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Abstract: Zinc Selenide (ZnSe) is a promising mid-infrared waveguide material with high 

refractive index and wide transparency. Optical quality ZnSe thin films were deposited on 

silicon substrates by RF sputtering and thermal evaporation, and characterized and compared 

for material and optical properties. Evaporated films were found to be denser and smoother 

than sputtered films. Rib waveguides were fabricated from these films and evaporated films 

exhibited losses as low as 0.6 dB/cm at wavelengths between 2.5 µm and 3.7 µm. The films 

were also used as isolation/lower cladding layers on Si with GeTe4 as the waveguide core and 

propagation losses were determined in this wavelength range. 
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1. Introduction 

Zinc selenide (ZnSe) is a chemically stable and non-hygroscopic group II-VI metal 

chalcogenide which possesses many useful semiconducting and optical properties, making it 

an important optoelectronic material.  It has useful electronic properties such as a wide and 

direct bandgap, low electrical resistivity and n-type conductivity. The important optical 

properties such as broad transparency from visible to mid infrared (MIR) wavelengths, high 

refractive index, low dispersion and high photosensitivity combined with electronic properties 

have been exploited in many optoelectronic devices such as LEDs, laser diodes, MIR sources, 

solar cells [1-5] and optical windows, lenses and prisms.  Low-loss waveguides have been 

realized in ZnSe substrates by methods such as diamond dicing [6], laser writing [7], proton 

implantation [8] and a macroscopic Fourier transform infrared-attenuated total reflection 

(FTIR-ATR)  waveguide element has been used for the detection of DNA hybridization [9]. 



Epitaxial ZnSe thin films are usually grown on GaAs substrates to achieve lattice matching 

(0.27% mismatch) for applications in laser diodes [2], solar cells [3], second harmonic 

generation [10] and nonlinear switching [11]. However, the deposition of non-epitaxial 

several microns thick films of ZnSe on silicon (Si) is challenging mainly because of 

dissimilar thermal expansion and distinct chemical properties [12]. Studies of the 

microstructure of thin ZnSe  films deposited on Si [13],  of the influence of substrate heating 

on structural, optical and electronic properties of the ZnSe film deposited on Si [12,14-15],  of 

UV to IR ellipsometry of ZnSe films deposited on Si [16] and of epitaxial film of ZnSe 

deposited on Si by MBE [17] have been reported. However, MBE is not suitable for growing 

thicker films of the order of a few microns. Therefore, in this paper, we report the deposition 

of ZnSe films of thicknesses between 1.9 and 4.5 µm on Si substrates by thermal evaporation 

and sputtering. The ZnSe film is used as a waveguide core on oxidized silicon and also as a 

lower cladding layer on Si, with GeTe4 as the waveguide core for the MIR. 

The fundamental absorption of biological molecules is orders of magnitude stronger in the 

MIR than their overtone bands in the near-infrared, rendering it a useful spectral region for 

highly sensitive absorption spectroscopy. The MIR corresponds to wavelengths between 2 

µm and 20 µm and is broadly categorized into two spectroscopic windows, the mid 

wavelength infrared (MWIR) region covering wavelengths from 2-5 µm and the long 

wavelength infrared (LWIR) region from 8-12 µm. The 5-8 µm region is dominated by water 

absorption and hence it is of limited use for biochemical sensing. Optical waveguides are the 

most sensitive form of ATR element [18, 19] and low loss waveguides in these regions are of 

interest for MIR absorption spectroscopy of chemical species [20]. In our earlier work, GeTe4 

chalcogenide waveguides on bulk ZnSe substrates were demonstrated in both the MWIR and 

LWIR regions. Ductile dicing was used to prepare the end facets as conventional end facet 

polishing was unsuitable due to the soft and brittle nature of chalcogenide materials [21]. 

MIR waveguides fabricated on Si substrates would have the advantage that silicon is a 

plentiful, high quality low-cost material and can be readily cleaved along crystalline planes, 

avoiding end facet polishing. In this work, ZnSe films were deposited on Si by both 

sputtering and evaporation and compared for their structural, morphological and optical 

properties. The optical quality of evaporated and sputtered ZnSe was tested as a waveguide 

core and as a lower cladding/isolation layer on Si with a higher refractive index (GeTe4, n~3.3) 

core. Propagation losses were measured by capturing the scattering of light propagating along 

the waveguide using an infrared camera from 2.5 µm to 3.7 µm in the MWIR. This paper is 

divided into three sections; 1) deposition and characterization of ZnSe thin films by RF 

sputtering and evaporation, and their comparison. 2) Fabrication and characterization of 

waveguides with ZnSe films as waveguide cores on oxidized silicon (n~1.45) and 3) 

Fabrication and characterization of waveguides with ZnSe films (n~2.4) as lower cladding on 

Si with GeTe4 as a waveguide core. In sections 2 and 3, waveguide propagation losses are 

calculated and compared for the sputtered and evaporated ZnSe films. 

 

2. Deposition and characterization of ZnSe films 

Si (100) was used as the substrate for waveguide fabrication but the following substrates were 

also used to deposit ZnSe for the film characterization: Silicon (Si 100) (2 cm x 2 cm, 4 cm x 

4 cm), silicon with a 2.5 µm thermally grown silica layer (oxidized Si) (4 inch diameter 

circular wafer cut in half), Germanium (Ge) (1 inch diameter circular wafer) and glass slides. 

Si, oxidized Si and glass slides were cleaned in Piranha (H2O2: H2SO4) solution, washed with 

de-ionized water and rinsed with acetone and isopropanol (IPA). Ge substrates were rinsed 

with IPA alone. All samples were dried with dry nitrogen gas and finally cleaned in a plasma 

asher, (Tepla 300) in an oxygen atmosphere (O2 600ml/min) at 1000 W of microwave power 

for 15 min. This process heated the samples to ~160° C, removing residual moisture from the 

sample surface.   



2.1 RF sputtering (AJA Orion) 

Cleaned substrates were mounted on a platen facing down towards the target. A three inch 

diameter ZnSe target made by CVD was used. Substrates were heated in the sputtering 

chamber at 250°C in an argon atmosphere for two hours before starting the deposition. A 

sputtering pressure of 5 mTorr and an RF power of 50 W were used to deposit the films in an 

argon flow of 15 sccm, resulting in deposition at a rate between 0.05 and 0.06 nm/s, during 

which the samples were rotated and maintained at 250°C. After the deposition, the samples 

were annealed in an argon atmosphere within the chamber at 250°C for 2 hours, and the 

chamber was then allowed to cool down to room temperature before the samples were 

removed. The final ZnSe film thickness for sputtered ZnSe waveguides on oxidized silicon 

was 1.9 ± 0.1 µm, and for ZnSe as isolation layer for GeTe4 waveguides was 4.5 ± 0.2 µm. 

2.2 Thermal evaporation (BOC Edwards E306a) 

ZnSe pieces made by CVD were placed in a tantalum boat and the substrates were mounted 

on the platen, facing down towards this evaporation source.  The substrates were rotated and 

heated by a halogen lamp at 250°C for 2 hours inside the chamber in vacuum before starting 

the deposition. After reaching a base pressure of 7 x 10
-6

 mbar the deposition was started, at a 

rate of 0.5-0.7 nm/sec, with the substrates maintained at 250°C; the tantalum boat was held at 

an estimated temperature of 550°C. In order to keep the chamber pressure below 5x10
-5

, the 

deposition was performed in steps, depositing 1 µm thick film at a time and then leaving the 

samples inside the chamber at 250°C for approximately one hour to allow the pressure to fall 

again, before starting the next deposition step. This is equivalent to vacuum annealing of the 

samples to release thermal stresses built during the formation of the film. Once the required 

thickness was achieved, the samples were annealed in the chamber at 250°C for a further 

additional two hours and then allowed to cool to room temperature before the chamber was 

opened. The samples were heated or cooled slowly in steps of 30-50°C, to avoid peeling of 

the films. The final ZnSe film thickness for evaporated ZnSe waveguides on oxidized silicon 

was ~1.9 ± 0.2 µm, and that of ZnSe as isolation layer for GeTe4 waveguides was ~ 4.1 ± 0.3 

µm. 

In preliminary attempts to deposit ZnSe, room temperature deposition was performed for 

both sputtered and evaporated films. However, in both cases, ~4 µm thick films flaked off 

during subsequent processing steps. Therefore, in this work, substrate heating was used 

during deposition to promote adhesion of the films to substrates. The evaporated films also 

needed further annealing to remove stresses for further processing of the films into 

waveguides. The evaporated samples were annealed in an annealing furnace at 280°C for two 

hours in an argon atmosphere. The sputtered films survived all the processing steps without 

peeling off which suggests that they had lower stresses than the evaporated films as they were 

deposited 10 times more slowly than the evaporated films. Furthermore, sputtered ZnSe film 

samples cracked after annealing under similar annealing conditions to evaporated samples 

(See Appendix 1.1) and so the annealing step was omitted for sputtered samples.   

2.3 Material characterization 

To realize low loss waveguides it is important to control the crystallinity, surface roughness, 

composition, transparency and refractive index of the materials. Crystal structure was 

determined by X-ray diffraction (XRD, Rigaku) with a monochromatic Cu kα target in 2 theta 

geometry. The morphology of the films was studied using field emission scanning electron 

microscopy (FESEM, Jeol) operating at voltages of 2-5 kV. The roughness of the deposited 

films was measured by atomic force microscopy (AFM, Veeco) in tapping mode. 

Compositional analysis was performed by X-Ray photoelectron spectroscopy (XPS, 

Thermoscientific). Optical transmission was determined by Fourier transform infrared 

spectroscopy (FTIR, Agilent 670) operating at wavelengths of 1.6-20 µm. The refractive 



index and propagation loss of the ZnSe films were determined using a prism coupler 

(MetriconTM) operating at 1550 nm. An optical parametric oscillator (OPO, M-Squared 

Lasers Firefly) and an infrared camera (FLIR A6540sc) were used to characterize the 

waveguides for guided modes and propagation loss in the mid-infrared wavelength region 

between 2.5 and 3.7 µm. 

  

 Fig. 1 (a) XRD patterns and (b) sample photographic images of ZnSe films deposited on glass 

substrates and bulk ZnSe substrate  

 2.3.1 Structural studies 

The crystallinity of the deposited ZnSe films and commercially sourced bulk ZnSe substrate 

were determined by grazing incidence X-ray diffraction (GIXRD) with a grazing angle of 1° 

and 2θ in the range of 10°-80°. Fig 1 (a) shows the XRD patterns for sputtered, evaporated 

and bulk ZnSe along with the International Center for Diffraction Data (ICDD) crystal plane 

data for hexagonal and cubic ZnSe. All three measured ZnSe samples are polycrystalline but 

they differ in crystal structure. The sputtered ZnSe film shows mixed phases of wurtzite 

hexagonal and zinc blende cubic crystal structures as observed in [13] in which ZnSe was 

also deposited on Si by RF magnetron sputtering and the films were found to be in tensile, 

compressive or a mixture of both residual stresses depending on deposition pressure and 

power. On the other hand both the evaporated ZnSe film and bulk ZnSe show only cubic zinc 

blende crystal structure where the grains are mainly oriented towards [111] axis perpendicular 

to the coating surface. Thermal evaporation of ZnSe generally yields cubic polycrystalline 

films [12, 14] in line with the results obtained here. For waveguide applications, amorphous 

or small grain polycrystalline films are desirable. We obtained polycrystalline films for both 

sputtering and evaporation, with the evaporated films showing grain size significantly smaller 

than the sputtered films as shown by the SEM and AFM results (Fig. 2). Fig 1 (b) shows 

sample photographic images of ZnSe films deposited on glass substrates by sputtering and 

evaporation, and of a bulk ZnSe substrate. Visual examination shows that the deposited films 

resemble the bulk substrate in color indicating that the band edge of the deposited films lies in 

the visible region as expected and hence indicating the stoichiometry of the films. Both the 

sputtered and evaporated films were found to be hydrophilic with a contact angle of 30.5° and 

88° respectively, when measured with de-ionized water (See Appendix 1.2). 

 



2.3.2 Morphology and microstructure  

FESEM was used to examine the microstructure of the films. Fig. 2 (a) shows a FESEM 

image of the surface, and (b) of the cross-section, of a sputtered ZnSe film on Si. The large 

grains of the sputtered films can be seen clearly and this may be due to the long duration of 

the films at 250°C in the deposition chamber. The film cross-section reveals the columnar 

void structure which can be explained by Thornton‟s zone model [22]; a similar structure for 

sputtered chalcogenide films is reported in [23]. These columnar structures could also be the 

reason for hydrophilic nature of the surface thereby attracting and trapping water vapors from 

atmosphere. Fig. 2 (c) and (d) shows FESEM images of the surface and cross-section of the 

evaporated ZnSe film on Si. The evaporated film shows more densely packed structures than 

the sputtered film, but contains some random circular spots which were also observed in [24-

25]. These may be caused by “spitting”, where a sudden release of impurities such as carbon 

or oxygen trapped in the source material leads to ejection of larger pieces of source material 

towards the samples. FESEM results confirm that the evaporated films are denser than the 

sputtered films. FESEM images also indicate that the sputtered films are rougher than the 

evaporated films, but in order to quantify the roughness of films, an AFM in tapping mode 

was used. The average roughness of the sputtered and evaporated films was determined over 

a 2 µm x 2 µm area as shown in Fig. 2 (e) and (f) respectively. The average roughness of the 

sputtered film is ~18.5 nm and that of evaporated film was found to be ~4 nm.  

 

 

Fig. 2 FESEM images of surface and cross-section of sputtered (a), (b) and evaporated (c), (d) 
ZnSe film on Si. AFM image of a 2x2 µm2 scan area of (e) sputtered and (f) evaporated ZnSe 

film on Si 

2.3.3 Compositional analysis 

XPS is a surface sensitive compositional measurement technique, and depth profiling enables 

acquisition of XPS spectra from a fresh surface exposed by in situ Ar ion beam etching of the 

film surface. XPS with a monochromatic Al Kα X-ray source (hv = 1486.6 eV) operating at a 

base pressure of 2 x 10
-9

 mbar was used to determine the composition of the ZnSe films. The 

X-ray source was operated at 6.7 mA emission current and 15 kV anode bias with a spot size 

of 400 µm and photoelectrons were collected over a cone of ±30° with the lens mounted at 



40° with respect to the sample surface. For depth profiling, Ar ions with a current of 1 µA and 

3 kV energy were used to etch the sample surface. XPS analysis was carried out on the 

unetched surface, and then after each of four 1 minute etching steps. Each minute of etching 

corresponds to ~ 4 nm etch depth. 

 

Fig. 3 XPS Spectra of sputtered and evaporated ZnSe films showing fitted peaks for the 

elements Zn, Se and O. 

 

Carbon 1s core level at 284.8 eV was used as reference for correcting the charge shift. The 

data was analyzed using the Avantage software package (Thermo-Fisher Scientific). Fig. 3 

shows the high resolution XPS surface spectra of core levels zinc (Zn 2p), selenium (Se 3d) 

and oxygen (O 1s) for both the as-deposited sputtered and the annealed evaporated films on 

Si. The experimental data points are shown as green circles, and the black curves show the 

best Gauss-Lorentz fit to the peaks. For quantitative compositional analysis, the background 

(magenta curve) was subtracted and the contributions from individual elements were fitted as 

indicated by the arrows in Fig. 3. The composition was determined by integrating the area 

under the individual peaks and normalizing these by the sensitivity factor for each element. 

The XPS scan of the sputtered film shows the presence of two Zn3p peaks, a high binding 

energy (B.E.) peak corresponding to zinc oxide (ZnO) and a low B.E.  peak corresponding to 

metallic Zn [26]. In the O1s scan, two oxide peaks are shown, corresponding to a bonded 

ZnO peak and a non-bonded oxygen peak attached to organic carbon (O-C) or metal 

carbonates as shown in Fig 3. The evaporated ZnSe shows a single oxide peak corresponding 

to non-bonded oxygen along with Zn and Se. Presence of non-bonded oxygen is mainly due 

to surface contamination which could be avoided by capping the films with a protective 

coating soon after the deposition whereas the bonded oxygen present throughout the film 

affects the optical performance due to specific absorption of the metal oxide formed. 

The results of depth profiling for both sputtered and evaporated films are reported in 

Table 1. The XPS analysis shows that the top layer of the sputtered ZnSe film is comprised of 

bonded and non-bonded oxygen as explained above. As the surface was etched further, a 

significant decrease in non-bonded oxygen was observed (from 18.38% to 2.45%) and after 

etching by ~4 nm, only the oxygen bonded to Zn was present. An oxide peak in the Zn 2p 

scan was also observed, but no evidence of the presence of SeO2 was obtained, which has 

absorption peaks at 2.92 µm and 3.52 µm in the MIR region [27]. After etching by ~16 nm, ~ 



2.5% oxygen in the form of ZnO was still present in the sputtered film. On the other hand, 

non-bonded oxygen was present only in the top ~8 nm of the evaporated film and the film is 

free from any metal bonded oxides. The results clearly indicate the evaporated film is purer 

than the sputtered films in terms of oxygen contamination. The bonded oxygen which is 

present in the sputtered films is hard to remove as it is bonded to Zn. After observing oxide 

impurity in the films, the MIR absorption spectra of the films were measured before 

fabricating the waveguides. 

 

Table 1.  Composition analysis using XPS depth profiling of sputtered and evaporated ZnSe films 
Element Peak B.E 

 (eV) 
No etch 
Atomic % 

1 min etch 
Atomic % 

2 min etch 
Atomic % 

3 min etch 
Atomic % 

4 min etch 
Atomic % 

Sputtered ZnSe 
Zn 2p 1022.1 30.67 36.08 44.73 

  
45.82 
  

46.63 

Se 3d5 
Se 3d3 

54.8 
53.95 

41.82 53.67 52.0 51.34 50.80 

O 1s (ZnO) 529.8 
  

9.12 
  

7.81 
  

3.27 
  

2.85 
  

2.57 
  

Evaporated ZnSe 
Zn 2p 1022.26 40.47 42.82 44.85 45.14 44.94 
Se 3d5 
Se 3d3 

54.93 
54.04 

27.89 55.70 55.15 54.86 55.06 

O 1s (O-C, 
metal 

carbonates) 

531.3 18.38 2.45 - 
  
  

- - 

 

2.3.4 Optical transmission  

The optical transmission of the sputtered (2.9 µm thick)  and evaporated (4.1 µm thick)  ZnSe 

films deposited on Ge substrates and of the bulk ZnSe (2 mm thick)  and Ge substrates (1 mm 

thick), polished on both sides, was measured using normal incidence FTIR. A resolution of 4 

cm
-1

 averaged over 64 scans over the wavelength range 1.6 µm to 16 μm was used. Ge was 

chosen as the substrate for the film transmission measurements due to its wide transparency in 

the mid-infrared region. First, the transmission spectrum of a bare Ge substrate was taken and 

is shown as the red curve in Fig. 4. Then the transmission spectrum for the ZnSe film 

deposited on an identical Ge substrate was recorded, and the two spectra were ratioed to 

obtain the transmission spectrum of the ZnSe film alone, which is shown as the blue 

(evaporated) and purple (sputtered) curves in Fig. 4. The transmission spectrum of a bulk 

ZnSe substrate alone (black curve) is also shown in Fig. 4. The evaporated and sputtered film 

is transparent up to 15-16 µm in agreement with the bulk ZnSe.                                                 

2.3.5 Waveguiding, refractive index and loss 

The refractive indices of the deposited films and the respective effective indices of the 

propagating modes and the propagation loss were determined using a Metricon
TM

 automatic 

prism-coupler (prism code 6024.3) at a wavelength of 1550 nm. Due to the high optical 

quality of oxidized silicon and the low absorption of silica at these wavelengths, ZnSe films  



 

Fig. 4 Infrared transmission spectra of bulk ZnSe substrate, Ge substrate, sputtered and 

evaporated ZnSe films on Ge substrates. 

deposited on oxidized silicon samples were used for these measurements, to assess film 

quality. The measured material refractive indices (n) of the ZnSe films in the TE polarization 

at 1550 nm wavelength are reported in Table 2 and are consistent with the values reported in 

the literature [28]. The propagation loss was measured by exciting the fundamental mode and 

scanning a fibre along the scattered streak of light in the direction of propagation, to 

determine the rate of decay of scattered power with respect to the distance along the 

waveguide. The effective refractive indices (Neff), propagation losses of the fundamental 

modes and film thicknesses (t) are also given in Table 2, which shows that the evaporated 

ZnSe film has lower loss compared with the sputtered film, which is expected because the 

evaporated film is dense and has low surface roughness as shown by FESEM and AFM 

results. In the literature, the losses in chalcogenide slab waveguides on oxidized silicon 

substrates have been measured by  prism coupling at λ = 1.064 μm to be 2, 10 and 20 dB/cm 

for As2S3, Ge28Sb12Se60 and Ge33As12Se55, respectively [29]. The propagation losses for fully 

etched channel waveguides of Ge23Sb7S70 on oxidized Si was measured to be 2.3 dB/cm at λ 

= 1.55 μm [30].  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Prism coupling measurements for ZnSe films in TE 

polarization at 1550 nm 

  n Neff t (nm) Loss 
(dB/cm) 

Sputtered 

  

2.4240 

±0.0001 
2.395  1897.0 1.44  

Evaporated  2.4239 

±0.0001 
2.418  1893.0 1.16  



3. ZnSe films as a waveguide core  

Sputtered and evaporated samples with 1.9 µm thick ZnSe films on oxidized silicon were 

converted into rib waveguides by photolithography and Ar ion beam etching. S1813 

photoresist (Shipley) was used to pattern the samples with straight ribs with widths from 1 to 

20 microns. The samples were exposed using an i-line Hg lamp source with an exposure dose 

of 144 mWs/cm
2
 and then developed in MIF 319 developer for 45 sec. The etch rate of ZnSe 

was ~ 50 nm/min with a beam current of 100 mA. Waveguide characterization was carried 

out for a waveguide with an etch depth (rib height) of 1.6 µm and the remaining slab 

thickness of 0.3 µm and a rib width ~20 µm, as shown in the SEM image of the sample cross-

section in Fig. 5 (a). Light from the tunable OPO was coupled into the waveguide using a 

ZrF4 fiber butt-coupled to the waveguide and the guided light was recorded using the mid-

infrared camera. Fig. 5 (b) and (c) show top view images of the waveguide with guided light 

at a wavelength of 3.7 μm emerging from the waveguide end, for the sputtered and 

evaporated ZnSe films, respectively. Note that the color of the images is false and represents 

the hot and cold regions in the frame.  

With light coupled into a waveguide, propagation loss was measured by recording an 

infrared image of the surface in a region 1-2 mm away from the input facet to capture the 

scattered light along the waveguide.  This image was background corrected by subtracting an 

(otherwise identical) image with the laser turned off. This procedure was repeated for 

wavelengths between 2.5 μm and 3.7 μm at intervals of 0.1 μm. Fig 5 (d) shows the 

propagation loss calculated by fitting an exponential to the streak of light captured, as a 

function of wavelength. The error bars represents the standard deviation between three data 

points at each wavelength collected from three different but nominally identical waveguides. 

The minimum loss calculated in evaporated ZnSe waveguides is ~ 0.6 dB/cm at λ = 2.5 µm 

and 3.5-3.6 µm. The losses in sputtered ZnSe waveguides are between 5.3–11.75 dB/cm. The 

higher losses for the sputtered films are believed to be due to inadequate film quality, higher 

surface roughness and large grain size as well as columnar structures that may trap oxygen 

from the atmosphere and cause oxide impurities, as seen in the XPS analysis discussed above.  

 

Fig. 5 (a) FESEM image of a cross-section of a ZnSe rib waveguide on oxidized Si, (b) and (c) 

IR images of the guided light emerging from the waveguide end, for the sputtered and 
evaporated ZnSe waveguides, respectively at λ = 3.7 μm, (d) propagation losses for the 

sputtered and evaporated ZnSe waveguides respectively, for λ = 2.5-3.7 µm. 

For waveguides with thermal evaporated ZnSe, we expect to have lower losses at longer 

wavelengths because of the reduction in the Rayleigh scattering losses due to roughness. 

However, current ZnSe waveguides on oxidized Si are not suitable at wavelengths longer than 



4 µm and efforts are underway to fabricate such waveguides on fluoride based materials, both 

on bulk substrates as well as thin film on Si substrates that will be able to guide light up to 10 

µm of spectral region.  

 

4. ZnSe films as waveguide isolation layers 

 Having established the fabrication of high quality low-loss ZnSe films, they were employed 

as isolation layers between the silicon substrate and a high index GeTe4 core, with a view to 

achieving broadband MIR operation beyond the silica absorption edge at λ ≈ 4 µm. Identical 

20 µm wide fully etched, straight GeTe4 channel waveguides of thickness 2.1 ±0.2 µm were 

fabricated on both 4.5 µm thick sputtered and 4.1 µm thick evaporated ZnSe films on silicon. 

The thickness of isolation layer required to yield a loss into the silicon of <0.1 dB/cm was 

calculated by numerical modeling (see Appendix 1.3). The lift-off method was used to 

fabricate the GeTe4 waveguides, as follows. A ~6 μm thick film of AZ2070 negative 

photoresist (Microchemicals) was spun onto the ZnSe/Si samples. After soft baking, the 

samples were exposed through a mask with straight lines having widths from 1 to 20 microns 

using an i-line Hg lamp source with an exposure dose of 56 mWs/cm
2
 and then post exposure 

baked (PEB) to crosslink the exposed resist. They were then developed in AZ726 MIF 

developer for 2 min to create an undercut profile.  GeTe4 was then deposited on these 

patterned samples by RF sputtering at 40W sputtering power and 15 mTorr sputtering 

pressure [21]. The photoresist was then lifted off by soaking the samples in acetone, leaving 

the 20 µm wide GeTe4 channels on the ZnSe film surface. Fig. 6 shows an SEM image of the 

cross-section of a GeTe4 channel on a sputtered ZnSe film on Si after removing the 

photoresist. The trapezium like shape of the channels is due to non-directionality of the 

sputtering process. The waveguides were then characterized for propagation loss using 

scattered light images as described above in Section 2. The propagation loss was found to be 

31±1 dB/cm and 25±3 dB/cm at λ = 3.5 and λ = 3.7 µm respectively for the sputtered ZnSe 

isolation layer and 13±1 dB/cm and 10±2 dB/cm for the evaporated ZnSe isolation layer. The 

higher losses in these waveguides are believed to be caused by oxide contamination of the 

GeTe4 target used for sputtering the GeTe4 films. However, these results confirm the lower 

loss of evaporated ZnSe films compared to sputtered ZnSe films when used as an isolation 

layer, in agreement with the results on ZnSe films and waveguides described in earlier 

sections. Work is underway to minimize these losses by using further purified raw materials 

to realize oxide free GeTe4 films on ZnSe isolation layers on silicon. 

 

 

 Fig. 6 FESEM image of cross-section of GeTe4 channel waveguide on Si with a ZnSe 

isolation layer   

Researchers working on a similar waveguide core materials recently reported a total 

insertion loss of -10.5 dB with a propagation loss of 6.6 dB/cm at λ = 10 μm for a Ge17Te83 

buried channel waveguide (19 μm wide and 15 μm high) on a Te75Ge15Ga10 substrate with a 

Ge24Te76 superstrate [31]. A chalcogenide ridge waveguide of Ge23Sb7S70 core deposited by 



thermal evaporation on silica coated silicon showed a total insertion loss of -28 dB measured 

at  λ = 3.4 μm [32]. Recently, a fully etched waveguide with a chalcogenide composition of 

GeSbSe showed propagation losses of 2.5 dB/cm at λ = 7.7 μm [33]. 

 

5. Conclusions 

Optical quality ZnSe films of thickness up to 4.5 µm were deposited using both RF 

magnetron sputtering and thermal evaporation. These films were characterized for their 

structural and optical properties. Both of them were found to be polycrystalline with 

thermally evaporated ZnSe films being denser and smoother than sputtered films. Refractive 

indices of the sputtered and evaporated films were measured to be 2.4240 and 2.4239 at 1550 

nm, respectively and are in good agreement with the CVD produced bulk starting material 

used. They were found to be transparent up to about 16 µm wavelength. Composition analysis 

proved that the sputtered films suffer from oxide contamination throughout the bulk of the 

film whereas the evaporated films have oxide contamination only at the surface which could 

be avoided using protective coatings. ZnSe films deposited on oxidized silicon wafers were 

fabricated in to rib waveguides by photolithography and Ar-ion beam etching. Waveguides 

made of thermally evaporated ZnSe films showed losses as low as 0.6 dB/cm at mid-IR 

wavelengths. Evaporated ZnSe was also demonstrated as a promising material as a low-loss 

isolation layer for mid-infrared waveguide applications. 
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Appendix 

1.1 The FESEM and GIXRD results for a sputtered ZnSe film after annealing in Ar 

atmosphere for 2 hours at 280°C are shown in Fig. 7. The cracks in the films are clearly seen 

in Fig. 7 (a). On magnifying the ZnSe film surface further as shown in Fig 7 (b) and (c) the 

phase separation is clearly observed. The film has many large voids surrounded by large 

grains. GIXRD performed on the annealed film further confirmed that the grains are oriented 

in random planes as shown in Fig 7 (d).  

 

 Fig. 7 (a), (b) and (c) FESEM image of surface and (d) XRD pattern of Sputtered ZnSe film 

deposited on Si after annealing   

1.2  Surface wettability was measured by static contact angle measurement with deionized 

(DI) water on the deposited ZnSe films and on bulk ZnSe, with the angle between the 

water drop and the film surface being measured to define the hydrophilic or hydrophobic 

nature of the surface. This is governed by surface chemistry and roughness of the solid 

film. A hydrophilic surface has strong affinity to water therefore wets a large area of 

surface by maximizing the contact and has a contact angle less than 90°. A hydrophobic 

surface repels water and has a contact angle greater than 90°. Fig. 8 shows a water drop on 

each of the three ZnSe surfaces. The sputtered ZnSe was found to be hydrophilic with a 

contact angle of 30.5° whereas bulk ZnSe is hydrophobic in nature with a contact angle of 

112°. The evaporated ZnSe was found to be closer to hydrophobic in nature with a contact 

angle of 88°. A contact angle of 65° was reported earlier for a 280 nm thick spray 

pyrolysis deposited ZnSe film [34]. 

  

Fig. 8 Water contact angle of sputtered, evaporated and bulk ZnSe   



1.3 A numerical waveguide model was used to determine the ZnSe isolation layer 

thickness, ai, that would be required to reduce the tunneling loss into the silicon substrate 

to below 0.1 dB/cm for a GeTe4 core waveguide, for wavelengths up to 10 µm. The 

waveguide core was approximated as a slab waveguide. The refractive index dispersion 

of GeTe4 and ZnSe determined by ellipsometry [35], and the dispersion and absorption of 

Si from literature [36] were used in the model.  The waveguide core thickness, ac, was 

taken to be 2 µm, to achieve guidance throughout the MIR spectral window. Fig. 9 (a) 

shows a schematic of the waveguide showing the thickness and refractive indices of 

different layers. Fig. 9 (b) shows the fundamental mode field for a 2 µm thick GeTe4 

waveguide on Si at a wavelength of 3.5 µm. Fig. 9 (c) shows the dispersion of GeTe4 and 

ZnSe and the effective indices of GeTe4 waveguide on ZnSe, for the TE and TM 

polarizations. Fig. 9 (d) shows the thickness of ZnSe isolation layer needed between the 

GeTe4 core and the Si substrate to achieve a propagation loss of 0.1 dB/cm for each 

polarization. It can be seen that the thickness of the isolation layer needed is higher for 

the TM polarization and increases at longer wavelengths, as expected. Based on these 

results we have chosen the thickness of the ZnSe isolation layer to be around 4.5 µm to 

enable characterization of GeTe4 waveguides up to about 9 µm wavelength.  

  

Fig. 9 (a) Schematic diagram of GeTe4/ZnSe/Si slab waveguide design; (b) Mode field profile 
for ac = 2 µm and  ai = 4 µm at λ = 3.5 µm; (c) waveguide material and effective indices vs 

wavelength, and (d) thickness τ for a propagation loss of 0.1 dB/cm, for both polarizations. 


