviest heavy-
light meson (amh = 0.4) on the two physical pion mass ensembles (left: C0,
right: M0). The data shown is for the case of uncorrelated ground state fits.
The grey band are the results from an uncorrelated ground state fit with t/a ∈
[14, 30) in the case of C0 and t/a ∈ [22, 27) in the case of M0.

In addition to the heavy-light and heavy-strange correlation functions, the interpolation

to vanishing lattice spacing and physical quark masses requires the pion mass and in

some cases the ηc mass. Since masses are measured very precisely (compare figure

6.3), we restricted ourselves to simple uncorrelated ground state fits to extract these

quantities. For consistency we also fitted mK and the results we found for mπ and mK

are in good agreement with ref [144].

Whilst other methods are available to increase the signal one can extract such as distilla-

tion [120] and formulating a generalised eigenvalue problem [23], this was too costly for

the present study. We aim to include these methods as well as source and sink smearing

in future work.

Figure 6.5 shows uncorrelated ground-state fit results for a heavy-light meson in the

case of the C0 and the M0 ensemble. In both cases the heaviest heavy quark mass

(amh = 0.4) is shown. The horizontal grey bands show the chosen fit result. In the

case of the C0 ensemble, the data is well behaved and the central value of the fit results

does not depend strongly on the choice of tmin, provided this is chosen sufficiently large

(tmin/a ≥ 13). We can also not resolve any dependence on the choice of tmax. In the

case of the ensemble M0 the situation is different. We can observe a dependence with

tmin as well as tmax. Furthermore, figure 6.4 shows that the plateau is very short in the

case of M0 (22 . t/a . 26). This leads to the need to explore different approaches.

The next step was to attempt correlated ground state fits. The results for the example

of M0 are shown in figure 6.6. We can see that the results strongly depend on the

choice of tmin but plateau in the region of tmin/a & 23 as expected from the uncorrelated

ground state fits (compare figure 6.5). However, this still leaves us with comparably

short plateaus, so instead we attempt to also fit the first excited state.
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Figure 6.6: Variation of fit parameters for the example of the heaviest heavy-
light meson (amh = 0.4) on M0. The data shown is for the case of correlated
ground state fits. The grey bands are the results from an uncorrelated ground
state fit with t/a ∈ [22, 27) in the case of M0.
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Figure 6.7: Variation of fit parameters for the example of the heaviest heavy-
light meson (amh = 0.4) on the two physical pion mass ensembles (left: C0,
right: M0). The data shown are the fit results for the mass and matrix elements
of the ground state obtained from uncorrelated fits including the first excited
state. The grey band are the results from an uncorrelated excited state fit with
t/a ∈ [8, 30) in the case of C0 and t/a ∈ [12, 41) in the case of M0.

One way to cope with the short and noisy plateau is to additionally fit the first excited

state. We systematically vary tmin and tmax again to find a range over which small

variations in the fit range do not have any impact on the final result. To be able to

resolve the first excited state we need to reduce tmin to a value smaller than that for

the ground state fit. We stress that we are not actually interested in the results for

the first excited state in this study, so that our main interest is stability of the fit with

respect to the ground state fit results. Figure 6.7 shows this variation again in the case

of heavy-light mesons for the heaviest simulated heavy quark mass for the case of the

two physical pion mass ensembles. The large error bars on some of the data points with
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large tmin arise when we no longer have sufficient data to sufficiently constrain the two

states.

As can be seen from the grey bands in figures 6.5 and 6.7, the fit ranges tmin and tmax

have been chosen conservatively, such that variations in the fit range are compatible

with the fitted result. This has been checked for all correlation functions and ensures

that we do not have to account for a systematic error from the choice of the fit range. I

summarise the results of the correlation functions fits for pions, D, Ds and ηc in tables

C.1, C.2, C.3 and C.4.

6.5 Further Analysis

Having obtained data for observables O at finite lattice spacing a and simulated quark

masses ml, ms and mh it now remains to find the value of these observables at the

physical values of the quark masses as well as at vanishing lattice spacing. Furthermore,

we need to renormalise the data to be able to make contact with experiment.

The analysis is split into two parts. We first renormalise the data and correct for the

mistuning in the strange quark mass that is present on some ensembles (compare table

6.2). Since the correction of the mistuning corrects the bare matrix elements, the order

in which these two steps are done does not matter. In a second step we then explore

two different approaches of obtaining results at the physical value of the light and charm

quark masses as well as at vanishing lattice spacing.

From the quenched study as well as a first inspection of the data produced here, we

empirically found that the quantity

ΦP = fP
√
mP (6.2)

(where P = D,Ds) behaves linearly in the inverse heavy mass. For this reason we will

carry out the analysis using a simple polynomial ansatz in 1/mH where H = D,Ds, ηc

to describe ΦP (compare e.g. figure 6.11). We will remove
√
mP only in the final step.

6.5.1 Strange Quark Mass Mistuning

The mistuning between the physical mass mphys
s and the simulated sea quark mass on

each ensemble is listed in table 6.5. From this we see that the mistuning on C0 and M0

is 1.1 and 4.8% respectively. The mistuning on F1 is below 1% and compatible with

zero. On C1, C2, M1 and M2 we simulated directly at the physical strange quark mass,

so no mistuning is present in the valence mass. We neglect any partial quenching effects

since this is only a sea quark effect and expected to be subdominant to the valence effect

which we will quantify to be very small. However, on C1 and M1 we also simulated all
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amsea
s amphys

s ∆ms amsim
s

C0 0.0362 0.03580(16) -0.0112(45) amsea
s

C1 0.04 0.03224(18) (-0.2407(69)) amphys
s ,amsea

s

C2 0.04 0.03224(18) - amphys
s

M0 0.02661 0.02540(17) -0.0476(70) amsea
s

M1 0.03 0.02477(18) (-0.2111(88)) amphys
s ,amsea

s

M2 0.03 0.02477(18) - amphys
s

F1 0.02144 0.02132(17) -0.0056(80) amsea
s

Table 6.5: Comparison of amphys
s and amsea

s . The mistuning is defined as
∆ms = (mphys

s − muni
s )/mphys

s . amsim
s lists which strange quark masses have

been simulated.

heavy-strange quantities with a unitary strange quark mass, allowing to determine the

slope αO for each observable O which we then apply to correct for the mistuning. The

slope αO is defined by

Ophys = Ouni (1 + αO∆ms) , (6.3)

where ∆ms = (mphys
s −msea

s )/mphys
s . The αO are defined so that they are dimensionless.

The values we find for α for the observables mDs , fDs and ΦDs are tabulated in table 6.6

and shown in figure 6.8. The values for αO on the coarse and medium ensembles can be

directly deduced from the simulated data on C1 and M1, respectively and is shown in

the left plot in figure 6.8. The vertical solid black line corresponds to the physical value

of the charm quark mass. From the left-hand side of the same figure we can see that

the values of αO have a mass and a lattice spacing dependence, i.e. αO = αO(a,mh).

So to obtain the values of α for the fine ensemble, we need to undertake additional

extrapolations. First we extrapolate the data in the inverse heavy meson mass to the

values which were simulated on (mref
h ). This extrapolation is shown by the faint red

(coarse) and blue (medium) points in the right-hand side of figure 6.8. In a second step

we extrapolate this value to the lattice spacing of the fine ensemble for each reference

mass to obtain the green data points in the same figure. This is done according to

α(a,mh) = α(a,mref
h ) + C0

(
1

mηc

− 1

mphys
ηc

)
α(a,mref

h ) = α(0,mref
h ) + C1 a

2.

(6.4)

Choosing the heavy meson that fixes the heavy quark mass to be the ηc masses that we

simulated on the fine ensemble ensures that we remain independent of any valence light

and strange quarks.

Note that no valence light quark is present in the considered quantities. Therefore, we

assume the value of α to be independent of the light sea quark and just apply it directly

to the simulated data to obtain Ophys for the cases where the unitary rather than the

physical strange quark mass was simulated. Another advantage of this procedure is that
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spacing amh αm αf αΦ

coarse
0.30 0.06026(31) 0.0967(18) 0.1262(20)
0.35 0.05341(33) 0.0982(22) 0.1243(24)
0.40 0.04801(37) 0.0994(27) 0.1229(29)

medium

0.22 0.06353(55) 0.1064(41) 0.1375(43)
0.28 0.05335(70) 0.1113(65) 0.1375(68)
0.34 0.04650(89) 0.1171(98) 0.140(10)
0.40 0.0417(11) 0.124(14) 0.145(15)

fine

0.18 0.06630(80) 0.1083(51) 0.1408(53)
0.23 0.0562(10) 0.1167(94) 0.1442(99)
0.28 0.0490(12) 0.123(13) 0.147(14)
0.33 0.0437(14) 0.127(16) 0.148(16)
0.40 0.0383(16) 0.131(19) 0.150(19)

Table 6.6: Values of α for the three observables (O = mDs , fDs ,ΦDs). Details
about how these were determined can be found in the text.
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Figure 6.8: left: The values of α for the coarse (red circles) and medium (blue
squares) ensembles as a function of the inverse ηc mass. The black vertical solid
line corresponds to the physical value of mηc from ref [1]. right: In addition to
the data from the left plot, the small red and blue symbols show the values of α
extrapolated to the values of the ηc masses measured on the fine ensemble. The
green diamonds are then obtained from extrapolating this to the lattice spacing
of the fine ensemble (compare (6.4)).

the uncertainty of the physical strange quark mass amphys
s is automatically propagated

by creating a bootstrap distribution for amphys
s with the correct width. Building the

products αO × ∆ms (compare the values in tables 6.5 and 6.6) we can see that the

correction needed is indeed small and below %-level in all cases.

To assess the systematic error from this procedure we consider the next term in the

expansion (6.3). This would be of the form 1
2βO (∆ms)

2. Assuming that βO has a similar

magnitude to αO, i.e. (|βO| . 0.2) and using the largest mistuning with |∆ms| < 0.05,

the correction is bounded by 0.025%. For ΦDs this corresponds to an uncertainty of

0.00009 GeV3/2, for fDs/fD to an uncertainty of 0.0003. Given the small values of these
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corrections, we neglect effects of the mistuning of the strange quark in the sea as these

are expected to be smaller.

6.5.2 Renormalisation

To make contact between lattice regulated data and quantities in a continuum theory,

we need to find the renormalisation constants to renormalise the heavy-light current.

Since we use a mixed current, i.e. we use a different value of M5 for the light and

strange quarks (M5 = 1.8) to the heavy quarks (M5 = 1.6), we do not have a conserved

current. However, since this is only a small modification of the action, we assume the

impact on renormalisation constants to be small. In all of the following we will extract

the renormalisation constants from the light-light current and then attach a systematic

error devised from a non-perturbative renormalisation (NPR) study. Within the Rome-

Southampton scheme [201] the effects of changing the action2 are investigated. The

estimate of the systematic error arising from this is found to be below percent level and

is discussed in more detail in section 6.6.

The light-light renormalisation constant can be found from fitting the time behaviour

of the relation

Zeff
A (t) =

1

2

[
C(t− 1/2) + C(t+ 1/2)

2L(t)
+

2C(t+ 1/2)

L(t− 1) + L(t+ 1)

]
(6.5)

to a constant [135, 144]. Here C(t) is the conserved point-split current defined on the

links between the lattice sites [135] whilst L(t) is the local current defined on the lattice

sites.

The folded time behaviour of the light-light current for all ensembles scaled to the interval

[0, 1) is shown in figure 6.9. As expected we can see a lattice spacing dependence. The

slight difference between C1 and C2 (M1 and M2) arises from the slightly different light

quark mass ml. We can also identify a plateau region to which we can fit a constant to

obtain the values of the renormalisation constants. The results of these fits are listed in

table 6.7 and are in good agreement with [144].

6.5.3 A First Impression of the Data

Before moving to the analysis of the discretisation errors, the chiral behaviour and the

heavy quark dependence, we will take a brief look at the data in figures 6.10 and 6.11.

Figure 6.10 shows the ratio of decay constants as a function of the inverse of the mass of

the ηc meson. This figure confirms our earlier observation that we are not able to reach

the physical value of the charm quark mass on the coarse ensembles C0, C1 and C2. We

2Done by A. Khamseh under the supervision of P. Boyle and L. Del Debbio
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Figure 6.9: The time behaviour of Zeff
A (t) scaled to the interval [0, 1] for all

ensembles. The solid lines correspond to the fit results obtained by fitting a
constant to the plateau region of the data. The fit results are summarised in
table 6.7.

ens Z llA
C0 0.711920(24)
C1 0.717247(67)
C2 0.717831(53)

M0 0.743436(16)
M1 0.744949(39)
M1 0.745190(40)

F1 0.761125(19)

Table 6.7: The values for ZA for the various ensembles found from fitting a
constant to the time dependence shown in figure 6.9.

observe little heavy quark mass dependence but a significant light quark dependence.

Moreover, we observe that as the pion mass increases the value of the ratio of decay

constants approaches unity. This is in agreement with intuitive understanding since

in the limit of ml = ms we reach the SU(3) symmetric point and Ds and D become

indistinguishable.

Figure 6.11 shows the renormalised values of ΦP in physical units for P = D (left) and

P = Ds (right). We can observe a number of features of the data shown here. Both,

the D and the Ds meson decay constants show a strong dependence on the heavy quark

mass and - at the level of our statistical resolution - a linear behaviour as a function of

the inverse ηc mass. In the case of the D-meson a strong light quark mass dependence is

visible, which is expected due to the valence light quark present in the D meson. From

comparing the data for C0 and M0, we find that the lattice spacing behaviour appears
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Figure 6.10: The ratio of the decay constants as a function of the inverse ηc mass.
The black vertical solid line (labelled ’phys’) corresponds to the physical value
of mηc as stated by the Particle Data Group [1]. The red circles, blue squares
and green diamonds show data from the coarse, medium and fine ensembles,
respectively.
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Figure 6.11: The quantity ΦP as a function of the inverse ηc mass for P = D
(left) and P = Ds (right). Again, the black vertical solid lines (labelled ’phys’)
correspond to the physical value of mηc as stated by the Particle Data Group [1].
The red circles, blue squares and green diamonds show data from the coarse,
medium and fine ensembles, respectively.

to be rather mild. Contrary to this, the Ds meson displays a smaller light quark mass

dependence (again to be expected, since the light quark only enters as a sea quark).

6.5.4 Fit Strategies

As discussed above, we need to obtain the value of each observable at physical quark

masses and vanishing lattice spacing, i.e. at (a = 0,mphys
l ,mphys

s ,mphys
c ). We have

already fixed ms to its physical value, so it remains to fix the light and the heavy quark

and to take the continuum limit.
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We will fix the quark masses by considering appropriate meson masses, e.g. we fix the

light quark mass by reproducing the physical neutral pion massmπ0 = 134.9766(6) MeV [1]

as was done in ref [144]. We have a number of choices for the meson H that fixes the

charm quark mass. The ones we will consider are H = D,Ds and ηc. Each of these has

slightly different advantages and disadvantages attached. The D meson is comparably

noisy and has a strong light quark dependence, making it difficult to disentangle the

extrapolation to physical light quark masses from the the interpolation to the physical

charm quark mass. The Ds is statistically cleaner and is less affected by the light quark

mass than the D, but due to the mistuning of the strange quark mass, we had to correct

for the value of the Ds mass. Finally the ηc is statistically the cleanest, but we do not

have the disconnected contributions. However, these are assumed to be small [162] and

other collaborations also find good agreement between the two ways to set the charm

scale neglecting these contributions [18]. Reference [162] estimates an effect of less than

0.2% for the contributions due to electromagnetic and quark-disconnected distributions

to the mass of ηc.

We will investigate all three choices and use the spread as an indication of potential

systematic errors. The masses of these mesons, stated by the Particle Data Group [1]

are
mD± = 1.8695(4) GeV

mD±s
= 1.9690(14) GeV

mηc = 2.9836(6) GeV.

(6.6)

We will now proceed in two steps. First we will carry out a local analysis of the data

and consider the parameters that need to be fixed, one-by-one. For this study we will

first fix the heavy quark mass by introducing a set of reference masses mref
H . We will

interpolate the data on all ensembles to these values to obtain O(a,ml,m
phys
s ,mref

h ). We

then carry out a combined chiral-continuum limit to obtain O(a = 0,mphys
l ,mphys

s ,mref
h ).

In a final step we then interpolate the results obtained to the physical value of mH to fix

the charm quark mass to its physical value. In the second analysis we fix all parameters

in one global fit. In the case of a correlated fit, this allows for a meaningful χ2-value and

a probabilistic interpretation of the quality of the fit via the p-value.

6.5.5 Local Fit to Extrapolate to the Physical Point

To minimise light quark effects and avoid effects from the strange quark mass correction

we choose H = ηc to fix the heavy quark mass. We introduce reference masses linearly

in 1/mηc such that one of the reference masses corresponds to the physical ηc mass and

such that the range where we have data is fully covered. The data is linearly interpolated

to these reference masses. This is shown for the observables ΦD and ΦDs in figure 6.12.

Note that for the lowest three reference masses we have 3 distinct lattice spacings, whilst

at other two reference masses we only have two lattice spacings.
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Figure 6.12: ΦP as a function of the inverse ηc mass for P = D (left) and
P = Ds (right). The simulated data is shown by the circles. The dotted
lines correspond to the reference masses, the solid line to the physical charm
mass. At these reference masses, the interpolated data on all ensembles is shown
(squares). The crosses are the extrapolated data points for the coarse ensembles.

In the second step we do a combined chiral-continuum limit fit to this data at each

reference mass using the ansatz

O(a,ml,m
ref
h ) = O(0,mphys

l ,mref
h )+CCL(mref

h ) a2 +Cχ(mref
h )

(
m2
π −

(
mphys
π

)2
)
. (6.7)

This assumes the same slope with the pion mass for all ensembles. The results of all

chiral and continuum limit fits are listed in table 6.8. Examples of this interpolation

for two reference masses in the case of the Ds meson are shown in figure 6.13. In the

left plot of this figure, all lattice spacings are present, whilst the coarse ensembles can

not reach the heavy quark mass of the right plot. In each plot the left-hand panel

shows the extrapolation to the physical pion mass whilst the right-hand side shows the

extrapolation to vanishing lattice spacing. The dotted coloured lines correspond to the

fit result for the given lattice spacing (left-hand panels) and pion masses (right-hand

panels). We can see that the result is far better constrained in the region with 3 distinct

lattice spacings.

Finally the data needs to be interpolated to the physical charm quark mass. This is

done by fitting the values obtained at the reference masses mref
h to the functional form

O(0,mphys
l ,mphys

s ,mphys
c ) = O(0,mphys

l ,mphys
s ,mh) + Ch

(
1

mηc

− 1

mphys
ηc

)
. (6.8)

Figure 6.14 shows this interpolation in the heavy quark mass. In each case the magenta

star shows the result obtained at the physical value. The results of the heavy quark

interpolation in table 6.9.
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observable mref
ηc [GeV] O(a = 0,mphys

l ) Cχ CCL χ2/d.o.f

Φ
D

[G
eV

3/
2 ] 2.3256 0.2531(25) 0.202(12) -0.0129(95) 1.172

2.6138 0.2707(33) 0.216(16) -0.016(12) 0.688
2.9836 0.292(16) 0.264(58) -0.06(11) 0.543
3.4057 0.310(20) 0.276(72) -0.07(13) 0.394

Φ
D
s

[G
eV

3/
2 ] 2.3256 0.3045(17) 0.0652(85) -0.0179(61) 0.517

2.6138 0.3256(20) 0.071(10) -0.0253(73) 0.715
2.9836 0.3449(86) 0.061(26) -0.019(51) 0.075
3.4057 0.3623(100) 0.063(30) -0.018(59) 0.157

f D
s
/f
D

2.3256 1.1531(81) -0.529(42) 0.028(33) 1.598
2.6138 1.159(11) -0.538(55) 0.009(42) 0.693
2.9836 1.158(57) -0.65(21) 0.09(39) 1.153
3.4057 1.154(70) -0.63(26) 0.11(49) 0.932

Table 6.8: Fit results of the extrapolation to physical pion masses and the
continuum for ΦD, ΦDs and fDs/fD.
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Figure 6.13: Extrapolation to vanishing lattice spacing and physical pion masses
for ΦDs at two reference masses mref

ηc . The solid black lines and shaded regions
show the fit results at vanishing lattice spacing (left panels) and at physical
pion masses (right panels). The coloured lines show the fit results for the given
parameters of that ensemble. For clarity only the lightest pion mass ensemble
for each lattice spacing is shown on the right-hand panels and for the lines with
the fit results.

observable O Ch χ2/d.o.f

ΦD [GeV3/2] 0.2895(61) -0.385(63) 0.049

ΦDs [GeV3/2] 0.3459(37) -0.435(38) 0.035
fDs/fD 1.163(19) -0.10(20) 0.031

Table 6.9: Fit results of the interpolation in the reference masses to the physical
value of mηc .
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Figure 6.14: Extrapolation in the heavy quark mass to reach the physical heavy
quark mass for the case of ΦD (top left), ΦDs (top right) and the ratio for
decay constants (bottom). The black points show the results of the chiral and
continuum limit extrapolation at a given reference mass. The larger error bars
on the two left-most black points arise due to the continuum limit extrapolation
with only two lattice spacings. The magenta band shows the result of the
fit. The magenta stars show the result at the physical charm mass. They are
horizontally shifted by a small amount for visual convenience.

We also have a consistency check by comparing two different ways of obtaining the ratio

fDs/fD at physical values. We can either build the ratio first on each ensemble and then

carry out the analysis (compare the bottom plot in figure 6.14). Alternatively we can

build the ratio after having obtained the results for ΦD and ΦDs . The values we obtain

are (
fDs
fD

)extrap

= 1.163(19)

f extrap
Ds

f extrap
D

= 1.163(24),

(6.9)

which are in good agreement. The slightly larger error when building the ratio of the

extrapolated values arises from fewer cancellations between the numerator and the de-

nominator.
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Whilst we can assess the goodness-of-fit for each individual step, it is impossible to make

a statement about the overall quality of the fit. In particular since the steps we have

undertaken are not entirely orthogonal. For example, we expect a small pion mass and

lattice spacing dependence in the mass of the ηc meson. To asses the overall quality of

the fit we will now devise a global fit, guided by our experience from the local fit.

6.5.6 Global Fit Ansatz to Extrapolate to the Physical Point

Our fit ansatz is motivated by a Taylor expansion around the physical value of the

relevant meson masses and the experience from the previous subsection. It is given by

O(a,mπ,mh) = O(0,mphys
π ,mphys

h )

+
[
C0
CL + C1

CL ∆m−1
H

]
a2

+
[
C0
χ + C1

χ ∆m−1
H

] (
m2
π −m2

π
phys

)
+
[
C0
h

]
∆m−1

H ,

(6.10)

where ∆m−1
H = 1/mH − 1/mphys

H and H = D,Ds or ηc. This means we simultane-

ously fit the continuum limit dependence (coefficients CCL), the pion mass dependence

(coefficients Cχ) and heavy quark dependence (coefficients Ch) as well as cross terms

(coefficients linear in ∆1/mh, i.e. C1
χ and C1

CL) in one global fit. The coefficients C1
CL

and C1
χ capture mass dependent continuum limit and pion mass extrapolation terms.

This arises by expanding CCL(mh) and Cχ(mh) in powers of ∆m−1
H . Following the

ansatz from the local study we assume a linear behaviour in m2
π and ignore any chiral

logarithms. This is motivated by our observations that the behaviour with the pion

mass is linear (compare table 6.8 and figure 6.13).

We will monitor the behaviour when employing different cuts in the data that enters the

fit. For example, we have data for pion masses in the range 139 MeV ≤ mπ ≤ 430 MeV

but will consider the cuts

mmax
π = 450 MeV, 400 MeV, 350 MeV. (6.11)

Another variation we have already mentioned is the choice of the meson that fixed the

charm quark mass. Finally we can modify the fit form (6.10) by setting some of the

parameters to zero by hand, which we will do when the data is not sufficiently accurate

to resolve them clearly.

6.5.7 Global Fit Results for the Ratio of Decay Constants fDs/fD

Figure 6.15 gives one example of a fully correlated fit for the ratio of decay constants.

The fit shown here has a pion mass cut of mπ < 400 MeV and uses the ηc mass to fix the
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Figure 6.15: One example for the global fit according to (6.10) for the case of
the observable fDs/fD. In the case presented here the charm quark mass is fixed
by the ηc meson and a pion mass cut of mπ < 400 MeV is employed. The grey
band shows the fit result at physical pion masses and vanishing lattice spacing.
The coloured bands correspond to the fit projected to the given pion mass and
lattice spacing for the corresponding ensembles. In this fit we ignore heavy mass
dependent continuum and pion mass terms.
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Figure 6.16: Comparison of the results of the different choices in the global
fit. The grey and magenta bands highlight the fit shown in figure 6.15. The
different symbols indicate different ways of fixing the heavy quark mass, i.e.
H = D(3), Ds(#), and ηconnected

c (�). Fainter data points indicate that at least
one of the heavy mass dependent coefficients is compatible with zero at the one
sigma level. More detail about the data shown here is given in the text.

charm quark mass. Furthermore, heavy mass dependent coefficients of the continuum

limit and the extrapolation to physical pion masses are ignored (i.e. C1
CL = 0 and

C1
χ = 0). This choice was made since neither of them could be resolved within our

statistics. This fit gives χ2/dof = 0.319 and a p-value of 0.002. The pion mass cut was

chosen due to variations of the pion mass cut as described below.

Table D.1 summarises the results of all fit variations for fDs/fD. The results of these are
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also shown in figure 6.16. The magenta data point to the very left is the fit result obtained

from the local fit in the previous section. The red (blue, green) data points correspond to

pion mass cuts of mmax
π = 450 MeV (400 MeV, 350 MeV). The different symbols indicate

different ways of fixing the heavy quark mass, i.e. H = D(3), Ds(#), and ηconnected
c (�).

Finally the label on the x-axis describes which fit was used by stating the number of

coefficients for the continuum limit (CL)and pion mass limit (χ) respectively. E.g. fits

results labelled (2, 2) correspond to the fit form (6.10) whilst (2, 1) corresponds to keeping

two coefficients for the continuum limit extrapolation, but only one coefficient for the

pion mass extrapolation by setting C1
χ to zero. Cases where one of the coefficients C1

CL

and C1
χ is compatible with zero at the one sigma level are indicated by the corresponding

data point being partially transparent.

From the results shown in figure 6.16 we can make a few observations. We find that

the global fit allows for a more precise determination of the ratio of decay constants.

We also find that the ratio of decay constants is insensitive to the way we fix the charm

quark mass. This is not surprising as the ratio of decay constants does not strongly

depend on the heavy quark mass (compare figure 6.15). We find that a dependence is

observed when including pions with mπ > 400 MeV, for this reason we restrict ourselves

to mπ ≤ 400 MeV. We can also see that when allowing for heavy mass dependent pion

mass and continuum extrapolation terms, these can not be resolved with the present

data. They also do not significantly change the central value of the fit result but increases

the statistical error. This is again not surprising, given the mild behaviour with heavy

quark mass displayed by the data.

From this discussion we choose the highlighted fit (i.e. the one presented in figure

6.15) as our final fit result and as statistical error. We then assign a systematic error

associated with the fit from the spread in the fit results as we vary the parameters of

the fit, maintaining mπ ≤ 400 MeV. From this we quote

fDs
fD

= 1.1667(77)(+44
−23)fit , (6.12)

where the first error is statistic and the second error captures the systematic error

associated with the chiral-continuum limit as well as the way the charm quark mass is

fixed. This error budget is not yet complete. The full systematic error budget will be

devised in section 6.6.

6.5.8 Global Fit Results for ΦD and ΦDs

Figure 6.17 shows the chosen fit results for ΦD (top) and ΦDs (bottom) respectively.

In both cases the heavy quark mass is fixed by the ηc mass and a pion mass cut of

mmax
π ≤ 400 MeV is used. Contrary to the fit of the ratio of decay constants, correlated fit

of ΦD and ΦDs proved to be unstable. Therefore, the fits presented here are uncorrelated,
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Figure 6.17: Examples for the global fit according to (6.10) for the case of the
observables ΦD (top) and ΦDs (bottom). In both cases the charm quark mass
is fixed by the ηc meson and a pion mass cut of mπ < 400 MeV is employed.
Again, the grey band shows the fit result at physical pion masses and vanishing
lattice spacing. The coloured bands correspond to the fit projected to the given
pion mass and lattice spacing for the corresponding ensembles. More details
about these fits can be found in the text.

which leads to slightly larger errors. In the case of ΦD we restrict ourselves to C1
CL = 0

and C1
χ = 0 whilst in the case of ΦDs we resolve the coefficient C1

CL. This choice is made

since we can consistently resolve C1
CL for the case of ΦDs as can be seen in figure 6.18.

Tables D.2 and D.2 summarise the results of all fit variations for ΦD and ΦDs respectively.

Similar to the previous section we can vary the fit parameters to see how stable the fit

is under these variations. We find that we can consistently resolve the C1
CL coefficient

in the case of ΦDs , whilst this is less clear in the case of ΦD. For this reason we choose

(CL,χ) = (1, 1) for the case of ΦD and (CL,χ) = (2, 1) for the case of ΦDs . Again, little

dependence is observed in the case of mmax
π ≤ 400 MeV so this pion mass cut is used.

The dependence is larger in the case of ΦD than for ΦDs in agreement with intuition.

Again, we see little dependence in the way the heavy quark mass is fixed, even though

(contrary to the ratio of decay constants) the heavy mass dependence is now significant.

Overall we see more variation in the results of the fit than we have for the ratio of decay
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Figure 6.18: Comparison of the results of the different choices in the global fit
for ΦD (top) and ΦDs (bottom). The grey and magenta bands highlight the
fit shown in figure 6.17. The different symbols indicate different ways of fixing
the heavy quark mass, i.e. H = D(3), Ds(#), and ηconnected

c (�). Fainter data
points indicate that at least one of the heavy mass dependent coefficients is
compatible with zero at the one sigma level. More detail about the data shown
here is given in the text.

constants. Following the same procedure to determine the systematic error associated

with the fit as above we find

ΦD = 0.2853(38)(+24
−18)fit GeV3/2,

ΦDs = 0.3457(26)(+ 3
−19)fit GeV3/2.

(6.13)

6.6 Systematic Error Estimation

We have found central values, statistical errors and the systematic errors due to the fit

for the value of ΦD, ΦDs and fDs/fD. Now we need to address the systematic error bud-

get. There are a number of sources of systematic error that could potentially contribute.

Firstly we have to address any systematic errors arising from fits such as the correlation

function fit and the global fit ansatz leading to the continuum limit results at physical

quark masses. Secondly we need to address the systematic errors from the scale setting
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and the setting of the quark masses. Thirdly we need to address the effects of the as-

sumptions we make in the lattice formulation, namely the finite volume, the fact that we

neglect sea charm quark loops, the assumption of mass degenerate up and down quarks

and neglecting electromagnetic effects. Finally, we have renormalised the data using the

renormalisation constant from the flavour diagonal light-light conserved current, instead

of the mixed action current that we use in the calculation of the correlation functions.

Recall that we have chosen conservative fit ranges in section 6.4, so that any variation of

tmin and tmax leads to results that are well within the statistical error from the correlation

function fits. We also fitted the first excited state in addition to the ground state, so

any excited state contamination to the results presented here would have to arise from

higher excited states. We claim that this systematic error is already included in the

statistic error due to our conservative choice.

Similarly the systematic error attached to the global fit result already accounts for the

way the charm quark mass (variation between D, Ds and ηc) and the light quark mass

(pion mass) are fixed. Stability of the fit ansatz is also tested.

The uncertainty in determining the lattice spacing is propagated by creating a bootstrap

distribution with the correct width which has been used throughout the analysis. The

uncertainty in the physical strange quark masses arising from ref [144] has been treated

in the same way and is therefore already included in the statistical error.

We have already discussed the systematic error arising from the correction of the mis-

tuning of the strange quark in section 6.5.1 and came to the conclusion that this yields

an uncertainty of 0.000009 GeV3/2 for ΦDs and 0.0003 for fDs/fD.

In the data presented so far we have used the renormalisation constant obtained from

the light-light conserved current (compare section 6.5.2). However, the current that

needs to be renormalised is a mixed action current due to the change in M5 between

the light and the heavy sector for which we do not have a conserved current. This

does not affect the ratio of decay constants since the renormalisation constants cancel.

To assess the systematic error arising from this choice, a study leading to the ratio of

amputated vertex functions Λ(M1
5 ,M

2
5 ) between the different combinations of actions

((M1
5 ,M

2
5 ) = (1.8, 1.8), (1.6, 1.8), (1.6, 1.6), where i = 1, 2 refers to the action of the

first and second quark field entering the current operator) was carried out3. This has

been done on the ensembles C1, M1 and F1 and the ratio of Λ(1.6, 1.6)/Λ(1.8, 1.8) lies

consistently between 0.996 and 0.997, indicating at most a 0.4% effect. We will assign

this as a systematic error.

We have already discussed that finite size effects are exponentially suppressed by mπL

(compare section 3.8) and are therefore expected to be small for the study presented here.

We can, however, give a more concise estimate by noticing that finite volume effects arise

3Done by A. Khamseh under the supervision of P. Boyle and L. Del Debbio
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from the IR regulator and are therefore insensitive to the choice of discretisation. We

will estimate the finite size effects by comparing our values of mπL to a study the MILC

collaboration has undertaken [18]. In their work, they have done a simulation of three

different volumes whilst keeping the lattice spacings and quark masses constant. This

was done for a lattice spacing of 0.12 fm (roughly corresponding to our coarse ensembles)

and pion masses of just above 200 MeV. The considered volumes are 2.88 fm, 3.84 fm and

5.76 fm corresponding to values of mπL of 3.2, 4.3 and 5.4 respectively. For the masses

of the D and Ds meson they see variations of . 1 MeV and . 0.5 MeV respectively.

For the decay constants the variations they find are < 0.3% and < 0.15% which we will

use to as a symmetric systematic error. From this we find δΦD ≈ 0.001 GeV3/2 and

δΦDs ≈ 0.0006 GeV3/2 which we will assign as our systematic error. Propagating δfD

and δfDs as

± δ fDs
fD

= ±fDs
fD

δfDs
fDs

± fDs
fD

δfD
fD

(6.14)

and treating variations in fDs and fD as independent and therefore adding the two terms

above in quadrature, we find δ
fDs
fD
∼ 0.0039. Given that the minimum value of mπL

for our ensembles is 3.8, results derived from these numbers are a good conservative

estimate.

In our simulations we treat the up and down quark masses as degenerate, which is not

the case in nature and neglect electromagnetic effect. This affects in particular the

masses of the mesons we consider. In principle these effects cannot be disentangled. We

neglect electromagnetic effects in the determination of the decay constants since they

are defined as pure QCD quantities. However, for the determination of the CKM matrix

elements these effects will need to be taken into account [1, 18].

We devise a systematic error associated to the way we fix the heavy quark mass by

considering how much the fit result for ΦD changes when we replace the input mass

mD± = 1.86961(09) GeV by mD0 = 1.86484(05) GeV [1]. We estimate the effect of this

shift using the fit result of the coefficient C0
h for the case of h = D and multiplying

these by
∣∣m−1

D0 −m−1
D±

∣∣ ∼ 0.0014 GeV−1. From this we find δΦD ∼ 0.00037 GeV3/2,

δΦDs ∼ 0.00044 GeV3/2 and δ
fDs
fD
∼ 0.00003. For the quantity fDs/fD this is negligible.

As a probe for the same effect in the light quark mass fixing, we consider the effect of

choosing mπ± instead of mπ0 as input mass, i.e. calculating C0
χ

(
m2
π± −m2

π0

)
. From this

we find δΦD ∼ 0.00029 GeV3/2, δΦDs ∼ 0.00001 GeV3/2 and δ
fDs
fD
∼ −0.00080. Adding

these two effects in quadrature we obtain the values listed in the column mu 6= md in

table 6.10.

Given that the continuum limit coefficient C0
CL is compatible with zero for the fits

chosen for ΦD (C0
CL = −0.003(11) GeV7/2) and fDs/fD = 0.005(25) GeV2, we neglect

higher order O(a4) effects. For ΦDs we find CCL0 = −0.027(10) GeV7/2 (the heavy mass

dependent continuum limit term vanishes at the physical charm quark mass). Assume
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ΦD [GeV3/2] 0.2853 38 +29
−24

+24
−18 10 - 4.7 11 -

ΦDs [GeV3/2] 0.3457 26 +18
−26

+ 3
−19 6 7 4.4 14 0.9

fDs/fD 1.1667 77 +60
−46

+44
−23 39 - 8 - 3

Table 6.10: Summary of the systematic error budget for the quantities ΦD,
ΦDs and the ratio of decay constants. Details of the discussion leading to these
results can be found in the text.

fourth order discretisation effects and rewrite

δΦDs

ΦDs

=
1

ΦDs

[
C0
CLa

2 +D0
CLa

4
]

=
C0
CLa

2

ΦDs

[
1 +

D0
CL

C0
CL

a2

]
. (6.15)

Substituting the numbers for C0
CL and the coarsest and finest lattice spacings we find

C0
CLa

2/ΦDs ∼ 0.026 and 0.010 respectively. Assuming D0
CL/C

0
CL = (0.5 GeV)2 (i.e.

setting the scale such that discretisation effects grow as a/Λ with Λ = 500 MeV) we find

D0
CL/C

0
CLa

2 ∼ 0.008 and ∼ 0.003. So the residual discretisation effects are 8% (3%) of

the leading discretisation effects, yielding at most 0.2% of the absolute value.

Combining these errors in quadrature and using the masses of D± and D±s (compare

(6.6) [1]), we arrive at our final value

ΦD = 0.2853(38)stat(
+29
−24)sys GeV3/2 ⇒ fD = 208.7(2.8)stat(

+2.1
−1.8)sys MeV

ΦDs = 0.3457(26)stat(
+18
−26)sys GeV3/2 ⇒ fDs = 246.4(1.9)stat(

+1.3
−1.9) MeV .

(6.16)

We are now in a position to compare our results to the results of the literature presented

in section 6.1. Adding our results to those presented in the most recent FLAG report [8]

we obtain the plots in figure 6.19. The smaller error bar presents the statistic error only,

whilst the larger error bar shows the full error (statistic and systematic). In all cases

the error budget is dominated by the statistical error. We find good agreement with

the literature and have errors competitive with the other results displayed in figure 6.19

[18, 158, 162, 181–194].
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Figure 6.19: Superposition of our results (blue circles) to the data presented in
the most recent FLAG report [8]. The small error bar shows the statistic error
only, whilst the large error band includes both, the statistic and the systematic
error.

6.7 CKM Matrix Elements

Having obtained the decay constants, we can make a prediction of the CKM matrix

elements |Vcd| and |Vcs|. However, the values shown in (6.1) [168] are obtained in nature

and therefore we need to adjust these values to those of an isospin symmetric theory.

In other words, the measured decay rate |Vcq| fDq does include electroweak and isospin

breaking effects, so before extracting |Vcq| we need to correct the decay rate for these

effects. Ref. [18] distinguishes between universal long-distance electromagnetic (EM)

effects, universal short distance electroweak (EW) effects and structure dependent EM

effects. All of these modify the decay rate to match the experimental value to the theory

in which we simulate. The combined effect of the universal long-distance EM and short-

distance EW effects is to lower the decay rate by 0.7% [18, 202, 203]. We adjust the

decay rates from (6.1) and then calculate the CKM matrix elements from this. We find

|Vcd| = 0.2185(50)exp(+35
−37)lat

|Vcs| = 1.011(16)exp(+11
− 9)lat.

(6.17)

Again, we can superimpose our results to those obtained in the most recent FLAG

report [8], shown in figure 6.20. This combines the results of refs [18, 158, 162, 181, 185–

187, 204, 205]. Again we find good agreement between previous works and obtain a

competitive error.
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Figure 6.20: Superposition of our results (blue circles) to the data presented in
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and the experimental error, added in quadrature.



Chapter 7

Conclusions and Outlook

Whilst the SM has made many precision predictions which are in agreement with ex-

periments, we know that there are experimental observations that it cannot reproduce.

One way to test the SM is to over-constrain its parameters, e.g. the elements of the

CKM matrix. Whilst perturbative methods are able to make ab initio high precision

predictions for processes governed by the weak and the electromagnetic interactions,

these methods fail for hadronic quantities. LQFT provides a tool for making such ab

initio predictions even for strongly coupled system in general, and QCD in particular.

This allows for the calculation of non-perturbative quantities such as masses and decay

constants of hadrons which combined with experimental input allow to compute CKM

matrix elements.

Whilst simulations of up, down and strange valence quarks have been done with a large

variety of fermion discretisations, the larger mass of the charm quark poses additional

difficulties. In this work we investigated the suitability of simulating heavy valence

quarks with domain wall fermions, in the hope to be able to simulate charm quarks

directly at their physical mass whilst keeping lattice artifacts under control. First, to

assess this, we undertook a quenched pilot study, investigating the parameter space of

domain wall fermions. Secondly, based on the results of this pilot study, we determined

D and Ds decay constants from three lattice spacings and including pion masses as

small as mπ = 139 MeV. Finally, we deduce the corresponding CKM matrix elements

and compare our results to the literature.

For the pilot study we created four quenched ensembles in a small spatial volume (L ∼
1.6 fm) at inverse lattice spacings varying from 2.0 GeV to 5.7 GeV. On these ensembles

we explored the domain wall fermion parameter space to investigate a region where we

can safely simulate charm quarks with mild discretisation errors. We found this region

to be defined by

M5 = 1.6

amh ≤ 0.4.
(7.1)
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We then undertook scaling studies of heavy-strange and heavy-heavy mesons on these

ensembles. In particular we found that the discretisation effects present in the heavy-

strange dispersion relation and the decay constants of heavy-strange pseudoscalar mesons

are mild and can be well described by an ansatz linear in a2. We find that it is possible

to closely approach the physical value of the charm quark mass even on the coarsest

quenched ensemble (a−1 ∼ 2.0 GeV) whilst maintaining the condition amh ≤ 0.4.

The continuum limit of the dispersion relation of heavy-heavy mesons is well described

by O(a2) effects provided that either the momenta remain small (p2 . 0.6 GeV). We

further found that the dispersion relation of heavy-heavy mesons is stronger affected by

discretisation effects, but we can recover the correct continuum limit by taking O(a4)

effects into account for large undemocratic momenta.

Having established a frame work for the simulation of charm quarks with domain wall

fermions, we measured heavy-light and heavy-strange correlation functions on RBC/UKQCD’s

dynamical 2 + 1f ensembles with inverse lattice spacings ranging from 1.73 GeV to

2.77 GeV and pion masses as low as 139 MeV. We deduced the values of the D and

Ds meson decay constants on each ensemble and interpolated them to physical quark

masses and vanishing lattice spacing. We assessed all systematic errors present in our

simulations and, using experimental input, deduced values for the CKM matrix elements

|Vcd| and |Vcs|. We then compared these results to those of the literature. We find good

agreement between our work and published results and obtain competitive errors. The

main results of this thesis are summarised below:

fD = 208.7(2.8)stat

(
+2.1
−1.8

)
sys

MeV

fDs = 246.4(1.9)stat

(
+1.3
−1.9

)
sys

MeV

fDs
fD

= 1.1667(77)stat

(
+60
−46

)
sys

and

|Vcd| = 0.2185(50)exp(+35
−37)lat

|Vcs| = 1.011(16)exp(+11
− 9)lat.

(7.2)

Having laid the groundwork for charm physics with domain wall fermions, our current

work focusses on extending the charm physics program to semi-leptonic decays of D and

Ds mesons as well as applying the ratio method to our data to deduce the values of fB

and fBs .
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Algebraic Properties

A.1 Generators of SU(2) and SU(3)

A.1.1 SU(2)

The generators τi of SU(2) can be expressed in terms of the Pauli matrices σi

τi =
1

2
σi. (A.1)

σi are given by

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(A.2)

A.1.2 SU(3)

The generators of SU(3) can be found from a generalisation of the Pauli matrices. The

eight Gell-Mann matrices are defined as

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 ,

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 .

(A.3)
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A.2 Dirac Matrices

A.2.1 Minkowski Space

The Dirac matrices γµ in Minkowski space are defined by obeying the Clifford algebra

{γµ, γν} = 2gµν1, (A.4)

where gµν is the metric tensor defined by

gµν = diag(+1,−1,−1,−1) (A.5)

and µ, ν runs over the indices 0, · · · 3. A convenient fifth γ matrix is defined by

γ5 = iγ0γ1γ2γ3. (A.6)

Note the useful relations
γ†0 = γ0

γ†i = −γi
γ0γ
†
µγ0 = γµ(
γ2

5

)
= 1

γ5γµ = −γµγ5

γ†5 = γ5

(A.7)

A.2.2 Euclidean Space

Upon Wick rotation, we make the replacements

γEi = −iγM1
γE4 = γM0 ,

(A.8)

so that the Euclidean Gamma matrices now obey the Euclidean Clifford algebra

{
γEµ , γ

E
ν

}
= 2δµν1, (A.9)

where δµν is the Kronecker delta. We can also define the fifth gamma matrix by

γE5 = γ1γ2γ3γ4. (A.10)
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In the following we will drop the superscript ‘E’. Some of the properties (A.7) become

γ†µ = γµ = γ−1
µ

γ†5 = γ5 = γ−1
5

γ5γµ = −γµγ5,

(A.11)

where µ = 1, · · · , 4.

In a particular basis called the chiral basis, the we can find a specific form for the gamma

matrices
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tag am af χ2/d.o.f. am af χ2/d.o.f.
ams = 0.036 ams = 0.037

ss 0.3433(16) 0.11309(57) 0.6033 0.3479(16) 0.11360(57) 0.5384
sh0 0.4738(15) 0.12710(81) 0.3443 0.4764(12) 0.12775(73) 0.4052
sh1 0.5628(14) 0.13452(83) 0.3609 0.5654(12) 0.13519(80) 0.4885
sh2 0.6448(14) 0.13960(85) 0.3471 0.6463(13) 0.13991(85) 0.3455
sh3 0.7215(13) 0.14292(88) 0.3456 0.7227(14) 0.14314(90) 0.3522
sh4 0.7938(14) 0.14480(92) 0.3825 0.7953(13) 0.14501(91) 0.2996
sh5 0.8614(15) 0.1447(10) 0.2965 0.8628(15) 0.1451(10) 0.2925
sh6 0.9254(16) 0.1439(11) 0.3610 0.9266(15) 0.1443(10) 0.3577

Table B.1: Fit results for strange-strange and strange-heavy pseudoscalar
masses and decay constants in lattice units for the ensembles β = 4.41.

tag am af χ2/d.o.f. am af χ2/d.o.f.
ams = 0.024 ams = 0.026

ss 0.23894(93) 0.07812(48) 0.7714 0.24883(90) 0.07926(47) 0.8466
sh0 0.3294(11) 0.08816(86) 0.8914 0.3333(11) 0.08871(85) 0.9314
sh1 0.3919(11) 0.09311(83) 0.9179 0.3955(11) 0.09381(84) 0.9530
sh2 0.4494(10) 0.09678(84) 0.9083 0.4528(11) 0.09766(90) 0.9559
sh3 0.5033(10) 0.09930(84) 0.9123 0.5063(11) 0.09997(86) 0.9319
sh4 0.5545(10) 0.10099(84) 0.8906 0.5573(10) 0.10167(82) 0.8719
sh5 0.6033(10) 0.10200(84) 0.8382 0.6059(10) 0.10269(82) 0.8245
sh6 0.6491(13) 0.1019(10) 0.8190 0.6518(12) 0.10272(97) 0.8216
sh7 0.6931(13) 0.10114(92) 0.8668 0.6962(13) 0.10248(98) 0.7454
sh8 0.7357(13) 0.10037(93) 0.7866 0.7387(13) 0.1016(10) 0.6989
sh9 0.7768(15) 0.0996(11) 0.6151 0.7793(14) 0.1004(10) 0.6358
sh10 0.8151(15) 0.0973(10) 0.6496 0.8181(15) 0.0984(11) 0.5990

Table B.2: Fit results for strange-strange and strange-heavy pseudoscalar
masses and decay constants in lattice units for the ensembles β = 4.66.

tag am af χ2/d.o.f. am af χ2/d.o.f.
ams = 0.018 ams = 0.020

ss 0.1773(10) 0.05630(37) 0.9652 0.1872(10) 0.05739(36) 0.8819
sh0 0.28568(95) 0.06578(66) 0.7877 0.28925(85) 0.06647(60) 0.6169
sh1 0.35566(88) 0.06991(68) 0.5133 0.35889(79) 0.07058(60) 0.4933
sh2 0.41960(90) 0.07189(70) 0.4931 0.42283(84) 0.07277(66) 0.4966
sh3 0.47922(98) 0.07256(76) 0.4981 0.48239(90) 0.07352(70) 0.5273
sh4 0.53492(93) 0.07213(78) 0.7555 0.53775(89) 0.07311(74) 0.7476
sh5 0.58831(97) 0.07138(80) 0.7290 0.59103(92) 0.07241(76) 0.7275
sh6 0.6391(10) 0.07023(81) 0.7054 0.6419(10) 0.07130(80) 0.7394
sh7 0.6872(10) 0.06876(83) 0.6944 0.6899(10) 0.06962(82) 0.7975
sh8 0.73280(96) 0.06700(65) 0.7404 0.7352(10) 0.06809(85) 0.6866

Table B.3: Fit results for strange-strange and strange-heavy pseudoscalar
masses and decay constants in lattice units for the ensembles β = 4.89.
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tag am af χ2/d.o.f. am af χ2/d.o.f.
ams = 0.0118 ams = 0.0133

ss 0.1214(10) 0.03785(60) 0.0600 0.12879(99) 0.03869(60) 0.0562
sh0 0.18333(99) 0.04361(82) 0.0018 0.18474(97) 0.04382(81) 0.0016
sh1 0.2549(10) 0.04765(80) 0.0039 0.2562(10) 0.04790(79) 0.0046
sh2 0.3190(10) 0.04947(75) 0.0049 0.3201(10) 0.04974(75) 0.0056
sh3 0.3782(11) 0.04994(82) 0.0027 0.3792(11) 0.05020(82) 0.0032
sh4 0.4340(12) 0.04985(82) 0.0036 0.4351(12) 0.05011(82) 0.0045
sh5 0.4869(13) 0.04930(84) 0.0052 0.4879(13) 0.04956(83) 0.0067
sh6 0.5371(14) 0.04845(86) 0.0079 0.5381(14) 0.04871(86) 0.0101

Table B.4: Fit results for strange-strange and strange-heavy pseudoscalar
masses and decay constants in lattice units for the ensembles β = 5.20.
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n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)
ams = 0.034 ams = 0.036

ss 0.3321(19) - - - 0.3415(18) - - -
sh0 0.4699(15) 0.619(12) 0.755(16) 0.725(68) 0.4735(14) 0.621(12) 0.757(15) 0.729(65)
sh1 0.5591(14) 0.686(10) 0.800(14) 0.793(39) 0.5624(14) 0.689(10) 0.801(13) 0.796(38)
sh2 0.6410(14) 0.750(10) 0.852(12) 0.853(32) 0.6440(14) 0.7528(98) 0.854(11) 0.856(31)
sh3 0.7174(14) 0.8143(89) 0.904(10) 0.917(25) 0.7203(14) 0.8166(87) 0.906(10) 0.920(24)
sh4 0.7894(14) 0.8763(82) 0.9566(94) 0.977(21) 0.7922(13) 0.8787(80) 0.9588(92) 0.980(20)
sh5 0.8572(14) 0.9367(78) 1.0049(90) 1.033(18) 0.8599(14) 0.9389(77) 1.0072(87) 1.035(18)
sh6 0.9209(14) 0.9935(76) 1.0561(84) 1.086(17) 0.9235(14) 0.9957(75) 1.0584(81) 1.088(16)

Table B.5: Fit results for the energy of strange-strange and strange-heavy pseu-
doscalar mesons in lattice units as a function of the momentum for the ensemble
β = 4.41.

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)
ams = 0.024 ams = 0.026

ss 0.23749(89) - - - 0.24723(86) - - -
sh0 0.32942(73) 0.419(16) 0.477(19) 0.583(26) 0.33328(71) 0.422(15) 0.480(19) 0.585(25)
sh1 0.39143(72) 0.473(12) 0.529(14) 0.615(32) 0.39492(71) 0.476(12) 0.532(13) 0.617(31)
sh2 0.44837(73) 0.524(11) 0.577(13) 0.650(42) 0.45163(72) 0.527(10) 0.579(12) 0.652(40)
sh3 0.50185(74) 0.572(10) 0.620(10) 0.668(48) 0.50496(72) 0.5744(98) 0.621(10) 0.672(46)
sh4 0.55252(76) 0.6178(96) 0.6603(94) 0.699(40) 0.55552(74) 0.6206(93) 0.6629(89) 0.702(38)
sh5 0.60091(78) 0.6623(91) 0.7010(85) 0.724(39) 0.60382(76) 0.6651(88) 0.7036(81) 0.727(37)
sh6 0.64723(81) 0.7054(87) 0.7407(78) 0.757(33) 0.65007(78) 0.7081(84) 0.7433(74) 0.761(32)
sh7 0.69161(83) 0.7468(84) 0.7792(73) 0.790(29) 0.69440(80) 0.7495(82) 0.7819(69) 0.794(28)
sh8 0.73410(87) 0.7868(82) 0.8166(69) 0.823(26) 0.73685(84) 0.7895(80) 0.8192(65) 0.827(25)
sh9 0.77473(90) 0.8264(84) 0.8526(66) 0.856(24) 0.77744(86) 0.8291(81) 0.8553(62) 0.859(23)
sh10 0.81346(93) 0.8632(83) 0.8873(63) 0.881(24) 0.81614(89) 0.8659(80) 0.8899(60) 0.885(23)

Table B.6: Fit results for the energy of strange-strange and strange-heavy pseu-
doscalar mesons in lattice units as a function of the momentum for the ensemble
β = 4.66.

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)
ams = 0.018 ams = 0.020

ss 0.17758(75) - - - 0.18735(73) - - -
sh0 0.28700(56) 0.350(10) 0.4032(50) 0.430(23) 0.29061(54) 0.3529(97) 0.4058(48) 0.432(22)
sh1 0.35690(58) 0.4085(78) 0.4562(36) 0.480(16) 0.36016(56) 0.4110(74) 0.4588(34) 0.483(15)
sh2 0.42074(60) 0.4653(66) 0.5063(35) 0.530(13) 0.42380(58) 0.4678(63) 0.5089(33) 0.533(12)
sh3 0.48047(61) 0.5186(63) 0.5542(36) 0.579(11) 0.48339(58) 0.5211(60) 0.5567(34) 0.582(11)
sh4 0.53680(65) 0.5717(59) 0.6029(32) 0.6257(90) 0.53964(62) 0.5742(56) 0.6054(31) 0.6285(87)
sh5 0.59020(67) 0.6222(57) 0.6502(30) 0.6727(84) 0.59298(64) 0.6247(54) 0.6527(28) 0.6755(81)
sh6 0.64086(69) 0.6697(58) 0.6958(28) 0.7180(80) 0.64359(66) 0.6722(55) 0.6983(26) 0.7208(77)
sh7 0.68882(72) 0.7161(55) 0.7398(26) 0.7620(84) 0.69150(68) 0.7186(53) 0.7423(24) 0.7648(80)
sh8 0.73401(74) 0.7598(56) 0.7814(25) 0.8031(83) 0.73667(70) 0.7623(53) 0.7840(23) 0.8059(79)

Table B.7: Fit results for the energy of strange-strange and strange-heavy pseu-
doscalar mesons in lattice units as a function of the momentum for the ensemble
β = 4.89.
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n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)
ams = 0.011 ams = 0.013

ss 0.1143(13) - - - 0.1246(11) - - -
sh0 0.17940(63) 0.246(13) 0.2454(78) 0.269(16) 0.18322(60) 0.248(12) 0.2495(74) 0.272(15)
sh1 0.25110(52) 0.302(12) 0.3035(51) 0.327(14) 0.25441(49) 0.304(11) 0.3074(47) 0.330(13)
sh2 0.31470(52) 0.358(11) 0.3590(43) 0.374(13) 0.31778(49) 0.360(10) 0.3625(40) 0.377(12)
sh3 0.37356(56) 0.412(11) 0.4116(38) 0.430(13) 0.37651(52) 0.414(10) 0.4148(34) 0.433(12)
sh4 0.42894(61) 0.465(11) 0.4625(36) 0.477(11) 0.43180(58) 0.466(10) 0.4656(32) 0.481(11)
sh5 0.48138(67) 0.516(10) 0.5114(35) 0.524(10) 0.48419(62) 0.517(10) 0.5143(31) 0.527(10)
sh6 0.53114(72) 0.564(11) 0.5582(34) 0.5689(99) 0.53390(67) 0.566(10) 0.5611(30) 0.5723(95)

Table B.8: Fit results for the energy of strange-strange and strange-heavy pseu-
doscalar mesons in lattice units as a function of the momentum for the ensemble
β = 5.20.
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ens amπ mπ [MeV]

C0 0.08046(11) 139.15(36)
C1 0.19038(42) 339.789(12)
C2 0.24129(41) 430.648(14)

M0 0.059080(78) 139.35(46)
M1 0.12724(36) 303.248(14)
M2 0.15159(41) 361.281(16)

F1 0.08446(18) 234.297(10)

Table C.1: Fit results for the mass of the pions on all ensembles used.
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ens amD afbareD mD [GeV] f renD [GeV]

C0
0.82242(82) 0.16211(85) 1.4224(33) 0.1996(11)
0.8995(10) 0.1643(11) 1.5558(37) 0.2023(14)
0.9727(12) 0.1654(13) 1.6823(41) 0.2036(17)

C1
0.83111(95) 0.1687(10) 1.4834(44) 0.2114(14)
0.9075(11) 0.1710(12) 1.6198(49) 0.2142(16)
0.9802(11) 0.1722(12) 1.7495(52) 0.2157(16)

C2
0.84129(65) 0.17468(62) 1.5015(43) 0.21883(99)
0.91722(77) 0.17679(80) 1.6370(47) 0.2215(12)
0.98995(85) 0.17851(86) 1.7669(51) 0.2236(12)

M0

0.63066(95) 0.1146(11) 1.4875(51) 0.2010(21)
0.7259(13) 0.1159(17) 1.7122(61) 0.2032(31)
0.8146(18) 0.1162(25) 1.9214(72) 0.2037(44)
0.8975(22) 0.1156(28) 2.1168(81) 0.2027(50)

M1

0.63804(77) 0.12168(65) 1.5206(57) 0.2145(14)
0.73315(92) 0.12345(80) 1.7473(66) 0.2176(16)
0.8211(12) 0.1235(11) 1.9570(75) 0.2178(20)
0.9027(14) 0.1221(14) 2.1513(83) 0.2152(25)

M2

0.64237(80) 0.12424(73) 1.5310(57) 0.2190(15)
0.73731(98) 0.12603(97) 1.7572(66) 0.2221(19)
0.8252(12) 0.1261(13) 1.9668(76) 0.2223(24)
0.9068(16) 0.1247(17) 2.1611(85) 0.2197(32)

F1

0.53696(70) 0.09913(79) 1.4895(57) 0.2093(18)
0.61936(88) 0.1006(10) 1.7181(67) 0.2125(23)
0.6960(11) 0.1010(13) 1.9307(77) 0.2133(29)
0.7682(12) 0.1010(13) 2.1309(85) 0.2132(29)
0.8612(16) 0.0991(18) 2.3889(98) 0.2092(38)

Table C.2: Fit results for the masses and decay constants of the D meson on all
ensembles. The second set of columns is renormalised where the renormalisation
constants are obtained from the light-light conserved current as described in the
text.
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ens amDs afbareDs
mDs [GeV] f renDs

[GeV]

C0
0.88227(13) 0.18809(17) 1.5249(37) 0.23134(64)
0.95671(16) 0.19073(22) 1.6536(40) 0.23458(67)
1.02773(18) 0.19225(25) 1.7765(42) 0.23644(69)

C1
0.87662(43) 0.18654(45) 1.5646(49) 0.23369(96)
0.95114(46) 0.18923(53) 1.6976(53) 0.2371(10)
1.02215(51) 0.19071(62) 1.8243(56) 0.2389(11)

C2
0.87804(42) 0.18799(43) 1.5671(49) 0.23551(94)
0.95235(48) 0.19040(56) 1.6998(52) 0.2385(11)
1.02309(56) 0.19146(74) 1.8260(56) 0.2399(12)

M0

0.678132(88) 0.135920(96) 1.5946(56) 0.23710(92)
0.77124(10) 0.13829(13) 1.8144(62) 0.24118(96)
0.85813(13) 0.13897(19) 2.0195(68) 0.2423(10)
0.93926(16) 0.13817(24) 2.2109(74) 0.2408(11)

M1

0.67420(41) 0.13560(46) 1.6068(66) 0.2390(13)
0.76723(47) 0.13774(64) 1.8285(73) 0.2428(15)
0.85376(57) 0.13800(86) 2.0348(81) 0.2433(18)
0.93420(71) 0.1365(12) 2.2265(88) 0.2406(23)

M2

0.67472(41) 0.13623(41) 1.6081(66) 0.2401(12)
0.76794(50) 0.13866(56) 1.8302(73) 0.2444(14)
0.85470(84) 0.1393(11) 2.0370(83) 0.2455(23)
0.93539(64) 0.13812(74) 2.2293(88) 0.2435(17)

F1

0.57222(21) 0.11343(20) 1.5867(67) 0.2394(12)
0.65271(24) 0.11546(26) 1.8100(75) 0.2436(12)
0.72795(28) 0.11611(34) 2.0188(82) 0.2450(13)
0.79862(33) 0.11562(43) 2.2148(89) 0.2440(15)
0.89021(44) 0.11320(61) 2.4689(99) 0.2388(17)

Table C.3: Fit results for the masses and decay constants of the Ds meson on all
ensembles. The second set of columns is renormalised where the renormalisation
constants are obtained from the light-light conserved current as described in the
text. The results stated here are those for the strange quark mass closest to the
physical one.
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ens amηc mηc [GeV]

C0
1.249409(56) 2.1609(47)
1.375320(51) 2.3786(51)
1.493579(48) 2.5831(56)

C1
1.24641(20) 2.2246(62)
1.37227(19) 2.4492(68)
1.49059(17) 2.6604(74)

C2
1.24701(20) 2.2257(62)
1.37276(18) 2.4501(68)
1.49102(16) 2.6612(74)

M0

0.972488(49) 2.2937(70)
1.135329(46) 2.6778(81)
1.287084(43) 3.0357(92)
1.428269(40) 3.369(10)

M1

0.96975(18) 2.3112(83)
1.13226(15) 2.6985(97)
1.28347(13) 3.059(11)
1.42374(12) 3.393(12)

M2

0.97000(19) 2.3118(83)
1.13246(18) 2.6990(97)
1.28365(16) 3.059(11)
1.42384(15) 3.393(12)

F1

0.82322(10) 2.2836(83)
0.965045(93) 2.6770(98)
1.098129(86) 3.046(11)
1.223360(80) 3.394(12)
1.385711(74) 3.844(14)

Table C.4: Fit results for the masses of the connected part of the ηc meson on
all ensembles.
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H mcut
π fDs/fD C0

CL C1
CL C0

χ C1
χ C0

h χ2/dof p

ηc 450 1.1531(60) 0.037(22) - -0.529(24) - -0.022(16) 0.739 0.803
ηc 450 1.1526(72) 0.036(23) - -0.523(59) -0.03(26) -0.020(28) 0.773 0.756
ηc 450 1.157(11) 0.019(44) 0.10(21) -0.527(25) - -0.048(56) 0.762 0.769
ηc 450 1.157(11) 0.016(46) 0.11(21) -0.515(61) -0.06(26) -0.045(57) 0.798 0.719

Ds 450 1.1532(60) 0.036(22) - -0.529(24) - -0.019(14) 0.737 0.806
Ds 450 1.1528(72) 0.036(23) - -0.523(58) -0.02(22) -0.017(24) 0.771 0.759
Ds 450 1.158(11) 0.018(44) 0.08(17) -0.527(25) - -0.041(47) 0.760 0.772
Ds 450 1.157(11) 0.016(46) 0.09(18) -0.516(61) -0.05(22) -0.038(48) 0.796 0.722

D 450 1.1531(60) 0.036(22) - -0.531(25) - -0.016(12) 0.740 0.801
D 450 1.1521(70) 0.035(23) - -0.516(56) -0.06(19) -0.011(20) 0.772 0.758
D 450 1.156(11) 0.023(43) 0.06(15) -0.530(25) - -0.031(40) 0.769 0.762
D 450 1.155(11) 0.019(44) 0.06(15) -0.510(58) -0.07(19) -0.027(41) 0.801 0.716

ηc 400 1.1667(77) 0.005(25) - -0.631(44) - -0.031(19) 0.319 0.998
ηc 400 1.1644(90) 0.003(25) - -0.591(94) -0.21(43) -0.019(31) 0.324 0.997
ηc 400 1.171(12) -0.015(51) 0.11(23) -0.628(45) - -0.056(57) 0.324 0.997
ηc 400 1.168(14) -0.012(51) 0.08(24) -0.597(95) -0.16(44) -0.041(69) 0.335 0.995

Ds 400 1.1669(77) 0.004(25) - -0.631(44) - -0.026(16) 0.314 0.998
Ds 400 1.1647(91) 0.003(25) - -0.592(94) -0.17(36) -0.016(27) 0.319 0.997
Ds 400 1.171(12) -0.015(50) 0.09(19) -0.628(45) - -0.047(48) 0.320 0.997
Ds 400 1.168(14) -0.012(51) 0.07(20) -0.598(94) -0.13(37) -0.034(58) 0.332 0.995

D 400 1.1668(78) 0.004(25) - -0.634(45) - -0.022(14) 0.319 0.998
D 400 1.1644(89) 0.002(25) - -0.592(91) -0.16(31) -0.013(22) 0.321 0.997
D 400 1.171(12) -0.014(48) 0.07(16) -0.631(46) - -0.040(42) 0.325 0.997
D 400 1.168(14) -0.010(49) 0.05(17) -0.598(92) -0.13(32) -0.027(50) 0.335 0.995

ηc 350 1.1655(79) 0.006(26) - -0.636(55) - -0.025(22) 0.352 0.989
ηc 350 1.1653(92) 0.006(26) - -0.63(12) -0.03(54) -0.024(32) 0.377 0.982
ηc 350 1.168(13) -0.005(53) 0.06(25) -0.635(55) - -0.039(65) 0.373 0.982
ηc 350 1.168(14) -0.005(53) 0.06(25) -0.63(12) -0.01(54) -0.039(70) 0.402 0.970

Ds 350 1.1657(79) 0.005(26) - -0.637(55) - -0.022(18) 0.349 0.990
Ds 350 1.1655(92) 0.005(26) - -0.63(12) -0.02(45) -0.021(28) 0.374 0.982
Ds 350 1.168(13) -0.004(53) 0.04(21) -0.635(55) - -0.032(55) 0.371 0.983
Ds 350 1.168(14) -0.004(53) 0.04(21) -0.63(12) -0.01(45) -0.032(59) 0.400 0.971

D 350 1.1656(79) 0.005(26) - -0.639(56) - -0.018(16) 0.352 0.989
D 350 1.1652(90) 0.005(26) - -0.63(12) -0.04(39) -0.017(23) 0.377 0.982
D 350 1.168(13) -0.003(52) 0.03(18) -0.638(56) - -0.027(47) 0.375 0.982
D 350 1.167(14) -0.003(52) 0.03(18) -0.63(12) -0.03(39) -0.025(50) 0.403 0.970

Table D.1: Fit results of the different versions of the global fit ansatz (6.10) for
the observable fDs/fD
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H mcut
π ΦD[GeV3/2] C0

CL C1
CL C0

χ C1
χ C0

h χ2/dof

ηc 450 0.2885(32) -0.010(10) - 0.203(13) - -0.3797(86) 0.555
ηc 450 0.2867(36) -0.012(10) - 0.234(26) -0.36(21) -0.354(18) 0.459
ηc 450 0.2891(43) -0.014(17) 0.05(11) 0.204(13) - -0.390(30) 0.577
ηc 450 0.2880(44) -0.021(17) 0.11(12) 0.237(26) -0.39(21) -0.374(31) 0.460

Ds 450 0.2882(31) -0.018(10) - 0.200(12) - -0.3061(70) 0.540
Ds 450 0.2866(34) -0.020(10) - 0.228(23) -0.29(16) -0.285(15) 0.447
Ds 450 0.2883(41) -0.019(16) 0.009(91) 0.201(12) - -0.308(24) 0.565
Ds 450 0.2874(42) -0.025(16) 0.056(94) 0.230(24) -0.31(17) -0.296(25) 0.460

D 450 0.2884(30) -0.0202(95) - 0.176(11) - -0.2717(59) 0.578
D 450 0.2868(32) -0.0228(96) - 0.205(21) -0.30(13) -0.251(12) 0.446
D 450 0.2891(38) -0.024(14) 0.043(77) 0.177(12) - -0.281(20) 0.598
D 450 0.2880(39) -0.030(15) 0.081(80) 0.209(22) -0.32(14) -0.267(21) 0.443

ηc 400 0.2853(38) -0.003(11) - 0.230(22) - -0.3747(97) 0.300
ηc 400 0.2841(43) -0.005(11) - 0.255(40) -0.32(33) -0.356(22) 0.255
ηc 400 0.2876(48) -0.017(18) 0.17(13) 0.233(23) - -0.409(32) 0.269
ηc 400 0.2861(55) -0.015(19) 0.14(14) 0.254(40) -0.28(34) -0.386(44) 0.237

Ds 400 0.2851(37) -0.011(11) - 0.227(22) - -0.3016(79) 0.279
Ds 400 0.2840(42) -0.012(11) - 0.248(37) -0.25(26) -0.288(17) 0.241
Ds 400 0.2867(46) -0.021(17) 0.11(10) 0.230(22) - -0.323(25) 0.265
Ds 400 0.2853(52) -0.020(18) 0.08(11) 0.248(37) -0.22(27) -0.306(35) 0.237

D 400 0.2854(36) -0.014(11) - 0.203(20) - -0.2670(66) 0.316
D 400 0.2840(39) -0.015(11) - 0.230(34) -0.30(22) -0.250(14) 0.232
D 400 0.2875(43) -0.026(16) 0.135(87) 0.207(21) - -0.294(22) 0.271
D 400 0.2857(48) -0.025(16) 0.103(92) 0.229(34) -0.26(22) -0.273(29) 0.209

ηc 350 0.2855(39) -0.005(12) - 0.235(25) - -0.372(11) 0.348
ηc 350 0.2835(43) -0.006(12) - 0.281(48) -0.56(40) -0.346(22) 0.238
ηc 350 0.2878(50) -0.018(19) 0.17(14) 0.239(25) - -0.407(35) 0.312
ηc 350 0.2856(55) -0.017(19) 0.14(14) 0.281(48) -0.53(40) -0.378(43) 0.209

Ds 350 0.2852(38) -0.013(11) - 0.232(24) - -0.2996(87) 0.319
Ds 350 0.2835(42) -0.014(11) - 0.272(45) -0.43(31) -0.280(17) 0.225
Ds 350 0.2868(47) -0.022(18) 0.11(11) 0.235(25) - -0.322(28) 0.304
Ds 350 0.2850(52) -0.022(18) 0.09(11) 0.272(45) -0.41(32) -0.299(34) 0.214

D 350 0.2854(36) -0.015(11) - 0.208(23) - -0.2639(73) 0.352
D 350 0.2836(39) -0.017(11) - 0.252(40) -0.45(25) -0.244(14) 0.209
D 350 0.2876(44) -0.028(17) 0.134(93) 0.213(23) - -0.292(24) 0.300
D 350 0.2855(48) -0.028(17) 0.111(93) 0.253(40) -0.42(26) -0.268(28) 0.169

Table D.2: Fit results of the different versions of the global fit ansatz (6.10) for
the observable ΦD
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H mcut
π ΦDs [GeV3/2] C0

CL C1
CL C0

χ C1
χ C0

h χ2/dof

ηc 450 0.3449(21) -0.0206(68) - 0.0655(92) - -0.4167(38) 0.297
ηc 450 0.3448(21) -0.0206(69) - 0.066(16) -0.01(14) -0.4162(76) 0.311
ηc 450 0.3463(26) -0.0286(98) 0.114(65) 0.0665(92) - -0.440(15) 0.262
ηc 450 0.3462(25) -0.0287(100) 0.115(66) 0.068(16) -0.02(14) -0.440(16) 0.274

Ds 450 0.3444(18) -0.0294(59) - 0.0622(80) - -0.3345(30) 0.261
Ds 450 0.3444(19) -0.0294(60) - 0.064(14) -0.02(10) -0.3337(56) 0.273
Ds 450 0.3451(23) -0.0334(87) 0.051(50) 0.0628(80) - -0.345(12) 0.258
Ds 450 0.3451(23) -0.0336(88) 0.052(50) 0.065(14) -0.02(10) -0.344(12) 0.270

D 450 0.3448(20) -0.0327(66) - 0.0364(88) - -0.2952(27) 0.359
D 450 0.3446(20) -0.0331(67) - 0.044(13) -0.086(91) -0.2914(50) 0.349
D 450 0.3459(24) -0.0388(91) 0.073(45) 0.0378(88) - -0.311(11) 0.336
D 450 0.3456(24) -0.0394(92) 0.074(45) 0.045(13) -0.089(91) -0.307(10) 0.323

ηc 400 0.3442(22) -0.0185(68) - 0.073(14) - -0.4175(40) 0.278
ηc 400 0.3442(22) -0.0185(69) - 0.073(21) 0.01(18) -0.4179(77) 0.293
ηc 400 0.3457(26) -0.027(10) 0.122(70) 0.075(14) - -0.442(16) 0.235
ηc 400 0.3459(27) -0.028(10) 0.127(71) 0.072(21) 0.05(18) -0.445(18) 0.246

Ds 400 0.3438(19) -0.0275(59) - 0.070(12) - -0.3348(32) 0.243
Ds 400 0.3438(19) -0.0274(60) - 0.069(19) 0.01(13) -0.3353(57) 0.256
Ds 400 0.3446(24) -0.0322(90) 0.058(53) 0.071(12) - -0.347(12) 0.236
Ds 400 0.3447(24) -0.0324(90) 0.062(54) 0.069(19) 0.03(13) -0.348(14) 0.248

D 400 0.3442(21) -0.0310(66) - 0.044(13) - -0.2951(28) 0.358
D 400 0.3440(21) -0.0314(66) - 0.050(19) -0.08(12) -0.2920(51) 0.359
D 400 0.3455(25) -0.0386(93) 0.087(48) 0.046(13) - -0.313(11) 0.318
D 400 0.3453(25) -0.0382(92) 0.080(47) 0.049(19) -0.05(12) -0.309(12) 0.328

ηc 350 0.3444(22) -0.0202(69) - 0.079(15) - -0.4152(42) 0.268
ηc 350 0.3445(22) -0.0201(69) - 0.075(26) 0.06(23) -0.4167(72) 0.284
ηc 350 0.3458(27) -0.028(10) 0.113(72) 0.080(15) - -0.438(17) 0.224
ηc 350 0.3461(27) -0.029(10) 0.119(68) 0.073(26) 0.09(22) -0.442(16) 0.232

Ds 350 0.3440(19) -0.0290(60) - 0.075(13) - -0.3331(34) 0.227
Ds 350 0.3441(19) -0.0290(60) - 0.072(22) 0.04(17) -0.3344(54) 0.240
Ds 350 0.3447(24) -0.0332(91) 0.052(54) 0.076(13) - -0.344(13) 0.223
Ds 350 0.3449(24) -0.0334(90) 0.056(52) 0.071(22) 0.06(16) -0.346(12) 0.234

D 350 0.3445(21) -0.0330(67) - 0.049(14) - -0.2924(30) 0.326
D 350 0.3444(21) -0.0331(67) - 0.053(22) -0.05(15) -0.2911(48) 0.346
D 350 0.3456(25) -0.0398(94) 0.079(49) 0.051(14) - -0.309(12) 0.288
D 350 0.3455(25) -0.0397(93) 0.077(46) 0.052(22) -0.02(15) -0.308(11) 0.309

Table D.3: Fit results of the different versions of the global fit ansatz (6.10) for
the observable ΦDs
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[15] A. Jüttner, L. Del Debbio, N. Garron, A. Khamseh, M. Marinkovic, F. Sanfilippo

et al., Charm physics with physical light and strange quarks using domain wall

fermions, PoS LATTICE2014 (2015) 380, [1502.00845].

[16] P. Boyle, L. Del Debbio, A. Khamseh, A. Jüttner, F. Sanfilippo and J. T. Tsang,
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[82] M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun.

Math. Phys. 97 (1985) 59.

[83] Y. Iwasaki, “Renormalization group analysis of lattice theoreies and improved

lattice action. 1. Two-dimensional nonlinear O(N) sigma model.” 1983.

[84] Y. Iwasaki, “Renormalization Group Analysis of Lattice Theories and Improved

Lattice Action. II. Four-dimensional non-Abelian SU(N) gauge model.” 1983.

[85] Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved

Lattice Action: Two-Dimensional Nonlinear O(N) Sigma Model, Nucl. Phys.

B258 (1985) 141–156.

[86] H. B. Nielsen and M. Ninomiya, No Go Theorem for Regularizing Chiral

Fermions, Phys. Lett. B105 (1981) 219–223.

http://dx.doi.org/10.1016/0370-1573(78)90120-5
http://dx.doi.org/10.1016/0370-1573(82)90035-7
http://dx.doi.org/10.1016/0370-1573(85)90065-1
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1103/PhysRev.96.1124
http://dx.doi.org/10.1103/PhysRev.96.1124
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1016/j.physletb.2004.04.045
http://arxiv.org/abs/nucl-th/0402051
http://dx.doi.org/10.1016/j.physletb.2005.10.042
http://dx.doi.org/10.1016/j.physletb.2005.10.042
http://arxiv.org/abs/hep-lat/0506016
http://dx.doi.org/10.1016/0370-2693(83)91043-2
http://dx.doi.org/10.1007/BF01206178
http://dx.doi.org/10.1007/BF01206178
http://dx.doi.org/10.1016/0550-3213(85)90606-6
http://dx.doi.org/10.1016/0550-3213(85)90606-6
http://dx.doi.org/10.1016/0370-2693(81)91026-1


REFERENCES 133

[87] D. B. Kaplan, Chiral Symmetry and Lattice Fermions, in Modern perspectives in

lattice QCD: Quantum field theory and high performance computing. Proceedings,

International School, 93rd Session, Les Houches, France, August 3-28, 2009,

pp. 223–272, 2009. 0912.2560.

[88] J. B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice

Gauge Theories, Phys. Rev. D11 (1975) 395–408.

[89] M. Creutz, Four-dimensional graphene and chiral fermions, JHEP 04 (2008)

017, [0712.1201].

[90] P. T. Matthews and A. Salam, The Green’s functions of quantized fields, Nuovo

Cim. 12 (1954) 563–565.

[91] P. T. Matthews and A. Salam, Propagators of quantized field, Nuovo Cim. 2

(1955) 120–134.

[92] N. Cabibbo and E. Marinari, A New Method for Updating SU(N) Matrices in

Computer Simulations of Gauge Theories, Phys. Lett. B119 (1982) 387–390.

[93] S. L. Adler, An Overrelaxation Method for the Monte Carlo Evaluation of the

Partition Function for Multiquadratic Actions, Phys. Rev. D23 (1981) 2901.

[94] M. Creutz, Overrelaxation and Monte Carlo Simulation, Phys. Rev. D36 (1987)

515.

[95] A. D. Kennedy and B. J. Pendleton, Improved Heat Bath Method for Monte

Carlo Calculations in Lattice Gauge Theories, Phys. Lett. B156 (1985) 393–399.

[96] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo,

Phys. Lett. B195 (1987) 216–222.

[97] F. Fucito, E. Marinari, G. Parisi and C. Rebbi, A Proposal for Monte Carlo

Simulations of Fermionic Systems, Nucl. Phys. B180 (1981) 369.

[98] ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowing

down and error analysis in lattice QCD simulations, Nucl. Phys. B845 (2011)

93–119, [1009.5228].

[99] R. Sommer, A New way to set the energy scale in lattice gauge theories and its

applications to the static force and alpha-s in SU(2) Yang-Mills theory, Nucl.

Phys. B411 (1994) 839–854, [hep-lat/9310022].
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