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This thesis concerns research undertaken in two related topics concerning high-energy
gravitational physics. The first is the construction of a manifestly diffeomorphism-
invariant Exact Renormalization Group (ERG). This is a procedure that constructs
effective theories of gravity by integrating out high-energy modes down to an ultraviolet
cutoff scale without gauge-fixing. The manifest diffeomorphism invariance enables us to
construct a fully background-independent formulation. This thesis will explore both the
fixed-background and background-independent forms of the manifestly diffeomorphism-
invariant ERG. The second topic is cosmological backreaction, which concerns the effect
of averaging over high-frequency metric perturbations to the gravitational field equa-
tions describing the universe at large scales. This has been much studied the context of
the unmodified form of General Relativity, but has been much less studied in the con-
text of higher-derivative effective theories obtained by integrating out the high-energy
modes of some more fundamental (quantum) theory of gravity. The effective stress-
energy tensor for backreaction can be used directly as a diffeomorphism-invariant ef-
fective stress-energy tensor for gravitational waves without specifying the background
metric.

This thesis will construct the manifestly diffeomorphism-invariant ERG and compute
the effective action at the classical level in two different schemes. We will then turn to
cosmological backreaction in higher-derivative gravity, deriving the general form of the
effective stress-energy tensor due to inhomogeneity for local diffeomorphism-invariant
effective theories of gravity. This an exciting research direction, as it begins the con-
struction of a quantum theory of gravity as well as investigating possible implications

for cosmology.
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Chapter 1

Introduction

The layout of this introduction is as follows. Section 1.1 will give a broad discussion of
how varying scales of length are studied in different physical contexts. Section 1.2 will
discuss how problems with many degrees of freedom are tackled in statistical mechanics.
This is of interest because there is a strong overlap between the methods of statistical
mechanics and the methods of Quantum Field Theory (QFT), which are relevant to
this thesis. In particular, Renormalization Group (RG) methods will be discussed in
Subsections 1.2.3 and 1.2.4, while a supersymmetric method for studying disordered
systems will be discussed in 1.2.6. Section 1.3 provides a summary of General Relativity
as our current best theory of gravity. Section 1.4 is an overview of cosmology, discussing
its history and present status. In a addition to this introduction, there will be a short
review of the manifestly gauge-invariant Exact RG (ERG) in Chapter 2 and a short
review of backreaction in Einstein gravity in Chapter 4 to prepare the ground before
discussing original research presented in Chapters 3, 5 and 6, which report on work pub-
lished in [1-3]. Chapter 3 concerns the manifestly diffecomorphism-invariant ERG [2],
Chapter 5 covers backreaction in the context of a simple R + R2/6M? theory of grav-
ity [!], and finally 6 delves into backreaction in general local diffeomorphism-invariant

higher-derivative gravity expansions [3]. Chapter 7 is a summary of the whole thesis.

1.1 Physics at many scales of length

When addressing any physics problem, one always has particular scales of distance and
time in mind. Usually, an approximation is made where interactions over some range
of physical scales are explicitly considered and others are either neglected or averaged

over. For a mundane example, consider fluid flow down a domestic water pipe. To
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calculate this, one would usually ignore the microscopic physics of individual water
molecules. These approximations are necessary because it is not feasible to gather
all theoretically possible information on every microscopic degree of freedom, nor is it
feasible to perform computations at such a level. Such an approximation is acceptable
because the difference between the approximation and reality is small enough to be
neglected. There are a variety of ways to express such choices of approximation. In the
example of fluid mechanics, practitioners in that field favour the use of certain named
dimensionless numbers [1]. To decide whether it is important to use the microscopic
understanding of a fluid as composed of particles, or if it is valid to simply use the

continuum approximation of fluid mechanics, the Knudson number of the system is

consulted [5]. The Knudson number is defined as
A
Kn=— 1.1.1
n=2, (1.1.)

where A is the mean free path of the fluid particles and L is the length scale one wishes
to study. When the Knudson number is small, the fluid may be safely approximated by

continuous fields. Other aspects of fluid physics at different scales of length are captured

by the famous “Reynolds number” [6, 7], which is the ratio of inertial to viscous forces:
UL
Re = —, (1.1.2)
v

where U is the characteristic speed of the fluid and v is the kinematic viscosity. When
the Reynolds number is small, the fluid flow is laminar, dominated by viscous forces
and easily calculable. Conversely, a large Reynolds number corresponds to a turbulent
system that is can exhibit chaotic behaviour and is typically full of complicated features
such as eddies. The dependence on L tells us that very small fluid systems are usually
dominated by viscous forces, whereas larger systems can be dominated by inertial forces
and thus enter a turbulent flow regime.

The challenge of studying systems with many degrees of freedom also appears in
solid-state physics. A unit commonly favoured by chemists for the number of particles
(such as atoms or molecules) in a sample is the “mole” [%], where 1 mole ~ 6 x 1023
particles. An “everyday” solid object might contain many moles of atoms. Each of the
atoms can independently oscillate in three dimensions of space and carry its own spin
state. In order to be able to understand the macroscopic behaviours of such as system,
it is impractical to attempt to directly simulate all of these coupled degrees of freedom,
rather one needs to apply an averaging scheme. The method that is usually applied
in statistical mechanics and indeed high-energy physics is the Renormalization Group

(RG) [9-14].



1.1. PHYSICS AT MANY SCALES OF LENGTH 3

Born out of nuclear physics in the mid-twentieth century, high-energy particle physics
is the study of particle interactions at extremely short length scales, usually by means
of collisions with a large centre-of-mass energy. For a rough quantitative guide, energies
at or below O(10 eV) are typical in the study of atomic physics, while energies at or
below O(10 MeV) are typical in nuclear physics. Typically, any energies above about 1
GeV (which is roughly the mass of a proton) belong to particle physics.

Particle physicists tend to have a very energy-centric view of physics, adopting a
system of “natural units” such that all physical scales can be described in terms of an
energy scale. Since Lorentz invariance requires that the dimensions of space and time
are related in a single “spacetime” geometry, it is natural to adopt a system of units
in which separations in all dimensions of space and time have the same units, i.e. to
set ¢ = 1. Similarly, since quantum mechanics directly relates the energy of a particle
to the frequency of a corresponding wave via Planck’s constant (and thus position and
momentum representations are related via Fourier transformations), it becomes natural
to set h = 1. If we also wish to study the physics of a large number of interacting
particles, it becomes convenient to use the same units for temperature as for energy,
i.e. to set kp = 1. Thus we have a system of natural units where we can express all
physical quantities using only a single unit, i.e. by specifying just one scale of length to
refer to. The current energy frontier from direct experiment is set by the Large Hadron
Collider (LHC), which, at the time of writing, is performing proton-proton collisions

with a centre of mass energy of 13 TeV.

In July 2012, the ATLAS and CMS experiments at the LHC found conclusive evi-
dence for the Higgs boson [15, 16], which is the final particle required to complete the
Standard Model of particle physics. Presently, the results of the various LHC experi-
ments are in remarkably good agreement with the Standard Model. There is, however,
direct experimental evidence for particle physics Beyond the Standard Model (BSM)
from neutrino oscillations, which imply that neutrinos possess a mass, in direct contra-
diction to the Standard Model [17-19]. There is also indirect evidence for new high-
energy physics from cosmology, as will be discussed in Section 1.4. The most starkly
obvious omission in the Standard Model is gravity, which is the core subject of this

thesis.
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1.2 Statistical mechanics and the Renormalization Group

1.2.1 The Ising model

Statistical mechanics is the established theoretical framework for studying complex sys-
tems in physics [20]. There are strong links between the techniques employed in sta-
tistical mechanics and those employed in QFT [21], especially concerning RG methods,
which are of special interest to this thesis. A commonly used toy model for exploring
calculational methods in statistical mechanics (and by extension other areas, such as
particle physics) is the Ising model [22,23]. The Ising model envisages a D-dimensional
(in space) lattice of spins with nearest-neighbour interactions in a canonical ensemble.
The most commonly considered case is the spin-1/2 Ising model, whose Hamiltonian,

H, can be written as
H = _stisj — thl (1.2.1)
(i5) @

where J is the exchange energy, s; is a classical spin variable that can take values
of £1, h is an external magnetic field and the notation (ij) specifies that the sum is
over pairs of nearest neighbours. A positive value for J energetically favours parallel
alignment of the spins (ferromagnetism), whereas a negative value favours antiparallel
alignment (antiferromagnetism). A zero value for J simply favours alignment with h
(paramagnetism).

When the temperature is taken to zero, the system drops into its ground state
of either perfectly parallel or antiparallel alignment of the spins (unless both J and
h are zero). As the temperature is raised, the system gains entropy as some spins
move out of the energetically favoured alignment with their neighbours and ultimately
take random values as the temperature tends to infinity. To extract the values for the
various functions of state in statistical mechanics, a partition function is calculated. The

partition function, which (here) is a function of temperature 7' and magnetic field h, is
Z(T,h)=> e PP, (1.2.2)
n

where n is the set of labels for microstates of the system and f is defined as 1/kpT.
From the partition function, it is easy to calculate the Helmholtz free energy, F':

F=—kgThZ. (1.2.3)

With this information, all the other functions of state can be calculated from their

definitions and the fundamental relation of thermodynamics for this system:

dU = TdS — Mdh, (1.2.4)
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where U is the internal energy, S is the entropy and M is the magnetisation. The
exact partition function for the Ising model is easily derived in one spatial dimension
(a polymer-like spin-chain). The two-dimensional model was solved exactly by Onsager
in 1944 [24]. The three-dimensional Ising model is much more difficult and there is no
known exact solution. This motivated Wilson’s development of the RG as a method to
compute scaling behaviours for complex systems without requiring an exact solution.

For modern studies, see for example [25,26].

1.2.2 Phase transitions

A strong motivation for the development of RG techniques is the study of second-order
phase transitions. A phase transition is a sharp change in the macroscopic behaviour
of a substance, as indicated by a singularity in the Helmholtz free energy, or one of its
derivatives. A first order phase transition is when there is a singularity in one of the
first derivatives. A second order transition is when there is a singularity in the second
derivatives: this is otherwise known as a continuous or critical phase transition. To
understand how the physics changes close to a phase transition, it is helpful to look at
the correlation between pairs of spins as a function of distance, i.e. the 2-point correlation
function. A common convention for this is the mean product of the deviation from the

average spin value of pairs of spins, i.e.

C@ (7, 7) = (s — () (s — (s;))) (1.2.5)

where 7; is the position vector for the ith spin. For a translationally-invariant system,

this can be expressed as a function of a single position vector:
C@ (7 — %) = (sis5) — (s)?. (1.2.6)

An alternative convention is simply to take the mean product of pairs of spins, i.e. to
leave out the last term.

The 2-point correlation gives us information about the size of structures in the sys-
tem. The value of the 2-point correlation above is usually suppressed at large distances
by an exponential decay, thus pairs of spins that are separated by a large distance usually

have a negligible correlation. More precisely, the correlation function decays as
CO () ~ r~Fexp(-r/¢), (12.7)

where k is a dimensionless number called the “critical exponent” and £ has dimensions

of length and is called the “correlation length”. As one approaches a second order phase
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transition, £ — oo. When this happens, the correlation function simply follows a power
law as the system becomes scale-invariant, i.e. the system appears unchanged under
rescaling all distances by some factor. In this regime, structures can be found at all
scales of length. The value of a parameter (such as temperature) where this transition
happens is called its “critical” value. The classical prediction for the critical exponent
is k = D — 2, where D is the dimension of the system. This is not what is typically
observed in nature. The measurable critical exponent is often written as k = D —2+mn,
where 7 is the anomalous dimension for the system that appears due to interactions. In
QFT, n = 0 corresponds to theories of zero-mass non-interacting particles. Prior to the
development of RG for statistical mechanics, there was no framework for calculating n.
This made it especially mysterious that there exist “universality classes”, which are sets
of values for critical exponents that are especially common, appearing in systems that

are seemingly unrelated.

1.2.3 Kadanoff blocking and RG transformations

Wilson’s RG is theoretically underpinned by Kadanoff blocking [9,27], which is a trans-
formation used to reduce the number of degrees of freedom in a system, thus allowing
one to study the macroscopic properties of a system with a large number of microscopic
degrees of freedom in a way that is computationally tractable. This is feasible to do be-
cause, for most physical systems, most degrees of freedom in the system are individually
unimportant in describing its macroscopic properties. In non-local systems, however,
where interactions between individual microscopic degrees of freedom can take place
over very large length scales without suppression, one could not apply an averaging
scheme like this without losing important information.

Kadanoff blocking was developed for studying scaling properties of the Ising model as
it approaches its critical temperature [27]. It works by grouping together the microscopic
degrees of freedom (i.e. the spins) into a regular set of simply-connected, tessellated
blocks, each retaining only a single degree of freedom. The lattice of spins is then
rescaled to form a new lattice such that the physical separation between two lattice
points, a, rescales according to

D
bD — ( Qafter > _ Nbefore (1.2.8)

M
Abefore N, after

where b is the scale factor of the transformation and N is the number of degrees of
freedom. The “before” and “after” refer to values before and after blocking respectively.

A simple example of this is to consider the two-dimensional Ising model and a blocking
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scheme in which the spins are grouped into three-by-three blocks. The blocking scheme
can be chosen such that the macroscopic “blocked” spins take their values from a modal
average of the microscopic spins in the block. This is one example of a Kadanoff blocking
scheme: one could potentially devise infinitely many others for a given system. The
application of the blocking procedure followed by subsequent rescaling of the lattice is
also known as an RG transformation.

Because RG transformations reduce the number of degrees of freedom, they are not
invertible and it is technically incorrect to describe them as forming a symmetry group.
It is formally better to refer to them as a “semi-group”. For most particle physicists,
this is an academic point because “renormalizable” theories possess a self-similarity at
different scales of length such that RG flow applies to a set of couplings that transforms.
Since the transformation of the couplings is described by calculable S-functions, one can
use the value of a coupling at one scale to know its value at all scales. This does suppose
that the original theory is complete, not missing out on some suppressed physics that
only becomes apparent at short length scales.

Typically, the Hamiltonian of the system is changed after the RG transformation,
but a necessary condition for consistency is that the partition function remains invariant.
This ensures that the RG transformation does not change the macroscopic observables
of the system, which can all be derived from the partition function e.g. via calculating
the Helmholtz free energy from the partition function and then using standard ther-
modynamic relations to derive the others. While the macroscopic observables remain
unchanged, the blocking does rescale the microscopic degrees of freedom. Since the
lattice spacings are rescaled by the RG transformation, as given in (1.2.8), parameters
measured in lattice units, i.e. by setting a = 1, are also rescaled according to their
dimension in lattice units. For example, momentum scales as Pater = DPbefore, Spatial
displacements rescale as Fagrer = b Thefore and lengths, such as correlation lengths, also
rescale as Earer = b pefore. It is convenient to define a “reduced” Hamiltonian H := SH
and reduced free energy F := BF. Since the free energy F is extensive, and the blocking
reduces the number of spins by a factor of b”, the reduced free energy per spin f rescales

as

f_after = bDfTbefore' (129)

A fixed-point of the RG transformation is where the Hamiltonian remains unchanged
after blocking. In this case, the correlation length also remains unchanged. This can
only be reconciled with an RG step that has reduced the degrees of freedom (and hence

rescaled the correlation length) if the correlation length is infinite or zero. If the corre-
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lation length is zero, the system is trivially scale-invariant in the sense that it has no
structure present at all. The correlation length becomes infinite at criticality, i.e. at a
second-order phase transition. In the latter scenario, there are structures present at all
scales of length. A physical example of this is the critical point of water. This occurs at
a temperature of 647 K and a pressure for 218 atm, where gas and liquid structures can
be found across a wide (formally infinite) range of length scales, causing a scattering of
light across the full range of wavelengths, which in turn makes the gas/liquid mixture
take a white appearance. Other substances have critical points at different temperatures

and pressures.

1.2.4 RG flow

Consider an RG transformation with scale factor b, such that a reduced Hamiltonian H
transforms to RyH, where Ry is the operator that effects the transformation. A fixed-
point reduced Hamiltonian H* is invariant under RG transformations. Of more interest
is a system that is close to a fixed point, but perturbed slightly away from it. Consider

a system described by a reduced Hamiltonian of the form
H=H"+> g0 (1.2.10)

where O; are a basis of operators that perturb the Hamiltonian away from the fixed
point and g; are conjugate fields for those operators. The RG transformation on the

Hamiltonian is then

R,

H+ g0

=1+ gLOi, (1.2.11)
i
where Ly is a linear operator. For the set of eigenoperators Oy of Ly,
LyOy = b O,. (1.2.12)
This effectively rescales the conjugate fields as
gi — gib™. (1.2.13)

The basis of eigenoperators gives the set of trajectories for the RG flow of the system.
If A\p is positive, the operator is called “relevant”. Relevant operators become more
important as the system becomes coarse-grained by RG transformations, thus they are
important for describing the system at large scales. Successive RG transformations drive

the system further from the fixed point along these relevant directions. If Ax is negative,
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the operator is called “irrelevant”. Along these irrelevant directions, RG transforma-
tions take the Hamiltonian back towards the fixed point, thus they are unimportant for
describing the system at large scales. If A\ is zero, the operator is called “marginal”.
The values of A\ determine the scaling relations of the system near criticality. Universal-
ity classes exist because RG flow describes transformations in the space of Hamiltonians
and many different Hamiltonians can be found by RG transformations in the vicinity of

a given fixed point.

1.2.5 Statistical field theory

Consider a continuous theory parametrized by a continuous scalar field ¢ (known as the
order parameter) such that the Hamiltonian is a functional of the order parameter. The
order parameter is a generic field that can take different physical meanings in different
systems. For example, the order parameter might be the magnetization of a system,
or a density perturbation. The generalization of the partition function (1.2.2) replaces
the sum over microstates with an integral over field configurations, known as the path
integral [23]:

Z= /D¢ e~ Ml (1.2.14)

A frequently used form of H is one where symmetries are assumed under spatial trans-

lations, rotations and ¢ — —¢ transformations:
_ 1 1
H= /de <—2¢(x) (07 + 02) ¢(x) + 5mqb(ac)Q + %¢(m)4 + - > : (1.2.15)

where 97 and 02 are squared partial derivative operators with respect to time and space
coordinates respectively (there are usually several spatial dimensions which are not
distinguished here). The ¢ — —¢ symmetry may be broken after a phase transition, such
as dropping the temperature below a critical value, or applying an external magnetic field
above a critical value. As was touched on in Subsection 1.2.2; one can extract physical

observables from correlation functions formed from the mean values of products of fields:

($(e)d(2) -+ Blan)) = 3 / D da)blas) - - bl )e . (1.2.16)

Note that the right hand side is an integral over field configurations weighted by the
probability of each configuration. These can be derived using a generalized form of

(1.2.14) with an external source field h(x):

Z[h] = /D¢> exp <—’H[¢] + /dt dPz h(x)qb(x)) . (1.2.17)
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The correlation functions can be calculated from successive functional derivatives of

(1.2.17) by

L o0 29 o am| . (1.2.18)

Since the partition function is invariant under RG transformations, the correlation func-
tions derived in this way are also invariant, so RG transformations do not alter the
macroscopic observables of the system. It is often more convenient, especially in rela-
tivistic theories, to use a Lagrangian formulation. The Lagrangian L is related to the

Hamiltonian H via a Legendre transform:

. OL
H:Z%@ — L, (1.2.19)

where ¢; are “generalized coordinates”. For the Hamiltonian in (1.2.15), we have just

one field ¢ = ¢, so we have

L= [av (—;qb(x) (07— 02) 6(x) — gmo(x)’ — Lo(a)' - ) . (1220)

Incidentally, a Wick rotation, as one would perform in order to transform a Lorentz-
invariant theory from Minkowski to Euclidean spacetime, t — it, would also transform
(1.2.20) to minus the form seen in (1.2.15) (noting that the integrals shown here do not
carry a time dimension, as they would in a full QFT, which would be the correct context
for such a transformation). This also gives an insight into how the path integral in QFT
is related to the partition function in statistical mechanics. For an action S = [ dtL,

the path integral in QFT for a field ¢ and source J is

Z[J] = /D¢ exp <¢5 = i/dt dPz ng) : (1.2.21)

After performing a Wick rotation to Euclidean space such that we now have the Eu-

clidean action, Sg = [ dtLg, the path integral reads as

2] = /D¢ exp (—SE + /dt P ng) , (1.2.22)

where the Euclidean Lagrangian Lg, for the choice of L in (1.2.20), is now the same as
the form in (1.2.15). More generally, Sg is always positive definite, giving the advantage
that the Boltzmann factor is always exponentially damped as the field or its derivatives
become large. It is natural then to use the terms “path integral” and “partition function”

interchangeably in QFT.
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1.2.6 Parisi-Sourlas supersymmetry

A supersymmetry is a symmetry under transformations of bosonic fields to fermionic
fields and vice versa [29-30]. It is most famously of interest to the particle physics
phenomenology community as a possible means to extend the Standard Model [37].
However, for this thesis, supersymmetry is of interest purely for formal reasons that
have no phenomenological implications in themselves. In this subsection, let us consider
the application of supersymmetry as a formal device in statistical field theory, as used
in understanding spin glasses, or disordered systems more generally. This is the su-
persymmetry formalism developed by Parisi and Sourlas in 1979 [38]. Ordinary glasses
are solids where the spatial distribution of the atoms is fixed but disorderly, unlike a
crystal, where the atoms are arranged according to some symmetry property of the
spatial distribution. Spin glasses are solids where, instead of the spatial positions, it is
the magnetic spin states that are disorderly, i.e. there is no correlation between nearby
spins [39]. In this subsection, all energies are reduced energies, which will be left implicit
for notational convenience.

Such a system can be modelled using a field theory where the Helmholtz free energy
is perturbed by a magnetic source, h, whose value at each position coordinate, x, is a
Gaussian-distributed random variable, i.e. there is a zero correlation length. The free

energy, F', is a functional of h(x):

F[h] = 1n/D¢ exp (—/de [L(x) +h(x)¢(x)]> : (1.2.23)

where ¢(x) is the order parameter, which is a scalar field, £(x) is the Lagrangian density

and D is the dimension of the system. The Lagrangian can be written as

L(r) = —56(x)0%6(x) +V (6(x)) (1:2.24)

where V (¢) is the potential for the scalar field. A mathematical curiosity of spin systems
that are acted on by random external magnetic fields is that their macroscopic observ-
ables are the same as those of equivalent spin systems with no external fields and two
fewer dimensions [10—12]. For example, a three-dimensional spin system acted upon by
a random external source would have the same functions of state as the corresponding
one-dimensional system with no external source. This motivated the supersymmetric
formalism that demonstrated why this is. To see this, they started by writing down the

form of the 2-point function:

@00 ~ [ D anto)on0) exp (5 [ a%y 10). (12:25)
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where ¢y, is the solution to the classical field equation for ¢,
~0?¢+V'(¢p) +h=0. (1.2.26)
The first step is to rewrite (1.2.25) as
@@o0) ~ [ Do Dh o(@)o(0)3 (<00 + V(9) + h) det [-0% + V"(9)]
X exp [—;/dDylf(y)} , (1.2.27)

which can be the seen to be the same as (1.2.25) by performing the functional integral

over ¢. The next step is to reparametrize the fields into a more convenient form:
(@(@)0(0) ~ [ D6 Do D0 DG exp |- [ aPytatn)| oo (1229
where 1 is an anticommuting scalar field and Lp is the averaged Lagrangian:
Lp= —%wz +w =00+ V'(@)] + ¢ [-0*+ V"(¢)] ¥. (1.2.29)

This averaged Lagrangian is now supersymmetric under the following transformations:

6p = —ae 0,

Sw = 2ae,0,,

s = 0,

&Y = a(eyzpw + 26,0,0), (1.2.30)

where @ is an infinitesimal anticommuting number, €, is an arbitrary vector and the
repeated Greek indices indicate a summation with the identity as the metric. This
supersymmetry can be made more manifest by re-expressing the Lagrangian, which
is the integral over D dimensions of the Lagrangian density (1.2.29), in terms of a
superfield. The superfield, ® is a function of the “bosonic” coordinates, x, and fermionic

coordinates, #. It can be written as
®(2,0) = ¢(x) + O(z) + b (x)0 + 00w (x). (1.2.31)

The manifestly supersymmetric action is then
L /dD a0 do (Lo 62+—82 D+ V(D) (1.2.32)
= x —— — . 2.
2 0000
The integration over the fermionic coordinates effectively selects the term proportional

to 60. In the chosen normalization, this gives

/d§ do & = —%w(:n). (1.2.33)
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For some function, f,

/de df do f (z* +00) = —% /de %f(ﬁ). (1.2.34)

Integrating isotropically, using the standard result for a D-dimensional spherical integral,

this can be written as

1 27D/2 d
[ dx 2P f(2?). 1.2.35
7rF(D/2)/ v @) (12:35)
Using the chain rule, this rearranges to
orD/2-1 D2 4 )
— — . 1.2.
[(D/2) /dm > @ @) (1.2:36)
Integrating by parts gives
D/2—1 2 D/2-1
9. D/2-1 /d D=3 p(.2Y _ /d D=3 ¢(,.2) 1.9.
s T(D/2) z x” 0 f(x%) T(D/2—1) xx”° f(z*) (1.2.37)

From this follows the result that indicates the effective reduction in dimension by two:

/dDa: df do f (2% +60) = /dDZm f(z?). (1.2.38)

The supersymmetry transformations given in (1.2.30) are effectively rotations in super-
space such that the interval z? + A0 remains invariant. Parisi and Sourlas gave this
argument to demonstrate that the superspace with D bosonic coordinates was equiv-
alent to a (D — 2)-dimensional pure bosonic space. From this, it then follows that
the macroscopic observables for the system forced with a random external field are the
same as for an isolated system with two fewer dimensions, as had previously been seen
by explicitly computed examples. In Section 2.5, I will discuss how this is related to an
elegant regularization scheme for the manifestly gauge-invariant ERG that is a special
form of Pauli-Villars regularization. The success of this method for gauge theories mo-
tivates its adaptation to the manifestly diffeomorphism-invariant ERG in the form of

supermanifold regularization, which we will return to in Section 3.9.

1.3 Overview of General Relativity

This section gives an overview of Einstein’s general theory of relativity [13—19], starting
from its foundations and paying particular attention to those aspects that are relevant
for this thesis. This is the subject of many textbooks, this overview has been particularly

influenced by [50-53].
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1.3.1 Conceptual background

Prior to General Relativity (GR), the accepted theory of gravity came from Newton [5],
who described gravity as a force F, with a coupling constant (Newton’s constant) G,
exerted by any body of mass M; on any other body of mass My, separated by a distance

r, such that
GM M-
—T.

F=—
r2

(1.3.1)

This fits well with the overall formalism of Newton’s Classical Mechanics, for which
the geometry follows from the Galilean transformations between the reference frames of

different observers:

t = t,

=z — vyt

Yy o= y—ut,

7= z—w.t, (1.3.2)

where (¢, 2,9, z) and (', 2/, y/, 2’) are the spacetime coordinates of two different observers
with relative velocity (vg,vy,v;). In this geometry, there exist two separate invariant
intervals, which are the Euclidean separation in the three spatial dimensions and the
time separation by itself. Einstein’s motivation for constructing his Special Theory of
Relativity was that Maxwell’s equations for electromagnetism give us wave equations for
electric and magnetic fields in the vacuum with propagation speed equal to the measured
speed of light [55]. The implication of this is that the speed of electromagnetic waves is
independent of the reference frame, which is directly in contradiction with the Galilean
transformations given in (1.3.2). Instead, this observation implies an invariant interval

of the form!

ds* = —2dt* + da?* + dy? + d2?, (1.3.3)

where ¢ is the speed of light. Instead of (1.3.2), the spacetime coordinates of different
observers are related using the famous Lorentz transformations. This reasoning un-
derpins Special Relativity, which is a cornerstone of modern physics. However, it is
not compatible with Newton’s theory of gravity, since Newton’s theory of gravity is in-
stantly interacting at all distances, rather than satisfying the causal structure of Special
Relativity. Naively, one might think that one could simply take Maxwell’s equations

for electromagnetism and replace “charge” with “mass” to obtain a candidate gravity

IThis is subject to a sign convention, this thesis uses the mostly positive sign convention throughout.
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theory. This is not a viable option because mass-energy density Lorentz transforms
differently to charge density, so a new construction is required.

A clue that indicates the correct solution is the apparent coincidence that gravita-
tional charge and inertial mass are well-demonstrated by experiment to be be in fixed
proportion. This is currently known to be true to a precision of roughly one part in
1013 [56-58]. As already noted by Newton, this implies that the acceleration due to
gravity of a body is independent of its mass. Einstein’s insight, the Equivalence Princi-
ple, states that a non-rotating laboratory freely falling in a uniform gravitational field
will find the outcome of any internal experiment to be consistent with special relativity,
i.e. the gravitational field has no effect on those experiments [13]. Instead of requiring a
uniform gravitational field, one could alternatively require that the laboratory is small
enough not to be able to measure the variation in field strength. This led Einstein to the

realization that gravity can be expressed as an effect of the spacetime geometry itself.

1.3.2 Geometry of curved spacetime

In this section, we will be concerned with the geometry of intrinsically curved spacetime.
This is to be contrasted with geometries that are merely extrinsically curved, such as a
cylinder, on which the invariant interval between two nearby spacetime points takes the
same form as a Euclidean interval on a flat surface. Although not intrinsically curved,
the extrinsic curvature of the cylinder is intrinsically detectable by the topology, i.e.
the periodic boundary condition on one of the directions. More precisely, we will be
concerned with (pseudo-)Riemannian geometry. The “pseudo-” refers to geometries
where the metric is not in Euclidean signature. Like Special Relativity, GR uses metrics
with a Lorentzian signature, which is what we will consider from here on unless otherwise
stated. The “pseudo-” prefix will be dropped from here on. Riemannian geometries are

characterized by invariant intervals of the form
ds® = g, (v)dztdz”, (1.3.4)

where g,,,, is the metric, and x# are a set of spacetime coordinates. Lorentz indices are

always denoted by Greek letters in this thesis?

. The metric in GR is a 2-component
covariant tensor field that is symmetric under exchange of Lorentz index labels. The

inverse metric, given by ¢*”(x) has the property that ¢"g,, = D, where D is the

2There exists a convention where Lorentz indices belonging to a particular coordinate scheme (usually
Greek letters) are distinguished from abstract indices (usually Latin letters). Since this thesis has a

strong focus on diffeomorphism-invariant formulations, there is no demand for this distinction here.
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dimension of the spacetime. To see that the metric should be symmetric under exchange
of index labels, note that any 2-component covariant tensor 7j, can be split into a

symmetric part and an antisymmetric part:
Tm,([]?) = T(/u/) (I‘) + T[l“’] (.ZL‘), (135)

where round brackets indicate symmetrization and square brackets indicate antisym-

metrization. More precisely, for some tensor T,...,,,
1
L) = B (T + Topeps) (1.3.6)

and

1
T[M|"‘|V] = 5 (TM...V — Tl,...#) . (1.3.7)

Applying (1.3.5) to the metric tensor in (1.3.4), it is easy to see that an antisymmetric
component of the metric would not contribute to the invariant interval if the coordi-
nates are bosonic, i.e. commutative: dxtdx” = dx¥dz*. Thus we can build the metric
exclusively out of bosonic coordinates.

Now equipped with a metric, we can calculate invariant lengths, areas, volumes and
higher dimensional regions of the manifold. The invariant length, L, of a given path
from a point A to a point B on the manifold is given by

1/2

B
L= / dedz” g () (1.3.8)

A

As with flat geometry, a 2-dimensional area element dA comes from a multiplication of

two orthogonal length elements, d; and dLo:

dA = v/ 311922 dl’lda}Q, (1.3.9)

where the index labels 1 and 2 correspond to the directions of length elements dL; and
dLo respectively. This idea is straightforward to apply to higher-dimension regions of

the manifold, such that an IN-dimensional volume element can be written as

dV = /gi1 - gnn dz' - dz. (1.3.10)

Finally, an integral over all spacetime dimensions on an D-dimensional manifold goes

as
dV = \/—det(g) dPz. (1.3.11)

where the minus sign originates from the time-time component in Lorentzian signature.

An important example of this is in the action, which is the D-dimensional spacetime
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integral of the Lagrangian density in D spacetime dimensions:

S = /dD:c V—gL, (1.3.12)

where ¢ is used as shorthand notation for det(g).

To perform tensor calculus on a manifold, it is necessary to evaluate a difference
in the value of a tensor at different points on the manifold. On a curved spacetime,
the tensor lies in different tangent spaces at different points, so it is not possible in
general to sum instances of the tensor evaluated at different points in the usual way. To
construct the metric-compatible covariant derivative at a point P, instances of tensors at

neighbouring points are projected onto the tangent space at P via an affine connection,
1Bn

P)‘pa?’. More precisely, the covariant derivative of a tensor field, T, ...q,, is given by
m
By B A ~Bn
ViT s a7 = 0T 0 P =TT T
i=1
n
+ 3 T T g, (1.3.13)
i=1
In the case where the covariant derivative is metric-compatible,
Vigas = 0. (1.3.14)

The connection used throughout this thesis will be the torsionless metric connection,

otherwise known as the Levi-Civita connection,

1 (0%
29 * (98gyx + 0198x — Orgay) » (1.3.15)

%, =
which is symmetric under exchange of its lower two Lorentz indices # and . The Levi-
Civita connection does not transform as a tensor under diffeomorphisms (coordinate
transformations), although variations of it (i.e. I'§. ) do transform as tensors. An alter-
native to this is Einstein-Cartan theory [59-(6], where the assumption of torsionlessness
is relaxed, such that the torsion tensor, which is formed from an antisymmetrization of
the lower indices of the connection, is non-zero: %, — 1%, # 0. We will not consider
this possibility any further.

Spacetime curvature is represented in GR via the Riemann tensor Ro‘ﬁw, which is
related to the commutator of covariant derivative operators, for example acting on a

vector vy:

[V, Vi) va = R, 00 (1.3.16)

3This is sometimes also referred to as the Christoffel symbol of the second kind. The Christoffel
symbol of the first kind has the first index lowered by the metric.
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More generally, the Riemann tensor is defined (according to a sign convention) as

e — « « A

(67

A contraction of this gives the Ricci tensor: R, := R,

(again according to a sign
convention). These two choices of sign convention and the chosen metric sign convention
are collectively called the Landau-Lifshitz spacelike sign convention (4,+,+) and it
will be used throughout this thesis (except when the metric is rotated into Euclidean
signature to study local QFT). Further to that, the Ricci scalar is a contraction of the
Ricci tensor such that R := g*# R.p.

The Riemann tensor R,g,s is antisymmetric under exchange of the index labels a
and 3. It is also antisymmetric under exchange of the labels of the other pair of indices

and d. It is, however, symmetric under exchange of labels of the two pairs, i.e. af <> 0.

From these properties follows the first Bianchi identity (the cyclic identity),
Rogys + Ransp + Raspy = 0. (1.3.18)
It will frequently also be useful in this thesis to refer to the second Bianchi identity,
VzRagys + VyRagsy + VsRagry = 0. (1.3.19)
An especially powerful specialization of the second Bianchi identity is
9"PVoRs, = %VWR. (1.3.20)

It is common to refer to two Bianchi identities as the “cyclic” and “Bianchi” identities

respectively, i.e. the “second” is often left implicit when referring to the latter.

1.3.3 Derivation of field equations from an action

As with other areas of physics, GR can be constructed via a principle of least action.

The action for 4-dimensional GR is given by

S:/d4m\/j1

976ec B = 28) + Smatter, (1.3.21)

where G is Newton’s constant, as also seen in (1.3.1), A is the cosmological constant and
Smatter 1S the action for the matter content of the theory, which it is sufficient to leave
general for this thesis. It is conventional to introduce k := 87G for notational conve-
nience. This is the most general form of the action that is local, diffeomorphism-invariant
and expanded only to second-order in derivatives. The diffeomorphism invariance (co-

ordinate independence), discussed further in Section 1.3.6, is an important issue that
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will be returned to frequently in this thesis. The constraint that the action is expanded
only to second order is usually imposed to avoid Ostrogradsky instabilities [67]. An Os-
trogradsky instability is when the Hamiltonian becomes unbounded from below due to
the appearance of negative kinetic terms. Ostrogradsky instabilities translate into QFT
as a loss of unitarity of the S-matrix due to the appearance of negative norm states [68].
An instability arises if the Lagrangian cannot be expressed (e.g. using integration by
parts in the action) as consisting only of fields that have been differentiated with re-
spect to time no more than once. Typically, this means theories whose field equations
possess third order or higher time derivatives have instabilities. An exception to this is
where the Lagrangian is purely a function of the Ricci scalar [69,70]. This case is called
f(R) gravity, it escapes the Ostrogradsky instability by being reparametrizable to a
scalar-tensor theory that is only at second order in derivatives, as we will see with equa-
tion (1.4.52). Effective field theories can be constructed with higher-order derivatives
provided that they are only applied to energy scales below their cutoff mass scale [71].
Higher-derivative theories of gravity are of interest because they are renormalizable [72],
although unitarity is lost at a given truncation of a higher-derivative effective theory.
To derive Einstein’s field equations, one takes the functional derivative of (1.3.21).

It is helpful to note that, since g®? 9py = 0%,

5 (gaﬁgﬂv) = s, 5g°P + 9055967 =0. (1.3.22)

This tells us that
§g*0 = — g7 g% 0G5 (1.3.23)

From which it follows that

o/—g = —%\/ngw, oghv. (1.3.24)
It is also helpful to note that, since R = ¢g®? Rz,

SR = Rug 69°° 4+ g°P SRyp, (1.3.25)
where

ORag = Vy 6T, 5 = V(g 0175 (1.3.26)

Note that 6I"¢ oy being the difference of two connections, transforms as a tensor under

diffeomorphisms. It can be written as

« 1 ad
0%, = 59 (2V (5 09y)5 = Vs 09p4) - (1.3.27)
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The stress-energy tensor (also known as the energy-momentum tensor) is defined as
o 2 6Smatter
V=g og" -

Finally, these ingredients lead to the following form for Einstein’s field equation:

T,, = (1.3.28)

1
R#y — §guyR + Ag/,u/ = HT,LLV) (1329)

where a factor of /—g has been divided out, which can be done without loss of generality
because /—g is always non-zero. The left hand side is often written in condensed
notation by defining the “Einstein tensor” G, to be

1
g;w =Ry — ig,uzzR' (1.3.30)

The trace of the field equation is
—R+ 4\ = KT, (1.3.31)

which can be substituted into (1.3.29) to obtain the “Ricci form” of the field equation:

1
R,ul/ - Agw/ =K <T;w - 2g#VT> . (1.3.32)

Using the (second) Bianchi identity given in (1.3.20), it is clear that
1
Vu (RW — 29’“’R> =0. (1.3.33)

From this, we can also see the generalization of energy/momentum conservation to
curved spacetime:

VT = 0. (1.3.34)

Similar ingredients can be used to derive the field equations in more general theories of

gravity, as will be returned to later in the thesis.

1.3.4 The stress-energy tensor

The stress-energy tensor, introduced in (1.3.28), contains information about the matter
content of the spacetime. The field equation (1.3.29) tells us that the presence of matter
introduces curvature into the spacetime purely as a consequence of the calculus of varia-
tions applied to the geometry of spacetime. For an observer moving with a 4-velocity u,
relative to the matter, such that there exists a projection tensor, g8 := gag + Uatg,
that maps onto the 3-dimensional tangent plane orthogonal to u,, the stress-energy

tensor can be written as

T,tw = PUy Uy + 2q(p,u1/) + PI1Luv + Ty (1'3'35)
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where p is the relativistic energy density, p is the relativistic pressure, ¢, is the relativistic
momentum density and m,g is the relativistic trace-free anisotropic stress tensor.

To apply these ideas to useful physics, one usually imposes some further physical
constraints on (1.3.35). Such constraints are called “energy conditions”. The choice of
energy condition for a model defines the assumptions about the nature of matter in that
model. The rest of this subsection concerns some popular choices of energy condition.

The null energy condition is usually assumed to be true in realistic applications of

GR. It states that, for any future-pointing null vector ny*,

Tosn®n? > 0. (1.3.36)

Exceptions to this energy condition are very rarely considered and are quite exotic. The

weak energy condition states that, for any timelike vector field ¢,°,
Topt®t® > 0. (1.3.37)

Given this energy condition, the relativistic energy density is non-negative for all ob-
servers. Exceptions to the weak energy condition are also rarely considered in realistic
physics. There also exists the dominant energy condition where, in addition to the weak
energy condition, it is asserted that, for a causal vector field (i.e. timelike or null) ¢,
the vector field defined by —co T is causal and future-pointing, which is also usually
considered to be a fair assumption for sensible physics. This energy condition prevents
superluminal propagation of energy. The strong energy condition states that, for any
timelike vector field ¢,
<Ta5 - ;ga5T> 2% > 0. (1.3.38)
Unlike the other energy conditions mentioned, this energy condition is frequently vio-
lated in realistic cosmological models, including all inflationary models.
If one supposes that the stress-energy tensor is describing a perfect fluid, i.e. one

with no shear stress or heat flux, then we can specialize (1.3.28) to

Top = (p+ p)uaug + pgas- (1.3.39)

The trace is given by
T=—p+ 3p. (1.3.40)

Perfect fluids are defined by their equation of state:

p = wp, (1.3.41)

“A null vector n® is one where gosn*n® = 0.
5A timelike vector field t* is one where ga@tatB < 0 in the mostly positive metric sign convention.
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where w is a parameter that is different for different fluids. For non-relativistic “dust”,
w = 0. For radiation in D-dimensional spacetime, w = 1/(D — 1). For vacuum energy,
T, is simply a constant (proportional to the cosmological constant) multiplied by the

metric, i.e. w = —1.

1.3.5 Metric perturbations

There are many known exact solutions to Einstein’s field equations, but the real universe
has a complicated arrangement of matter that yields a complicated form for the metric.
Even for the simple second-order action given in (1.3.21), the field equations (1.3.29)
are highly non-linear and it is unreasonable to suppose that the real universe would
follow one of the known exact solutions. Instead, it is common to suppose that the
metric is close to, but not precisely equal to, one of the known exact solutions and then
define a metric perturbation as the difference between the actual metric and that simpler
“background metric”:

hyw = Guw — 90, (1.3.42)

where hy, is the metric perturbation and gﬁ(f,),) is the background metric. Defining a

background has the benefit that it is then possible to describe the propagation of grav-
itational waves on that background: the gravitational waves are identified with the
perturbations. Indeed, one can switch between position and momentum representations

of the metric perturbation via Fourier transformations:

hyw(x) = /dpeip'th,(p), (1.3.43)

where a convenient shorthand notation has been used such that

de
(2m)P

dp := (1.3.44)

This is especially of interest when constructing a quantum gravity description in which
the metric perturbation is identified with the graviton field and the Fourier modes
are identified with momenta propagating through the field. This is analogous to how
Fourier modes in the electromagnetic field can be identified with frequencies of electro-
magnetic waves classically and also with momenta of photons quantum mechanically.
These Fourier transformations require that points on the background manifold can be
assigned a one-to-one mapping onto R”, so the procedure runs into difficulty if the

spacetime is not simply connected. Since g,,g"” = D, the inverse metric expands as

9" (x) = g — b () + h* ()W (z) + - - . (1.3.45)
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Since this fixed-background formalism requires one to define two metrics, g,,, and

gfg,), it is also necessary to define two covariant derivative operators, one that is compat-

ible with each metric. If gf?) is the flat metric, then the associated covariant derivative
is simply the partial derivative. This choice is especially convenient for exploring quan-
tum gravity because partial derivative operators commute with one another, with the
result that, after transforming into a momentum representation, the momentum oper-
ators also commute with one another. This provides a natural (and very conventional)
route into the studying the RG flow of gravity, since the Kadanoff blocking integrates
out the high-energy Fourier modes from the theory [9]. As will be seen, however, the
manifestly diffeomorphism-invariant ERG gives us the opportunity to choose either a

formalism that perturbs around a fixed background, as discussed here, or a formalism

that maintains strict background independence, with consistent results either way [2].

1.3.6 The diffeomorphism symmetry

GR is a theory of spacetime that does not physically depend on the choice of coordinates
used to label the points on spacetime. Any coordinate-dependent results are therefore
artifacts of the methods used to calculate them, rather than being physical features of
the theory. For this reason, there is motivation to construct formalisms that do not
impose coordinates. The symmetry under changing the coordinate scheme is called
the diffeomorphism symmetry and it is of central importance to this thesis, which con-
cerns the construction of averaging schemes that maintain diffeomorphism invariance.

Consider a general transformation on a set of coordinates x of the form
o't =gt — (), (1.3.46)

where £ is some infinitesimal displacement of the x coordinates that depends on x, and
2’ is the resulting set of coordinates. Given some choice of covariant derivative D, the
metric transforms under diffeomorphisms like

OxP 0x°
(@) = 52 5o 990 () = g (@) + 205 D)€ + € - Dgpu. (1.3.47)

If D, is metric-compatible, then the last term disappears. An example where D, is
not metric-compatible is where one chooses D, to be a partial derivative despite having
a curved metric, as will be convenient when constructing the fixed-background form
of the ERG for gravity in Section 3.3. Relating this to Subsection 1.3.5, the metric

perturbation given in (1.3.42) transforms as

Shyw = 0w = 295, Dy€* + & - Dgpun. (1.3.48)
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Again, the second term disappears if D, is metric-compatible. The entire gauge freedom
has been taken in by the perturbation such that dg,, = dh,,. More precisely, the
diffeomorphism transformation of any tensor is given by its Lie derivative, defined by

BT = TN
Q1 Qm I 1Bn B1--Bn
LToomy o = lim ( - : (1.3.49)

where ¢F is chart, parametrized by s, that maps one coordinate system onto another

such that ¢{ is the identity. The Lie derivative of a general tensor field is given by

n
QO . Q1O Q- Qm A
LTy g = E-DTNT o 4y T 5. Dpik
=1
n
=y erArem s DAE™ (1.3.50)
BrBnPAS -9
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The tensor considered above is a function of only one set of coordinates. Ordinarily, this
is a very reasonable specialization, since a manifold only requires one set of coordinates
to parametrize its all of its points. However, it will be useful in Chapter 3 to construct
a diffeomorphism-covariant bitensor that relates two spacetime points, thus giving it a

modified diffeomorphism transformation that will be discussed in Section 3.4.

1.4 Observational status of modern cosmology

1.4.1 Evidence for GR

In 1916, Einstein proposed three tests for GR [19]. First of all, an analysis performed as
long ago as 1859 by Urbain Le Verrier had already shown that Newtonian gravity failed
to give the correct prediction for the precession of the perihelion, which is the point of
closest approach to the sun, of the planet Mercury [73]. Attempts to resolve this by the
introduction of an elusive planet “Vulcan” had been unsuccessful. Einstein was able to
use GR to calculate the precession and show that it agrees with the observations [17].
Secondly, Einstein proposed that the distortion of spacetime due to the sun would
deflect the paths of light rays from stars whose angular distance from the sun as seen
from the Earth is small. This would be seen on Earth as a shift in the relative positions
of these stars in the sky. Newtonian gravity would also predict this effect, as noted
by Henry Cavendish in 1784 and Johann Georg von Soldner in 1801 [74, 75], since
acceleration is independent of mass, but the Newtonian deflection would be double the
prediction from GR. This measurement raises a challenge, since the light from the sun

is of much greater intensity than the light from the stars. However, a total eclipse of the
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sun in 1919 gave a team led by Arthur Eddington the perfect opportunity to precisely
measure the relative positions of stars at small angular distance from the sun [76]. The

result was an agreement with GR and a disagreement with Newtonian gravity.

The third of the original tests comes from the gravitational redshift of light. Since
there is a time dilation effect induced by gravitational fields, light becomes redshifted
as it moves away from a massive body. This was verified precisely by the Pound-
Rebka experiment, first reported in 1959 [77-80], which uses a principle similar to the
Méssbauer effect observed in nuclear physics [21]. The Mossbauer effect is where the
energy of a gamma ray emitted from a nucleus in an excited state is slightly less than the
energy of the transition because of the momentum taken by the nuclear recoil. Because
of this, for the gamma ray to be reabsorbed by a similar nucleus, there must be a
relative motion between the source and the target to compensate for the recoil. In the
case of the Pound-Rebka experiment, a 14 keV gamma source consisting of iron-57 was
placed 22.5m vertically above a target of the same isotope as the source. A scintillation
counter was placed below the target to detect unabsorbed gamma rays. The source was
moved relative to the target using the vibrations of a loudspeaker of known frequency to
produce a Doppler redshift to counter the gravitational blueshift due to the difference in
height. Since the unstable atoms were in a solid lattice, the ordinary Mossbauer effect

was greatly reduced, allowing the gravitational blueshift to dominate.

The gravitational time-dilation effect responsible for this has been tested in many
other ways, such as the Hafele-Keating experiment [$2,83], which placed atomic clocks
onto commercial aircraft flying around the world to measure the effect due to both the
motion (special relativity) and the altitude (general relativity) relative to stationary
clocks on the Earth’s surface. A more modern experiment has measured the time-
dilation effect due to gravity between two clocks vertically separated by only 33 cm [34].
Modern Global Positioning satellites are also required to use predictions from GR to
account for the time dilation effect due to motion and gravity, otherwise their accuracy

would suffer from a consistent drift [35].

Despite the overwhelming evidence in favour of the current understanding of gravity,
researchers continue to find new tests, see for example [36-8%]. Deviations from GR
are most likely to occur in a strong-field regime, i.e. where the spacetime curvature
is large. For this reason, the relatively exotic astrophysical case of binary pulsars is
extremely popular, see for example [39-95]. Pulsars are highly magnetized, rapidly
rotating neutron stars that are strong sources of radio waves, emitted as beams from

two poles. The pulses measured when the beams align with the Earth provide extremely
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precise measures of the pulsar’s rotation, a regular variation in the pulse rate of a pulsar
indicates that it is orbiting about the centre of mass of a binary system. A system of
two neutron stars is a suitably strong field regime to do precision tests of GR. Prior to
the direct observation of gravitational waves by LIGO in 2015, reported in 2016 [90],
the original observational evidence for gravitational waves came from the orbital decay
of the Hulse-Taylor binary [97-99], which is a binary system of a pulsar and another
neutron star. The decay of the orbit is driven by release of gravitational waves, as

predicted by GR. All currently existing tests of GR agree with Einstein.

1.4.2 The big bang theory

When Einstein first formulated GR, it was not known that the universe is expanding.
Indeed, Einstein himself tried to construct his cosmology with a static universe in mind.
This was already in tension with observation via Olber’s paradox. Olber’s paradox notes
that if we live in an infinite universe filled with stars, then every direction one looks in
should eventually end with a star, therefore the night sky should be as bright as the
sun. The paradox is not resolved by adding dark obscuring objects, because they would
eventually heat up and glow brightly too. The paradox would be solved, however, if the
universe only has a finite age and light from distant stars has not been able to reach us.

The first direct evidence for the origins of our universe came from what has been
called Hubble’s law: that the apparent recessional velocity of galaxies (as measured by
their redshift) that are between about 10 Mpc and O(100 Mpc) away is approximately
proportional to their distance away (as measured using the cosmological distance lad-
der). This effect was predicted by Georges Lemaitre in 1927 [100], although Alexander
Friedmann had already suggested expanding cosmologies from GR in 1922 [101]. The
observational discovery is attributed to Edwin Hubble [102]. However, Vesto Slipher,
who measured the first radial velocity of a galaxy (Andromeda) in 1912 [103], had al-
ready observed this pattern by 1917 [104,105]. Unfortunately, he did not see at that time
the full significance of that observation. It is considered unreasonable to believe that
the Earth is specially placed at the centre of the universe (the Copernican Principle), so
this is interpreted as a homogeneous, isotropic expansion of the universe. Homogeneity
and isotropy will be further discussed in Section 1.4.3. At shorter distances, galaxies
are gravitationally bound, indeed the Andromeda galaxy is predicted to merge with the
Milky Way in just under six billion years’ time [106]. At larger distances, the expansion
rate of the universe has been shown to be accelerating, this is a mysterious effect called

“dark energy” that will be further discussed in Section 1.4.4.
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The observation that the universe is expanding, together with the strong theoretical
motivation from GR that the universe should not be static, implies that the universe has
evolved to its present state from a much denser state in the past. Classically, Einstein’s
field equations can be used to extrapolate back to a finite time when the observable
universe would have been confined to a single point of space [107,108]. This is what is
referred to as the “big bang”. The aforementioned point of infinite density (and therefore
infinite spacetime curvature) is referred to as the big bang singularity. In the absence of a
quantum theory of gravity, we do not know what really happened at the very beginning
of the universe, or even if the universe that we know emerged from some previously
existing universe. For this reason, one can refer to the “big bang” as a classical notion
that makes for an excellent model of the universe at all times that we have observational
evidence for. However, early universe cosmology (especially pre-inflation) is still an open

subject.

Historically, some cosmologists advocated “steady state” models in which expansion
was reconciled with an eternal universe via continuous creation [109, 110]. Strong evi-
dence against the steady state came from the observation that bright radio sources are
not evenly distributed in the universe: they only appear at large distances away, imply-
ing that the universe has evolved over time [111]. Conclusive evidence came from the
chance discovery of the Comic Microwave Background (CMB) by Penzias and Wilson in
1965 [112,113]. The CMB had already been predicted by Alpher and Herman in 1948,
in their study of cosmic nucleosynthesis, which was also influenced by Gamow [114—116].
The CMB is a source of blackbody radiation that is almost uniform across the whole
sky with a temperature of 2.726 K [117] that has variations approximately at the level
of one part in 10 [1158]. The CMB was created when the universe transitioned from
an opaque plasma of electrons and nuclei to a transparent gas of atoms. This occurred
because the expansion of space also causes the wavelengths of photons to expand, cool-
ing the universe. When the universe was hot, electrons and nuclei were unable to form
atoms because of the abundance of high-energy photons that would be able to reion-
ize those atoms. When the universe cooled below about 3000 K, the density of such
photons dropped sufficiently low that atoms were able to form. This event happened
approximately 380,000 years after the big bang [119]. Initially, the light, for the first
time able to propagate over large distances, was emitted as a blackbody spectrum of the
same temperature, but the expansion of space has since caused the wavelengths to be
stretched, cooling the spectrum down to the presently observed value. Since the plasma

that preceded the formation of atoms absorbed any photons propagating through it,
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there are no photons pre-dating this time to observe. For this reason, the CMB is also
referred to as the surface of last scattering. This is considered to be conclusive piece
of evidence that the universe is not in a steady state, since an expanding universe will
continue to redshift this light, eventually rendering it unobservable. Since the CMB is
the oldest light in the universe, it is extensively studied for hints about the conditions
of the early universe, particularly concerning inflation, which is discussed in Subsection
1.4.5.

Another success of the big bang theory is in predicting the abundance of light ele-
ments and their isotopes in the universe [120-122]. Heavier elements are created exclu-
sively by stellar nucleosynthesis, however the universe underwent a period of cosmolog-
ical nucleosynthesis at a much earlier time (approximately between 10 seconds and 20
minutes after the big bang) that fused hydrogen into other light elements and isotopes,
especially helium-4 with smaller amounts of deuterium and helium-3, very small amounts
of lithium-7 and also the unstable isotopes tritium and beryllium-7, which would then
undergo beta decay to helium-3 and lithium-7 respectively. Big bang nucleosynthesis,
being the dominant source of such isotopes in the universe, is able to account for the
relative abundance of light elements in the modern universe remarkably well, especially
the deuterium abundance, however there is a famous deficit in lithium-7 abundance,
which might be due to unknown systematics from astrophysics, or might point to new

underlying physics [123].

1.4.3 Homogeneity and isotropy

The most general metric in GR that is homogeneous and isotropic is the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, which can be expressed via an invariant
interval given in spherical polar coordinates (¢,r,6, ¢) as

dr?
1 — kr2

ds® = —dt* + a(t)? ( + 7% (d6® + sin20d¢2)) , (1.4.1)

where a(t) is a time-dependent scale factor and k is an overall curvature constant for
the spacetime. The universe is observed to be homogeneous and isotropic at very large
distance scale, from which it follows that the metric is well-approximated by an FLRW
metric when considering averages over sufficiently large scales. This is the Cosmological
Principle, which is an extension to the Copernican Principle that we do not occupy a
specially preferred part of the universe.

We now turn to understanding the dynamics of such a universe. Consider the Ricci

form of the field equation, given in (1.3.32) and contract the indices with two instances
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of the 4-velocity of the observer u,:
1
R vt — guutu’A = K (TW — 2gu,,T> utu. (1.4.2)

Since this chosen universe is homogeneous and isotropic, we can use the stress-energy

tensor for a perfect fluid given in (1.3.39) and its trace in (1.3.40) to get

Twutu” = p, (1.4.3)
guutu"T = p—3p, (1.4.4)
8rG <T;w - ;gWT> utu” = 4nG(p + 3p). (1.4.5)
This allows us to rewrite (1.4.2) as
Ry utu” = 4nG(p + 3p) — A. (1.4.6)

Using (1.4.1) and (1.3.15), the non-zero connection coefficients for the FLRW metric in
spherical polar coordinates can be written out as

aa

t _
'y = T (1.4.7)
Ft99 = c'La7’2, (148)
Iy, = aar’sin®f, (1.4.9)
I, =T% =1% = a/a, (1.4.10)
kr
Fr,r,r - m, (1411)
Iy = r(kr*—1), (1.4.12)
Iy = r(kr?—1)sin®, (1.4.13)
1
r,=1°, = = (1.4.14)
F9¢¢ = —sinf cosb, (1.4.15)
%, = 1/tand, (1.4.16)

where the over-dot indicates differentiation with respect to time and the symmetry under
exchange of the lower Lorentz indices has been left implicit. Using these coefficients and

the definition of the Ricci tensor via the Riemann tensor in (1.3.17), one gets

Ry = -32% (1.4.17)
a
da + 2a® + 2k
Ry = —1 o (1.4.18)
Rop = aar® + 24%r + 2kr2, (1.4.19)
Rss = (da+24d° + 2k) r’sin0), (1.4.20)
a? k

;
R = 6-+6—+6 1.4.21
bl (1.4.21)

a?
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Thus we have the Raychaudhuri equation for a homogeneous isotropic universe to be
3% = —4nG(p+3p) + A. (1.4.22)
a

The energy conservation equation, which is the time component of (1.3.34), is found to

be

a
/')+35(p+p) =0. (1.4.23)

Using these expressions for the Ricci tensor and the Ricci scalar, the time-time com-

ponent of the field equation (1.3.29) can be rearranged into the Friedmann equation:

a? Ak
3 (1.4.24)

_ P
a? /{34_

Equations (1.4.22,1.4.23,1.4.24) are all related via the time derivative of (1.4.24) for
a # 0. Sometimes (1.4.22) is also referred to as a Friedmann equation.
Using the Friedmann equation (1.4.24) for inspiration, it is conventional to introduce

the following notation:

= afa, (1.4.25)

Q = é% (1.4.26)

Oy = i%, (1.4.27)
O = 7£ﬁ, (1.4.28)
q = —%, (1.4.29)

where H is the Hubble parameter, €2 is the dimensionless density parameter for matter,
Qp is the dimensionless density parameter for the cosmological constant, 2 is the
dimensionless density parameter for curvature and ¢ is the cosmological deceleration
parameter. The choice of sign for g to make a “deceleration” parameter rather than
“acceleration” has its historical root in the assumption that the acceleration is given
by (1.4.22) with A = 0 and positive p and p, implying a universe whose expansion
decelerates as gravity pulls it back together. We now know that this is not the case for
the recent universe, as will be discussed in Subsection 1.4.4. Sometimes {2 is split further
into §2,,, for non-relativistic matter and €2, for radiation. The Friedmann equation relates

the density parameters to be

Qtotal = Q + QA = 1 — Qk (1430)
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The “critical” density is the case of o2 = 1, which results in a universe with a “flat”

geometry. The critical density p. required to make this happen can be written as

pe = 32, (1.4.31)

KR

The other two cases are “spherical” geometry where k > 1 and Qoo > 1, and “hyper-
bolic” geometry where k < 1 and ota1 < 1. These density parameters are functions
of time. The measured values for these parameters in the present universe are ap-
proximately €,, = 0.32, Qx = 0.68 and €, is only of order 10~%. The Raychaudhuri
(1.4.22) equation can be expressed for a single perfect fluid of the form in (1.3.41) plus

cosmological constant as

1
q=52(1+3w) - Q. (1.4.32)

It is possible to construct cosmological models that are homogeneous but not isotropic,
such as Bianchi universes, or isotropic but not homogeneous (if we occupy a special lo-
cation at the centre), such as a Tolman-Lemaitre-Bondi universe [124-126]. The latter
suggestion seems very unreasonable a priori as a cosmological model, although it is
perfectly sensible for describing smaller structures like collapsing dust clouds. Astro-
nomical observations constrain both of these suggestions. At smaller distance scales, it
is obvious that the universe is extremely inhomogeneous, since we see sharp contrasts
in matter density all around us in everyday life. The ratio of densities of water to air is
about 784, making the surface of the Earth a place where a very sharp jump in density
occurs. However, this is very small compared with other ratios one could take. The
mean density of the Earth is about 5514 kg/m?, whereas the average energy density
of the universe (including the dark matter and dark energy) is of order 10720 kg/m3.
Contrast both of these with the density of an atomic nucleus, which is about 2x10'7
kg/m3.

When the assertion is made that the universe is well-approximated as homogeneous
and isotropic, this only applies to averages at very large scales, i.e. the average density
over a suitably large spherical volume of space is independent of where the centre is
placed. The observational question is then: how large an averaging volume must this
be? The two main methods to constrain this are observations of the CMB [127] (which
strictly only measure anisotropy) and galaxy surveys, such as the Sloan Digital Sky
Survey (SDSS) [128, 129], or the WiggleZ Dark Energy Survey [130, 131]. There is a
small amount of disagreement between studies as to precisely at what scale the universe

transitions to homogeneity, but there is wide agreement that the universe transitions to
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homogeneity above approximately 100h~! Mpc and remains homogeneous at all larger

scales [132—138].

1.4.4 The dark side of the universe

Observations of the CMB reveal that the value for Q in (1.4.1) is less than 0.005, consis-
tent with zero [139-111]. However, the successful predictions for the relative abundance
of light elements, in agreement with direct astronomical observations, depend on the
density of baryonic matter in the universe being only ~ 5% of the critical density re-
quired to achieve a flat FLRW metric [112]. The rest of the energy density of the universe
must come from some new “dark” physics that is thus far not understood. The standard
“concordance” model is referred to as ACDM after its main components, which are the
cosmological constant and cold dark matter, which we will now discuss.

The first component of this new physics is called “dark matter”. Dark matter was
originally suggested for use in two contexts. One was observations of the velocities of
stars orbiting galaxies implied the existence of extra unobserved mass in the galaxy
forming a halo stretching beyond the bright disk. The velocity plotted as a function
of radial distance from the centre makes the famous “rotation curves” for galaxies that
have been extensively studied over many decades [143—119]. The other original context
was in estimating the masses of galaxy clusters [150]. This dark matter is observed
to be six times more abundant by mass than ordinary matter. Simulations, backed
up by observations, indicate that this dark matter is important for the formation of
structure in the universe at scales ranging between the size of galaxies through to the
scale of transition to homogeneity [151-151]. Moreover, to produce the correct sizes of
structures, this dark matter is thought to be non-relativistic, i.e. “cold” dark matter
(CDM). Highly relativistic “hot” dark matter is ruled out observationally. For this
reason, neutrinos can be ruled out as dark matter candidates. Another reason why
neutrinos are ruled out is that the upper bound on neutrino masses combined with the
observed number density of neutrinos in the universe makes clear that neutrinos make up
a negligible fraction of the mass density of the universe [127]. Gravitational microlensing
provides an upper bound on the masses of individual dark matter particles [155, 156].
For this reason, compact stellar objects can be ruled out as sources of dark matter.
At the time of writing, dark matter has never been confirmed to have been detected
interacting non-gravitationally with Standard Model particles [157, 155].

Typically, viable dark matter candidates are required to have no electric charge or

strong nuclear interaction (otherwise they would have been observed already). However,
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some interaction with the Standard Model is expected in order to get the correct relic
abundance of dark matter in the present universe, given that inflation, discussed in
Subsection 1.4.5, is expected to have washed-out any pre-existing particles. Dark matter
cannot be accounted for in the Standard Model, although many popular speculative BSM

candidates exist [159-161].

It has also be proposed that, since all the observational evidence for dark matter
comes from its gravitational effects, it is possible that dark matter can be accounted for
as a quirk of gravity rather than as consisting of particles. One popular candidate for
such a quirk of gravity is Modified Newtonian Dynamics [162], which can be formulated
relativistically in Tensor-Vector-Scalar models of modified gravity [163]. One of many
problems with this proposal is that it suffers from a need to fit different parameter values
to different galaxies to extract the correct rotation curves [164]. More seriously, modified
gravity is unable to explain why collisions of galaxy clusters, such as the famous “Bullet
Cluster” [165] have a concentration of observable matter in the middle of the collision
(indicated by X-ray observations), but larger amounts of extra matter indicated by grav-
itational lensing either side of the collision. The dark matter-based explanation is that,
while ordinary matter is stopped in the middle by its relatively strong electromagnetic
interaction, dark matter can pass through the collision unimpeded due to its very small

interaction cross-section, even with other dark matter particles.

Of more direct interest to this thesis is the remaining ~ 68% of the current energy
density of the universe, which is referred to as dark energy. Einstein constructed GR and
began applying it to cosmology before Hubble’s observations of the expanding universe,
believing that the universe should be static, existing eternally in more or less its present
state [166]. As already discussed, GR naturally predicts that the scale factor of the
universe should change as space either expands or contracts. The presence of matter
in the universe would be expected to cause a negative acceleration in the scale factor
that would cause an initially stationary universe to collapse. In order to counter this
effect, Einstein proposed the cosmological constant to act as a repulsive force that would
balance the gravitational effect of the matter density and maintain a constant scale
factor. This proposal is flawed because it requires there to exist an exact cancellation,
which would be disturbed if any energy is transferred between non-relativistic matter
and radiation, which does indeed happen in the real universe.

It was discovered at the end of the twentieth century that the acceleration of the scale
factor of the universe is not negative, as one would expect from a universe consisting

purely of ordinary matter, but rather the expansion rate of the universe is accelerating
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[167,168]. This late-time acceleration came greatly to the surprise of most astronomers
and cosmologists, resurrecting a small ~ 1072 GeV positive vacuum energy as an
explanation for late-time acceleration. The effect of the cosmological constant kicks
in at late times because, unlike for other cosmological fluids, the energy density for the
cosmological constant does not dilute as the universe expands. Matter density dilutes as
a~3 because the volume containing that matter scales as a3. Radiation density scales as
a~?* because, in addition to the volume increasing, the wavelength stretches by a factor
of a, causing the energy per photon to scale as a~!. The cosmological constant, on the
other hand, remains constant, so it dominates as a becomes large. There is, however,
the “why now?” problem of why the transition from a matter-dominated universe to
an accelerating universe is happening at the time when there are human astronomers to
witness it [169—171]. The “why now?” problem is a curiosity that may or may not have
any interesting explanation.

The cosmological constant exists in GR as a free parameter that can be deter-
mined by experiment. Once one includes the action for the Standard Model of particle
physics into (1.3.21) as Smatter, one would expect the Standard Model vacuum to intro-
duce contributions that the diffeomorphism symmetry would require to take the form
[ d*z\/=g x (operators), i.e. the Standard Model vacuum offers its own contributions to
the cosmological constant. These contributions would be expected to come from every
scale of length available in the Standard Model. Even in the absence of any mixing
with the Einstein-Hilbert action or new BSM physics, the electroweak sector of particle
physics would be expected to provide contributions of energy scale ©O(10%) GeV. If the
physical cosmological constant took such a large value, the induced acceleration effect
would have made the formation of structure, and indeed life, in the universe impossible.
This is the infamous “cosmological constant problem” [172]. It would seem that some
extreme fine-tuning is required to cancel all quantum contributions to the energy scale
of the cosmological constant from the Planck scale, determined by Newton’s constant,
at 10'? GeV down to the observed value of 10712 GeV. The effective stress-energy tensor
due to a cosmological constant is

TA:A

which is a mass-dimension 4 tensor, which is why the fine-tuning is often said to be at
a level of one part in 1024, This is an extreme example of fine-tuning that dwarfs the
famous Hierarchy problem for the Higgs boson mass [173], which arguably forms the

biggest motivation for probing energies in the vicinity of the electroweak scale using the
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Large Hadron Collider and proposed future experiments.

The cosmological constant problem is considered to be a much harder problem than
the hierarchy problem. One reason, ironically, is that the energy scale of 107!? GeV
is easily accessible to experiment. In fact, the length scale is O(0.1)mm, which is easy
to see with the naked eye. This energy scale is far too well explored to speculate
freely about undiscovered BSM particles and interactions at that scale. So, unlike with
the Hierarchy problem, it seems very difficult solve the cosmological constant problem
by inserting more particles into the Standard Model e.g. as SUSY is applied to the
hierarchy problem [174]. Despite this, the mystery of dark energy has prompted many
to speculate about alternatives to the cosmological constant, popular among which are
modified gravity theories that provide late-time acceleration. These alternatives do not
provide solutions to the cosmological constant problem, rather they suppose that the
cosmological constant problem is solved somehow (with the solution being that the
actual cosmological constant is zero) and then seek to explain the observational effects

of the cosmological constant by some other means.

Distinguishing between the actual cosmological constant and these alternative the-
ories is the subject of many telescope-based projects in observational cosmology [131,

—180]. A popular method is to perform a survey of the peculiar velocities of galax-
ies (i.e. the velocity contribution not due to Hubble’s law) to look for deviations from
what is expected in ACDM. The motivation for supposing a zero cosmological constant
is that the aforementioned lack of new physics at the apparent cosmological constant
scale might be a hint that actually some deeper principle requires that the cosmological
constant should disappear entirely, rather than merely being carefully cancelled in some
delicate way down to such a low scale. On the other hand, in the absence of such a
principle, a value of zero for the cosmological constant is actually the extreme limit of
fine-tuning to one part in infinity. In that sense the discovery of a small, positive cos-
mological constant might actually be an improvement on the fine-tuning problem by a
factor of infinity. Nevertheless, until some compelling argument for why we have a 102
GeV cosmological constant is established, it is important to consider all possibilities for
explaining dark energy. In the latter half of this thesis, we will explore cosmological
backreaction as one of those alternatives and evaluate its viability as an explanation of

the late-time accelerating expansion of the universe [1,3].
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1.4.5 Inflation

Inflation is a proposed phase of the early universe in which there is exponential growth in
the scale factor [181-185]. The universe at this time is described by a de Sitter metric,
which is a special case of the FLRW metric (1.4.1). For a universe dominated by a

positive cosmological constant, we have

a = A exp (Mt) + B exp (—Mt) , (1.4.34)

where A and B are constants that are constrained via the Friedmann equation (1.4.24)

to be 4ABA = 3K. We then have exponentially expanding solutions of the form

for k>0, a = +/3k/A cosh\/A/3t, (1.4.35)
for k=0, a = Aexpy/A/3t, (1.4.36)

for k<0, a = +/—3k/A sinh\/A/3t. (1.4.37)

Inflation is similar to a cosmological constant-dominated universe except that, instead
of the vacuum energy being constant, it is sourced from a slowly changing potential that
ultimately drops to zero at the exit to inflation. The simplest models involve a scalar

field ¢ and potential V' (¢) whose action is given by
Sy = —/d%: V=g (;va¢va¢+ V(¢)> . (1.4.38)
The equation of motion for ¢ is the Klein-Gordon equation:
Vi —V'(¢) =0, (1.4.39)

where V' = dV/d¢. Using the FLRW metric (1.4.1) and connection coefficients (1.4.7),

this can be rewritten as

b+3Hp+V'(p) =0, (1.4.40)

where the second term is analogous to a friction term. The stress-energy tensor for ¢ is
1
Ty = VudVud = 50 (Vad V0 +2V(9)). (1.4.41)

In the case where V,¢ is small, the stress-energy tensor is dominated by V(¢) as an
effective cosmological constant Aj,s = KV (¢). The equation of state (1.3.41) for this
fluid is .
w="2 = M (1.4.42)
P V() +¢%/2
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which is close to the cosmological constant value of w = —1 for small qS If qZ) is small

then, from the Klein-Gordon equation (1.4.40), we have

V/

br o (1.4.43)

If ¢ is small, then, from the Friedmann equation (1.4.24), we have
H? ~ k—. (1.4.44)

To quantify these requirements, the slow-roll parameters ¢ and 7 are invoked:

p)
a
2H?

1¢

1= g (1.4.46)

(1.4.45)

The conditions for slow-roll inflation are that e << 1 and || << 1. There also exists a

different convention for the slow-roll parameters, which is

1 [(V\?
v
W= o (1.4.48)

It can be seen from (1.4.43) and (1.4.44) that € ~ ey in the slow-roll regime, however
ny &1+ €

Three motivations for believing that inflation took place are the “flatness problem”,
the “horizon problem” and the “magnetic monopole problem”. Let us begin with the
flatness problem. At very early times, the universe is dominated by radiation, i.e.
w = 1/3. Later it becomes dominated by matter with w = 0. The cosmological
constant only becomes important at late times. The Friedmann equation (1.4.24) can
be rewritten in terms of the critical density (1.4.31) in the case of negligible cosmological

constant as

3k
(p—pe)a® = (1 = 1/Qotal) pa® = — (1.4.49)

The right hand side is a constant by inspection. The radiation component of the density
pr ~ a~% and the non-relativistic matter component p,, ~ a3, so pa® decreases as a
becomes large. This implies that |1 — 1/Q4eta1| increases to balance it, implying that
|Qk| grows as the universe expands. As noted at the start of Subsection 1.4.4, the
value of the curvature parameter is observationally indistinguishable from zero at the
time of writing, which implies that it was very finely tuned to be close to zero in the

early universe. Indeed, the value at the time of cosmic nucleosynthesis would be 10~
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of the present value, assuming matter domination. Inflation provides a mechanism to
drastically reduce the value of |Q| at early times via accelerating expansion. One way
to see this is that since p is a constant for a cosmological constant or for a slow-rolling
scalar field, the argument using (1.4.49) is reversed and |1 — 1/Qyota1| decreases as a
grows. Another way to view the flatness problem is via the Hubble radius 1/H, which
is the distance beyond which we are causally disconnected from due to the expansion
rate of the universe. In comoving coordinates, the Hubble radius is 1/aH = 1/a. In an
accelerating universe, regions of space we are currently in causal contact with can be
moved out of causal contact with us. The curvature density parameter is proportional to
the squared comoving Hubble radius: || = |k|/(aH)?. The original flatness problem
is that if a is decreasing, {2, is increasing, but the inflationary resolution is that an early
phase of increasing @ can decrease the value of € enough so that it stays small until
the present day. An intuitive understanding is that the accelerating expansion phase
pushed neighbouring regions of the pre-inflationary universe out of causal contact with
each other, forming the later universe out of only a region of the early universe that was

so small that the effect of curvature over that region was negligible.

The horizon problem concerns the apparent uniformity of the CMB. As noted in Sub-
section 1.4.2, the CMB is a blackbody spectrum of an almost uniform 2.7 K temperature
in all parts of the sky, having only order 10~ deviations from the mean temperature.
Put another way, the CMB from all directions in the sky appears to be very close to
being in thermal equilibrium. In a decelerating universe, opposite ends of the CMB
should not have been in causal contact when the CMB was produced, since the light
from these opposing sides has only just been able to reach the Earth-based observers in
the middle, and yet they are apparently in thermal equilibrium. According to inflation,
the answer is that they were previously in causal contact, but the accelerating expan-
sion of the universe during inflation isolated these different regions from one another,
only to come back into causal contact later. Inflation takes a small region of the early
universe and makes it very large, so that all the information in the sky corresponds
to a small region of the early universe that was isotropic and in thermal equilibrium.
The currently observable anisotropies of the CMB would have been created after the
end of inflation. Although inflation resolves the fine-tuning in the horizon and flatness
problems, it has its own fine-tuning of initial conditions for the scalar field. The deriva-
tions above depend on the initial velocity of the scalar field being small, the field being
close to homogeneous and the initial value of the field being far enough away from the

position of the minimum of the potential.
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The magnetic monopole problem is that magnetic monopoles of the form V-B 0
are not observed to exist in our universe®. Although magnetic monopoles are forbidden
in the Standard Model, they are a necessary part of proposed Grand Unified Theories
(GUTs) [188,189], which offers an explanation of why charge is quantized in elementary
particles [190]. Indeed, such theories typically predict that magnetic monopoles should
be produced in large number densities in the high temperatures of the early universe.
Worse than that, they would be stable, leaving behind a large number density in the
present universe. GUTs are extensions to the Standard Model of particle physics in
which the Standard Model gauge couplings unify at some large energy scale (usually
~ 106 GeV). Inflation can explain the lack of magnetic monopoles as the accelerating
expansion rate causes particles that are initially nearby to be pushed out of causal
contact with each other, creating causally isolated regions that are almost totally empty.
A downside to this motivation is the complete lack of experimental evidence that these
GUTs are actually realized in nature.

As inflation comes to an end, the universe is almost completely empty and the
temperature is very close to zero. As the inflaton field decays, it “reheats” the universe
and repopulates it with particles. Since the mechanism for inflation is currently unknown
and, if it exists at all, lies far beyond the Standard Model, how this process works in
detail is also not known.

The relevance of inflation to this thesis is that one of the best fits to current CMB
observations, such as from WMAP [139] and Planck [191,192], comes from one of the

oldest models of inflation that is related to low-energy effective theories of gravity. The

Starobinsky model of inflation [182, 193] assumes a gravitational action of the form
Serav = [ A2 v gLgay = [ d'z Vg (R i 1.4.50
grav. — T —Gkgrav = x _gﬂ + W ) ( - )

where M is a mass scale called the “scalaron” mass. A sensible physical interpretation
of the higher-order curvature term is that it comes from integrating out high-energy
modes of a more fundamental gravity theory by means of an RG flow down to some
scale A ~ M where A in this case is a large UV cutoff scale and not the cosmological
constant. One would expect this to be a truncation of a larger gravitational action
that contains an infinite series of terms. A possible extension to Lgray is to set it to a

Taylor-expandable function of the Ricci scalar:
2 R3

e + const x Wi +--- (1.4.51)

26Lgray = R+

5In condensed matter physics, anologous “magnetic monopoles” e.g. of the form V-H # 0 do

exist [186,187], but this consistent with conventional electromagnetism.
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This would, however, also be expected to be a truncation of a more complete gravita-
tional action. Non-local (i.e. non-Taylor-expandable) f(R) theories are sometimes also
considered for late-universe cosmology, although these would not be compatible with
Kadanoff blocking, upon which RG relies. Care is required when constructing such
models to ensure that other terms in the higher-derivative expansion do not hinder the
inflationary effect of the R? term.

To see that this scalaron mass corresponds to a scalar mode in the gravity theory,

one can perform a Legendre transformation:

f(R) =¢R—-V(9), (1.4.52)
i.e. f'(R) = ¢ and V'(¢) = R, where ¢ is a scalar field and V(o) is a potential. Including

a cosmological constant for the sake of generality, we have an action of the form

1
S = /d4x V—g <2K [pR — V() — 2A] + £mmer> : (1.4.53)
This form is referred to as the Jordan Frame. In the action for Starobinsky inflation

(1.4.50), we have
3M?
V(g) = 2o

Since the minimum of V' (¢) is at ¢¢ = 1, the universe at late times returns to pure Ein-

(p—1)2. (1.4.54)

stein gravity (1.3.21). There also exists an “Einstein” frame obtained from a conformal
rescaling of the metric. Together with a field redefinition of ¢, this recasts the action to
look like Einstein gravity together with a scalar field with canonically normalized kinetic
term and a potential with an exponential form.

The observable effects of inflation are in the CMB. In addition to making the CMB
close to isotropic, the inflation also generates small anisotropies in the CMB by taking
quantum fluctuations of the inflaton field and expanding them to make scalar perturba-
tions to the CMB temperature. Gravitational radiation produced at the end of inflation
would also create tensor perturbations. The latter has, at the time of writing, not been
observed in the CMB, which provides constraints on viable inflation models and thus
favours R? inflation or other models based on an exponential scalar potential. The first
of two commonly considered observables is the scalar spectral index ng (or “primordial

tilt”), defined via the power spectrum of the Fourier modes k of scalar fluctuations:
Pk) ~ k"1, (1.4.55)

where a value of ng = 1 implies a scale-invariant spectrum. The power spectrum itself

is related to the 2-point function of a perturbation 1 via

(Y(0)p(z)) = / dink P (k). (1.4.56)
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The observed value is between about 0.95 and 0.98, implying a slight bias towards lower-
frequency fluctuations. The second is the ratio of tensor to scalar perturbations r, which
is currently constrained to be less than about 0.1. Relating r to the slow-roll parameters,
one finds that r ~ 16e.

Taking this whole introduction together, we are motivated to study the physics
of higher-derivative theories of gravity at different scales of length and their possible
cosmological implications. The next chapter of this thesis will review manifestly gauge-
invariant ERG methods in preparation for developing the manifestly diffeomorphism-
invariant ERG [2] in Chapter 3. This will give us a stronger theoretical basis for studying
higher-derivative gravity expansions. The subject of backreaction, which is the non-
linear effect of metric perturbations on cosmological expansion, will be reviewed in
Einstein gravity in Chapter 4 in preparation for discussing the original research on

backreaction in higher-derivative gravity theories in Chapters 5 and 6.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Review of the manifestly

gauge-invariant ERG

2.1 Kadanoff blocking continuous fields

Quantum field theory, unifying quantum mechanics and special relativity, concerns con-
tinuous fields, each possessing an infinite number of degrees of freedom, out of which
particles can be created and destroyed as excitations of the field. Interaction terms in
the action receive quantum corrections in perturbation theory from loops, around which
a momentum propagates. This momentum is integrated over to evaluate the total con-
tribution. Since the spacetime is continuous at all scales, the momentum can range from
zero to infinity. The lack of an upper bound on the momentum gives rise to ultraviolet
divergences (where the result of integrating over a loop momentum is infinite). Ultravio-
let divergences must be removed by means of a regularization scheme in order to extract
physical results. The regularization scheme is a formal device that does not imply any
meaningful physics in itself. Any observables must be independent of the regularization
scheme.

One conceptually simple regularization is to model the spacetime as a lattice of
points. The distance between nearest neighbour points is then the smallest length
scale explicitly considered. This is the “ultraviolet cutoff”, which corresponds to a
maximum momentum via a Fourier transform. In practice, computations performed
on a finite lattice are also infrared regulated, possessing a minimum momentum mode
corresponding to an “infrared cutoff”. The complete physics that explicitly considers
all scales of length would emerge in the “continuum limit” where the lattice spacing

is tended towards zero, corresponding to the limit where the maximum momentum

43
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considered is tended towards infinity. In the case of a finite lattice spacing, length scales
shorter than the lattice spacing have been averaged out, thus the lattice cannot be used
to study the details of physics at such scales. This is related to the idea of an “effective
field theory”, which is valid for computing physics at length scales above the ultraviolet
cutoff length. We will not discuss lattice computations any further, since this thesis

concerns exact constructions.

In this section, we wish to apply the powerful technique of Kadanoff blocking dis-
cussed in Section 1.2.3 to continuous fields [9, 10], thus creating an exact RG [11]. We
will also wish to construct the blocking procedure in a momentum representation, since
this is of most use for QFT. Instead of group together blocks of spins, we will average
over the high-energy Fourier modes to construct an effective action describing low-energy
physics. The averaging is effected by an integral over field configurations where a smooth
infrared cutoff function is used to restrict which field configurations are integrated out.
The result is that Fourier modes above some cutoff scale A are removed [11, 12, 194].
As with Kadanoff blocking over spins, this reduction in the degrees of freedom is not
invertible, since details of the modes integrated out have been removed. RG flow is then
described by lowering the scale of A, i.e. integrating out more modes. The objective is
then to construct a flow equation that can be used for computing effective actions and,

via a loopwise expansion, a calculation of the S-functions for running couplings.

As in statistical mechanics, it is necessary that the theory is local, i.e. that interac-
tions between points separated by a large distance are suppressed so that the blocking
does not lose macroscopically important information. As mentioned above, QFT is rel-
ativistic, so one would naively use the Minkowski metric to describe the D-dimensional
spacetime geometry, in which there is 1 dimension of time and D —1 dimensions of space.
However, this creates a tension with the requirement for locality in Kadanoff blocking.
Consider light-like separations as an extreme example, i.e. where ds> = 0. Phrased
in position representation, such separations can have an infinite coordinate separation,
so it is impossible to frame-independently distinguish long-distance and short-distance
separations via an invariant interval, thus we are unable to construct a blocking scheme
that groups together nearby spacetime points. In momentum representation, we see
that arbitrarily large energies and momenta can be found in a 4-momentum that has
p?> = 0. This prevents us from integrating out all of the high-energy modes. This can
be remedied by performing a Wick rotation (¢ — it) into a Euclidean metric signature

and then performing the blocking.

Consider a scalar field whose microscopic degrees of freedom are given by the “bare”
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field g9 and whose macroscopic degrees of freedom after blocking are given by the
“renormalized” field ¢. The blocking functional b is defined via the effective Boltzmann

factor:

= / Dipo 6 [io — b [ieo]] e Somrell, (2.1.1)

The delta function replaces the bare field with the renormalized field, which is con-
structed using the blocking functional, in which the high-energy modes are integrated
out to give an average. Thus we obtain an effective Boltzmann factor with only the
macroscopic degrees of freedom. As with Kadanoff blocking on a lattice of spins, the
form of the blocking can be chosen freely. A simple, linear, example of a blocking

functional is given by

blipo] () = / B(z — y)eoly), (21.2)

where B(x —y) is some kernel that contains the infrared cutoff function and a shortened

/x::/d%. (2.1.3)

Figure 2.1.1 illustrates an example profile for the smooth kernel B(z). In this example,

notation has been used such that

we have B(z) = B(0)e"M*" where N is a large enough integer to make a suitably
rapid transition (for this figure N = 12 has been selected). We have B(z) — 0 for large
|z|A, transitioning rapidly at the length scale 1/A.

1.2
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o UV region = Cutoffiscale | IR region|

B(2)/B(0)
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Figure 2.1.1: Example of a smooth infrared cutoff function in position representation
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As with statistical mechanics, we require that the partition function remains in-
variant under Kadanoff blocking, ensuring that macroscopic observables (derivable from
correlation functions) also remain invariant. To see that this is true, consider performing
a functional integral of (2.1.1) with respect to the renormalized field ¢. This trivially
integrates out the delta function, leaving the usual form of the partition function for the

bare field q:
Z = /Dgp e_S[‘P] = /'DSOO e_Sbare[‘PO]' (214)

The first steps towards deriving a flow equation is to differentiate the effective Boltzmann

factor with respect to RG time, i.e. In(A):

A ye = /&0 /D%a o — b[gpo]]Aab[aA]( ?) o~Srarelpol (2.1.5)

We then integrate out the bare field ¢y to obtain a general expression in terms of W,
which is a function of x and functional of ¢ that can be loosely interpreted as the rate

of change of the blocking functional with respect to RG time:

Y =Sl S[W]
e /5s0 ) , (2.1.6)

Performing the differentiation and dividing out the Boltzmann factor, we obtain a gen-

eral flow equation for an action with a single scalar field:

IS N B 10
A&AS_/J;\II( 5ot~ L. Tl (2.1.7)

Since there are an infinite number of possible blocking functionals that could be chosen,

there are an infinite number of flow equations that could be constructed [195]. They
would, however, all be expressible in the form given in (2.1.7). We can once again see
that the partition function remains invariant under RG flow by seeing that the right
hand side of (2.1.6) is in the form of a total derivative of ¢. The rate of change of
the partition function is given by the functional integral of (2.1.6) with respect to ¢,
which is zero, given a suitably damped Boltzmann factor at large ¢, which is reasonably
expected in Euclidean signature.

Concerning notation used in the rest of this chapter, it is convenient in future to
represent differentiation with respect to RG time with an over-dot such that, for some
function f(A), we have f(A) = Aa% f(A). We will follow the notation conventions seen

in [196,197] for a momentum kernel W in the flow equation:

f-W-.g:= /f(x)W (—82) 9(z), (2.1.8)
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where, in position representation, W generally contains a dimensionful factor that is a
function of —9? and a dimensionless factor that is a function of —9?/A2. In momentum
representation, the —9? is replaced with p?. The momentum kernel usually used in the
flow equation is related to the effective propagator of the field at a fixed point. Indeed,

for massless scalar fields, it is identically the same as the effective propagator.

2.2 Classical ERG for massless scalar fields

Let us now consider a particular specialization of (2.1.7), which is the Polchinski form of
the flow equation [198]. In the Polchinski form, the rate of change of blocking functional

is written as

U(z) = ;/A(aj,y)éia), (2.2.1)
Yy

where ¥ = § — 25 is an action that we will return to shortly and A is precisely the
effective propagator. In momentum representation, we have A = ¢ (p2 /A2) /p?, where
c (p2 / A2) is an ultraviolet momentum cutoff function used to regulate the propagator,

which is otherwise just the usual form given by 1/p?. Also note that

A 2, p2
where ¢/ (p?/A?) is the derivative of ¢(p?/A?) with respect to its argument. If ¢ is a local
expansion, then so is A. The “seed action” Sis a fixed-point action whose only scale
is A. In the Polchinski form of the flow equation, S is conveniently chosen to be the
regularized kinetic term:
1

S = S0up - O, (2.2.3)

where we use the notation in (2.1.8) and the Greek Lorentz indices are implicitly summed
over with a Euclidean metric. Because we have freedom in our choice of blocking scheme,
we also have freedom in our choice of seed action. We do, however, still have to insist
that both S and A take the form of local derivative expansions to all orders to ensure
the validity of Kadanoff blocking. However, we can freely add 3-point and higher terms
to S without introducing any changes to the physics.

The seed action in (2.2.3) is identical to the regularized kinetic term for the effective
action S. Canonical normalization of the kinetic term and the propagator requires that
¢(0) = 1. When we solve the classical part of the flow equation at the 2-point level,
we will see that the factor of 1/2 in (2.2.1) is also necessary to ensure that the kinetic

term in S is canonically normalized, and this factor of 1/2 is similarly required in both
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the gauge and gravity generalizations of the Polchinski flow equation. Applying the
Polchinski form for the rate of change of blocking functional in (2.2.1) to the general
ERG flow equation for a single scalar field in (2.1.7), we get the Polchinski flow equation,

expressed using the notation in (2.1.8):

. 148 . X 16 . 6%
— 2 A Z_Z - A2 2.2.4
s 20¢ dp  20p dp ( )

Note that since both A and S are local, then if S is local prior to RG transformations,
it remains local after the RG transformation. Now consider the action (in momentum

representation) as a Taylor expansion in the scalar field:

S = /dp %S“"“"(p, —p)sa(p)so(—p)Jr/dpdq %SW“"(p, ¢ —p—a)e@e(@p(—p—a)+- -,

(2.2.5)
where S%¥(p, q) is the 2-point function of the action, S¥#¥(p,q,r) is the 3-point func-
tion and so on. These n-point functions can be obtained by performing n functional
derivatives on the action and evaluating at ¢ = 0. Similarly, the flow equation for the n-
point part of the action can be evaluated by performing the same procedure to equation
(2.2.4). Taking the seed action in (2.2.3), we can write this in momentum representation

as

S = /pso o(—p), (2.2.6)

SO S'W’(p, —p) = ¢ 1p?. The propagator is then the inverse of this: A = ¢/p?.
Figure 2.2.1 below, illustrates the structure of the flow equation diagrammatically in

the momentum representation. In Figure 2.2.1, adapted from [197] and also appearing

Figure 2.2.1: General flow equation for an action with a single scalar field at some

n-point level

in [2], large circles with n solid lines attached represent n-point functions for an action.
The labels inside the circles indicate which action, S or X, the n-point function is taken
from. The small black dots have the same meaning as over-dots in the equations, i.e.
they represent differentiation with respect to RG time. An internal line, which is where
both ends connect to an n-point function, represents an effective propagator given by

the flow equation kernel, which carries momentum from one end to the other (although
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the sign notation convention for this thesis is that momenta always flow out of the
actions and the kernel). External lines, which are lines where one end connects to an
n-point function and one end is free, represent the momenta flowing out of the n-point
function. An external line on the left-hand side of the flow equation must correspond
to an external line on the right hand side and vice versa, carrying the same momentum

on both sides.

This diagrammatic illustration helps with the intuitive understanding of the flow
equation, as expanded out in n-point functions. Immediately, we can see that the second
term on the right hand side of the flow equation has no tree-level component, because the
internal propagator has both ends connecting to the same n-point function, forming a
loop with an unconstrained momentum that is integrated over. The loopwise expansion
of the action effectively counts powers of A, with higher powers of i corresponding to
higher loop orders, as will be discussed in Section 2.4. The & — 0 limit corresponds
to the classical level, which is the tree-level. Naively, A — 0 is nonsense, given that we
choose a system of natural units in which 2 = 1, however this limit represents a special
case that is not our ultimate goal, but it is nevertheless instructive. Setting & = 1 is safe
to do because rescaling i to anything over than 0 or oo is simply a rescaling of units
with no physical implications. An alternative limit that reproduces the classical level is
where interaction couplings are tended to zero, i.e. the weak coupling limit. In a weak-
coupling limit, higher loop orders, which are also higher order in the coupling, become
significantly less important than lower loop orders. Given a suitably weak coupling, the
theory is well-approximated by classical computations. This is of relevance to motivating
the study of classical RG flows for gravity in Chapter 3, because gravity is extremely
weakly-coupled at currently observable length scales. However, as we move into regimes
with stronger coupling, the quantum corrections from higher loop orders become more
important, ultimately requiring one to develop non-perturbative descriptions for physics

in strongly-coupled regimes.

To see how the classical flow equation can be solved exactly at the 2-point level,
let us consider a single-component scalar field theory with a symmetry under ¢ — —¢.
Because of the ¢ — —¢ symmetry, this is a massless scalar field theory, so quantum
corrections to the action begin at the 4-point level. As noted already, the classical level
of the flow equation only uses the first term on the right hand side of (2.2.4), so we can
neglect the second term at this stage. The ¢ — —p symmetry imposes that there exist
no 1-point functions. The seed action S has been required by construction to take the

same 2-point function as the effective action S, giving us that 3¥¥ = —S%¥. This tells
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us that the 2-point level of the flow equation is expressed only in terms of the 2-point
function for the action. To see this, note that expanding either .S or 3 in Figure 2.2.1 to
the 3-point or higher level would result in there existing 3 or more external lines. The
exception to this is if either S or X were allowed to possess 1-point functions, which
they do not under ¢ — —¢ symmetry.

With this in mind, we find that the classical flow equation (2.2.4) can be written at
the 2-point level as

$9% = _GPP S, (2.2.7)

which is solved by A = (S 9090)_1, as required for A to be the effective propagator. Higher-
point modifications to S do not introduce any new observable physics, even at the quan-
tum level, because such modifications to S cause nothing more than reparametrizations
of the renormalized field.

Using the exact solution for the 2-point function in S at the classical level, one can
proceed iteratively to exactly solve all of the classical n-point functions using the flow
equation and knowledge of the (n — 1)-point functions and lower. One can then use the
loopwise expansion to exactly solve the flow equation up to the desired number of loops,
again working iteratively from the classical solution. An exact solution to the complete
flow equation for S would be the exact form of the effective action. A fixed-point action
is characterised by having only a single scale A such that all dimensionful parameters in
the action are expressed as a dimensionless number multiplied by some power of A. This
is the field theory equivalent to expressing dimensionful quantities in terms of lattice
units in a renormalized Ising model. A fixed point exists which is an exact solution to
the flow equation of the closed form S = S, which is a non-interacting theory. For such
a theory, the Boltzmann factor is simply a Gaussian. One can then perturb away from
this fixed point by inserting extra operators (i.e. interaction terms). There is, however,
a “triviality” problem that such interactions in scalar field theory are either irrelevant

or marginally irrelevant, so the RG flow falls back to the fixed point.

2.3 Gauge-invariant ERG for Yang-Mills theories

This thesis will be concerned with constructing an ERG for gravity in Chapter 3. As
discussed in the Introduction’s Subsection 1.3.6, gravity theories are required to be
symmetric under diffeomorphisms, which are infinitesimal coordinate transformations.
This is very strongly analogous to the gauge symmetries associated with massless vector

bosons that communicate forces such as electromagnetism or strong nuclear interactions.
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With that in mind, this section will be concerned with partially reviewing the wealth
of existing knowledge on performing exact RG calculations in gauge theories without
fixing a gauge. This manifestly gauge-invariant ERG provides much of the mathemat-
ical machinery required to construct an ERG for gravity that does not gauge-fix the
diffeomorphism-invariant theory: such an ERG would then be called the manifestly
diffeomorphism-invariant ERG [2].

Let us begin with a brief technical history of the manifestly gauge-invariant ERG.

Manifest gauge invariance was first incorporated in the ERG in the context of a pure

U(1) (Abelian) gauge theory [199] and, following [200] it was generalized to pure non-
Abelian SU(N) theories [201-203] and then developed to include fermions for Quantum
Electrodynamics [204, 205] and Quantum Chromodynamics [206]. Its regularization

structure, which will be summarized in Section 2.5 was further developed in [207-209].
Further development of the method has demonstrated the ability to extract results that
are independent of the regularization scheme [210-215] and to handle general group
structures [216]. Scheme-independence at all loop orders has been demonstrated in

[217,218] and general expressions for the expectation values of gauge-invariant operators

were developed in [219,220]. Short reviews can be found in [221-223]. For a much longer
review, see [224]. Manifestly gauge-invariant ERG has also been the subject of other
PhD theses [225,220].

For a much gentler introduction, let us consider a theory in which there is a gauge
field with 4-potential A,. Relating this to classical electromagnetism in four spacetime
dimensions, it is common to express the electromagnetic 4-potential as an electric scalar
potential ¢ and a magnetic 3-potential A via A" = (p, A). The familiar electric and
magnetic field strengths, EE and B are related to the scalar and 3-vector potentials
via BE = —grad(¢) — A and B = curl(A). However, it is more convenient for us to
express these using covariant notation as components of a field-strength tensor Fj,, for

electromagnetism (i.e. Abelian gauge theory):
Fu = 20,A,). (2.3.1)

The E field is related to F,, via F% = E% where i is an index label between 1 and 3 and
Fi = ¢k B), where €7* is the Levi-Civita symbol, representing an antisymmetric tensor.
More generally, the field-strength tensor can also be expressed as F),, := i[D,, D,],

where D), is the covariant derivative for this gauge theory, defined by

D, =8, —iA,. (2.3.2)
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In non-Abelian gauge theories, such as Quantum Chromodynamics (QCD), A, can be
expanded out colour-wise to

Au(x) = A%(@)T°, (2.3.3)

where a is the colour index corresponding to a group generator T and repeated colour
indices indicate an implicit summation over colours. Usually, the gauge field is defined
such that the second term on the right hand side of (2.3.2) is —igA,,, explicitly con-
taining a coupling g as a separate factor, but here the field is defined to identically be
the gauge connection, which is helpful for constructing the manifestly gauge-invariant
formalism, as will become apparent soon. The covariant derivative for gauge theories is
strongly analogous to the covariant derivative for curved spacetime and the field-strength
tensor is similarly analogous to the Riemann tensor, as one can see by consulting equa-
tion (1.3.16). Similarly to how the effective kinetic term for a scalar field theory was
constructed in (2.2.3), the effective action for a pure gauge theory can be written as
1 ( D? 3

S[A](g):ZIthr/xFWc (—A2>FW+O(A )+ (2.3.4)
Note that the rescaling of the field with the coupling has enabled us to express the action
with the coupling as an overall factor, this will become convenient when performing the
loopwise expansion in Section 2.4. Analogous to the diffeomorphism transformation is

the gauge transformation:
0Au = [Dy,w(x)] = uw(z) — i [Au(z), w(z)], (2.3.5)

where () is a scalar field effecting the equivalent of a coordinate transformation for
the 4-potential. The action in (2.3.4) is invariant under gauge transformations. In
commonly-used QFT methods that depend on gauge-fixing, fields such as A, rescale
under renormalization from their “bare” values to “renormalized” values. Consider a
covariant derivative defined as D,, := 0, —igA,,, the renormalized field Aff is related to
the bare field AE by

Al = 771248 (2.3.6)

where Z is a wavefunction renormalization factor that would ordinarily appear as an
overall factor in the renormalized kinetic term F),, F*" such that the “counterterm” to
the bare action has an overall factor of Z — 1. Similarly, the coupling g would also
rescale from its bare value gp as g := Z'/2¢gp. However, wavefunction renormalization
is not compatible with manifest gauge invariance because the gauge transformation of

the renormalized field Aﬁ‘ would be

SAR = 77120, —i[A w], (2.3.7)
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which differs from the original form of the gauge transformation in (2.3.5) by the factor
of Z=1/2 in the first term. Methods that depend on gauge-fixing introduce Fadeev-Popov
ghost fields to remove the longitudinal mode introduced to the field by the gauge-fixing
and also restore of modified form of the gauge invariance called BRST symmetry, in
which the ghost fields, which are fermionic scalars, also transform under the symmetry
[227-230]. The gauge-fixed action is then invariant under the complete set of BRST
transformations. Since we are concerned with manifestly gauge-invariant constructions,
we will insist that Z = 1 at all times. Rescaling the field with g to give the form of the
covariant derivative in (2.3.2) and moving the coupling outside the action in (2.3.4) has
enabled this advantageous property. Furthermore, the loopwise expansion of the action

also proceeds in a similar way:
1
S = ?sg + 81+ g2y + - (2.3.8)

where S,, is the (coupling-independent) nth loop contribution to the action with the
coupling rescaled outside the action as seen above. Thus we see explicitly how the
loopwise expansion of the action corresponds to a series expansion in increasingly high
powers of the coupling, with the classical limit being obtained where ¢ — 0. The RG
running of the coupling is given by the S-function, which is the derivative of the coupling
with respect to RG time: 5

g

B=Agt. (2.3.9)

Just as the action possesses a loopwise expansion in which higher loop orders correspond

to higher coupling powers, so too does the g-function:
B = Aorg = B1g> + Bag® + - -- (2.3.10)

The first contribution to the S-function is at the 1-loop level, so the coupling does not
run in the classical limit. For this reason, most particle physicists view RG flow as a
quantum property of the field theory that originates in the loops. However, as we have
already seen, the effective action already has a non-zero derivative with respect to RG
time at the classical level.

The generalization of (2.2.4) to gauge theories is simply

. 148 ox 1 4 L 0%

= =L — A} L 2.3.11
204, (A 0A, 204, (A 5A,° ( )

where the repeated Lorentz index again has an implicit summation and the shorthand

notation in (2.1.8) has been used. As with the scalar case, the factors of 1/2 are neces-

sary to ensure that the kinetic term is canonically normalized. Naively, the presence of
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a momentum kernel A would break the gauge invariance because of its derivative expan-
sion. In order to maintain gauge invariance, it is necessary to covariantize the kernel.
Once again, we are at liberty to choose from an infinite number of possible schemes for
doing this. In this thesis, we will covariantize kernels by replacing the partial derivatives
with covariant derivatives. In the flow equation (2.3.11), the covariantization of the ker-
nel is denoted by the braces either side of A. The g subscript applied to X denotes that
the rescaling of A, with g has led to a coupling rescaling in 3 to ensure that S has the

same order-by-order expansion in g as S does:
¥, =925 - 2S. (2.3.12)

As with the scalar field theory, we can write the gauge theory action as a series expansion
in n-point functions in the spirit of equation (2.2.5):

S = ;/dp Sa3 (0, —p) Aa(p)As(—p) +

1
3 | W da S35 0, —p — ) Aa(P)Ap(@) Ay (-p — @)+ (23.13)

where 5’;‘54 (p, —p) is the 2-point function, S(‘;‘g}yA is the 3-point function and so on. Once
again, we can represent the n-point expansion of the flow equation diagrammatically, as

seen in Figure 2.3.1, adapted from [197] and also appearing in [2]. The n-point expansion

Figure 2.3.1: Gauge-invariant n-point flow equation with a covariantized kernel

of the flow equation in gauge theories is very similar to the n—point expansion in scalar
field theories except that the covariantized kernel also has its own n-point expansion.
To see why, note that replacing the partial derivatives with covariant derivatives has
introduced an expansion in the field A, into the kernel itself, independently of the
actions it connects to at each end. Unlike the actions, however, the n-point expansion
of the kernel begins at the 0-point level and has a complete set of non-zero n-point
functions for all non-negative integer values of n.

The regularized 2-point function can be written as

2
Sttt = (Opup” = pupw) ¢! <f§2> : (2.3.14)
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Unlike with scalar fields, the 2-point function for the gauge field S ;:‘,;A (p, —p) is transverse:
pMS;?VA = 0. The transverse form of the 2-point function is imposed by gauge invariance.
This 2-point function is non-invertible and therefore we cannot construct A to invert
the 2-point function in the usual way: S;j‘,f‘(p, —p)A # 0. Gauge-fixing introduces a
longitudinal mode, allowing the 2-point function to be inverted. The longitudinal mode
is then cancelled away again by the BRST ghost fields. However, in this formalism, we

do not need to invert the 2-point function. Instead, we define A to map the 2-point

function onto the transverse projector:
AS;?VA = 5uu - pupu/p2- (2.3.15)

Although this is not inverting the effective 2-point function, it is still convenient to refer
to A as the effective propagator.

Let us turn to solving the gauge-invariant 2-point flow equation at the classical level.
The seed action should match the effective action at the 2-point level but otherwise be
chosen freely without affecting the physics. We will take the simplest case in which the

seed action is nothing but the regularized kinetic term:

. 1 D?
S[A] = 1 tr/ Fuc! <_A2>FW . (2.3.16)

As with the scalar case, the classical flow equation only uses the first term on the right
hand side of the flow equation (2.3.11). Lorentz invariance requires that the effective
action (2.3.4) of a pure gauge theory, expressed as an n-point expansion like (2.3.13)
begins at the 2-point level, as can be seen by the need to contract Lorentz indices to
form the Lagrangian out of Lorentz scalars. The lack of a 1-point function means that,
as with scalars possessing the ¢ — —¢ symmetry, the only contributions to the right
hand side of the flow equation at the 2-point level are found by taking both S and ¥,
at the 2-point level and the kernel at the 0-point level. The flow equation then reads as

St = —SAAASA. (2.3.17)

This equation is solved by (2.3.14) and (2.3.15), as required.

2.4 Loopwise expansion

Although computing the RG flow at the classical level has its uses, which will be explored
in this thesis in the context of gravity, ultimately the objective is to also understand field

theories at the quantum level. Perturbatively, this involves expanding the flow equation
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loopwise and computing S-functions. Let us first consider the scalar field theory from
Section 2.2. Consider a theory where there is a coupling A at the 4-point level. Once
again, the field is rescaled by the coupling: ¢ = ¢/+/), and the action is rescaled by
the coupling to keep the kinetic term canonically normalized: S = S /A. However, it is
convenient to drop the tildes from the notation as we proceed. The action is a function

of A and a functional of ¢ with a loopwise expansion akin to that in (2.3.8):
S[(p;)\] :SO+)\51+)\252+"‘ . (2.4.1)

The seed action also possesses a similar loopwise expansion where it is convenient to
impose that S##(p,q) = ,SA”W’(p, q). The B-function, defined by 5(A) := Adx A also has a

loopwise expansion akin to that in (2.3.10):
B(A) = BiA% 4 Bod3 4 -+ . (2.4.2)

Because scalar field theories do not possess a gauge symmetry that would be violated by
wavefunction renormalization, we have in general that Z(A) # 1 where pp = Z'/2pg.
As a result, there is also an anomalous dimension y(A) := AdjZ, with an expansion
Y(A) = y1A+72A2+- - - . Differentiating (2.4.1) with respect to RG time and applying the
Polchinski flow equation in (2.2.4) gives us the loopwise expansion of the flow equation.
At the classical level, there is the familiar form:

. 1650 ; 6%

So==—-A - —. 2.4.3
"= 5%, 7 (2.4.3)

Expanding to one loop, we have to include the second term of the flow equation as well

as the 1-loop parts of the S-function and the anomalous dimension:

S 85 050 051 4 05y

: 2! A
RS = I A2 20
S1+BISO+QLP 5 dp dp Oy o
§So . 681 146 . 6%
%.A.%_gﬁ.A.w. (2.4.4)

Expanding in a similar fashion to the desired loop level, one can extract the S-function
and anomalous dimension up to that loop order by means of taking the flow equation

for two choices of n-point level and solving for the two unknowns.

2.5 Additional regularization

Although the effective propagator has been regularized with an ultraviolet momentum

cutoff, this is insufficient to remove the ultraviolet divergences from the theory [231,232].
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A particularly elegant way to provide the additional regularization that is required to
cancel the divergences at all loop orders is by introducing a supersymmetry between
bosonic gauge fields and fermionic Pauli-Villars fields. This is analogous to how Parisi-
Sourlas supersymmetry cancels degrees of freedom in spin glasses, as discussed in the
Introduction’s Subsection 1.2.6. Since this thesis is mostly concerned with the ERG for
gravity at the classical level, the description of this additional regularization will be kept
brief.

Pauli-Villars regularization works by introducing a cancellation term to the prop-
agator such that the propagator tends towards zero as the momentum tends towards
infinity, but remains largely unaffected when the momentum is much less than the cutoff
scale. In its simplest form, applied to a scalar of mass m and a cutoff A, the propagator
in Euclidean signature carrying momentum p, which we will denote by A(p,m,A) is

regularized as:
1 1

p2—m2  p2— A2

In the continuum limit where A — 0o, we return to the unregulated propagator, given

A(p,m,A) = (2.5.1)

purely by the first term on the right hand side. Conversely, in the high-momentum limit
where p — oo, the propagator tends towards zero, and thus the extent of ultraviolet
divergence is reduced.

The implementation of the manifestly gauge invariant regulator involves adding not
only additional fermionic Pauli-Villars fields, but also an extra duplicate gauge field to
complete the balancing of bosonic and fermionic modes. To ensure that the regulariza-
tion only cancels the divergence down to the cutoff scale, a Higgs mechanism is imple-
mented with an additional super-scalar that places the mass scale of the Pauli-Villars
fields (and their own mass scale) at the cutoff scale A, thus breaking the supersymmetry
at that scale and decoupling the duplicate bosonic field from the field of physical interest
at that scale. In particular, the implementation involves promoting the gauge field to a

super-matrix:

Al B
A, = TR+ AT (2.5.2)

B, A2

where Ab is the original bosonic gauge field of physical interest, Az is a duplicate bosonic
gauge field, B, and B, are the fermionic Pauli-Villars ghost fields, A2 is an additional
field that can be added freely without impacting on the physics, and Z is the identity
matrix. The super-trace of a super-matrix of this form is the trace of the first bosonic
half minus the trace of the second bosonic half, i.e. tr(A}L —Ai) in the case of (2.5.2) (the

identity is super-traceless). After promoting the gauge field to this new super-matrix,
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the Yang-Mills contribution to the action is then

1 ([ D?
SYM:TgQStr Fuve Az Fouvs (2.5.3)

where F,,, has been defined in the same spirit as F,,, i.e. F, = i[D,,A,]. Since
the identity is super-traceless and commutes with any matrix, it does not contribute to
(2.5.3).

To extract real physics, one needs to break the supersymmetry and decouple these
extra fields at the cutoff scale using a Higgs mechanism. This is achieved with an extra
superscalar matrix C, given by

C= Cil b ) (2.5.4)

D ¢?
where C! and C? are bosonic scalar fields and D and D are fermionic scalars. Now it
remains to write the action for the scalar super-field, whose propagator is also regularized
by a cutoff function ¢ (%22) (not necessarily the same cutoff function as for the gauge

field):
Se = str/de D,C(x){& '} DuC(x) + istr/dDa: (= A2)2 . (2.5.5)

The first term on the right hand side is the regularized kinetic term for the super-scalar
and the second term is the Higgs-like potential for the super-scalar where a spontaneous
symmetry breaking places the vacuum expectation value of C' and C? at the scale
set by A. The super-trace prescription then gives the fermionic field B, a mass while
keeping the bosonic fields AL and AZ massless, with interactions also set at the cutoff
scale A. This provides the additional regularization required to calculate S-functions for
Yang-Mills theories in the manifestly gauge-invariant formalism at 1-loop and beyond.
A generalization of this method for gravity using “Parisi-Sourlas” supermanifolds would
seem to be an attractive choice of regularization when we construct the manifestly

diffeomorphism-invariant ERG in the next chapter [2].



Chapter 3

Manifestly

diffeomorphism-invariant ERG

3.1 Background-independent gravity flow equation

This chapter reports on original research published in [2], which began the construc-
tion of the manifestly diffeomorphism-invariant Exact Renormalization Group. Many
studies of RG flow in gravity already exist, a few examples of which are [72,233-211],
but this approach has the advantage that there is no need to fix a gauge, which also of-
fers the opportunity for a genuinely background-independent description. The demand
for such a background-independent description is strong, since it avoids a great deal of
complication and questions over the validity of results [242-245]. We begin with the
construction of a suitable flow equation, inspired by the Polchinski flow equation (2.2.4)
and its adaptation to gauge theories (2.3.11). As discussed in Section 2.1, Kadanoff
blocking requires a notion of locality that is not compatible with a metric that has a
Lorentzian signature. This is resolved in gravity, as it is in scalar or gauge theories,
by performing a Wick rotation into Euclidean signature. Thus the metric signature is
completely positive after the transformation. The two remaining sign convention choices
for GR (relating to the definitions of the Riemann and Ricci tensors) are as described
in and below (1.3.17). Studies of quantum gravity usually fix a background metric
(typically a flat background) and study gravity via perturbations to that background,
as outlined in Subsection 1.3.5. We will return to the fixed-background formalism in
Section 3.3, but for now we will proceed to construct the diffeomorphism-invariant ERG
background-independently. Background-independence is a huge advantage not only be-

cause of its elegance and generality, but also because it makes the geometrical meaning

29
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of the gravity theory manifest in a philosophically satisfying manner. From now on, we
shall be specializing to four dimensional spacetime, although it will be convenient on
occasion to comment on general dimensions.

In analogy to (2.1.1), we begin by writing down the effective Boltzmann factor as a
means to define how microscopic degrees of freedom are averaged to give the macroscopic

degrees of freedom via a blocking procedure:

e—S[g] _ /Dgo 5 [g —b [QOH e_Sbare[go]’ (3_1.1)

where Lorentz indices in functional arguments have been suppressed for notational con-
venience. The microscopic bare action Spare i8S a functional of the microscopic bare
metric go,,, and macroscopic effective action S is a functional of the macroscopic renor-
malized metric g,,,,. The renormalized metric is constructed from the blocked metric b,,,
which is a functional of the bare metric and a function of position, via integrating over
the delta function in (3.1.1) with respect to the bare metric. Following the reasoning
used to derive (2.1.4), we can note that the partition function is invariant under RG
transformations, since the functional integral of (3.1.1) with respect to the renormalized
metric trivially integrates out the delta function on the right hand side of (3.1.1), leaving
behind the usual form of the partition function in terms of the bare metric and the bare
action.

Following the step in (2.1.5), we derive the flow equation by differentiating (3.1.1)
with respect to A to get

9 s [_9 _ 00 (T) ~ Sprelo]
AaAe = /xégw(x)/l?go dlg—0blgo]] A oA € . (3.1.2)

We then integrate out the bare metric and rewrite in terms of the “rate of change
of blocking functional” ¥, (z), in analogy with (2.1.6), to get the general ERG flow

equation for gravity:

9 —sig _ / _ 0 —slg]
el P (Wuy(x)e ) (3.1.3)

Applying the blocking functional to lower the cutoff scale in the exact RG flow is simply
an exact reparametrization of the field in the effective action, as is the case in scalar and
gauge theories. Because of this, there is a physical equivalence between effective actions
at different scales. The correspondence is especially straightforward at the classical level,

where the flow equation takes the form

S:/ﬂc\pw(x)égis(m). (3.1.4)
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Expressed explicitly it terms of the action’s functional argument, we have

SA—(SA [g,ul/] = SA [g,uzx - ‘Ilul/ (SA/A] . (315)

The full quantum flow equation is

. 08 OV, (x)
S—/x\llw,(x)égw(x) oo (3.1.6)

where the latter term comes from a reparametrization of the measure in (3.1.1).

To obtain the form of the flow equation that is analogous to the Polchinski flow

equation, we define ¥, (z) in a fashion similar to (2.2.1):

1 ox

Q/yKWPU(:U’y)(SgW(y)’ (3.1.7)

‘IIMV(x) =

where K, (2, y) is a covariant bitensor that we will refer to as the “kernel” of the flow
equation from now on. The factor of 1/2 in (3.1.7), as in the scalar and gauge cases,
is used to ensure that the graviton kinetic term is canonically normalized. The kernel
is the object that inspired the comment at the end of Subsection 1.3.6 about the need
for a generalized notion of the Lie derivative for two position arguments x and y. This
point will be returned to in Section 3.4. As in the scalar and gauge cases, the kernel
performs the role of an effective propagator in the flow equation, although its form is
more complicated, as we will see shortly. It is convenient to choose the index notation
of K,ypo(,y) such that it is symmetric under the index label exchange ;1 <+ v and also
under p < 0. The first pair of Lorentz indices are associated with the first position
argument and the second pair with the second argument. Neglecting coupling rescaling
for now, we can once again set ¥ = S — 25 , where S and S are set to be the same at

the 2-point level. The Polchinski-inspired flow equation for gravity is then

. 1 S 0% 1 ) 0%
g1 /K:z: —//Kx (318
2 )z 59/11/(»@) y o (@9) 59p0(y) 2 Js 59#!/(37) y o (@9) 59p0(y) ( )

As already noted for the scalar field equation (2.2.4) and the gauge flow equation (2.3.11),

the first term on the right hand side contributes at all loop levels including the classical
level, whereas the second term begins at the 1-loop level and contributes at all higher
loop levels.

Diffeomorphism covariance requires that the kernel carries a factor of 1/,/g (note
the lack of a minus sign in Euclidean signature). An easy way to see this is that both S
and ¥ have a factor of /g in their measure, so the kernel must carry a 1/,/g to balance.
The factor of 1,/g will also be seen to be necessary to satisfy the Ward identities for

diffeomorphism covariance in fixed-background formalism, as seen in Section 3.4. The
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covariantized cutoff function itself is constructed in an analogous way to the gauge case,
with A being a function of —V? and —V?2 /A%. When we develop the fixed-background
formalism in Section 3.3, A will be seen to be the “effective propagator” in a similar way
to the gauge theory case. However, the strictly background-independent description does
not have a notion of gravitons to propagate, so there is no notion of momentum, n-point
expansions, or a propagator in this sense. In the background-independent description,
there is no notion of A, even though A exists as part of the kernel. More immediately
obvious is the need to incorporate index structure into the kernel. This is done by
introducing two instances of the metric tensor to carry the four indices, symmetrized
into two pairs, thus completing the bitensor construction.

Unlike in the gauge theory case, there are two possible independent index structures
for the flow equation. Firstly, we have the “cross-contracted” index structure. In the

classical part of the flow equation, this takes the form

. 1 08 v ; ox
Slee. = 2 —MA(—VQ) . (3.1.9)
2 T 5g/w \/§ 5gpo
Next, we have the “two-traces” part of the classical flow equation:
. 1 0S : ox
Sles. = 5 Iuwdeo A(—v2) 2=, (3.1.10)
2/, 5gw, \/§ 5gpo'
The flow equation is then a linear combination of these two contributions:
S =Slee + 7St (3.1.11)

where j is a dimensionless parameter which, we will see, determines the balance of modes
propagating in the flow equation. Put another way, it determines how the different met-
ric modes are integrated out. Although it is found independently here, this parameter
has also appeared in the DeWitt supermetric [246], fulfilling the same rdle. Since an
overall factor can be absorbed into the kernel, there is no need to place a coeflicient on
the cross-contracted term in (3.1.11). Putting all of the ingredients discussed together,
we can finally write the kernel as the following covariant bitensor:
1

N

To see how the parameter j affects the balance of tensor modes in the flow equation,

K,LLVPU(xa y) = 5($ - y) (gu(pga)u + jg,ul/gpff) A(_VQ) (3112)

consider extracting the conformal mode explicitly as an overall rescaling factor outside

the metric:

Guv = g;w607 (3113)
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where g, is a metric with a fixed determinant and o is the conformal rescaling mode.

We can then write the derivative of S with respect to o as

08 08

5y =gy (3.1.14)

This is especially powerful, as we see that the “two-traces” structure corresponds to the
case where the actions are only differentiated with respect to the conformal factor in
the flow equation. Put another way, the “two-traces” structure, corresponding to the
limit where j — oo is actually the limit in which the conformal mode is the only mode
propagating in the flow equation. Effective actions for gravity constructed from RG flows
using only the conformal mode of the metric are referred to as “conformally reduced”
gravity models, corresponding to a “conformal truncation” of the more complete effective
theory for gravity [244,247-250].

There also exists a choice for j that eliminates the conformal mode from the RG flow.

Consider how a 2-component tensor 7% in D spacetime dimensions can be separated

into pure trace and traceless parts:

1 1
PO — ngaT 4L TPe EgpaT , (3.1.15)
—_— —
pure trace traceless

Now let us take a trace over the index structure used in the kernel:

(g,u(pgo)zx + jguugap) g’ = g,u/(l +jD). (3.1.16)

For the choice that j = —1/D, this trace goes to zero. This tells us that the pure trace
mode of the variation of an action with respect to the metric does not propagate in
the flow equation in the case where j = —1/D. This can be easily verified by inserting
(3.1.13) into the flow equation for this choice and seeing the result goes to zero if o is
the only mode being varied. For this reason, this choice of j decouples the cosmological
constant from the flow equation at the classical level, i.e. any cosmological constant term
in S or S disappears entirely from S, so it can only appear in the effective action as an
integration constant with its own A-independent scale: this means that a cosmological
constant cannot be introduced into a fixed-point action for this choice of j, which is
related to unimodular gravity [251-253]. Though these special cases are interesting,
they will not be considered further in this thesis. They do, however, illustrate how j
determines the balance of modes propagating in the flow equation.

The calculations that follow are sufficiently complicated to merit some condensing

of the notation. The flow equation (3.1.8) will be written at the classical level as a
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symmetric bilinear mapping ag of the actions S and ¥ onto the new differentiated
action S:

S = —ag[S,%], (3.1.17)
where ag is a shorthand for the first term on the right hand side of the flow equa-
tion (3.1.8). To extend to quantum calculations, a linear map a1[X] can be defined as
shorthand for the second term on the right hand side of (3.1.8). Sometimes it is also

convenient to use similarly condensed notation at the level of the Lagrangian densities:
L= —aylL, L —2L], (3.1.18)

where ag performs a similar role to ag, but formally must be defined separately as
the bilinear mapping of two Langrangian densities onto one differentiated Lagrangian

density.

3.2 Background-independent calculations

To begin exploring the flow equation (3.1.8) for gravity, one can begin by inserting a
simple ansatz for S and S into the flow equation and seeing what the resulting form of S
is. In anticipation of constructing the n-point expansion in fixed-background formalism
in a similar manner to the scalar and gauge cases, it would be wise to set S = S up to the
quadratic order in the Riemann tensor, since all action terms at quadratic order or lower
in the Riemann tensor give contributions to the 2-point function on a flat background,
while the cubic order in the Riemann tensor only gives contributions at the 3-point level
and above. In this section, we will be mainly concerned with building a fixed-point
action, which has all couplings as dimensionless quantities multiplied by powers of A.
However, it is also of physical interest to perturb away from the fixed-point action by
introducing operators whose coefficients contain dimensionful parameters other than A
in Subsection 3.2.2.

For a simple ansatz, such as £ ~ RAZ2, one finds that S contains new higher or-
der contributions, implying that .S needs to be appended with extra higher-derivative
operators to satisfy the flow equation. In fact, this naive choice of ansatz leads us
into difficulties. First of all, one immediately finds that S, using the right hand side
of (3.1.17), lacks an Einstein-Hilbert term, meaning that the original Lagrangian term
cannot be reproduced after integrating S with respect to RG time. The immediate

remedy to this is to append S to include a cosmological constant-like term ~ A%, such
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that the original Einstein-Hilbert term reappears from ag [AQR, Aﬂ. The new cosmo-
logical constant-like term reappears from ag [A4, A4]. To gain the benefit of this, the A
derivative expansion must have a zero-derivative term (i.e. a term simply proportional
to 1/A%), else any ag [AA‘, .- ] would trivially vanish. This then raises a problem at the
quadratic order in the Riemann tensor where R? and R, RFY terms appear in £, which
give rise to terms proportional to In(A) when integrated with respect to RG time. A
term proportional In(A) in the action would imply that the complete expansion contains
logarithms of operators constructed out of derivative operators (e.g. In(R) or In(V?)) to
balance, which would violate the locality required for Kadanoff blocking. This problem
is resolved in the “Einstein scheme” discussed in Subsection 3.2.3 via a coupling rescaling
of the action similar to that already discussed in the context of gauge theories. Before
we get to that, we need to develop a systematic way to discuss the operator expansion
in the effective action.

Let us denote the Lagrangian as an operator expansion using the following general-
ized notation:

o0

L= Z ZQQi,ai O2i0; » (3.2.1)

=0 oy
where Oy; o, is an operator constructed exclusively of the metric and its spacetime
derivatives with mass dimension 2¢ and a unique identifying label «; that distinguishes
it from other operators with the same mass dimension, and go; o, is the corresponding
coupling coefficient for that operator. Because the metric itself is dimensionless, the
label ¢ simply counts the number of pairs of covariant derivative operators and Riemann
tensors that make up the operator Og; o,. The implicit assertion that 2i is an even
number is enforced by Lorentz invariance. For a Lagrangian density of mass dimension
[, the couplings ¢2; o, are of mass dimension [ — 2.

In order not to fall foul of locality problems, we must insist that the lowest-order
operator has mass dimension 2¢ = 0, for which there is only one candidate: Oy = 1. The
corresponding Lagrangian term is a cosmological constant-like term, however caution is
required in its physical interpretation. First of all, if this operator is constructed in the
most naive way, i.e. ~ A%, then the complete integrating out of all energy modes A — 0
takes it to zero, illustrating that it is, in fact, not a physical cosmological constant but
rather an unphysical feature of the blocking scheme. Even if one sets the coefficient to
carry is own independent mass dimension, one should be wary that further quantum
corrections will contribute to the physically observable cosmological constant, which in

general would be expected to differ from the value initially written down at the classical
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level. Thus the coupling go(A) should be viewed as a running parameter, with the
actual cosmological constant Ac becoming apparent in the infrared limit A — 0 as
Ao = 81Ggp(0), where G is the physically observed value of Newton’s constant.

Newton’s constant itself is related to the coefficient of the next lowest-order operator,
the Ricci scalar, which has 2¢ = 2. The Ricci scalar is the only diffeomorphism-invariant
dimension 2 Lagrangian operator in a pure gravity theory. The Einstein-Hilbert term
L ~ R is the only curvature term in the action that we have direct experimental evidence
of, featuring in the usual action for Einstein gravity given in (1.3.21). It is troublesome
then that this term is especially problematic for RG on account of its the positive mass
dimension of its coefficient, as already touched on at the beginning of this section. This
thesis will discuss two renormalization schemes for gravity at the classical level. These
are the “Weyl scheme” introduced in Subsection 3.2.1 and the “Einstein scheme” in
Subsection 3.2.3. In the Weyl scheme, as we will see, the Einstein-Hilbert term does
not appear at the classical level, but rather it would emerge from quantum corrections
to the action in the complete quantum gravity description. In the Einstein scheme,
it is introduced into the classical action with its coupling rescaled so as to canonically
normalize graviton kinetic term, rendering its classical Lagrangian density a dimension 2
operator in any D-dimensional space. In any scheme, the physically observed Newton’s
constant comes from evaluating the running coefficient of the Einstein-Hilbert term in
the A — 0 limit of the full quantum theory.

At 2¢ = 4, we obtain two new independent diffeomorphism-invariant operators that
are both quadratic in the Riemann tensor, they are R? and R, R*". Both of these
operators are of interest to cosmology as candidates for inducing Starobinsky inflation.
The R? term has already been mentioned in Subsection 1.4.5 but, in the specific case of
the FLRW metric in (1.4.1), the field equations for R, R*” match those of R?/3. There
also exists an operator of the form R, ,,R*"*?, however this is related to the other two
in four dimensions via the Gauss-Bonnet topological invariant:

1
- 3272

E / d*oy/=g (RapmsR*° ~ 4R0s R + R2). (3.2.2)

In four dimensional spacetime, the functional derivative with respect to the metric of
the Gauss-Bonnet term is zero. It is a topological invariant in the sense that it simply
counts the Euler characteristic of the manifold. Since we are concerned with spacetime
without boundaries, this term offers no contributions and can be safely treated as zero.
Thus we can choose to eliminate one of the three curvature squared terms in (3.2.2)

from our action, and it is convenient to choose to remove the R, ,,R**? term. If
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we progress to 2i = 6, not only do we encounter terms that are cubic in the Riemann
tensor, but we also find more terms that are quadratic in the Riemann tensor but possess
explicit covariant derivatives in the Lagrangian. An example of this is the RV?R term.
Explicit covariant derivatives did not appear at lower orders because they could always
be removed from the action via integration by parts, again supposing that we are not
concerned with a spacetime boundary.

In keeping with our locality requirement, we define A to be a Taylor series expansion

in squared covariant derivative operators, starting with a constant term:
e’} 1 )
A (K 2
=> i AW(0) (-V?)", (3.2.3)
k=0

where factors of A% are hidden in A®)(0). The dimension of A is always minus the
dimension of the (rescaled) classical Lagrangian density, as implied by the structure of
the flow equation, which can be easily seen in (3.1.9) and (3.1.10). With this in mind,
we can see that inserting any two Lagrangian operators into the bilinear ag results in
a series expansion in higher-order operators, starting at a dimension that is the sum of

the dimensions of the two input operators:
Od1 y Od2 Z ap Odl, Od2 s (3.2.4)

where a’é[@dl, Og,] is the operator obtained by taking the kth order part of the kernel
expansion in (3.2.3), which then has dimension d = dj + d2 + 2k. Since we require
the kernel to be local, k is always either positive or zero. Since we require that our
action and seed action are also local, all d; are also either positive or zero, and d is
greater than or equal to dy, do and 2k. Thus, starting from a given ansatz (other than
a pure cosmological constant) for the effective action and seed action, the flow equation
requires us to include higher-order contributions to give a self-similar flow, but it does
not require us to include any lower-order corrections, i.e. a coupling go; corresponding
to an operator of dimension 2i can appear in the flow of another coupling gy ;4 j), where
j > 0, but not vice versa. This allows us to solve the flow equation for lower dimension
operators and iteratively progress to solving up to higher orders. In practice, we can
solve the flow equation up to a given power of the Riemann tensor, which is even more
useful e.g. for use in Chapter 6. If the effective action has a cosmological constant-like
term, couplings can appear in their own flow (i.e. their own RG time derivative), but
since that is just a first order differential equation, this presents no problems.

To illustrate this point, let us consider the classical flow of the cosmological constant-
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like piece:
g0 = 90(2d0 — go) ag[1, 1], (3.2.5)

where gg is the coefficient that appears in the effective action and gg is the coefficient
that appears