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FAST, FULLY-AUTOMATED, MODEL-BASED FAULT LOCALISATION AND

REPAIR WITH TEST SUITES AS SPECIFICATION

by Geoff Michael Birch

Fault localisation, i.e. the identification of program locations that cause errors, takes

significant effort and cost. We describe a fast model-based fault localisation algorithm

which, given a test suite, uses symbolic execution methods to fully automatically identify

a small subset of program locations where genuine program repairs exist. Our algorithm

iterates over failing test cases and collects locations where an assignment change can

repair exhibited faulty behaviour. Our main contribution is an improved search through

the test suite, reducing the effort for the symbolic execution of the models and leading

to speed-ups of more than two orders of magnitude over previously published work.

We implemented our algorithm for C programs, using the KLEE symbolic execution

engine, and demonstrate its effectiveness on the Siemens TCAS variants. Its performance

is in line with recent alternative model-based fault localisation techniques, but narrows

the location set further without rejecting any genuine repair locations. We explore

extending the low-quality repairs constructed by the localisation process to synthesise a

high-quality repair.

We also show how our tool can be used in an educational context to improve self-

guided learning and accelerate assessment. We apply our algorithm to a large selection

of actual student coursework submissions, providing precise localisation within a sub-

second response time. We show this using small test suites, already provided in the

coursework management system, and on expanded test suites, demonstrating scaling.

We also show that compliance with test suites does not predictably score a class of

“almost correct” submissions, which our tool highlights. Finally, we show an extension

to our tool which enables a selection of student submissions to be localised beyond

programs that conform to a single-fault assumption.
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Terminology

Throughout the literature, some terms relating to debugging are not used consistently.

In this glossary, we outline the definitions of potentially ambiguous terminology used in

this thesis to ensure the correct meaning can be read upon first encountering a term.

A fault [82, 87] (also called a defect [68, 86, 99], error [63], coding error, or bug [2, 16])

in source code is a minimal fragment of code whose execution can generate an incor-

rect behaviour. This is for some input (which includes the environment of execution),

against whatever specification exists to declare what is and is not correct behaviour for

the program. Note that a fault is defined for a specific source code against a given

specification. A fault is still a fault even if it is not exercised or does not cascade into

error/failure during a test case.

Faults can be repaired [34, 82] by substituting in a replacement block of code into the

block reported as defective which returns the program to executing in a way that does

not violate the specifications.

An error [84, 86] (sometimes also called fault [19] or infection [19]) in program execution

or modelled/simulated execution is the consequence of executing a defective block of code

and the resulting creation of an erroneous state for the program. This effect may not

be visible and not all errors will be exposed by surfacing as a failure. An error is the

result of a fault being exercised by an execution which is susceptible to that fault. Other

authors use ‘error’ in place of ‘fault’ [63], ‘failure’ [41], or meaning the mental mistake

before the fault is penned [87].

A failure [19, 82] in program execution or modelled/simulated execution is the surfacing

of an error state by the observation of behaviour in violation of the program specification.

It is therefore correct to say that a failure was experienced for a given test case due to

a chain of erroneous states that originated with the execution of a fault that caused the

error.

For example, “The program failed by returned the wrong result due to an error caused

by the fault at line 5 where integer Var was assigned the value of 6 and not 10.”

To illuminate the scale of the terminology issue in this area, we provide this quote from

the 1044-2009 revision to the IEEE Standard Classification for Software Anomalies:

1



2 TERMINOLOGY

The 1993 version of IEEE 1044 characterized the term “anomaly” as a syn-

onym for error, fault, failure, incident, flaw, problem, gripe, glitch, defect, or

bug, essentially deemphasizing any distinction among those words. [54, p. iv]

A trace is a sequence of state transitions which describe the execution of a program or

the simulation of a program execution. Traces can come in various levels of granularity,

from providing precise navigation of the fully enumerated states of the program up to

only providing the general flow, logging at the function or module transition level the

path taken.

A path through a control flow graph [38] (or program flow) is a possible traversal

of a program. These are often graphed to show the connectivity of a program and how

state transitions can flow during execution. We will use path to refer to the collection

or set of traces which share the same control flow path through the program.

Debugging [2, 16] is the process through which faults are removed from a program.

This process is composed of the discovery, localisation, and repair phases. Discovery

is the identification of errors in the program flow or failures as they report themselves.

Localisation is the tying of these errors to the causal faults. Repair is the correction of

the underlying faults to provide a new version of the program with correct execution

within the specifications.

A test case is the partial specification of a program or program fragment for a given

input and with a postcondition (output). This required output can simply be the lack

of raising of an error flag, or an assertion violation, but is usually specified in more

detail with a desired output or a known incorrect output. When applied to a program

fragment this is commonly referred to as a unit test. Unit testing is often applied to

individual modules or even functions/methods before integration testing. Test cases can

pass or fail [34, 36] to comply with the program specification, giving respectively the

correct or incorrect result. The incorrect result may be abnormal termination or other

failure (thus making the “result” incorrect while possibly still providing the expected

output).

The unit under test (UUT), also known as the device under test (DUT) in the original

context of electronic engineering, is the program or program fragment being tested for

compliance with a specification.

A program (formal) specification [34] is a description of the correct execution range

of a program (i.e. the set of all valid traces). This is often given by providing error

states that become failure conditions, therefore defining the set by what is not in it.

This specification must be written in such a way as to be violable. A violation of the

specification is always a failure. The formal descriptor of the specification means that

the description is mathematically precise; it can be interpreted by formal methods to

provide a clear true/false result without human interpretation.
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We use a weak-strong scale of specification to indicate the extent to which the program

flow is constrained by this specification. Many formal specifications create (internal) pre-

and post-conditions on blocks of program code (often at the function/method scale)

which operate to quickly convert from an error to a failure with early detection of the

specification failure. An example of this would be using a coded assertion to surface

an incorrect result at a block transition, which promotes it to a failure, earlier than it

would otherwise be seen without a tested post-condition. We refer to this as a strong

specification.

We refer to programs that are only specified by the underlying language constraints and

a set of test cases as weakly specified. This specification only restricts the program

flow by providing a subset of all inputs and required limitation on the output of the

program; either the weaker ’must not’ which does not require an oracle (correct) output

to compare or the stronger ’must be’ which does provide a known correct output.

Most programming languages supply added internal specification, to a greater or lesser

extent depending on the language design, where certain states can lead to program flow

that is illegal under the language specification. An example of this is any undefined

behaviour in the language specifications, such as dereferencing a null pointer in C.





Chapter 1

Introduction

Debugging is the process of generating (from surfacing of an error) or collecting a report

of a failure, finding the fault location that caused the failure, and correcting that fault.

Fault localisation, the identification of program locations that can cause erroneous state

transitions which eventually lead to observed program failures, is a critical component

of this debugging cycle. However, this process puts a significant time [82, 87] and spe-

cific expertise burden [2, 112, 115] on programmers or dedicated debuggers for software

projects.

To compound this issue, debugging is not typically the focus of software engineering or

computer science education, despite commonly falling under the purview of the profes-

sional programmers developing projects [2]. Automated tools to assist in the debugging

cycle have the potential to significantly reduce this time cost and lower the expertise bar

required to iterate on source code to remove faults. While automated fault localisation

is not the panacea for all debugging and testing problems, the total scale of feasible

savings from all forms of improvement are significant and even a small percentage of

that being attained would be highly valuable.

[T]he [2002 U.S.] national cost estimate of an inadequate infrastructure for

software testing is $59.5 billion. The potential cost reduction from feasible

infrastructure improvements is $22.2 billion. [109, §8, p. 8-1]

A variety of methods are used for automated debugging. Failure detection is automated

by tools which exercise or analyse the unit under test to generate and collect new failure

reports, for example the use of automated test case generators to find an input leading

to an error trace. Fault localisation and repair broadly fall into the categories of static

code analysis and dynamic analysis, the latter using program execution to probe a

compiled program for actual execution output. Static code analysis models a program

and reasons on the representation of the program and potential control flow based on

5



6 Chapter 1 Introduction

the specification as given by the programming language. This can therefore reason over

a range of potential values, leaving an input unconstrained/non-deterministic and so

symbolic rather than concrete.

A hybrid process of dynamic analysis with static reasoning has been developed and

named concolic testing [15, 101], which combines concrete execution with symbolic eval-

uation. This accelerates reasoning on a symbolic model by allowing the execution of

any concrete statements and expressions, thus narrowing the state space. This allows

the testing of a subset of all potential flows based on the program evaluation in the

current environment of execution. This can be thought of as a maximally optimising

model checker or symbolic analyser with the added limitation of importing the specific

environment on which the concolic testing is done, rather than working within the full

breadth of possible environments possible under pure modelling of the full language

specifications.

Localisation by examining counter-example traces, test cases, or other output from static

and dynamic analysis tools is an active area of research [16, 19, 39, 41, 61, 93, 96, 98].

Spectrum-based fault localisation techniques, compared in [79, 121, 123], are dynamic

analysis methods that operate by examining the traces of passing and failing test cases.

They assume that faults are more likely to be exercised by failing test cases and less

likely to be exercised by passing test cases. The statements in a program can then

be ranked based on different weighting techniques. The best-known example of this

technique is the Tarantula tool [60, 98]. This can be used with the GCov code coverage

tool in GCC to decorate the unit under test and track which statements are executed

for each input from a test suite. These tools are popular due to their fast, predictable

processing times. A GCov-decorated program will execute in approximately the same

time as the undecorated program when compiled with GCC and executed on the test

platform. State of the art spectrum-based fault localisation methods have recently been

compared using different theoretical frameworks [79, 123]. Several methods have been

identified as optimal under these frameworks but their real-world narrowing performance

on small benchmark localisation test programs lags significantly behind state of the art

model-based localisation.

Delta debugging [126] is a family of approaches that involve splitting up a large set

of changes to find the minimal set that “flip” the program behaviour from correctly

functioning to exhibiting a failure. This has variously been used to minimise inputs

and traces but was later extended to source code exploration. The principle applied

here [19] is to look at passing and failing traces and minimise the differences between

them to isolate the failing components. This is reminiscent of a binary search, looking

for interesting subset behaviour to narrow down variables that correlate with failure.

However, this does require the existence of at least one passing trace and the localisation
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performance of delta debugging on small benchmark localisation test programs [19] is

worse than Tarantula’s [60] results.

Model-based fault localisation [92] (sometimes also called model-based debugging [20])

is the application of model-based diagnosis methods [25] to programs. It involves three

main steps: (i) the construction of a logical model from the original program; (ii) the

symbolic analysis of this model; and (iii) mapping any faults found in the model back

to program locations. One popular approach to model-based fault localisation is to

transform the program so that a symbolic program verification tool can be reused for

all three steps.

For example, Griesmayer et al. describe a method [39] in which the model (in the form

of a logical satisfiability problem) is derived by running the CBMC model checker over

a transformed program, and analysed by means of the model checker’s integrated SAT

solver. The transformation “inverts” the program’s specification (cf. section 3.1), pro-

ducing failures where the original program would complete successfully and blocking

paths where the original program would fail, and replaces each original assignment by

a conditional assignment with either the original value or an unconstrained symbolic

value, depending on the value of a toggle variable. The actual localisation can then

be reduced to extracting the possible values of the toggle variable from the satisfying

assignments that the SAT solver returns.

However, the technique initially described by Griesmayer et al. requires detailed specifi-

cations to achieve acceptable precision—the weaker the specification, the more program

locations are flagged as potential faults. Such detailed specifications rarely exist in

practice. What does commonly exist are extensive unit test suites, in particular in

the context of modern test-driven design approaches. Griesmayer et al. have shown

that this technique can be extended to work with (failing) test cases, but the published

results [39] are prohibitively slow (typically executing in hundreds to thousands of sec-

onds per each small benchmark program). Griesmayer et al. have improved the original

implementation [40] but still only achieve times typically in the hundreds of seconds.

Könighofer and Bloem have developed the FoREnSiC system [63, 64] (a Formal Repair

Environment for Simple C) which includes a similar method of localisation. Their pub-

lished results only cover a few variants of the benchmark localisation test programs used

but where they have publishable results, localisation times are still measured at over a

hundred seconds. Könighofer et al. report improved times [65] (around 37 seconds per

program) but only after manually annotating all functions with contracts, so they are

no longer working purely from the benckmark’s test suites.

Jose and Majumdar convert an input C program to a maximum Boolean satisfiability

problem which is analysed with the MAX-SAT solver [61]. However, because this re-

turns the complement of the maximal subset of clauses that can be true for each single

test case, their approach can omit genuine repair locations. This technique therefore
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relies on summing the results of the different test cases, providing a ranking of most to

least commonly flagged locations. This is the same trade-off used by all heuristic-based

fault localisation techniques, like the spectrum-based techniques, and so inherits their

strengths and weaknesses. Approximating model-based fault localisation techniques for

test suites can run faster but can also miss a true fault location when evaluating a test

case.

1.1 Research Questions

Our research seeks to answer how model-based fault localisation can be used without

detailed program specifications. Can precise, test-driven, model-based fault localisation

be executed with the low run-time costs associated with spectrum-based techniques? We

aim to develop tools that will localise efficiently on real-world faulty programs as well

as common small localisation benchmark programs. Specifically, we look at education

as an area with a specific need for high quality automated localisation to aid novice

debuggers who are learning to program. In this thesis, we therefore investigate the

following research questions:

RQ1 Does model-based fault localisation improve over the more common spectrum-

based methods when using large test suites?

RQ2 Does model-based fault localisation accurately pin-point fault locations (in abso-

lute and relative terms) on real programs?

RQ3 Do model-based fault localisation techniques expand to synthesise high-quality

repairs?

RQ4 Does model-based fault localisation provide results beyond a single-fault assump-

tion?

RQ5 Does model-based fault localisation offer benefits to the pedagogical domain?

We start with the technique presented by Griesmayer et al. as an initial framework for

model-based localisation which is potentially expandable to model-based, high-quality

repair synthesis.

1.2 Main Contributions

The run-time performance in the area of thousands of seconds for small benchmark

programs which have been published by Griesmayer et al. is due to a näıve search

algorithm, which simply iterates over all test cases and runs an unoptimized “full width”
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search over all possible locations for each test case (cf. section 3.1 for more details).

However, the more locations the solver needs to explore, the longer the analysis of

each test case takes. Moreover, the algorithm contains no optimizations to deal with

test cases that generate intractable problems for the solver. We reimplemented this

technique using modern hardware and a recent model checker on top of a state of the

art SMT solver in order to evaluate the current performance issues of this design, as

described, with results and analysis provided in chapter 4.

We have developed, implemented, and evaluated a novel approach that addresses these

shortcomings, which leads to typical speed-ups of more than two orders of magnitude

over Griesmayer’s results, and yields a performance in line with current approximation

techniques such as Jose and Majumdar [61]. Our approach still iterates over the failing

test cases and runs a Griesmayer-style localisation task for each individual test case,

but it maintains a whitelist of still viable fault locations which is narrowed down as

the localisation tasks return. Our algorithm manages individual localisation tasks via a

task pool to take advantage of the underlying multi-core hardware of modern systems,

and dispatches the tasks in batches to percolate improvements in whitelist narrowing

generationally. Tasks that fail to complete in a dynamically adjusted time are terminated

and, if the whitelist is smaller, resubmitted at the tail of the iteration, where they may

have become tractable due to the reduced search space leading to a smaller SMT problem

for the solver. This early termination/resubmission increases the speed with which we

can process larger test suites, without harming the localisation performance, as they

typically have more redundant (for localisation purposes) test cases. It also prevents a

loss of completeness in the results that model-based approaches can provide, within the

limits of the symbolic analyser’s accuracy.

Our approach is compatible with the modern test-driven design approach of specifica-

tion by unit test suites. It inherits the typical strength of dynamic analysis, in that no

prior knowledge of the program under test is required beyond test cases being flagged as

passing or failing. We implemented our algorithm in a tool with the use of ESBMC [23]

or KLEE [15] symbolic analysers and with PyCParser [7] handling the program transfor-

mations to encode the specification and other model constraints. The algorithm inherits

the underlying behaviour, in respect of library and method calls, unrolling loops, and

so on, of the symbolic analyser used. We initially demonstrate [9] this algorithm on the

defective TCAS program variants from the Siemens [53] repository, a set of common

localisation benchmark programs. This is presented in section 4.3. Our work on the

extension of this technique to automated repair of the located assignment(s) provided

negative results. We provide an analysis of why, for this technique, concrete execution

is a more efficient approach to this search problem of narrowing to a high-quality repair

form, with no level of further optimisations possible to provide tractability for non-trivial

scale programs, in section 4.5.
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We have then applied this tool to a corpus of student programs [10] and presented our

analysis in chapter 5. Our experiments with real-world student code from an existing

submissions database are encouraging. Our tool can, for some programs, pin-point fault

locations and so should assist students in surmounting the final hurdle to completing

writing of source code that fully complies with a test suite without requiring advanced

debugging skills. The short list of locations where an assignment repair is possible,

provided by our tool, can aid students in pinpointing improvement sites before they

resubmit their code. The run-times of our tool are competitive with common, fast

spectrum-based localisation techniques while providing more accurate fault localisation.

This is of value to novice programmers, who stop debugging when provided with large

lists of potential repair sites. Sub-second processing times and use of test suites for

specification allows our tool to work with existing coursework submission systems and

workflows, both for self-training and grading, in principle even at the scale required by

Massive Open Online Courses (MOOCs).

Our tool can also provide instructors with automated assistance detecting some submis-

sions which would provide perfect compliance after a single assignment edit (e.g. only

fail due to a small mistake such as failing to increment a counter before returning it as

the final value) but potentially fail most or all of a test suite. This will allow test-suite-

based automated graders to identify submissions whose quality is being underestimated

by this functional assessment method. We show that real-world student submissions

which are a single assignment edit away from full compliance with a test suite are not

provided with a fair mark by grading against that test suite. Repair location information

provided by our tool can also help instructors who are manually grading submissions to

more quickly find and understand the mistakes made by students.

Our contribution includes:

• Development of the automated application of test case specifications to C programs

for modelling. [RQ5]

• Evaluation of Griesmayer’s design on modern hardware with a current SMT solver.

[RQ1]

• Development of a fast search through test suites to accelerate test-driven model-

based fault localisation. [RQ1, RQ2]

• Demonstration of several orders of magnitude speed improvements from this tool.

[RQ1]

• Investigation of this tool applied to a database of actual student programs using

existing test suites. [RQ2, RQ5]

• Demonstration on a database of student programs using expanded test suites.

[RQ1, RQ2, RQ5]
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• Investigation of the database of actual student programs, expanded to dual-fault

programs. [RQ4, RQ5]

• Demonstration that functional correctness over test suites does not predict near

correct (single-fault) student programs. [RQ5]

• Investigation into an expansion of the model into repair synthesis, showing negative

results vs the concrete execution implementation of the same search space, even

with fast search optimisations. [RQ3]

1.3 Thesis Structure

In chapter 2 we expand on the overview of automated debugging outlined earlier in

this chapter and provide an analysis of similar techniques in a review of related work,

including an overview of the educational domain in which many of our results lie. We

detail the full design of our tools in chapter 3, including the algorithms developed in

the design and implementation of a search space acceleration process for use with an

inverted model fault localisation technique.

In chapter 4 we present the results of our tool against our reimplementation of the

näıve search algorithm to provide a performance improvement on a set of common

localisation benchmark programs. We extend this to include a comparison against a

state of the art approximate model-based localisation technique and provide a tentative

comparison to several spectrum-based localisation techniques [RQ1]. This chapter ends

with section 4.5, where the negative results from the repair extension of this technique

are presented and analysed [RQ3].

In chapter 5 we provide the results of our tool directly compared to a spectrum-based

localisation tool on a corpus of actual student programs [RQ1, RQ2, RQ5]. Here, we also

present an extension of the search design which enables the capture of localisation data

from defective programs which contain more than one fault without paying the cost of

widening the search to an n-fault assumption at the symbolic analysis level [RQ4]. This

demonstrates preliminary practical results beyond the strict assumptions that enables

our search space optimisation.

We discuss the totality of these results in chapter 6, including extended discussion to-

wards our conclusions. We conclude with discussion of the limitations of our approach

and any threats to the validity of our conclusions. Finally, we summarise our conclusions

in chapter 7 and provide potential avenues for future research.





Chapter 2

Background and Related Work

In this chapter we outline the historical context and main concepts developed upon in

this thesis. We review the state of the art literature around related research questions

in section 2.5 to section 2.8.

2.1 Program Specification

Program annotation, the insertion of comments into the flow of sequential programs, is as

old as the writing of sequential programs. Initially these annotated comments included

a class of properties which could be manually tested for truth at the point of notation in

the program flow. By the late 1960s these properties, called specifications, were explored

with techniques proposed for proving the consistency of the annotations [35, 49]. These

axiomatic proposals were refined and, by the mid 1970s, specific techniques were being

developed to formally express these properties [71], facilitating the proof of these (now

formal) specifications.

The most important property of a program is whether it accomplishes the

intentions of its user. [... T]hese intentions can be described rigorously by

making assertions about the values of variables at the end (or at intermediate

points) of the execution of the program[.] [49, p. 579]

A program’s formal specifications are expressions in a formal language which define a

collection of properties a system should satisfy. These can be written at various lev-

els of abstraction. They are mathematical descriptions of a(n informal) concept which

establish the correctness of a class of programs which provably are equivalent to those

specifications. This must allow automatic analysis of the specifications; requiring hu-

man interpretation (“the steps in the reasoning place too much dependence on human

ingenuity and intuition” [71, p. 72]) defines an informal specification.

13
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Violation of a specification is classified as a program failure. A failure will be experienced

for a given specification due to a chain of erroneous states that originated with the

execution of a fault that caused the error. Without a formal specification, no automatic

reasoning on the correctness of programs is possible. However, once a program has

been shown to fail an informal specification, when a human (oracle) decides that the

program has failed to execute correctly at least once, this failure defines the start of a

formal specification. The input used and incorrect execution generated can be formally

specified.

We use a weak-strong scale of specification to indicate how detailed the program flow

is constrained by a formal specification. Many formal specifications create (internal)

pre- and post-conditions on blocks of program executions (often at the function/method

scale) which operate to restrict the state space by quickly converting from an error to

a failure. An example of this would be by surfacing an error at a block transition,

which promotes it to a failure, earlier than it would otherwise be seen without a tested

post-condition. We refer to this as a strong specification. We refer to programs that are

only specified by the underlying language constraints and a set of test cases as weakly

specified. This specification only restricts the program flow by providing a subset of all

inputs and required limitation on the output of the program, either the weaker ’must

not’ which does not require an oracle (correct) output to compare or the stronger ’must

be’ which does provide an oracle (known correct) output.

The environment under which the program executes also contributes to the total speci-

fication. Calls that pass to the operating system or a shared library can have platform-

dependent behaviours which are part of the correct execution of the program and must

be accounted for. Some programs are specified only for execution on specific envi-

ronments/platforms. Additionally, programming languages define the translation from

source code to potential execution. However, the range of programs that are compilable

often extends beyond this strict translation range. Once the C programming language

was standardised in 1989/90 by ANSI, it became a well specified family (C89, C99, C11)

of languages with a standard library. The various mainstream C compilers (MS, GNU,

LLVM) generate code for a significantly wider set of input programs than required by

the specification. This includes supporting legacy behaviour for pre-ANSI specification

code and compiler-specific extensions and decoration to the language, defining platform

and compiler dependent behaviour. Typical coding can also lead to the creation of

programs that, under some conditions, fall outside the language specifications or specif-

ically violate those specifications. An example of this is any undefined behaviour in the

language specifications, such as dereferencing a null pointer in C. This provides weakly

specified programs with another layer of specification, even if they have not been written

to include any code that detects failures of the program.
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2.2 Debugging

When a program violates one or more properties which make up its formal specifications,

it must be brought back into conformance with those specifications. Debugging is the

process of generating or collecting a report of a failure, finding the fault location that

caused the failure, and correcting that fault. Reports of failures typically originate from

software testing, discussed in section 2.4. Fault localisation, the identification of program

locations that can cause erroneous state transitions which eventually lead to observed

program failures, is a critical component of this debugging cycle. However, this process

puts a significant time [82, 87] and specific expertise burden [2, 112, 115] on programmers

or dedicated debuggers for software projects. This is explored further in section 2.5 and

section 3.1. Localisation must occur before the final major cost [6, 43, 68, 109] of

debugging, creating the repair to the fault that a failure exposes. We discuss automated

approaches to this in section 2.7.

To compound this issue, debugging is not typically the focus of software engineering or

computer science education, despite commonly falling under the purview of the profes-

sional programmers developing projects [2]. Automated tools to assist in the debugging

cycle have the potential to significantly reduce this time cost and lower the expertise bar

required to iterate on source code to remove faults. While automated fault localisation

is not the panacea for all debugging and testing problems, the total scale of feasible

savings from all forms of improvement are significant and even a small percentage of

that being attained would be highly valuable.

[T]he [2002 U.S.] national cost estimate of an inadequate infrastructure for

software testing is $59.5 billion. The potential cost reduction from feasible

infrastructure improvements is $22.2 billion. [109, §8, p. 8-1]

A variety of methods are used for automated debugging. Failure detection is automated

by tools which exercise or analyse the unit under test to generate and collect new failure

reports, for example the use of automated test case generators (cf. subsection 2.4.2) to

find an input leading to an error trace. Fault localisation and repair broadly fall into

the categories of static code analysis (cf. section 2.3) and dynamic analysis, the lat-

ter using program execution to probe a compiled program for actual execution output.

Static code analysis models a program and reasons on the representation of the pro-

gram and potential control flow based on the specification as given by the programming

language. This can therefore reason over a range of potential values, leaving an input

unconstrained/non-deterministic and so symbolic rather than concrete.

A hybrid process of dynamic analysis with static reasoning has been developed and

named concolic testing [15, 101], which combines concrete execution with symbolic eval-

uation (cf. subsection 2.3.3). This accelerates reasoning on a symbolic model by allowing
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the execution of any concrete statements and narrowing of the state space, testing a sub-

set of potential control flows based on the executed program evaluation. This can be

thought of as a maximally optimising model checker/symbolic analyser with the added

limitation of importing the specific environment on which the concolic testing is done,

rather than working within the full breadth of possible environments possible under pure

modelling.

2.3 Model-Based Diagnosis

Model Based Diagnosis compares the specified output of a system to the actual execution

to detect failures. The difference is used to assist in diagnosing potential faults and

other analysis tasks. The process was originally developed with the aim of providing

reasoning for the debugging of hardware faults in components of an electronic engineering

system [25, 92].

This technique uses a compositional construction of a system from defined components

and connection protocols to model a complete system.1 This can provide an analysis of

the measured outputs (possibly from tap points to measure intermediate results between

component boundaries) of an actual system. From this the tool can compare results to

determine components failing to comply with their model, and so identify candidates

for repair or replacement [26]. When this family of techniques was brought over to the

software testing field tap points became program instrumentation, which provides the

equivalent functionality.

More advanced implementations of this technique can also indicate future tap points

if the series of input/output pairs are insufficient to accurately diagnose a defective

component [26]. This can be seen as the equivalent of an analysis tool that uses the

program control flow to develop variables to be watched to explain failures.

2.3.1 Model Checking

Model checking assesses a specified model of a system to ensure the model under simu-

lation does not violate the given specification. Any violation leads to the generation of

a counter-example showing the path taken to the specification failure. These techniques

can also be applied to software. Model checking for software systems is a form of static

code analysis that creates a finite state interpretation of the software system as temporal

logic to verify its correctness. A more extensive overview of the topic is provided [77]

with later performance comparisons [76]. This provides a high level overview of the

1A more extensive overview of the topic can be found at http://www.dekleer.org/Publications/

mbd-figure.pdf [26].

http://www.dekleer.org/Publications/mbd-figure.pdf
http://www.dekleer.org/Publications/mbd-figure.pdf
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competing model checker types and their differing abilities to reason over the models

extracted from source code translation.

For bounded model checking, this is done by translating an unfolded version of a com-

puter program to a propositional satisfiability problem which encodes the constraints on

program flow. This checks for behaviour by demanding that an assertion on the state (an

inverted error condition) can be reached and violated. A Boolean satisfiability (SAT)

solver is called on this formula which either returns the variables used to satisfy it or the

verdict that is it unsatisfiable. This symbolic analysis may be accelerated with the use of

built-in theories to compactly reason over the logic expression [81]. The core operation

of calling the solver inside the model checker is NP-complete [21]. Moreover, this type

of SAT problem has been shown [17] to not provide predictable tractability. Hence, the

time it takes to process this task is not predictable with any degree of certainty.

A bounded model checker puts a limit on the unfolding of some program blocks to allow

the exploration of a limited subset of a program’s paths to try and find a counter-example

without generating all the possible paths through a program that contains structures like

an unwound loop or inlined recursive call. These structures may not have a discoverable

limit to the unwinds, which would cause an unconstrained number of paths through

the program with at least one for each unwinding length (iterations before the loop

broke). When the loop is unrolled X times and tailed with a failing assertion then the

rewritten program is now specified as all paths that iterate that loop X or less times.

If the assertion is triggered then the bound can be increased to check paths above the

originally chosen bound.

Due to bound limits and any approximation used to optimise the search or preprocess the

formula to make it more likely to be tractable, this approach is not perfect. Translation

from source code language is often not a perfect representation of the complete language

and library specifications. So failure to find a counter-example is not proof that no

counter-example exists.

As well as encoding a specification as an assertion that is tested and whose violation

leads to the generation of a counter-example, model checking also uses assumptions which

encode that any paths through that statement must ensure the truth of the statement

assumed. This provides a constraint that does not raise a violation and so can be used

to narrow the potential traces possible.

A Boolean satisfiability (SAT) solver requires the problem passed to it to be encoded

entirely in Boolean logic. Reasoning over a software program which has been entirely

converted to Boolean form can quickly provide intractable results due to the size of

the problem and the non-linear processing time explosion for solving of large arbitrary

Boolean expressions. The application of satisfiability modulo theories2 (SMT) to this

2See de Moura and Bjørner [28] for a more detailed overview.
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problem [5, 22] allows the use of more complex theories to reason over the logic expres-

sion, avoiding the need to deconstruct every element into a pure Boolean expression.

This maps well onto type systems and symbol constraints with mathematical operations

that can be performed by a programming language, using theories of number systems

and data structures to reason on the logic expression. SMT interoperability is assisted

by the common model checker problem language of LibSMT which has been under de-

velopment as a common input and output standard since 2003.

2.3.2 Counter-Example Analysis

The first stage in applying the results of model checking to static code analysis is rea-

soning based on the counter-examples returned from a specification violation. A full

trace of the program execution up to the point of failure will provide more information

than many analysis tasks require and will overwhelm human debuggers.

Jin et al. provides a method [59] for paring down counter-examples to relevant elements

which contribute to finding the failing expression that generated the counter-example.

This level of refinement to the provided counter-example is now common for integra-

tion into model checker output systems. The level of value add provided by dedicated

counter-example analysis tools is now focussed on providing visualisations to human de-

buggers [18], with automated tools moving to further analysis of the counter-examples

beyond simplification.

Related to the delta debugging localisation discussed in subsection 2.5.2, Groce and

Visser demonstrate [42] an application of that technique using several counter-examples.

These are compared to instrumented passing runs to narrow the program flow differences

between passing and failing traces. This is used to infer the areas of the program where a

fault exists exposed by the key difference in states. An expanded version of this idea by

Jalbert and Sen uses several traces with multi-threaded programs to find context switches

which may be involved in errors [57]. This provides meaning to a set of counter-examples

that would not necessarily identify a correlation between problematic context switches

and failures.

2.3.3 Concolic Testing

A hybrid process of dynamic analysis with static reasoning has been developed and

named concolic testing in CUTE [101]. The EXE tool, later renamed to KLEE, was

being developed at approximately the same time as CUTE and was first reported in the

ACM Computer and Communications Security Conference (CCS) in 2006 [14] with an

expanded paper in 2008 [15]. This combines concrete execution with symbolic evaluation.

At all points in the evaluation of the program, all expressions and sub-expressions that
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can be executed concretely are evaluated and their results injected before continuing.

This can be thought of as aiming for a maximally optimised pre-processing of a symbolic

program to reduce all concrete components to their simplest form under the specification

of the current execution environment.

This differs from an optimising symbolic evaluation by taking the environment of the

program as known and so executable and the returned value to be the correct result.

The simplest example of this difference is that a symbolic evaluation of a program that

waits for standard input would assign an unconstrained symbolic value to the input,

a concolic execution takes the concrete value provided as the actual input and so con-

strains the program flow to that actual input passed to the program under test. This

would also clearly provide less program exploration than the limits of the language spec-

ifications for C because concrete execution occurs on, for example, fixed width integers

set by the platform rather than all potential integer widths that comply with the lan-

guage specifications. This introduces an area of divergence between execution platforms

and favours program comprehension where the debugging platform is the same as the

execution platform.

This also accelerates reasoning on a program modelled by inputs as symbols by allowing

the concrete execution of a chosen path to drive the program flow down which the

symbolic values are tested for specification compliance, thus testing a subset of potential

control flows based on the limits of the inputs. Each time the symbolic inputs enable

more than one path to be taken then the model checker problem is split to allow each

path to be evaluated independently. Program elements carry their constraints from the

earlier statements in the control flow with them based on the range of values an input

can take.

This can also be thought of as a symbolic computation driven by a concrete trace. The

concrete execution of the program defines a flow from which the symbolic evaluation can

generate a solver problem. By negating branch conditions, the symbolic analysis can

target symbolic inputs which exercise other paths and so efficiently generate concrete

inputs which have a high branch coverage. These concolic tools were designed for test

case generation by exploring the different paths reachable in the program and generating

inputs based on the generated constraints matching each path. When compared with

random testing, using random inputs to search for a good coverage of test cases, these

methods provide a directed approach.
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2.4 Testing

2.4.1 Test-Oriented Development

Current development paradigms broadly referred to as agile software development are a

family of different management and software construction methods that provide rapid

cycle development processes with continuous integration of new code, shipping products

early and often, with feedback from the customer. Such methods typically include spec-

ification verification via compliance with various unit tests for modules, with the tests

being developed ahead of the module construction. These test cases can be augmented

after development with more expanded white box tests whose inputs are automatically

generated via code path exploration to give good coverage of the module. In order to

properly test the modules, the creation of a test harness is sometimes required to simu-

late the rest of the program and provide accurate input and collect outputs at interface

points.

The rise of such agile development practices [119] and collaboration tools has provided an

incentive to generate more test-based specifications testable at all stages of the program’s

development. Rather than having a program constructed over a long cycle before going

through testing, the software is constantly at a state of being flagged as operational and

ready for testing. These methods are, to a greater or lesser extent, replacing the old

processes in many development studios.

[In] Dr. Dobbs Global Developer Technographics Survey, Q3 2009, 35% of

respondents stated that Agile most closely reflects their development process,

with the number increasing to 45% if you expand what you include in Agile’s

definition. Both waterfall and iterative approaches are giving ground to much

lighter, delivery-focused methods based on the principles the Agile Manifesto

describes. [119, §1, p. 3]

The use of static code analysis tools via integration into common IDEs and as aug-

mentations to common C compilers to improve warning and error feedback has pushed

forward analysis-friendly coding with mantras that support treating compiler warnings

as errors and coding to pedantic compiler warning levels to allow better code compre-

hension. While this has not pushed developers towards strong program specification, it

has provided much needed hooks for automated localisation and repair tools which can

provide added value and so reinforce this loop of valuing strict, analyser-friendly coding

standards.
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2.4.2 Test Case Generation

When a code base lacks unit tests, and so is possibly too weakly specified for reasoning,

then an accelerated way of generating a test suite is to request a minimal set of test

cases with good coverage criteria of the explored program paths. With some effort for

an oracle (to calculate the required output) for the generated inputs, this can cheaply

create a weak specification to work with.

Modern approaches [15, 74, 101] use concolic methods (cf. subsection 2.3.3) that inter-

leave a concrete exploration for any deterministic elements and external method calls

with symbolic checking. This symbolic evaluation provides a trace back to the inputs

that are likely to provide good coverage by taking a different path at a conditional state-

ment. Tools such as KLEE provide path exploration and statement coverage strategies

to provide various coverage criteria from which to generate new counter-examples [15].

Fraser et al. have provided an overview [37] of using model checkers for the generation

of test suites. Riener et al. use a bounded model checker to generate test cases that

are capable of exercising the seeded faults added by mutation testing [94]. The original

program and a mutant are both encoded with assumptions that the inputs are the same

and an assertions that the output is not. This model generates text cases that demon-

strate that the mutant exhibits differing behaviour from the program it is modified from.

This also test demonstrates the capability of fault detection using only automatically

generated test cases and indicates how these topics are highly linked in the literature

with knowledge and exploitation of one technique used to validate the other.

Majumdar and Sen combine mixed random testing and concolic execution of C pro-

grams [74] to generate test cases with both deep and wide state space exploration.

Hildebrandt and Zeller applied the delta debugging technique discussed in subsection 2.5.2

to the input to a program (treating it as a simple string) to find an input that exercises

a fault and generates a failure [48]. This is a form a test case refinement, which is

sometimes required to augment a generator that does not generate a minimal set of test

cases during the generation process.

Another technique developed to more efficiently deal with very large test suites with high

pass rates is test case prioritisation. This was originally designed to accelerate regression

testing [33], which is an incremental testing process that aims to find failures in a new

version of a program. It was later applied to spectrum-based fault localisation [125],

discussed in subsection 2.5.1, to provide an order to the test suite which maximises the

fault localisation results when only exploring a partial set of test cases.

Use of these methods ensures that programs can be efficiently provided with a weak

specification via test suite which is compact and offers a high coverage of the program

statements.
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2.4.3 Mutation Testing

A code mutation is a modification that changes a small piece of a program, taking its

name from genetic mutations which are small changes in DNA which result in different

genetic expression in the organism. The intent of these mutations is to simulate the result

of a programmer mistake leading to a small fault in a program. As these mutations are

inserted into otherwise correct programs, they allow the exploration of programs that

are known defective with a known fault location without requiring fault localisation to

determine that location.

Mutation testing, first proposed in 1978 [27], provides a series of “almost correct” vari-

ants of an original program whose behaviour should diverge from that of the original

program. These are used to test the performance of various fault localisation and repair

tools as well as test case generators. Injecting modifications into programs provides a

known fault with a prescribed characteristic without the need for debugging existing

programs to isolate a fault.

The mutants (where each mutation is considered to be a fault) are used to show that

changes to the parent program are detected as failures from the test cases/suites that

examine the program traces. One of the problems with automated generation of mutants

(for testing the efficiency of detecting faults) is ensuring that the inserted mutation is

an actual fault. Without analysis it could merely be a code change which does not alter

the flow of the program as it relates to the specifications.

In mutation testing, new mutants of a program are generated; these variants exhibit

different behaviour from their parent program due to small changes injected into their

code. While injecting source code modifications into existing programs is a simple

transformation, some care must be taken to ensure the variant exhibits some visible

behaviour changes from the parent program. A mutant which behaves identically to the

parent is not a useful tool for mutation testing.

Riener et al. demonstrate mutation testing [94], the generation of new mutants of a

program which exhibit different behaviour from their parent program. This is best done

via parsing (front end of a compiler) the parent program to allow the abstract syntax

tree (AST) to provide meaning to the tokens and then executing various translations to

the AST before printing back to the original source representation. The seeding of these

mutations provides performance metrics for catching new errors by generating program

variants that differ from the original, ie potentially defective variants.

Schuler et al. provide an example of solving this problem without a formal specification

by using dynamic pre- and post-condition discovery to verify that the mutants being

generated are different from the parent in testable ways [99]. This avoids the issue of

false positives where the mutant is not functionally different from the parent and so the

mutation could not be discovered by an automated repair or even localisation process.
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Mutation testing can also be used to test the quality of debugging tools by providing a set

of programs with known faults. The Siemens Test Suite [53], used for our performance

metrics and discussed in section 4.1, is a set of mutation seeded variants. The TCAS

program in this suite is a common testing metric for automated localisation and repair

tools for C since being introduced in 1994 [53]. Of the 41 variants, one of them (v38)

provides no failing test cases. For this variant, all 1608 tests provide the same output as

the oracle program. This indicates a primitive seeding with mutations to generate these

variants without testing for visible faults under the provided test suite.

2.5 Fault Localisation

Fault localisation, the identification of program locations that can cause erroneous state

transitions which eventually lead to observed program failures, is a critical component of

debugging. However, this process puts a significant time [82, 87] and specific expertise

burden [2, 112, 115] on programmers or dedicated debuggers for software projects. Lo-

calisation by examining counter-example traces, test cases, or other output from static

and dynamic analysis tools is an active area of research [16, 19, 39, 41, 42, 61, 93, 96, 98]

that can be divided into several broad approaches, several of which are detailed in the

subsections below.

The static code analysis of C programs has been an ongoing area of research and com-

mercial development since the application of model based diagnosis to software systems.

This provides mature tools for model checking, test case generation, and fault localisa-

tion with ongoing research in these areas and developing work in automated repair. The

current state of the art in C program fault localisation shows limitations in performance,

automation, and ability to deal with programs that are weakly specified using large test

suites.

2.5.1 Spectrum-Based Fault Localisation

Spectrum-based fault localisation techniques, compared in [79, 121, 123], are dynamic

analysis methods that operate by examining traces of passing and failing test cases.

They assume that faults are more likely to be exercised by failing test cases and less

likely to be exercised by passing test cases. All the statements in a program can then

be ranked based on different weighting techniques. The analysis of the performance of

these approaches is typically based on several scoring formulas that roughly correspond

to how much of a program must be explored, given an ordered list of locations as tool

output, before the genuine fault is found.

The best-known example of this technique is the Tarantula tool [60, 98]. This can be

used with the GCov code coverage tool in GCC to decorate the unit under test and
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track which statements are executed for each test case. These tools are popular due

to their fast, predictable processing times. A GCov-decorated program will execute in

approximately the same time as the undecorated program when compiled with GCC and

executed on the test platform. Tarantula provides over 50% of the various variants of the

Siemens small programs (including TCAS) with a localisation performance that ranks

the injected fault location in the top 10% of lines in order of suspiciousness. But this

performance is inconsistent and 7% of these variants are ranked such that the injected

fault location is not in the top 80% of ranked locations, requiring debuggers to explore

virtually all of the program before encountering the seeded fault.

State of the art spectrum-based fault localisation methods have recently been compared

using different theoretical frameworks [79, 123]. Several methods have been identified

as optimal under these frameworks. Xie et al. expanded upon previously discovered for-

mulas to generate several new optimal and distinct weightings using genetic program-

ming [124]. The frameworks in these papers include the proof that these competing

formulas cannot be placed into a hierarchy where one is strictly best for all inputs.

There is also empirical data over various of the Siemens small localisation benchmark

programs. While Tarantula is not optimal [123], it is also not far behind the state of

the art on the tested small benchmark programs. In empirical results [79, Table XI,

p. 11:23], the only method identified as optimal under that paper’s framework ranked

the injected fault location on average at the 17th returned location (9.9%) over all TCAS

variants. Tarantula returned the injected fault location at an average location between

the 18th and 19th ranked location (10.8%).

2.5.2 Slice-Based and State-Based Fault Localisation

Delta debugging [126] is a family of approaches that involve splitting up a large set of

changes to find the minimal set that flip the program behaviour from correctly function-

ing to exhibiting a failure. This has variously been used to minimise inputs and traces

but was later extended to source code exploration.

The analysis of traces of a program, which are generated by tools similar to the front-end

of a model checker, can be used [93] to look at programs, ideally with few failing runs

and many passing inputs, to find the minimal difference between traces on a failing run

to the nearest passing. Mapping back to the cause of these flow changes can create a

set of possible fault locations.

Zeller proposes a method for dividing up changes to localise the one that introduced a

fault called delta debugging [126]. This process involves splitting up a large set of changes

to find the minimal set that flip the program behaviour from correctly functioning to

exhibiting the fault. This was originally show in 1999 working on hundreds of thousands

of changes to GDB (GNU debugger) to isolate a single fault. The approach was expanded
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upon [127] to consider grouping changes by their scope (proximity based on analysis

of text files and their containing folders) and shrinking the size of the changes tested

in making new mutations as the refinement continued. Combining these techniques

halved the number of tests required to find a minimal set of changes. This splitting

and recombining for delta debugging to pry out the smaller elements of change that are

important is seen applied in several areas, as already covered.

Advancing delta debugging to an automated localisation tool for executables, the test

case reduction technique of Hildebrandt and Zeller is applied to manage the exploration

of compiled program’s execution flow [128]. This is used to find the root difference in

execution chains from a passing test case that is minimally different to the provided

failing one. This was implemented into a robust package [129] that provides results on

executables with one passing and one failing input, outputting a cause-effect chain of

events that cause the difference in execution flow. This is the smallest gap in inputs

between the given failing input and a passing input.

The chain of advances and applications of delta debugging is expanded by Cleve and

Zeller to source code exploration [19] and moves from checking program states to also

look at the temporal chain of events and ties into object scopes so that a failure in

one variable can be tied back to that other variables in scope when it was created and

work back to a root cause. This allows for the root fault, in source, of a failure to be

correctly identified by this technique with performance that outclasses the competing

methods, such as Renieres and Reiss [93]. The principle applied here [19] is to look

at passing and failing traces and minimise the differences between them to isolate the

failing components. This is reminiscent of a binary search, looking for interesting subset

behaviour to narrow down variables that correlate with failure. However, this does

require the existence of at least one passing trace and the localisation performance

of Delta Debugging on small benchmark localisation test programs [19] is worse than

Tarantula’s [60] results.

The state of the art in slicing and heuristic led localisation is currently exploring [96] the

generation of program invariants from correctly executing inputs that are close to failing

inputs and analysis the cause chains that force these invariants to fail. This approach

shows where the localisation work is progressing towards processing larger and more

complex programs in a reasonable time after reaching a peak for accuracy and minimum

false positives.

Using model checker counter-examples, Groce et al. use distance metrics with a semi-

automated approach for fault localisation [41]. Once a failing run is found and a counter-

example produced, a solver is used to generate a similar (in terms of execution) passing

run, and the differences between these runs are minimised by slicing and then returned

as the localisation result. This work indicates the difficulty of automated localising on

even a program as simple as the TCAS variants.
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Around the same time Wang et al. were also looking at removing the manual process of

going from counter-examples to continuing the debugging process with localisation. A

single counter-example trace is used to find potential fault locations. The technique [114]

uses a counter-example to build a concrete execution trace and then generate weakest

pre-conditions for the eventual failure working back along the execution. These can be

chained back to the root fault. This approach contains similarity to Cleve and Zeller’s

work but using abstractions of the execution, similar to those explored by symbolic

model checking.

2.5.3 Model-Based Fault Localisation

Model-based fault localisation [92] (sometimes also called model-based debugging [20])

is the application of model-based diagnosis methods [25] to programs. It involves three

main steps: (i) the construction of a logical model from the original program; (ii) the

symbolic analysis of this model; and (iii) mapping any faults found in the model back

to program locations. One popular approach to model-based fault localisation is to

transform the program so that a symbolic program verification tool can be reused for

all three steps.

For example, Griesmayer et al. describe a method [39] in which the model (in the form

of a logical satisfiability problem) is derived by running the CBMC model checker over

a transformed program, and analysed by means of the model checker’s integrated SAT

solver. The transformation “inverts” the program’s specification (cf. section 3.1, pro-

ducing failures where the original program would complete and blocking paths where

the original program would fail), and replaces each original assignment by a conditional

assignment with either the original value or an unconstrained symbolic value, depend-

ing on the value of a toggle variable. The actual localisation can then be reduced to

extracting the possible values of the toggle variable from the satisfying assignments that

the SAT solver returns.

However, the technique initially described by Griesmayer et al. requires detailed specifi-

cations to achieve acceptable precision—the weaker the specification, the more program

locations are flagged as potential faults. Such detailed specifications rarely exist in

practice. What does commonly exist are extensive unit test suites, in particular in the

context of modern test-driven design approaches. Griesmayer et al. have shown that his

technique can be extended to work with (failing) test cases, but the published results [39]

are prohibitively slow (typically executing in hundreds to thousands of seconds per each

small benchmark program). Griesmayer et al. have improved the original implementa-

tion [40] but only achieve times typically in the hundreds of seconds.

Griesmayer et al.’s approach has also been applied to hardware designs in SystemC [67],

often combined with different solver technologies such as QBF [106] or unsatisfiable



Chapter 2 Background and Related Work 27

cores [108]. Our results indicate that “plain old SAT/SMT” is still sufficient, but these

technologies could be considered as alternative approaches to surmount any future lim-

itations with our underlying solver tool chain.

Könighofer and Bloem have developed the FoREnSiC system [63, 64] (a Formal Repair

Environment for Simple C) which includes a similar method of localisation. Their pub-

lished results only cover a few variants of the benchmark localisation test programs used

but where they have publishable results, localisation times are still measured at over a

hundred seconds. Könighofer et al. report improved times [65] (around 37 seconds per

program) but only after manually annotating all functions with contracts, so no longer

working from the benckmark’s test suites alone.

A hybrid approach to localisation using concolic execution [16] is shown on Java pro-

grams by Chandra et al.. Their process creates a family of different programs that each

take a different potential fault point. Each of these program is explored with concrete

values up to their potential fault point, after which they use symbolic execution to ex-

plore potential program flows that can lead to failure. A potential fault point is flagged

as a localisation if there is a change to the expression (value substitution) that allows

the program to continue to avoid the failure and if this change also allows passing runs

to still pass if they take a different value at this repair point. This attempt to remove

false positives by constraining on passing test cases also blocks localisation to points

where a passing test case requires an exact value to continue (no range of values all lead

to successful termination).

Jose and Majumdar convert an input C program to a maximum Boolean satisfiability

problem which is analysed with the MAX-SAT solver [61]. However, because this re-

turns the complement of the maximal subset of clauses that can be true for each single

test case, their approach can omit genuine repair locations. This technique therefore

relies on summing the results of the different test cases, providing a ranking of most to

least commonly flagged locations. This is the approach, and so inherits the strengths

and weaknesses, of heuristic-based fault localisation techniques like the spectrum-based

techniques. Approximating model-based fault localisation approaches for test suites can

run faster but can also miss a true fault location when evaluating a test case.

2.6 Griesmayer’s Model-Based Fault Localisation in Detail

Griesmayer et al. described one implementation of a fault localisation technique based

on model checking [39], a field outlined in subsection 2.5.3. This technique is the foun-

dation on which our research has developed. We have provided fully automated tools to

implement the described process and expanded the technique in several areas. Critically,

we have developed a smart search process to manage the unpredictable return time for
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each element of the search for a location under the specification of a specific test case,

including removing redundant search nodes from the original proposed process.

1 /* ... */

2 int v = a*b;

3 /* ... */

4 assert(o==d); // added spec

5 exit (0);

Figure 2.1: Program transform process: Code with test case specification

The original technique described by Griesmayer et al. uses an already-specified input C

program (such as that seen in figure 2.1 - where the output value of the program o is

asserted to equal a variable assigned to with the known desired output of the program

d) which is reconfigured to relax the assignment constraints at any single locations and

to use an inverted version of the specification to generate the desired information in the

symbolic analyser’s provided counter-examples. An example of this transformation is

seen in the modifications to the code snippet in figure 2.1. This transformation is applied

to the C source code before the model is generated by the CBMC model checker, which

then analyses the model using a SAT solver.

1 int t = symbolic ();

2 /* ... */

3 int v = (t==5) ? symbolic () : a*b;

4 /* ... */

5 assert(o==d);

6 exit (0);

Figure 2.2: Program transform process: Model of specified code

To enable the search for potential fault locations, a toggle variable, t, is added that

allows any one location to run alternative code. In the program body this toggle is

made symbolic and constrained to the range of locations being explored (cf. line 1,

figure 2.2, constraining possible values not shown). Assignments in the source program

are modified to become conditional assignments that flip to an unconstrained symbolic

value when toggled (cf. line 3, figure 2.1 to figure 2.2). The use of a single toggle value

makes a single-fault assumption.

1 int t = symbolic ();

2 /* ... */

3 int v = (t==5) ? symbolic () : a*b;

4 /* ... */

5 assume(o==d);

6 assert (0); exit ();

Figure 2.3: Program transform process: Inverted model of specified code

To invert the program specification, each potentially failing assert-statement is replaced

by a blocking assume-statement with the same parameter (line 5, figure 2.2 to figure 2.3).

This requires that all traces through these lines conform to the assertion’s test without
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generating a counter-example if the expression can be violated. Failing assert(0)-

statements are inserted before the program’s terminal nodes to force the generation of

new counter-examples (line 6, figure 2.3). The purpose of this inversion is to ensure traces

that originally returned counter-examples due to specification failure do no longer, and

traces that satisfy the specification generate counter-examples. The exploration becomes

one searching for a trace to an exit point that satisfies the initial specifications. Thus,

in a simple (no symbolic assignment insertion) inverted program an exiting trace will

not be found for a failing test case.

The generated counter-examples from this new model provide the toggle values that iden-

tify candidate assignment locations as sites of possible repair. The technique described

by Griesmayer et al. requires that the input programs have detailed specifications. In

practice, these typically do not exist. Griesmayer et al. demonstrated [39] an extension

to this technique using a test suite as specification. A failing test case is first encoded

into the input program, providing a concrete value of d in figure 2.1. The results for

each toggle value therefore identify candidate repairs for that failing test case. Any

assignment that is identified by all failing test cases becomes a location flagged as being

the site of a potential repair.

The localisation process effectively generates a look-up table at each flagged location that

will repair all failing test cases. For each failing test case, the value of the alternative

assignments can be different and will be reported for each location flagged by this process.

The flagging process means the chosen value leads to the end of the program without

failure of the original specification. All passing test cases define their own correct values

for the assignment. So this look-up table is a genuine repair for the full test suite.

This approach, where each test case is treated as an independent specification and all re-

sults are collected independently, results in prohibitively slow execution time. Using test

suites demonstrates a strength of dynamic analysis: no prior knowledge of the program

beyond flagged test cases as correct or incorrect is required. But the published results

indicated that the run-time cost is too high using the common localisation performance

measure of the Siemens TCAS [53] variants.

2.7 Automatic Repair

At the limit of localisation techniques is the use of automated software repair, where the

location that caused the fault is diagnosed to the point where a viable repair expression

is provided. This is not usually explored in isolation so automated repair tools are

responsible for localising before or as part of generating repair expressions.

Griesmayer et al. moved from localisation work on deterministic C programs to auto-

mated repair of the potentially non-deterministic program over Boolean data types that
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represents a simple C program. This tool [38] explores the different paths of execution

in the Boolean program and, assuming a known localisation, changes that element of the

execution to an arbitrary execution.This allows the program to jump to another point or

change a value within scope as the alternative execution at this point. Model checking

is used to narrow the possible substituted expression to ones that do not violate the

program specifications. When localisation data is not provided then the tool iterates

over all expression locations and repeats the repair process. Any repair must be mapped

back to the C program from which the Boolean program was constructed. It is noted by

Griesmayer et al. that the generated repairs from this process require human interaction

to choose the correct one that solves the debugging problem, if it is generated, and so

is not a suitable choice for automated repair.

A recent approach by Wei et al. provides well specified Eiffel programs with automatic

repairs via schema generated mutations [117] which are validated against failing and

passing test cases with the pre- and post-conditions and assertions on objects. This

exploits the strong, granular specifications of the programs to apply a library of mutation

substitutions to search for valid repairs over the full specification, driven by the test case

set. This tool, AutoFix-E, is later refined [84] by Pei et al. to reduce the requirements on

the specifications, removing the need for public interfaces showing object specification,

although this still leaves the need for a strong specification/contract to reason about

repairs.

The automated repair work using delta debugging concludes with the release of Gen-

Prog [69]. This work applies the search technique to accelerate and later direct the

use of genetic/evolutionary mutation of a defective program towards a potential repair

variant [34]. The mutations pick code from inside the defective program to apply at

a repair site, which has been previously shown to be a surprisingly effective technique.

The original implementation [118] used the AST of a C program with path as weighting,

limiting mutations to only operate on the execution of the faulty program trace. The

first version used delta debugging to minimise the size of this mutated program that re-

paired the failure without breaking passing runs. This was later reprinted with further

examples [36].

The approach by Fast et al. uses test cases to encode the requirements of the program

and trigger the failure and reduces the issues with mutation creep outside of well specified

programs by delta debugging to try and minimise the mutation from the original buggy

program. It was extended to assembly [100] rather than a C AST by Schulte et al.

and optimised for faster more accurate results [70] by Le Goues et al., using better

mutations and breeding algorithms for the evolutionary stage. Results for TCAS are

provided by Nguyen et al. [82]; they indicate scaling issues for even medium sizes of

test case sets, even with programs as simple as TCAS. We consider their performance

further in section 4.5.
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The delta debugging method, with modifications, has been shown to scale to very large

programs by moving from AST and weighted paths to committed diffs (patches) for an

ongoing project in source control [68]. It is offered as a cost effective repair solution when

running at cloud computing scale/prices. Scaling out the execution hardware to cloud

deployment helps contain the costs of evolutionary mutation and testing each mutant for

success at repairing the found failure without generating new failures in the specification,

provided days or massively parallel processing are available for turnaround.

Konighofer and Bloem provide results on TCAS [63, Table 1, p. 98] using a model

checker driven mutation search of expressions based on A * x + B * y + ... + Z for

integer literals as capitals and every variable in scope at the point of the assignment

as lower case in that formula. However, the published results indicate the full range of

this mutation space is not being fully exploited as the only repairs produced reject all

variables in scope, repairing the TCAS variants which can be fixed with a single integer

literal, the Z in the above formula. We consider their performance further in section 4.5.

The tool DSDSR by Hussain and Csallner automatically repairs Java data structures

using dynamic symbolic execution [52]. This is a limited scope repair tool looking for a

very specific fault type. It builds on top of DSD-Crasher [24], which collects invariants

to generate a specification via dynamic analysis, which restricts the input domain of the

program. DSD-Crasher then uses static analysis to search this smaller input space for

emerging failures, and then verifies the discovered failures with a final dynamic pass on

generated test cases to confirm the static analysis approximation applies to actual Java

execution.

ClearView [86] is a live program repair system which monitors an executing x86 Windows

binary to generate a specification from the observed invariants and input ranges. By

inserting monitors to detect errors this specification is refined to classify any invariants

that possibly lead to errors or failures. The tool then works to create a patch to the

binary to block (control flow change) or repair (state change) the path to failure. This is

shown in a security context on x86 binaries on a limited number of test cases and with

manually defined monitors checking the binary execution.

Nguyen et al. provide SemFix [82] as a KLEE (symbolic virtual machine) based tool

with expression generation using a small subset of test cases to generate a valid repair

under the specification of that subset. This provides good results for TCAS compared to

GenProg’s method [82, Fig. 4, p. 779], assuming that the repairs under that more limited

specification are useful for repairing the expression under the full specification. It is not

reported if these repairs generated on the limited test case sets are genuine repairs that

apply to the full specification as given by the complete universe but extrapolating the

times out to running the process on the full set of test cases would not provide competi-

tive performance if this is not so. The later data they provide on found repairs suggests

the reported repairs are not necessarily valid over the full test case set specification but
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this is not conclusive. No per variant results are provided, only averaged performance.

We consider their performance further in section 4.5.

Recent work by Jose and Majumdar [61] converts an input C program to a maximum

Boolean satisfiability problem to be explored with MAX-SAT. This operates on a single

defective test case as specification and uses the trace this generates to construct the

formula. Using this formula the process looks for a maximal subset of clauses that can

be true and reasons that the complement of this set are tied to the location of potential

repairs. This localisation approach is expanded to repair synthesis by selecting this set

of potentially faulty lines and modifying any computation there to account for the fault

class of ‘off by one’ errors. Results are shown for localisation on TCAS as well as a range

of small Siemens Test Suite programs. To provide tractability for MAX-SAT, the traces

of programs other than TCAS were minimised with a combination of program slicing,

concolic execution, and isolating failure-inducing input using delta debugging. The fault

class repair process is shown working on some toybox examples. This is only looking for

repairs and localisation results that are specified by a single test case, not all 1608 test

cases for TCAS.

Other approaches provide a manual rather than programmatic approach to program

repair, for example von Essen and Jobstmann [113] writing a strong specification in

LTL for the correct program execution to provide a directed repair process.

2.8 Assessment and Self-Training

To understand how to automatically assist in the debugging of programs requires the

understanding of how programmers make mistakes and work to correct them manu-

ally. Novices offer both an increased need for high-quality tools and the opportunity to

understand the psychology of programming through the analysis of how skills develop.

Education is an area with a specific need for high quality automated localisation to aid

novice debuggers and, as we discuss in subsection 2.8.3, provides a significant volume of

suitable real-world faulty programs on which to test localisation tools.

2.8.1 Programmer Types and Programming Psychology

In the “Psychology of Programming” [50] Hoc et al. note that much of the mental

model for the activity of programming can be influenced by external factors such as the

non-programming education of the coder, the programming language in use, and even

the native language of the programmer. There is also a wide range of domain-specific

expertise and programmers cannot be assumed to have reached a high level in any

area [50, §3.2.1, p. 225] before being able to gain the benefits of automated debugging

tool assistance.
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Novice programmers can be divided into three classes [85, 120]: stoppers, who give up;

tinkerers, who appear to modify their code at random; and movers, who are already able

to engage with feedback to make progress. Even though the movers already demonstrate

debugging skills beyond the average of their cohort, all three classes still need high-

quality, novice-friendly debugging feedback to allow a self-guided refinement of their

solutions towards a correct answer.

Giving tinkerers viable repair locations massively reduces the mutation space they are

exploring. Giving movers viable repair locations directs their effort, allowing faster

debugging times [83]. This should increase the chance that both will realise the repair

and convert a program failure into a learning event. For programmers to retain their

status of movers, they must be provided with feedback in terms of suitable scaffolding

to overcome progress stalls and achieve an otherwise unattainable goal [122]. Tinkerers

who are unable to be scaffolded into movers will eventually become stoppers due to lack

of progress [120]. This generates the need for high quality, novice-friendly debugging

feedback.

A significant part of the debugging process is finding the location where the file needs

to be changed to repair the fault [115]. Tools like AskIgor [129] provide cause chains to

assist programmers in localising faults from test failures. While this lowers the required

expertise threshold, it still requires too much debugging expertise for novices. Only

experts debugging small programs see significant benefit [83] from localisation tools with

the precision of Tarantula due to the requirement for debugging skills to be capable of

working through significant ranked lists of potential repairs before even reaching the

real fault location. Since the absolute number of locations shown before the actual

repair site is critical to allowing progress before programmer interest drop-off generates

stoppers [83], the provided list of locations to investigate must be short. Unfortunately,

widespread spectrum-based fault localisation methods are unable to provide sufficiently

short candidate lists. Pham et al. tested Tarantula and Ochiai tools and on three

variants of an algorithm [88], with an average length of 13 statements, they found over 9

statements shared the same top suspiciousness ranking. Localisation performance thus

becomes a function of luck.

Analysis of student code submissions [72, 78, 91, 103] shows a wide range of submitted

program forms and performance characteristics. Students working towards functionally

correct submissions do not necessarily work towards solutions that are similar to an

instructor-authored model answer. Features such as code length and memory footprint

are independent of each other and of compliance with a question’s functional require-

ments [95]. This makes it inadvisable to only provide feedback directing students towards

a model answer as the shortest path to a high quality submission.

Enhanced (syntax) error messages appear to be ineffectual in assisting novice debuggers

apply feedback [29]. However, when students are given hints about failures over a
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test suite, their effort increases compared to students not given hints [13]. On-demand

programming feedback provides students the motivation to iterate on submissions [75].

Moreover, a correlation has been found between sessions where students were provided

with feedback from a test suite and sessions that improved the student’s score [104],

indicating this assisted self-training.

Complete program synthesis repair tools such as Auto Grader [102] remove all debugging

or repair self-training from the process, trivialising the contribution and so learning

of the student. Auto Grader uses an error model and constraint solver to transform

student submissions to try and formulate/synthesise repairs, this requires the writing of

a manually provided, specialized error models for each problem to allow the synthesis

tool to provide repairs.

There is a need for debugging feedback that acts as scaffolding, the tutoring required

to facilitate a novice to achieve a goal they would otherwise find unattainable [122].

This must bridge the gap between standard error reports, which many students lack the

expertise to use, and fully automated repair suites that trivialise the contribution and so

learning of the student. A viable automated localisation tool must provide high quality

localisation feedback for student self-training which lowers the prerequisite debugging

skills, adding necessary scaffolding to the programming experience when approaching a

correct solution, without restricting students to converging towards a model answer.

2.8.2 Programmer Feedback and Guidance

Coursework and charettes, traditionally manually assessed by educators and instruc-

tors, have seen various attempts at automation since the 1960s (cf. subsection 2.8.3).

Modern, generic assessment frameworks provide a series of built-in grading tools or just

provide the framework into which external tools can be plugged in, which feed back their

results into the system. Automated submission and assessment systems deliver imme-

diate feedback to students for self-training, which is enjoyed by students and feeds into

improvements throughout courses that use it [66]. They include tools to help acceler-

ate grading of final submissions, providing both self-training and grading benefits [107].

When manual feedback from submissions is provided, even when timely and electroni-

cally delivered, it generates a drop-off in engagement [73] over the run of a course.

But scaffolding, the tutoring required to facilitate a novice to achieve a goal they would

otherwise find unattainable [122], is necessary to bridge this gap between standard error

reports and fully automated repair suites that trivialise the contribution and so learning

of the student. When students are given hints about failures in an automated testing

suite, their effort increases compared to students not given hints [13]. Moreover, a cor-

relation has been found between sessions where students were provided with feedback

from a test suite and sessions that improved the student’s score [104], indicating this
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assisted self-training. Using the Marmoset submission system [105], students were pro-

vided with feedback from a small test suite. This was tracked over a number of sessions.

A correlation was found between when the student collected feedback and sessions that

improved the student’s score [104], indicate this assisted self-training. In this example,

to avoid grade-like feedback being abused to brute-force answers, the use of tokens re-

stricted how often feedback was available to the students. However, despite its benefits,

students are somewhat resistant to a pure test-driven development (TDD) approach [12].

For example, the Web-CAT [31, 32] submission system, which provides students with a

workflow that mandates the writing of test suites as well as source code. This is at least

partly because TDD also requires expertise in developing test suites as a prerequisite to

demonstrating programming ability.

2.8.3 Coursework Submission and Assessment Systems

The modern pedagogical style of continuous assessment delivered to ever-increasing class

sizes demands increased automation of assessment feedback, including early-stage feed-

back during coursework attempts. This assessment model includes a self-improvement

model which uses the coursework format as an educational tool rather than one of formal

assessment. The loop of work and feedback improves the performed knowledge of the

student without a formal mark that contributes to a final grade.

The timely, accurate, and detailed feedback from the automated tools is essential to this

model of directed continuous student improvement. Without the assessment component,

the student does not have a directed experience that affirms their progress.

There is a long history of coursework, normally assessed by teachers manually, seeing

some automation. Reports go back to punchcard-based programs in 1959 [51] and ex-

ecuting student programs to compare their output with a stored value in 1960s [46]

for automated grading. Source code can be assessed with general evaluation criteria

focussed on execution performance, which can bring in some automation, or degree of

closeness (to a model answer) assessment, for example a control flow graph comparison

starting out in the 1980s [1], which facilitates discrimination between non-functional

submissions. A textual analysis is clearly insufficient [78, 91, 103] as there is not only

a single form of a solution that correctly solves the programming question. Analysis of

student code submissions show [95] a very wide range of program forms and performance

characteristics.

Code assessment frameworks and tools are becoming ubiquitous but also require special-

ist skills [3] to fairly design coursework questions and test suites. Many educational es-

tablishments now include real-time automated feedback for both non-graded coursework

and, as an initial feedback stage, for graded work, when the coursework is being prepared

for submission. Automated submission and assessment systems [8, 47, 56, 62, 90, 111]
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use functional and/or unit testing to confirm a student program complies with the as-

sessment test suite. In Computer Science this ensures graded submissions can pass the

initial technical hurdles (such as submitted source code compiling) to be submitted to

a large, fully automated, rigorous testing environment which provides guidance for the

final assigned grade. This real-time feedback can include running through a limited test

suite to allow students (who submit early) to improve any easy-to-spot faults in their

submission without the assessment becoming an implicit test of their own testing skills

and development environment. For non-graded work assigned for self-improvement, the

full testing environment can be provided to the students as enhanced feedback. Provid-

ing this as a service removes the configuration of a test environment from the courseworks

prerequisite Intended Learning Outcomes (ILOs).

Advances on these tools can provide some of the test suite feedback to students to

facilitate their debugging. Use of token systems to prevent abuse of this to brute-

force the assessment test suite has been examined in Marmoset [105]. The correlation

between getting this feedback and that work session improving the student’s score [104]

indicate this is effective at assisting debugging. Some systems have, in the last decade,

e.g. Web-CAT [31], moved to mandate student written tests as well as source code. This

self-contained TDD driver also generates significant volumes of test suites for student

submissions.

Such assessment tools take many forms. Ceilidh [8] uses regular expressions to specify

the test output of compiled student code, providing more freedom to define the expected

answers than traditional test suites. Immediate feedback options include compile con-

firmation messages for source code and functional assessment via test suites. Due to the

pluggable nature of these systems, increasingly advanced processing can be provided to

students as well as for grading. Style and complexity analysis tools [56] provide metrics

beyond test suite correctness (evaluating non-functional aspects such as code quality and

efficiency). ASSYST [56] contains style and complexity analysis tools that provide met-

rics beyond test suite correctness, and also evaluates non-functional aspects such as code

quality and efficiency. AutoGrader [45] requires students to program to a public inter-

face, allowing whitebox testing at the cost of restricting the form of the code submissions.

Pex4Fun [110] uses automated test case generation to guide student submissions and to

scale to MOOC capacities. This approach requires students to demonstrate advanced

debugging skills.

ASys [55] attempts to overcome the limitation of functional testing using test suites with

a customisable semi-automated grading system. Marking templates describe extensions

to the test suite for a question, generating new tests specific to the student submission

that verify each assessment property defined in the template. Failure of the system to

complete the instructions or if the submission does not conform to the tests will create a

report and triggers manual grading using this feedback. In their use on campus, 48% of

the grading work was automatically handled by the tools. Analysis of a discrepancy in
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marks between the group using the new system and the group going through traditional

grading revealed most of the difference was accountable to errors made in the manual

marking process.

With FrenchPress [11] the focus is put entirely on assessment of style and code design,

ignoring errors and incorrect output. Tools which explore the style and code design of

submissions are complementary to an educational approach that provides learning events

tied to the test case compliance of student submissions or code compliance result to

accelerate marking of submissions. As noted in this paper [11], “large-scale professional

projects [generate] bug reports [that] assume a sophisticated understanding that college

students are unlikely to attain in their first year of exposure to Java. Professional

tools do not look for, and consequently do not find, the program flaws FrenchPress

catches, precisely because the errors of an experienced software engineer are not those

of a second-semester student.”

The graph similarity approach proposed in 1980 [1] exists in modern systems [116,

80]. Scheme-Robo [97] compares the program source to a model answer, assuming that

Scheme’s functional design limits the variability of meaningfully different programs that

correctly answer the question. Although this similarly only provides analysis of how

closely the student submission matches the form of the model answer rather than how it

functions to comply with the specifications of the question. Vujošević-Janičić et al. [58]

use a static verifier as well as test suites when student solutions do not match the program

flow of the model answer. A weighting system then mixes these feedback components

to guide students to repair code errors and transform the structure towards that of the

model answer or to grade the submission.

2.8.4 Massive Open Online Courses

Considering the scaling of these techniques, instructors spending several minutes per

student per submission for feedback [73] cannot scale to Massive Open Online Course

(MOOC) environments with thousands of students per course. Compounding this issue

of the viability of scaling manual feedback, even timely and electronically delivered notes

generate a drop-off in engagement with this asynchronous feedback [73], providing stu-

dents with feedback detached from the mental state when they created the submission.

Offering live feedback is even less capable of scaling to larger classes without relying on

fully-automated feedback tools.

To test the scaling of an automated hint system to MOOC environments, AutoTeach [4]

provides students with access to a hint system which can uncover partial model answers

to assist with learning. Such systems, while scaling very well, strictly constrain students

to working towards a single model answer which is slowly revealed by the hint system.

This will not assist students who are not writing a clone of this model answer.
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With Pex4Fun [110] automated test case generation (powered by Pex) is used to guide

student submissions and to scale to MOOC capacities without losing the focus on the

actual student submitted code. But this loops back to the earlier points regarding TDD

and student resistance or lack of skills in this area. Only the movers group, who are

already competent debuggers, can use a failing test case to guide their code repair.

While dynamic test case generation based on the (hidden) oracle solution provides good

personalised feedback for each different student submission, it only focusses on one type

of student with a set of existing competencies in testing and debugging, which may not

be the focus of assessment in a programming exercise.

However, the deployment of test suite grading for MOOCs is gaining traction [89] with

the drawbacks of formatting issues (3.2% of submissions were awarded zero marks due

to formatting issues, not functional failures) and failure to detect almost-correct submis-

sions weighed against the benefits of providing some form of code assessment, as manual

grading is not viable. Such issues can be reduced via importing more advanced tools

into MOOC grading and feedback systems, assuming their run-time cost can be kept

low enough for MOOC execution.



Chapter 3

Fast, Test-Driven, Model-Based

Fault Localisation and Repair

Our first major contribution area is the development of a smart search process which

significantly reduces the processing time of a test-driven, model-based localisation search

such as the one by Griesmayer et al. that we have outlined in section 3.1. This is required

to manage the unpredictable return time for each node of the search, including removing

redundant search nodes from the original proposed technique. A radical reduction in

execution time when dealing with large test suites would allow this technique to compete

with spectrum-based methods [RQ1] without sacrificing accuracy [RQ2]. A single search

node in this technique, under the granularity of our symbolic analyser, is a single po-

tential repair location under the specification of a single failing test case. We developed

this algorithm and implemented it into a suite of fully automated tools that implement

the process Griesmayer et al. described, expanding the technique in several areas [RQ3,

RQ4]. We directly compare this with a pure reimplementation of the original technique,

using modern hardware and symbolic analysis tools, as shown in chapter 4. The fully

automated nature of this tool allows its execution on large sets of actual C programs

to test the viability of this method of test-driven, model-based localisation [RQ2], as

exploited in chapter 5 [RQ5].

3.1 Inverted Model-Based Fault Localisation

A common process for model-based fault localisation uses static analysis on a model

that is generated from a transformed input program using the language specifications.

This transformation is provided by a checker tool that converts the program code into

one or more logic expressions, and so analyses the symbolic execution of the system. A

solver is invoked that can evaluate the logic expressions. This symbolic analysis may be

39
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accelerated with the use of built-in theories to compactly reason over the logic expres-

sions [81]. This returns constraint satisfiability results for the expressions. The symbolic

analyser uses these results to generate traces of specification violating execution paths

(counter-examples), if any exist. Some methods operate directly on the satisfiability

result for the logic expression, for example exploring common omissions when using

a maximum satisfiability solver [61]. Programs can be modified, e.g. augmented with

additional predicates, to generate more information from the data in the failing traces.

Griesmayer et al. described a technique [39] where a specified input C program is re-

configured to use an “inverted” version of the specification. This inversion is applied to

the C source code before the model is generated by, in their implementation, the CBMC

model checker, which then analyses the model using a SAT solver. The reconfiguration

generates a model based on a single-fault assumption.

1 int payMe(uint nH , uint otH , uint age) {

2 uint BR = 15;

3 uint bonus = BR * (otH * 2);

4 uint normalPay = BR * nH;

5 uint ageHigher = age % 20;

6 uint SelBR = BR + ageHigher;

7 uint SelBonus = otH * (3 * SelBR );

8 uint SpecialNormalPay = nH * SelBR;

9 uint specialPay = BR + 20;

10 if ((age > 20) && (age < 40)) {

11 return SpecialNormalPay + SelBonus;

12 } else if (age >= 40) {

13 return (nH * specialPay) + (( specialPay * 2) * otH);

14 } else {

15 return normalPay + bonus;

16 }

17 }

18

19 int main(int argc , char ** argv) {

20 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

21 assert(result == atoi(argv [3]));

22 }

Figure 3.1: Worked transformation: Code with test case specification

Our worked example is based on the form of a student coursework submission used in

the data set described in section 5.1. The listing in figure 3.1 is taken after the program

specification has already been encoded into the coursework submission, as detailed in

subsection 3.2.1 as this is not part of the automated technique described by Griesmayer

et al. This program calculates pay for various employees based on the formulation given

in a written question. The failing program, at the sixth assignment (line 7), declares

an unsigned integer SelBonus equal to otH*3*SelBR. This expression contains a fault

as the question text requires the bonus rate be double pay, not triple pay. This fault

can surface, for some inputs, in the final output as a failure when returned on line 11 to

result on line 20.

The pay that an employee earns each week depends on their age, the number

of hours worked during normal business hours, and the number of overtime
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hours worked. The base pay rate for all workers is $15 per hour. On top of

the base rate, each worker over the age of 20 earns an extra $1 per hour for

every year their age exceeds 20. However this additional, age-based bonus

is only valid up until the age of 40. Finally, any overtime hours are paid at

twice the base rate. Write a function which calculates the amount paid to an

employee in one week, based on the number of normal and overtime hours

worked, as well as their age. You should work in whole numbers (integers)

only.1

Each test case is taken as a search branch to be explored for potential assignment

locations. To enable the search for potential fault locations, an unsigned int global

toggle variable, t, is added that allows any one location to run alternative code (cf.

figure 3.2). In the program body this toggle is made symbolic and constrained to the

range of locations being explored (lines 2 and 3). Assignments in the source program

are modified to become conditional assignments that flip to an unconstrained symbolic

value generated by a call to symbolic(), when toggled. The single global toggle variable

creates a model with a single-fault assumption.

1 int payMe(uint nH , uint otH , uint age) {

2 uint __t = symbolic ();

3 assert(__t < 11);

4 uint BR = (__t ==0) ? symbolic () : 15;

5 uint bonus = (__t ==1) ? symbolic () : BR * (otH * 2);

6 uint normalPay = (__t ==2) ? symbolic () : BR * nH;

7 uint ageHigher = (__t ==3) ? symbolic () : age % 20;

8 uint SelBR = (__t ==4) ? symbolic () : BR + ageHigher;

9 uint SelBonus = (__t ==5) ? symbolic () : otH * (3 * SelBR);

10 uint SpecialNormalPay = (__t ==6) ? symbolic () : nH * SelBR;

11 uint specialPay = (__t ==7) ? symbolic () : BR + 20;

12 if ((age > 20) && (age < 40)) {

13 return (__t ==8) ? symbolic () : SpecialNormalPay + SelBonus;

14 } else if (age >= 40) {

15 return (__t ==9) ? symbolic () : (nH*specialPay )+(( specialPay *2)* otH);

16 } else {

17 return (__t ==10) ? symbolic () : normalPay + bonus;

18 }

19 }

20

21 int main(int argc , char ** argv) {

22 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

23 assert(result == atoi(argv [3]));

24 }

Figure 3.2: Worked transformation: Model of specified code

Finally, this model is inverted which forces the verifier to suppress any assertion failures

in the original model but to generate new counter-examples if the program can termi-

nate normally without violating these assertions. The generated counter-examples from

this new inverted model provide the toggle values that identify candidate assignment

locations as sites of possible repair.

1Taken from http://www.dreamincode.net/forums/topic/288718-possible-math-error/.

http://www.dreamincode.net/forums/topic/288718-possible-math-error/
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Each potentially failing assert-statement is replaced by blocking assume-statement with

the same argument. Failing assert(0)-statements are inserted before the program’s

terminal nodes to force the generation of new counter-examples. The purpose of this

inversion, shown in figure 3.3, is to provide the inverted output. Hence, traces that

originally returned counter-examples due to specification failure do no longer, and traces

that satisfy the specification now generate counter-examples. The exploration becomes

one searching for a trace to the exit point that satisfies the initial specifications. If the

inversion was applied without the toggled symbolic assignments added in figure 3.2, an

exiting trace would not be found for a failing test case as it defines a trace that violates

the specification assume-statements.

1 int payMe(uint nH , uint otH , uint age) {

2 uint __t = symbolic ();

3 assume(__t < 11);

4 uint BR = (__t ==0) ? symbolic () : 15;

5 uint bonus = (__t ==1) ? symbolic () : BR * (otH * 2);

6 uint normalPay = (__t ==2) ? symbolic () : BR * nH;

7 uint ageHigher = (__t ==3) ? symbolic () : age % 20;

8 uint SelBR = (__t ==4) ? symbolic () : BR + ageHigher;

9 uint SelBonus = (__t ==5) ? symbolic () : otH * (3 * SelBR);

10 uint SpecialNormalPay = (__t ==6) ? symbolic () : nH * SelBR;

11 uint specialPay = (__t ==7) ? symbolic () : BR + 20;

12 if ((age > 20) && (age < 40)) {

13 return (__t ==8) ? symbolic () : SpecialNormalPay + SelBonus;

14 } else if (age >= 40) {

15 return (__t ==9) ? symbolic () : (nH*specialPay )+(( specialPay *2)* otH);

16 } else {

17 return (__t ==10) ? symbolic () : normalPay + bonus;

18 }

19 }

20

21 int main(int argc , char ** argv) {

22 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

23 assume(result == atoi(argv [3]));

24 assert (0);

25 }

Figure 3.3: Worked transformation: Inverted model of specified code

Any looping behaviour of the program under test is resolved by the symbolic analyser.

Bounded model checking will unfold the program with unwinding of the loops to a bound

of k and inlining function calls. Recursive calls will also be inlined, up to the bound. This

explores a subset of all traces of the program up to the bound of the unfolding. When

a fault exists within a loop then this configuration of symbolic expression insertion will

replace every instance of the assignment with a new call to generate a symbolic value.

These will either all be triggered by the toggle value or not as each call will be guarded

by the same condition. This adds to the solver complexity of any fault in a loop (or

function called multiple times) but allows the search to isolate such faults to the same

standard as other locations searched.

This complete transformation effectively searches the model to find assignments which

are possible repair locations. That is, every such assignment can be edited to a symbolic

value which corrects the flow of one failing test case and results in the desired output
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being generated, i.e. not violating the assume(result==atoi(argv[3])) statement in

the worked example’s inverted model. Assignments where a symbolic value is found for

every failing test case are returned as repair locations.

The localisation process effectively generates a look-up table at each returned location

that will repair all failing test cases. For each failing test case, the alternative value of

the assignments will be reported (via a counter-example) for each location flagged by

this process. The flagging process means the chosen assignment values lead to the end

of the program without failure of the original specification. All passing test cases define

their own correct values for the assignments (they already execute within the test suite

specification). So this look-up table is a genuine repair for the full test suite, albeit

repairing only from the test cases provided as specification.

Unlike most other localisation processes that only aim to isolate locations as suspicious,

this process generates artifacts which define a low-quality repair for the specification, as

given by the full test suite. The repair is not one which a programmer would accept as

complete but it is a repair that, at minimum, provides significant additional debugging

information in the form of what values the high-quality repair can output to fix the

faulty assignment under the specification of the test suite.

This approach, as originally described by Griesmayer et al., where each test case is

treated as an independent specification and all results are collected independently, re-

sults in prohibitively slow execution time. Using test suites demonstrates a strength

of dynamic analysis: no prior knowledge of the program beyond flagged test cases as

correct or incorrect is required. But the published results indicated that the run-time

cost was too high using the common localisation performance measure of the Siemens

TCAS [53] variants. We modify this approach to make the search of failing test cases de-

pendent on the discovered negative search results, maintaining a whitelist of still viable

fault locations which is narrowed down as the localisation tasks return.

To implement this extension of the above process, we use a multiprocess design that takes

advantage of modern consumer processor architectures to radically reduce execution

time [9]. Each test case is dispatched as a task to a worker pool with any pruning

percolated to future tasks. We minimise the symbolic execution load with two features.

Firstly, intelligent pruning of the search space, i.e. not searching known-unrepairable

assignments in subsequent test cases after the search has started. Secondly, we minimise

the disruption of an intractable (a risk of model-checking programs) or slow search

branch by monitoring and evicting tasks, which are retried later, once the search space

has been pruned.
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3.2 The Localisation Algorithm

We propose a fast algorithm which optimises the search of the test suite and viable

repair locations to bring this process into line with current performance expectations

and without compromising the completeness of the results this technique allows. Each

test case in the suite comprises an input string, which becomes the argument vector,

and a desired output string from an oracle version of the program variant. We discuss

this algorithm design with respect to the C programming language but it can be applied

to any language with suitable support for symbolic analysers.

Figure 3.4: Diagram of the data flow through the algorithm architecture

We transform an input C program using an extended Griesmayer inversion process

detailed in subsection 3.2.1. This is handed to a worker task (see subsection 3.2.2) with

a whitelist of locations to search and a single failing test case. The returned set from this

worker is a narrowed whitelist of locations that the test case flagged as being a potential

repair. We manage this process using the main tool loop (see subsection 3.2.3). In

the algorithms below we denote C programs as C and (after transformation) D and E.

Individual failing test cases are f from the non-empty queue F . The refining whitelist

of locations is L, which is narrowed during figure 3.6 to generate the smaller whitelist

K as output. In the Process Manager algorithm, P is the worker pool manager.

The diagram in figure 3.4 shows the data flow through the tool architecture. The initial

inputs, C and F , and the final output of a set of fault locations are noted entering and

exiting the tool via circular dots at the extreme left and right of the diagram. Arrows

denote the flow of data between functions, which are explained in detail in the algorithm

descriptions through section 3.2. The data objects are listed above or below the arrows

with the algorithm symbols noted in square brackets. To highlight the transition from

the Pool Manager to the Test Case Search task, calls to AddTask have been noted on

the flow. As described in subsection 3.2.3, the management of the queue, F , is noted

via functions in dotted boxes and the decision made after intersecting the returned sets,

Ks, is highlighted by solid flow lines on the different paths with the conditions noted

after the if labels. The difference in failing test case use between KLEE and ESBMC,

as explained in subsection 3.2.1 and subsection 3.2.2, is noted with bracketed labels for

a split flow line out of Dequeue.

We provide two main contributions with this algorithm design. First, the reduction

in symbolic execution work via the use of a narrowing process of whitelisting locations
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searched. Second, the management of cases where the time to return a narrowed whitelist

is significantly beyond the mean time for a failing test case. This later case can be due

to either an intractable model representation or poor narrowing compared to other

unexplored failing test cases. This management is designed to provide a more consistent

completion time over a range of different localisation searches. This aims to avoid

slowdown from the highest cost branches of the search rather than focussing on providing

an optimal search when all branches are cheap to search.

3.2.1 Extended Inverted Model Transformation

The program under analysis is transformed in two stages. First, an initial generic trans-

formation ApplyGenericTransforms is applied once, as described in subsection 3.2.3.

This includes the Griesmayer inversion, as outlined in section 3.1, and some accommo-

dation of test case input and output data as inline specification. In the second stage

ApplySpecificTransforms is applied, as described in subsection 3.2.2, for each subsequent

test case processed. This implements any whitelist narrowing possible at this iteration

via the toggle; for ESBMC it also includes some test-case-specific input data encoding

into the program text.

When we introduced our worked example in section 3.1, figure 3.1 was already specified.

A more faithful form of the student coursework submission it is based upon is given in

figure 3.5. This is the source that our tool must be able to work with to provide a fully

automated tool-chain in chapter 5.

1 #DEFINE BR 15

2

3 // normalHours , overtimeHours , age

4 int payMe(uint nH , uint otH , uint age) {

5 uint bonus = BR * (otH * 2);

6 uint normalPay = BR * nH;

7 uint ageHigher = age % 20;

8 uint SelBR = BR + ageHigher;

9 uint SelBonus = otH * (3 * SelBR );

10 uint SpecialNormalPay = nH * SelBR;

11 uint specialPay = BR + 20;

12 if ((age > 20) && (age < 40)) {

13 return SpecialNormalPay + SelBonus;

14 } else if (age >= 40) {

15 return (nH * specialPay) + (( specialPay * 2) * otH);

16 } else {

17 return normalPay + bonus;

18 }

19 }

20

21 int main(int argc , char ** argv) {

22 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

23 }

Figure 3.5: Worked transformation: Original faulty code

The previously discussed Griesmayer inversion is always applied during the generic stage,

ApplyGenericTransforms. Also at this stage, we automatically encode the test case



46 Chapter 3 Fast, Test-Driven, Model-Based Fault Localisation and Repair

specification into the input program, avoiding the need to manually hard-code the inputs

into the program. The input and output of C programs are defined by the passed

program arguments, argv, and the standard inputs and standard outputs. For the

fully-automated execution of our tool, the input and desired output are encoded into

the program via an expanded standard input; we widen argv to also accept the desired

output as an extra string value. This can be compared in the transformed program

against modified stdout commands, replacing calls to e.g. printf with comparisons

that increment a pointer to the desired output when it matches the previous output

of the printf. Assertions inserted before the program’s terminal nodes, which confirm

the pointer to the desired output has reached the end of the string, will complete this

encoding of the specification. This is used in the generic implementation of automated

specification insertion that our tool defaults to. It can be overridden with additional

information about how to directly assert the desired output matches the final variable

holding the result of the program.

An optimisation of this string replacement is used for simple programs, such as TCAS

and our worked example, that only require a single integer value to be checked for output

specification compliance. Rather than encode the output as a string that is walked, it

can be handled in the same way most input integers are. A call to printf("%d", val);

can be replaced with assert(val == atoi(argv[X])); for X being the last value of

the now-widened input vector. A program that returns a value to the calling program

or operating environment will expose return calls in main that can be prepended with

a similar assertion. In our worked example from the coursework database, the test cases

define the name of the variable that must store the output value. On line 22 of figure 3.5

the value of result is tested by the inserted assert(result == atoi(argv[3])); in

figure 3.1.

Program transformations can extend the number of assignments visible for repair. For

example, a return statement that calculates a result before returning it can be divided

into two steps with a temporary variable. Thus, return a+b*c becomes temp=a+b*c;

return temp, exposing the expression to an assignment-based repair. If returns are

always considered to be implicit assignments then localisation is expanded from assign-

ment locations to also include all return statements. On lines 13, 15, and 17 of figure 3.2

this can be seen applied to expose the implicit assignments of the expressions returned

without needing to make the temporary assignment explicit.

On line 1 of figure 3.5 there is a preprocessor statement DEFINE BR 15. This is auto-

matically integrated into the C program from the C Pre-Processor, where it could not

be reasoned on by the symbolic analyser as a single global value. This substitution into

line 2 of figure 3.1 checks the scope of the global to ensure a single assignment covers

all uses of the token. This extension of the transformation process allows the symbolic

analysis of this value to test it as a site of potential repair and can be mapped back to

the original DEFINE by the reporting tool.
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During the specific stage, i.e. ApplySpecificTransforms, the whitelist of locations must be

applied to narrow the range of toggles being searched. We do this by adding assumptions

of the form assume( t != 7); immediately after t is assigned a symbolic value,

blocking searching the assignment to, in this example, SpecialNormalPay on line 10 of

figure 3.3.

For ESBMC there is no way to populate argv in the program simulation, so the argv

values need to be hard-coded into the transformed program before handing to the sym-

bolic analyser. As this is linked to the specific test case, this can only be done at the

specific stage. In our worked example, line 10 of figure 3.3 would be modified during

this transform pass to swap out the atoi(argv[X]) calls with the values from the test

case being tested. KLEE provides a POSIX implementation for program I/O during

simulation. This allows the test case input to be fed into the standard argv parameters

and removes the requirement for this specific stage transform, figure 3.3 would be used

as written.

3.2.2 The Test Case Search Algorithm

The algorithm in figure 3.6 outlines a single task, which defaults to being deployed to a

single core via the pool manager discussed in subsection 3.2.3. When AddTask is called

on lines 5 and 24 of figure 3.7 by the manager then an instance of this single unit of

work is queued into the worker pool. These tasks run independently until they return

their narrowed list of locations, K, on line 9 or are ejected by the pool manager. Each

task takes an input program which has already been transformed by the generic stage, a

single failing test case, and a whitelist of locations that are indicated by their associated

toggle values.

Input: Program D; Failing Test Case f ; Location Set L
Output: Fault Location Set K

1: E = ApplySpecificTransforms(D, L, f);
2: CounterExamples = CallModelCheckerOnInput(E, f)
3: K = [];
4: for c in CounterExamples do
5: if c.UnconditionalAssertionFailure() then
6: K.Add(ExtractLocationValue(c));
7: end if
8: end for
9: return K;

Figure 3.6: Test case search worker algorithm

ApplySpecificTransforms is discussed in subsection 3.2.1. The final transformed program

is generated, ready for submission to the symbolic analyser. The toggle values are

restricted to the whitelist and, in the case of ESBMC, the test case is hard-coded into

the source code.
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CallModelCheckerOnInput passes the transformed program to the model checker. For

ESBMC the failing test case has been encoded into the source code (in ApplySpecific-

Transforms) but KLEE still requires this information. KLEE, using the POSIX runtime

environment model, is passed the argument vector (extended to contain the desired out-

put) during the simulation of the program execution.

The call to CallModelCheckerOnInput returns the counter-examples for this failing test

case, which are a set of traces that result in the raising of specification failure when

simulating the execution of the transformed program. The traces are parsed into a

format that holds the failure type and the associated assignment to t and symbolic().

In the case of ESMBC, this process is iterative as only one counter-example is generated

by each instantiation of the symbolic analyser. For ESBMC, a loop that modifies the

input program to further narrow the toggle values explored allows the symbolic analyser

to run repeatedly until no new toggle value is generated. This, executed inside the call to

CallModelCheckerOnInput in figure 3.6, generates a full list of toggle values associated

with repairs for this failing test case. KLEE does this loop automatically within a single

call.

On lines 3 – 8 the old whitelist is replaced with the new list of toggle values returned

by the counter-examples, generated by the symbolic analyser execution. This narrowing

checks the counter-example type to ensure the assertion raised is the assert(0); added

before the program’s terminal nodes.

The time it takes to process this task is not predictable with any degree of certainty. The

core operation of calling the solver inside the symbolic analyser is a logical satisfiability

problem, which is NP-complete [21]. This type of SAT problem has been shown [17] to

not provide predictable tractability. This unpredictability of the time it takes to process

each logic expression in the symbolic analyser is the core issue that our algorithm must

cope with. Each counter-example generated has a corresponding solver stage and there

are an unknown number of counter-examples multiplying this unknown per-instantiation

processing time.

Each counter-example generated increases processing time and so a significantly nar-

rowed whitelist, which blocks off many counter-examples, is highly beneficial. We man-

age uncertainty via the pool manager and ensure that narrowing results are percolated

to new tasks as soon as possible.

3.2.3 The Pool Manager Algorithm

The main tool loop, which manages the process pool and task scheduling, generates an

output set of viable repair locations (lines 29 and 19 of figure 3.7). The input is an

untransformed C program and a non-empty queue of failing test cases, each of which

comprises an input string and a correct output string. To provide our evaluation of
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this tool with generalization validity, the queue’s order is randomised. This is because

the optimised search varies in performance based on the test case order, as discussed in

section 4.2.

Input: Program C; Failing Test Case Queue F 6= []
Output: Fault Location Set L

1: (D, L) = ApplyGenericTransforms(C);
2: V isibleCores = Min(Len(F ), OS.V isibleCores);
3: P = EstablishWorkerPool(V isibleCores);
4: for 1 .. V isibleCores do
5: P .AddTask(D, Dequeue(F ), L);
6: end for
7: WithoutImprovement = 0;
8: while P .HasOpenWorkers() do
9: Sleep(TickT imerMS);

10: if P .HasCompletedTasks() then
11: Sleep(0.25 * P .GetFastestCompletedTaskTime());
12: for w in P .GetCompletedTasks() do
13: Lnew = w.Locations ∩ L;
14: if Lnew == L then WithoutImprovement++;
15: else WithoutImprovement = 0;
16: end if
17: L = Lnew;
18: end for
19: if WithoutImprovement > 15 then return L;
20: end if
21: F .Enqueue(P .ReturnTCsForIncompleteTasks());
22: for w in P .GetAllTasks(); do
23: P .RemoveTask(w);
24: if Len(F ) > 0 then P .AddTask(D, Dequeue(F ), L);
25: end if
26: end for
27: end if
28: end while
29: return L;

Figure 3.7: Pool manager algorithm

ApplyGenericTransforms on line 1 applies the generic transform stage discussed in sub-

section 3.2.1. This parsing of the source file, as it walks all the fault locations being

searched to apply the assignment transform, is also used to generate the initial whitelist

of all toggle values that correlate to a localisation.

A worker pool is established on line 3, which provides the interaction point for all calls

involving workers and the tasks they are executing or schedule for future execution. The

tool queries the operating system to establish the multiprocessing pool is as wide as the

exposed CPU core count, unless there are fewer failing test cases than available cores

(line 2). The use of the worker pool is to avoid a single intractable task from stalling the

entire search. This is most efficiently achieved on modern multi-core consumer hardware
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by dedicating one core to each worker. A similar pool could be managed on a single-

core processor using the OS scheduler to manage the tasks, with the added overhead of

regularly swapping the current process.

Each worker will process an independent task (i.e. figure 3.6) which takes the transformed

program from line 1, a failing test case, and the current whitelist. This will eventually

deplete the test case queue. Lines 4 – 6 push an initial batch of tasks to the pool

system, which will use the un-narrowed whitelist created on line 1. Batching tasks

with a multiprocessing implementation increases throughput, even with an algorithm

dependent on the pruning of the search space for efficiency. Critically, this prevents one

slow task, whose individual contribution is not required for the search, from completely

stalling the full search. A typical four-core CPU executing highly variable return-time

tasks with probability p intractable outliers in the task queue will only stall the entire

process when all cores are filled with intractable outliers at once. This probability of p4

is a significant improvement, especially for this process where stalled tasks may become

tractable later due to whitelist narrowing of the search space.

The main tool loop starts on line 8 of figure 3.7. The loop exits when the pool manager

is not holding any completed tasks (waiting for their return value to be processed), no

tasks are in flight, and no tasks are queued waiting to be started.

The pool manager thread sleeps to allow the pool’s workers to monopolise the CPU, pe-

riodically waking to check if any tasks have completed with HasCompletedTasks. When

at least one completed task is ready for retiring from the pool, the main thread waits

for other tasks to complete. This waits a maximum of 25% of the time the fastest

task completed with (line 11). This allows slower tasks with valuable narrowing results

to complete and be added to the narrowing before the next generation of tasks is dis-

patched. The completed tasks after this time-out are iterated on lines 12 – 18. To

prepare for the next generation of tasks to be dispatched, a new whitelist is created that

includes all narrowing returned from the completed tasks during this generation.

A counter, WithoutImprovement, is incremented if the returned narrowing does not

prune the existing set. This will eventually trigger an early termination clause (line

19) when the narrowing process has stalled for many failing test cases in a row. This

provides enhanced time performance with larger failing test case sets, without harming

the narrowing performance, as the larger sets have more redundant (for narrowing) test

cases.

Any task which has been flagged as failing to complete in a time consistent with the

others, missing the 125% dynamically assessed expected time, is queried on line 21. The

failing test case it failed to complete is added back to the tail of the queue. If the

whitelist is smaller when this task comes back up then it can be rescheduled, with the

reduced search space increasing the likelihood of a fast completion time. Test cases are

flagged as repeats so they are not enqueued a third time if they failed to complete a
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second time. This protects against intractable tasks which will not provide narrowing

data. All of the tasks from a generation will have now been processed, so they are

ejected from the pool (line 23). The next batch of tasks is despatched to the pool (line

24) with the newly narrowed whitelist, if there are still failing test cases in the queue.

This generational search process, with percolated combined narrowing, limits the ex-

plored search space to relevant branches where a find is still viable and reduces the sym-

bolic execution work for the solver. Some tasks may still be intractable so, to prevent

them slipping through any cracks in this process, a global timer that must be configured

to denote what is an “unreasonable” processing time is established that ejects tasks that

fail to complete in that time. This will only be triggered if all active workers are stalled

with intractable problems but does require configuration of what is an unacceptable

wait.

Scheduling this task pool over a standard consumer multi-core CPU with these guards

against search stalls and early rejection of superfluous searches provides significant per-

formance improvements, as indicated by our preliminary results in chapter 4.

3.3 The Repair Algorithm

The fault localisation inverted model search refined above provides assignments where a

repair is possible but does not provide a high-quality repair, only the indication that such

a repair exists. Reversing the assumption made in mutation testing (cf. subsection 2.4.3),

we researched the possibility that a mutant of a faulty assignment could repair the

program, ensuring all test cases passed. Using the same optimised inverted search as

above, our repair approach replaced toggle values selecting between potential repair

locations with toggle values for various mutants of the expression previously localised as

potentially being a repair site. The abstract syntax tree (AST) of the expression where a

repair was being searched for was modified to index into tables of function and variable

pointers that replaced the (unary or binary) operation and variables or constants in the

expression.

Although ultimately a negative result, as discussed with results in section 4.5, we also

explored an extension of the inverted model-based localisation to generate a search

of potential repairs from a range of synthesised expressions. We aimed to provide a

repair synthesis tool which would use the same general inverted search form, with our

accelerated search improvements to improve tractability, generating high-quality repairs

that could be validated by the programmer before integration into the repaired program

without the need for human repair synthesis. This would be provided while still only

using the test suite as specification and being end-to-end fully-automated. This would

have been a significant contribution to the field discussed in section 2.7, going well beyond
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the low-quality repairs in the form of the look-up tables our tool already generates as a

byproduct of this specific model-based localisation technique.

We developed a tool that uses a mutation of the existing, defective expression in the

assignment as the foundation for creating mutated expressions which may repair the

program for all passing and failing test cases. This searches the space of expressions

similar to the programmer’s assignment attempt and will cover several classes of mistake.

For example, several typos, including those made syntactically valid via autocomplete,

or mixing up variable names or operators when constructing complex expressions to

deadline.

*SelBonus =

*otH

SelBR3

pick(__a)SelBonus =

pick(__a)pick(__v)

pick(__v)pick(__v)

Figure 3.8: AST of transformed expression

Repair transformations are applied on a per-location basis, rather than the localisation

transformation which is applied at all viable locations at that stage of the search (the

whitelist locations). This process is called at each assignment location where a viable

repair was reported to exist by our localisation tool, generating a search of the potential

mutants that can repair all test cases. The process uses all test cases, not just the

failing ones, as passing test cases will also define the different mutated expressions that

can keep the passing test case working.

In figure 3.9, the specified code in our worked example has been transformed to search

for a high-quality repair at the assignment on line 7 of figure 3.1. The repair strategy is

to retain the form of the original faulty assignment expression but mutate each binary

operation within a family of similar operations. Each variable is similarly mutated

in-place with an open choice of any variable or literal in scope at that point in the

program. In figure 3.8, this expression is shown as the AST representation and how a

toggle (pick) is applied at each node referencing into either a table of binary operation

function pointers, a, or table of variable pointers, v.

The repair mutation space is defined by a set of toggles, given symbolic values, that

index into arrays from which the mutation is selected. This provides the symbolic

analyser with the full mutation space. The binary operations are chosen from lists of

functions generated by the transformation to match the required prototype and return

the expression. In figure 3.9, lines 1–7 define the binary operations available for this

mutation with a1 and a2 being the toggles made symbolic and restricted on lines

10 and 11. The variables are chosen from those which are in scope at that point in
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1 typedef uint(* funcform )(uint , uint);

2 static inline uint fnmult(uint x, uint y) { return x*y; }

3 static inline uint fndiv(uint x, uint y) { return x/y; }

4 static inline uint fnadd(uint x, uint y) { return x+y; }

5 static inline uint fnminus(uint x, uint y) { return x-y; }

6 static inline uint fndiscardy(uint x, uint y) { return x; }

7 static funcform __a[5] = {fnmult , fndiv , fnadd , fnminus , fndiscardy };

8

9 int payMe(uint nH , uint otH , uint age) {

10 uint __a1 = symbolic (); assume(__a1 < 5);

11 uint __a2 = symbolic (); assume(__a2 < 5);

12 uint __v1 = symbolic (); assume(__v1 < 11);

13 uint __v2 = symbolic (); assume(__v2 < 11);

14 uint __v3 = symbolic (); assume(__v3 < 11);

15 uint BR = 15;

16 uint bonus = BR * (otH * 2);

17 uint normalPay = BR * nH;

18 uint ageHigher = age % 20;

19 uint SelBR = BR + ageHigher;

20 uint __l1 = 2, __l2 = 20, __l3 = 3;

21 uint *__v [11] = {&nH, &otH , &age , &BR , &bonus , &normalPay , &ageHigher ,

22 &SelBR , &__l1 , &__l2 , &__l3};

23 // uint SelBonus = otH * (3 * SelBR );

24 uint SelBonus = __a[__a2 ](*__v[__v3], __a[__a1 ](*__v[__v1], *__v[__v2 ]));

25 uint SpecialNormalPay = nH * SelBR;

26 uint specialPay = BR + 20;

27 if ((age > 20) && (age < 40)) {

28 return SpecialNormalPay + SelBonus;

29 } else if (age >= 40) {

30 return (nH * specialPay) + (( specialPay * 2) * otH);

31 } else {

32 return normalPay + bonus;

33 }

34 }

35

36 int main(int argc , char ** argv) {

37 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

38 assume(result == atoi(argv [3]));

39 assert (0);

40 }

Figure 3.9: Worked transformation: Repair model of specified code

the program. Lines 12–14 define the toggles for these and line 21 defines the table of

pointers to be searched.

When an integer literal is found in the expression to be mutated, or other expressions

in that code block, they will have no memory address to dereference so a temporary

variable is created to provide access to these substitutions. Line 20 demonstrates this,

with the addresses added in line 21. The literal ‘15’ (from line 15) is not added to the

table as this would be duplication of BR and a simple check ensures these duplicates

are avoided to reduce the mutation space size when it does not increase the actually

different repairs expressed. Pointers are used rather than an array of copied value to

best preserve the behaviour and access order for the data, as the table of variables cannot

be generated at the same point as they are used and C expressions can have side effects.

On line 24 of figure 3.9 the assignment being repaired is rewritten as references to the

table of appropriate functions being substituted and values in scope to be swapped in.

Here 3 * SelBR has first been transformed into a mutation space defined by a1, v1
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and v2, then this is one of the parameters passed to the call using toggle values of a2

and v3 to encode otH * ([...]). This allows the repair space to cover the form of the

original expression but with any variable/constant and binary operation swapped out

from the tables of options. Different expressions which use unary operators or different

binary operations, for example boolean logic operators, can reference into different tables

of function forms not shown here.

As with localisation, the specification has been inverted with an identical process. As

this process is built on the same algorithms as our localisation refinement process, this is

broadly the same as that discussed in chapter 3. We will not go over the parallelism of the

process as this is an identical algorithm and the choices made for that implementation

are guided by the performance characteristics seen during mutation space refinement

with the risk of degenerate cases and a high variability in return times based on which

test case is under test.

However, maintaining a whitelist for a combinatorial mutation space can quickly grow

with transformations of expressions using many parameters or with programs which

expose many variables to the entire scope of the program. Writing an assume, such

as assume( a1 != 2 && v1 != 1 && v2 != 4), for each found repair for a single

test case quickly introduced too much complexity to the generated solver problem when

using ESBMC. We needed to test different forms of assume blocking to most efficiently

define the shrunk search space of mutations not already found to repair the test case

being searched.

1 switch(__a1) {

2 case 0:

3 switch(__v2) {

4 case 0: assume(__v1 != 2 && __v1 != 3 && __v1 != 20); break;

5 case 7: assume(__v1 != 7 && __v1 != 15); break;

6 case 8: assume(__v1 != 1 && __v1 != 4 && __v1 != 18); break;

7 case 10: assume(__v1 != 3 && __v1 != 4); break;

8 }; break;

9 case 2:

10 switch(__v2) {

11 case 0: assume(__v1 != 5 && __v1 != 11); break;

12 case 1: assume(__v1 != 5 && __v1 != 10); break;

13 case 3: assume(__v1 != 7); break;

14 }; break;

15 case 3:

16 switch(__v2) {

17 case 0: assume(__v1 != 1 && __v1 != 4 && __v1 != 8); break;

18 case 1: assume(__v1 != 0 && __v1 != 4 && __v1 != 18); break;

19 case 3: assume(__v1 != 2 && __v1 != 5 && __v1 != 11); break;

20 }; break;

21 }

Figure 3.10: Tree of blocking assumes to narrow found counter-examples

Branching, as seen in figure 3.10, is required to rapidly iterate over the potential mutation

space without creating thousands of asserts or assumes that are unconditionally called,

without which the processing time for an ESBMC conversion to solver problem can

explode. The use of assumes to block as soon as all toggle variable are defined, rather
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than selective asserts at the tail of the program traces (only exposing an unconditional

fail when a whitelist toggle combination is met), may terminate the path search for

KLEE more rapidly and so reduces the time before those paths are rejected. Both

of these choices are critical to avoiding exploding processing time when moving from

localisation with tens of locations to mutations with hundreds or thousands of different

options to potentially block.

Even with these optimisations to ensure no new tractability issues are introduced, when

tested against anything larger than a toybox scale repair problem, this technique fails

to provide results in times comparable with a concrete search of the mutation space.

The iterative process for gathering repair mutations leads to a symbolic approach and

per result time costs with effectively concrete approach individual results except in cases

where only a very small percentage of the mutation space is viable to repair any single

test case. This lack of narrowing on a much large search space than the localisation

problem is common to typical real-world code, where each test case often has a wide

range of repairs possible. We discuss this further and draw conclusion in section 4.5,

where we also present results from our tool.

3.4 Conclusions

We have developed a smart search process to significantly reduce the processing time of

a test-driven, model-based localisation process. This provides two main contributions.

First, the reduction in symbolic execution work via the use of a narrowing process of

whitelisting locations searched. Second, the management of cases where the time to

return a narrowed whitelist is significantly beyond the mean time for a failing test case.

This management is designed to provide a much faster and more consistent completion

time over a range of different localisation searches, allowing this technique to compete

with spectrum-based methods [RQ1] without sacrificing accuracy [RQ2].

This generational search process, with percolated combined narrowing, limits the ex-

plored search space to relevant branches where a find is still viable and reduces the

symbolic execution work for the solver. Scheduling this task pool over a standard con-

sumer multi-core CPU with these guards against search stalls and early rejection of

superfluous searches aims to provide significant performance improvements, which we

later confirm in chapter 4. We go on to test this design against a large set of actual C

programs [RQ2, RQ5] in chapter 5, including expanding this narrowing search to enable

localisation outside of a single-fault assumption [RQ4].

We also propose an expansion to this inverted model which searches for mutants of

localised assignment expressions which may form a high-quality repair for the program

under test [RQ3]. This is later tested in section 4.5.





Chapter 4

Fault Localisation and Repair on

the Siemens Suite

We initially demonstrate the time and localisation performance of our tool on the

Siemens test suite’s TCAS program and test universe taken from the Software-artifact

Infrastructure Repository (SIR) [30]. For the single-fault variants, we maintain time

performance within the same order of magnitude as the current model-based fault lo-

calisation state of the art, Jose and Majumdar. We guarantee returning the location

of the injected fault in every failing case, which Jose and Majumdar cannot. For 31

of the 33 single-fault variants we improve on the localisation performance of Jose and

Majumdar’s results.

4.1 Data Set

TCAS is a 173 line C program from which 41 variants have been generated by seeding

(injecting) faults. Of these, 33 variants have been seeded with a single fault and exhibit

at least one failing output with the test suite of 1608 test cases. These provide mean-

ingful interpretation when comparing the performance of localisers with a single-fault

assumption.

Inside the Siemens suite of programs, which share the test universes and fault-seeded

variant format, there are six other programs on a similar scale of hundreds (400-750)

of LoC. These are also used in the literature to establish localisation performance. Of

there programs, tot info has calls to the external C library libm and so is not being

considered at this point for testing but should be tractable if these external calls were

redirected to local implementations of the required functions (a limitation of KLEE’s

use of LLVM IR for input). Schedule, as seen in the 11 hour completion time in a test

57



58 Chapter 4 Fault Localisation and Repair on the Siemens Suite

typically only taking seconds others have published [61], provides issues with tractability

when modelled and has not provided any successful results for our tool.

The other four programs are print tokens, print tokens 2, replace, and schedule 2. These

programs all use ASCII input/output as part of their specification and include loop

or recursive calls (including while loops on strings). They all reference tens of global

variables, except for print tokens which contains large global arrays and so exposes over

800 primitive type variables at all points in the program. They each provide between

7 and 32 seeded variants and come with a universe of 1000 to 5500 test cases per

program. All make use of C’s type system (beyond TCAS ’s use of only integer variables)

but print tokens and schedule 2 have a complex type system (including structs). The

arithmetic binary operations that TCAS lacks are well covered in these other programs.

The C standard library is exercised far more thoroughly via these programs, especially

leaning on the ASCII functionality that TCAS does not require (outside of atoi).

4.2 Experimental Setup

In table 4.1 and table 4.2 the headings refer to the following data sources and test

platforms: Griesmayer’s original data [39, §4, Table 1, p. 104] (G) uses CBMC on

a 2.8GHz Pentium 4 and our näıve reimplementation of Griesmayer’s algorithm (N)

using ESBMC v1.17 on a 3GHz Core2Duo E8400. This reimplementation on a more

modern Intel CPU and a recent SMT-based solver is designed to explore the potential

performance delta caused by an outdated version of CBMC and the Pentium 4. Our new

algorithm using ESBMC (E) and KLEE (K) as back-end both ran on a 2011-era 3.1GHz

Core i5-2400, with the ESBMC [23] v1.21 and KLEE [15] (for LLVM 3.4) symbolic

analysers. Jose and Majumdar’s results (J) are reconstructed from data provided [61,

§6, Table 1, p. 443] using MSUnCORE on a 3.16GHz Core2Duo. Boldface entries in

the table represent the best performance, underlined entries indicate failure to return

the injected fault location for all failing test cases. In table 4.1 the Jose and Majumdar

time data has been calculated by taking the number of executions per test case and

multiplying by the reported average time to complete a single execution of a failing test

case.

We shuffle the test suite to randomise the order of the failing test cases when invoking

our tool. This prevents the performance reported by our current tool only reflecting the

time performance when provided with the default test case order. The time performance

reported is the average of ten runs.
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4.3 Model-Based Fault Localisation Results

4.3.1 Run-time Performance on TCAS

Griesmayer et al. provided results on TCAS using state of the art (for the time) model

checking tools (CBMC) but indicated the design had not been optimised, saying “we do

not concentrate on performance” [39, §4.1, p. 105]. We reimplemented this näıve process

as described in the Griesmayer et al. paper. This is running on more modern hardware

and updated to use the current, CBMC-derived, SMT-based symbolic analyser ESBMC.

We implemented automatic specification encoding into the tool to hard-code test cases.

This tool iterates over all failing test cases, waiting for the symbolic analyser to return

all flagged locations. The tool then returns the common locations flagged by all the

failing test cases.

G N E K J G N E K J G N E K J

v1 2953 1442 9.0 4.5 2.1 v14 594 101 3.2 1.4 1.4 v26 311 114 3.4 2.1 1.2
v2 836 678 3.7 3.2 4.7 v16 1263 746 8.8 3.9 7.3 v27 153 107 3.3 2.3 1.1
v3 423 240 6.7 3.6 2.2 v17 1300 365 5.6 3.6 3.4 v28 642 711 2.0 2.7 6.1
v4 576 307 7.5 2.9 2.7 v18 499 188 3.7 3.0 3.6 v29 224 112 2.9 3.4 1.7
v5 159 106 3.2 2.3 1.2 v19 691 193 5.4 3.4 2.1 v30 939 508 3.9 2.8 3.7
v6 253 134 4.9 2.8 1.3 v20 748 196 7.4 4.3 2.2 v34 1906 790 4.9 3.0 7.7
v7 743 359 5.9 3.9 2.6 v21 585 197 6.7 3.7 1.7 v35 1069 711 2.3 2.8 4.6
v8 26 10 1.7 1.4 0.1 v22 223 42 2.8 2.6 0.6 v36 877 219 2.1 2.4 3.0
v9 114 72 2.0 2.1 0.8 v23 885 189 4.2 2.8 4.2 v37 822 729 3.7 4.1 3.7
v12 1664 727 5.0 3.4 11.5 v24 254 71 3.3 2.1 0.6 v39 66 8 1.0 1.5 0.3
v13 149 43 1.9 1.1 0.3 v25 68 8 1.0 1.5 0.2 v41 956 309 8.0 4.2 2.4

Table 4.1: Seconds to return location set for test suite. Griesmayer’s original
data [39, Table 1, p. 104] (G). Näıve reimplementation of Griesmayer’s algo-
rithm (N). New algorithm using ESBMC (E) and KLEE (K) as back-end. Jose
and Majumdar’s results [61, Table 1, p. 443] (J)

The average halving, at most six-fold, decrease in completion time from Griesmayer’s

results (696 seconds average) to our näıve reimplementation (325 seconds average) in

table 4.1 shows some performance increase is derived from using a modern symbolic

analyser on modern hardware. But, for example, variant 1 moving from over 49 minutes

to over 24 minutes to return a location set is not viable compared to the 2.1 seconds

of Jose and Majumdar or comparable with our optimised algorithm when also using

ESBMC, at 9 seconds.

We have implemented our algorithm as tools interfacing with ESBMC or KLEE. As

discussed in section 3.2, this is designed to maximise consistency and avoid worst case

processing time, as well as reducing the symbolic execution burden to improve times.

We provide run-time numbers for our algorithm using an ESBMC and KLEE back-end

in table 4.1. This indicates that using KLEE is often somewhat faster, compared to the
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ESBMC back-end, but the use of KLEE as the symbolic analyser is not a major factor

in the orders of magnitude time performance gap between the näıve reimplementation

of Griesmayer et al. and our algorithm with a KLEE back-end.

We maintain time performance within the same order of magnitude as the current model-

based fault localisation state of the art, as presented by Jose and Majumdar, throughout

the singe fault TCAS variants, marginally beating their times in ten of the 33 variants.

Our tool, using the KLEE back-end, averages a completion time of 2.87 seconds per

TCAS variant, compared to an average of 2.80 seconds in Jose and Majumdar’s results.

The ability of KLEE to scale to larger input programs offsets the few instances where

it does not lead our tool’s results compared to the ESBMC back-end.

These preliminary results support our claim that a Griesmayer-derived model-based lo-

calisation technique can be modified to be fast, comparable to the current alternatives

when localising on some small integer programs such as the TCAS variants. Using

intelligent pruning of the search space to minimise the symbolic execution load while

minimising the disruption of a slow or intractable search node is facilitated by a multi-

process design that takes advantage of modern consumer processor architectures.

4.3.2 Localisation Performance on TCAS

The scope of the localisation of a tool quantifies which locations are being searched by the

process and flagged as a potential fault. Different localisation scopes for each technique’s

implementation means their localisation performance is not precisely comparable. The

results published by Griesmayer et al. only explore the 34 explicit assignments in the

TCAS variants, which increases the localisation performance we would expect to see in

table 4.2 as there cannot be more than 20% of the total lines of code returned. Our

näıve reimplementation has an expanded scope that finds implicit assignments within

the source code, expanding the potential locations returned to 43 assignments, or 25%

of the source lines. This accounts for the weak, for Griesmayer-derived, localisation

performance. The localisation results for our algorithm using the ESBMC back-end are

omitted, but were noted to fall in line with the original Griesmayer et al. results and our

current numbers with KLEE. Our current tool, using a KLEE back-end, does not apply

all implicit assignment transforms implemented in our näıve reimplementation, only

implementing the transforms described in subsection 3.2.1. This reduces the assignments

tracked to 39, or 23% of the source lines.

We can conceptualise the Griesmayer-derived searches as building a look-up table for

each assignment location returned that, if complete, repairs all failing test cases. Passing

test cases already have known correct values for their assignments. Any location flagged

by a failing test cases will have, in the symbolic() value extractable from the counter-

example, the assignment which repairs that trace and so test case. It is thus possible,
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G N K J G N K J G N K J

v1 8.7 10.4 7.5 8.6 v14 2.3 2.9 2.9 8.1 v26 4.6 6.9 4.0 9.2
v2 2.9 2.9 2.9 4.6 v16 8.7 10.4 7.5 9.2 v27 4.0 8.1 3.5 10.9
v3 4.0 8.7 5.2 9.8 v17 2.3 1.7 2.3 9.2 v28 1.2 1.2 1.2 5.7
v4 8.7 11.0 8.1 9.2 v18 2.3 2.3 2.3 6.9 v29 1.7 2.3 2.3 5.7
v5 4.0 8.1 3.5 8.6 v19 2.3 1.7 2.3 9.2 v30 2.3 2.9 2.9 5.7
v6 7.5 11.0 6.9 8.6 v20 8.7 12.1 8.1 9.2 v34 4.0 5.8 3.5 8.6
v7 2.3 1.7 2.3 9.2 v21 8.7 12.7 8.1 8.6 v35 1.2 1.2 1.2 5.7
v8 11.0 16.8 10.4 8.6 v22 4.6 4.0 4.6 5.7 v36 1.2 1.2 1.7 2.9
v9 5.2 4.6 4.6 5.2 v23 5.2 4.6 4.6 6.3 v37 2.9 1.7 2.3 8.6
v12 4.0 4.6 4.0 9.2 v24 8.7 11.0 7.5 8.6 v39 4.6 3.5 4.0 6.9
v13 5.2 9.2 5.2 9.2 v25 4.6 3.5 4.0 6.9 v41 8.7 12.7 9.2 8.6

Table 4.2: Percentage of lines of code returned by localisation; see table 4.1 for
legend

for each location flagged by all failing test cases, to construct a complete look-up table

that ensures every test case now has a specification-complying trace, i.e. a genuine repair

exists at that location. In our results, the injected fault location is always included in the

locations returned. But, with this conceptualisation of the process, the other locations

are not false positives but additional locations where a genuine repair exists that will

allow the test suite to pass, to the limits of the symbolic analyser’s accuracy.

All our results confirm roughly comparable localisation performance between the various

Griesmayer-derived methods, after accounting for the differences in localisation spaces.

Any performance regression in localisation performance, when comparing the original

Griesmayer et al. results with our Griesmayer-derived localisation results, is most likely

the result of searching a wider assignment space. Localisation performance improve-

ments are likely to have resulted from more modern symbolic analysers providing a

more accurate exploration of the input C program, exploring new potential traces. Ex-

act localisation performance, while a common metric for comparison on TCAS and in

general, is slightly defocussed as a primary metric here. Each location returned by a

Griesmayer-derived tool is based upon a possible program repair that remedies the in-

jected fault. Evaluating the difference between Griesmayer-derived techniques, as they

all operate to generate this family of locations with look-up table justification, is to

penalise a tool for returning justified fault candidates. Each such location has a genuine

repair, despite not being the fault injection location.

Jose and Majumdar, with an approach based on mapping MAX-SAT clauses back to

source code, cannot be directly compared in terms of potential C code coverage. The

mapping of the MAX-SAT output, from logic clauses in the maximum satisfiable result

to source locations, can flag locations other than assignments. However, the granularity

of this mapping is not clear. Some of the lack of competitive localisation performance in

some variants shown in table 4.2 for Jose and Majumdar, when compared to Griesmayer
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et al. or our algorithm can be explained by this different scope of potentially returned

locations, where additional potential repair locations are being suggested outside of

assignment modifications.

When comparing the localisation performances, even without being apples to apples,

this is ultimately comparing sets of proposed fault sites where human developers must

search for a genuine repair, possibly the injected one. Our current tool is typically ahead

in this metric, sometimes by a significant percentage. In the two variants where our tool

performs worse, v41 returns a set of locations only one larger than those returned by

Jose and Majumdar, and v8 returns a set three locations larger.

Figure 4.1: Chart of data in table 4.2; see table 4.1 for legend

When comparing the localisation performance of these tools, we must consider that

there is an injected fault location for each of the single-fault variants of TCAS. For all

the Griesmayer-derived techniques then the injected fault location (the location where a

variant was seeded with a fault) is always included in the returned list of locations. Due

to the technique’s design (where a location is only returned if it is common between all

individual failing test cases), this means that this injected location will also be returned

when only given a single failing test case from any of the test suites and on any of the

single-fault variants. Any subset of the test suite that contains at least one failing test

case will, for all Griesmayer-derived tools, flag the injected fault location.

The results from Jose and Majumdar cannot make a similar claim. To account for some

failing test cases not indicating the injected fault location, their final set is based on

the most commonly indicated locations, not locations that are always flagged by every

failing test case. Their results for each full test suite do flag the injected fault location

for TCAS as most common. But they indicate that there exist subsets of the failing

test cases for which they would not flag the injected fault in the case of six single-fault

variants (underlined in the tables).
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4.4 Spectrum-Based Fault Localisation Comparison

Comparing our results directly with those published previously which use spectrum-

based localisation techniques, discussed in subsection 2.5.1, is even more imprecise than

the above noted issues of narrowing comparability in subsection 4.3.2. The granularity

of most spectrum-based localisation techniques is down to the line of code as this is how

code coverage tools like GCov report their statement coverage output. All locations

are ranked by suspiciousness using the various weighting formulas. The localisation

performance is typically measured as the average percentage of the program that doesn’t

needs to be traversed by the human debugger before encountering the inserted fault.

So a score of 100% means that the inserted fault in the variant is marked as the most

suspicious, so a human debugger doesn’t need to view any of the non-faulty code lines

before encountering the injected fault. The language used also refers to each variant

localised as a run, as reproduced in figure 4.2 and imported into our own results in

figure 4.3 to retain consistency of labelling. The choice of label name, axis order, and

score method is replicated here to retain consistency with earlier papers that establish

this convention [19, 60].

Figure 4.2: Comparison of effectiveness of spectrum based techniques repro-
duced from Jones and Harrold [60, Figure 2, §3.3]

Jones and Harrold provide results based on the full Siemens suite of programs which

is visualised as a chart of the percentage of the program that need not be examined,

i.e. the percentage of the program that is ranked as less suspicious than the injected

fault location, against the variants that meet this performance criteria. There are a

total of 132 different program variants over the full Siemens suite being summed here

so the performance of only the 41 TCAS variants are a minority of the results reported.

For this reason we have not overlaid our results onto the reproduced chart, as the ‘test

runs’ (program variants) are not equivalent. It should also be noted that each of the

lines on the reproduced chart are also referring to slightly different subsets of the total



64 Chapter 4 Fault Localisation and Repair on the Siemens Suite

132 program variants in the Siemens suite as those which cannot generate a result are

rejected. Tarantula reports on 122 variants [60, §3.2.1], Cause-Transitions (CT) on 129

variants [19, §7.5], and Nearest Neighbour (NN) on 109 variants [60, §3.2.1].

The chart is constructed into decile buckets except for the initial 100% bucket as not

traversing any of the program under test will guarantee that the fault has not yet been

traversed. This is replaced by a 99% bucket for variants which have been localised with

the injected fault in the top 1% of all locations and a bucket below it for those over

1% but under 10% (98–90% in the scale used). The comparison shows how Tarantula

outperforms some contemporary (at the time) techniques and so this solid line is the

one we wish to compare our results again. We have reproduced this in figure 4.2. It

is clear that the narrowing, while excellent for a few and good for many when using

Tarantula on the Siemens variants, does not reach a point of uniform guarantee before

the majority of code must be searched. Some variants are localised with a result which

ranks the true fault location as less suspicious than most of the rest of the locations in

the program, a result worse than chance.

Figure 4.3: Effectiveness of our localisation techniques (partial x-axis)

Using the same method for creating a ranked list as later relied upon in section 5.2, we

have converted our results using KLEE from table 4.2. We use a middle-line strategy,

ranking equally suspicious statements with the mid-point rank. For example, statements

with suspiciousness (0.1, 0.4, 0.8, 0.4, 0.4) are ranked (5th, 3rd, 1st, 3rd, 3rd). Results

from our model-based tool have been converted from an unranked list using this strategy,

where all locations returned are given a suspiciousness of 1.0 and all others a suspicious-

ness of 0.0. This effectively provides our results with a ranked narrowing of half the

percentage of lines of code returned. This makes sense as the average performance of
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our tool as an unranked subset of locations randomly shuffled to provide an arbitrary

ranking will, if the fault is in that subset as it is with out localisation lists, rank at an

average of half way down the ranking.

However, charting our results using the same decile buckets provides an uninteresting

comparison as by the 90% plot, our tool has ranked every variant’s injected fault inside

of the list. An average traversal of a ranked list generated with our unranked conversion

will have passed the injected fault before 10% of the lines have been looked at for every

variant. Even looking at the absolute worst case performance of our tool on the single-

fault TCAS variants, assuming our random ranking of the list of returned locations

always put the injected fault location as least suspicious, we would still have reached

97% of the variants covered at the 90% need not be examined point on the chart.

We have therefore provided in figure 4.3 a zoomed in plot of only the leftmost 6% of the

full chart range and have bucketed this data at every quarter percentage. This indicates

how our model-based localisation results would be represented on the very leftmost

sliver of figure 4.2 before running a straight line at 100% of the variants for the majority

of the chart. To visualise the worst case performance of our tool on the single-fault

TCAS variants, the x-axis can be doubled in length (so 100–88%) for the same curve.

This should not be read as a definitive comparison and is provided with significant

caveats. This data is not directly comparable due to variable code coverage criteria and

because the chart from Jones and Harrold combines data from various large subsets of

all the Siemens variants, not just the 33 single-fault TCAS variants we are charting. In

chapter 5 we will present more valuable comparisons between spectrum-based and our

model-based tool using a fixed data set.

4.5 Model-Based Fault Repair Results

Our proposed high-quality repair tool, which implements the technique described in

section 3.3, executes our localisation tool to generate a list of locations in which an

assignment expression has been flagged as potentially a repair site. It iterates over this

list and all test cases to isolate any mutations to the expressions which repairs all failing

test cases while continuing to allow all passing test cases to pass. When provided with

a faulty program and a test suite then our repair tool is fully automated and uses very

similar transformations to the localisation tool used above. This research was concluded

before the completion of all the optimisations and refinements to our threaded search

and represents a snapshot of a branch of inquiry that was ultimately not followed. As

there are no situations where a concrete execution of the same search is anything but

significantly faster than this approach, all further development was halted. This is

provided for completeness and to publish our negative results.
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v1 v4 v9 v16 v17 v20 v25 v36 v39 v40 v41

Best 123s 67s 50s 191s 41s 225s 90s 37s 90s 73s 394s
Worst 438s 455s 328s 888s 42s 752s 570s 37s 552s 511s 764s
Median 245s 206s 110s 300s 42s 510s 240s 37s 172s 217s 554s
Mean 227s 223s 133s 373s 42s 452s 368s 37s 210s 285s 546s

Table 4.3: End-to-end repair results

Our tool, using ESBMC, synthesises repairs from a mutation space search and verifies

that the proposed high-quality repair works under the specification of the full test case

universe of the TCAS variants. Our search process relies on using an unordered selection

of passing and failing test cases and so the different narrowing performances for each

test case essentially randomise the final completion time. Unlike our results in subsec-

tion 4.3.1, the scale of the search space and variability of the narrowing here, potentially

requiring thousands of mutations to be tracked at each repair location, creates a signifi-

cantly larger range of run-time results. Any mutation space that was beyond thousands

of potential mutants was rejected as intractable by an early termination clause to pre-

vent the tool from failing to return any results. Variants for which we do not publish a

result failed to generate the repair for the injected fault within a reasonable execution

time and were terminated. In table 4.3 we provide, for a single-threaded end-to-end

repair process, a typical response time with a median and mean as well as providing

the fastest and the slowest complete run response time from a random selection of 10

runs. This should provide more informative than other reporting methods such as taking

each run component and computing the fastest possible run via each minimum observed

component completion time.

A prototype of the implementation of threaded optimisations which manages the variable

tractability and run-time cost of each search outlined in section 3.2 was applied to our

repair tool. In table 4.4 we provide our last results on end-to-end repair of TCAS using

the full threaded performance of the tool, with the same statistics as previously used.

Of note in the comparison to the results in table 4.3 are the generally large reductions

in the worst case processing times to generate the same repair results. The algorithmic

choices are tuned to provide better worst case performance at the price of less impressive

averages and comparisons between the best case show that the general intractability of

this repair process generally

v1 v4 v9 v16 v17 v20 v25 v36 v39 v40 v41

Best 135s 56s 39s 148s 16s 151s 88s 13s 84s 44s 347s
Worst 252s 129s 110s 167s 118s 273s 270s 13s 177s 171s 519s
Median 152s 76s 44s 157s 18s 172s 99s 13s 100s 102s 406s
Mean 166s 82s 53s 156s 28s 176s 123s 13s 105s 101s 404s

Table 4.4: End-to-end threaded repair results
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Variant 17 indicates that this is only lowering the chances of a worst case run, not

eliminating it. If the randomised list of test cases fed into the tool input stacks non-

reducing test cases heavily at the start then long processing times which do not refine

the mutation space will provide significant performance issues; even when rolling four

times as many dice with a four-core, threaded process they can all end up showing sixes.

This indicates a limit of our threaded design when dealing with a search space where

the majority of branches are very expensive to search and do not pay off with significant

narrowing, if not outright intractable.

The competing solutions for end-to-end repair of the TCAS variants have all published

incomplete data sets, indicating rejection of performance levels on other variants or

inability to recover a genuine repair for all variants or even the subset of variants which

have single fault repairs (variants with a single inserted mutation). This indicates that

finding an acceptably performing high-quality repair process for the range of TCAS

variants using the test suite as specification is still awaiting a first complete success,

unlike the localisation process where the techniques are compared by speed and quality

of result.

v2 v7 v8 v16 v17 v18 v19 v36

Time 341s 165s 159s 166s 166s 162s 163s failed

Table 4.5: Konighofer and Bloem repair results

Konighofer and Bloem provide results [63, Table 1, p. 98] using their mutation search of

expressions based on A*x+B*y+...+Z for integer literals as capitals and every variable in

scope (at the point of the assignment) as lower case elements. Their results, summarised

with time taken in table 4.5, show that this only produced repairs that reject all variables

in scope and repair the TCAS variants which can be fixed with a single integer literal,

i.e. the Z in the above formula.

Test Cases 10 20 30 40 50

SemFix 12s 23s 30s 46s 52s
GenProg 27s 56s 85s 135s 164s

Table 4.6: Nguyen et al. average repair results

Nguyen et al. [82] provide results for their own method of SemFix as well as running

the technique of Le Goues et al. (GenProg) to provide comparison results for TCAS

unavailable in the original Le Goues et al. paper announcing their methodology [69].

These results are published for 90 of the 132 variants that make up the complete Siemens

suite. Of these variants, with the caveat that the repairs are only validated against the

subset of test cases explored, Nguyen et al. report SemFix finding 48 variant repairs

using 50 test cases while GenProg only finds 16. These repairs increase to 56 for SemFix

and 35 for GenProg when only using 10 test cases.
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The data they provide on found repairs suggests the reported repairs are not necessarily

valid over the full test suite specification but this is not conclusive stated. No per variant

results are provided, but the averaged performance for the TCAS variants indicates

SemFix proposes repairs for 34 of the 41 variants while GenProg proposes 11 when

using 50 test cases.

Their publication provides a graphical representation of the time performance results

for TCAS [82, Fig. 4, p. 779] using a limited number of test cases, up to a maximum

of 50 of the 1608 provided by the universe file. We have reproduced these results in

table 4.6. It is not made explicit if these repairs generated on the limited test case sets

are genuine repairs that apply to the full specification given by the complete universe.

Extrapolating the times out to running the process on the full set of test cases would

not provide competitive performance if this is not so.

“The success rate decreases with more [sic] number of tests. Intuitively, it

is more difficult to generate a repair to pass more tests. It also shows that

the repairs generated with small number of tests may not be valid for some

other tests that are not in the test suite.” [82, §6.A, p. 778]

In section 3.3 we describe a mutation space that is searched that does not include integer

literals outside of those captured by exploring the expressions within the same block as

the repair location. This is a symptom of the core weakness of this approach to high-

quality repair synthesis: that a symbolic analyser is being used to generate a set of all

concrete repairs. Our approach requires the full iteration over all viable concrete repairs

on a per-test-case basis and then narrowing of this whitelist, as we do for localisation,

but without low limits on the total number of search results (i.e. the toggled locations

for localisation). When including integer literal values in the mutation space, this im-

mediately becomes intractable as an iterated solution. For example, a repair where a

test case is fixed if the assignment is any positive value would generate repair mutants

for every positive integer value if it searched the integer literals as part of the mutant

space. Even with small integers this is 32,767 repairs, with most C implementations

expecting over two billion valid repairs be synthesised for this constraint.

This is similar to the process of symbolic search used during our localisation phase, only

iterating over every potential symbolic value for each test case rather than blocking the

toggle value (location) as soon as one working symbolic value is found. For this reason

it would not be possible to use this technique to do a search for a repair that includes

an unconstrained integer literal both due to tractability concerns and, when using early

termination to avoid searching the full space, simply replicating the low-quality repair

already generated by our existing localisation tool.

A potential solution to lack of narrowing of the mutation space is to run several test

cases sequentially as a single solver problem so that the constraints on the repair are
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combined in order to search for the unconditional assertion failure at the end of all

programs explored. But this quickly leads to intractable solver problems as the scale of

the program being tested can be visualised as every potential path through the first test

case with a second test case attached to each end point. Multiply again with a third

trace on the end of every one of those branches to simultaneously constrain for 3 test

cases. We failed to generate a single result outside of time-outs for prototypes exploring

such a solution to a lack of mutation space narrowing from searching a single test case

at a time for every mutant.

Using a solver as an integrated part of the tool rather than a black box, as shown by

Konighofer and Bloem, is another potential solution. However these results [63, Table

1, p. 98] to synthesise a high-quality repair of the form A*x+B*y+...+Z does not return

a high-quality repair.

ESBMC is unable to process the programs other than TCAS in the Siemens Test Suite

due to language features (loops and ASCII standard C library features) which generate

intractable problems. Expanding to automated repair using KLEE requires competitive

performance in this arena. To assess this requirement we tested the CPU time to compile

(with Clang) and execute these small programs to concretely test all individual mutants

(M#). We did not encounter a significant overhead when batching the compiled mutant

executables using Python 3 with an attached stdin/stdout pipe.

print tokens print tokens 2 replace schedule schedule 2 totinfo

M# CPU KLEE CPU KLEE CPU KLEE CPU KLEE CPU KLEE CPU KLEE

8 1.3s 3-19s 1.4s 2.5-11s 2.0s 2.5-2.9s 0.9s t.o. 1.0s 2.5-3s 0.5s N/A

40 6.7s 69-82s 7.0s 13-26s 9.9s 14s 4.3s t.o. 4.8s 14-20s 2.3s N/A

100 16.6s 4-6m 17.5s 41-49s 24.8s 40s 10.9s t.o. 12.0s 41-56s 5.9s N/A

Table 4.7: Concrete execution comparison results

In table 4.7 we present the six other Siemens programs against the processing time for

KLEE to do a single test case exploration with a repair mutation space that covers M#

different mutants. This is not a full end-to-end process or even a full repair stage but

simply the time for a single thread to process a single test case with a mutation set to

the required width somewhere in the main of that program, providing a mutation which

will not be traversed more than once by a program loop. This mutant position and

format is likely to be a best case situation for KLEE, defining a lower bound for the

time to process a single test case. Using various test cases from the program’s universe

we have provided a range of times in which the mutations are searched.

totinfo print tokens schedule schedule totinfo schedule 2

Time 0.19s 25s 28s 11h 225s 20s

Table 4.8: Jose and Majumdar localisation results
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The published results replicated in table 4.8, taken from Jose and Majumdar [61, Table

3, p. 445], indicate competing localisation results on these programs include an 11 hour

execution for the schedule program, pointing to an issue with symbolic analysis and this

program or even a minimised trace of it. Our results in table 4.7 are that KLEE had

stopped working and hung on processing this input program, hence a time-out (t.o.).

The concrete times noted as CPU not only accounts for compilation of all mutants

but also executing them for every single test case in the provided universe (450-5500

depending on the program), not just the one the KLEE numbers represent. These CPU

numbers will scale almost perfectly linearly with mutation space and provide significantly

better value at extracting the repair mutation from the search space with some concrete

execution. At this point we consider a concrete execution iteration the best approach

to searching a repair mutation space for a viable repair after localisation.

4.6 Conclusions

In this chapter we have presented our results demonstrating a several orders of mag-

nitude reduction in run-time comparing the näıve reimplementation of the localisation

algorithm with our optimised search, using the TCAS benchmark variants. We have

extended this comparison to include a state of the art approximate model-based localisa-

tion technique and provide tentative comparisons to several spectrum-based localisation

techniques [RQ1]. We have explained our negative results from the repair extension of

this technique with analysis of why this particular approach cannot be accelerated to

compete with a purely concrete search, which is an already-established repair search

technique [RQ3]. Our positive results are limited to a single loop-free integer bench-

mark program (TCAS) and the single-fault variants provided in the suite (limitations

and threats to validity are covered in section 6.4). However, this qualified success has

updated the literature [9] to report that the time performance of this technique is com-

petitive when using our optimised search.



Chapter 5

Fault Localisation for Student

Programs

Introductory programming courses typically require instructors to assess a large number

of small programs by novice programmers. Many of these programs contain errors, rang-

ing from small mistakes to complete design and implementation failures, reflecting the

students’ misunderstanding of the task or their solution attempt. With limited resources

the best learning outcomes are achieved if students are (in the former case) automat-

ically directed towards the locations of their mistakes to allow self-guided repairs, so

that the instructors can focus (in the latter case) on addressing fundamental misunder-

standings. However, existing basic assessment tools (such as Ceilidh [8], ASSYST [56],

and BOSS [62]) based on simple compilation tests, test suites, or model solutions do

not provide the detailed feedback necessary for self-guided repairs and do not support

instructors in quickly separating solutions with small mistakes from complete failures.

Compilation tests do not give any feedback for syntactically correct programs, test suites

can give misleading results if programs contain simple errors that affect a large number

of test cases, and model solutions cannot account for the variability of student pro-

grams. In this section we apply our fault localisation approach to a corpus of student

programs and show that its performance, both in terms of runtime and localisation pre-

cision, would allow its use in practice. Specifically, our approach can provide feedback to

enable self-guided repair and can locate programs which “almost” conform to question

requirements but are scored badly by functional grading using test suites.

5.1 Data Set

We use a data set of around 30k passing and 150k failing Java and Python programs

collected by the automated assessment system of the University of Auckland [91]. These
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programs were written by students to answer 1693 different Computer Science course-

work questions. We translated the programs into a C-representation using a simple

converter that was designed to retain the style and functionality of programs without

translating any detailed differences between the languages, such as language-specific

handling of integer overflows. This translation would allow the mapping back of loca-

tions to the original Java or Python source code, although our model-based downstream

components currently only reason within the specifications of the C programming lan-

guage they have been translated into. We consider the translated programs in C to

be the corpus on which we are testing the efficacy of our tool. Our methods are more

directly applicable for native reasoning on Java or Python programs by using suitable

downstream components designed for those languages.

We rejected programs that produced translation failures (typically due to unsupported

standard library calls), that use floating-point arithmetic (which is not yet supported

for symbolic exploration by our downstream components), that comprise less than three

assignments (to avoid trivial localisation tasks), or that KLEE or GCov (which we use

as downstream components) could not process (such as programs containing infinite

loops). We then analysed the data set to identify pairs where a student had submitted

a failing program which, after a single assignment edit, was later found in the database

passing the full test suite. This yielded 304 pairs which were answers to a range of

different coursework questions. These programs contain an average of 5 assignments in

11 statements (as counted by GCov).

We ran a script to analyse each provided test suite (averaging 7.8 tests per pair) and

generated new test suites that randomly picked inputs within an order of magnitude

of the existing values. The passing program from the code pair was used as oracle to

establish desired output values. These large test suites average 154 tests per pair, with

80 of those tests failing.

5.2 Experimental Setup

We generated all results on a 3.1GHz Core i5-2400 using the KLEE 1.1 symbolic analyser.

Spectrum-based fault localisation results using Ochiai and Tarantula formulas [123] are

provided by Hawk-Eye [44]. As only the suspiciousness values, not the final rank of the

fault location, varied between formulas with this data set, both are referred to simply

as the Hawk-Eye result.

Localisation tools typically produce a ranked list of locations, based on the generated sus-

piciousness value of each location. The rank is calculated using Hawk-Eye’s middle-line

strategy, ranking equally suspicious statements with the mid-point rank. For example,

statements with suspiciousness (0.1, 0.4, 0.8, 0.4, 0.4) are ranked (5th, 3rd, 1st, 3rd,

3rd). Results from our model-based tool have been converted from an unranked list
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using the same middle-line strategy (where all locations returned are given a suspicious-

ness of 1.0 and all others a suspiciousness of 0.0). Absolute localisation performance is

reported as the average rank of the fault location in the ranked list.

Percentage localisation performance is reported in the average percentage of other loca-

tions that will be searched before the fault is found when iterating over the locations in

rank order. This is in contrast to the earlier results reported in subsection 4.3.2, where

the percentage of lines of code returned by localisation is the total percentage of unranked

lines (not searched locations) returned as potential repair sites. So, in the above exam-

ple, if the second statement is the fault location then the ranked localisation scores 50%

in percentage localisation performance. If the first statement (which is ranked last) was

the fault then this would score 100%, the worst possible score, indicating every other

returned statement would be searched before the fault was reached. A score near 0%,

indicating very few locations ranked above the location used by the student to repair

the submission in the database, means fewer instances of the debugging process stalling

before repair synthesis can begin. Spectrum-based methods have been shown to provide

rankings insufficient for novices [83] or even be unable to discriminate between most

locations [88].

5.3 Results for Original Test Suites

Figure 5.1: Histogram grouping programs by their percentage localisation per-
formance (relative rank of injected fault, x-axis) using the original test suite

On the 304 selected (i.e. failing) student submissions and using the instructor-authored

test suites, our tool returns the faulty assignment after, on average, only 16% of other

assignments when providing a ranked list of locations. In figure 5.1 these rankings

are divided into two percent buckets to show the distribution. A lower percentage score

means less of the program must be manually explored by a programmer before the faulty

assignment is encountered. Our tool regularly pin-points the assignment later used by
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Figure 5.2: Bubble plot counting programs by absolute localisation using the
original test suite (x-axis) vs assignment count

the student to bring the submission into compliance with the test suite. 125 of the 304

student submissions were returned from our tool with only that assignment flagged (left-

most bucket in the histogram with a 0% percentage localisation), the ideal result [83].

In these cases, all other assignments were eliminated as viable repair candidates for the

test suite specification.

The chart in figure 5.2 collects the program’s assignment count (how many locations

could be ranked by our tool) against the absolute localisation rank (the position in the

ranked list of the fault later repaired by the student, using a mid-line strategy when sev-

eral locations are ranked equally). This demonstrates that small programs (assignment

counts of 3 to 5) make up the majority of the student submissions tested but that they

don’t skew the performance of our tool towards overestimating the absolute narrowing

ability of our technique. In fact, looking at the larger assignment counts (8 and above)

indicates that percentage localisation performance is weakest for low assignment count

programs. These smaller programs is where consistently strong absolute localisation

performance is limited by the small list of potential locations, leading to comparatively

weak percentage localisation performance. Since the absolute number of locations shown

before the actual repair site is critical to facilitating debugging progress [83], strong ab-

solute localisation performance throughout the data set is highly desirable. This topic

is discussed further in section 2.8.

In figure 5.3 the p.p. difference to the spectrum-based results (i.e. percentage points

closer to a perfect 0% localisation) is plotted for every student submission, ordered by

relative advantage. Positive differences indicate our tool’s advantage. When comparing
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Figure 5.3: Comparison of percentage localisation performance using the origi-
nal test suite: our tool (+ve) vs Hawk-Eye
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the data provided by Hawk-Eye, on this data set, it ranks the statement the student later

used to repair the program after an average of 63% of other statements, 47 percentage

points adrift of our tool. No correlation was found between the program size and the

comparative performance of our tool compared with Hawk-Eye.

On average, Hawk-Eye is provided eight test cases (passing and failing) for each sub-

mission which are used to rank eleven statements. Since our tool only requires failing

test cases, it is provided with an average of four failing test cases and localises over the

average of five assignments in each submission. These localisations are produced in an

average of 0.3 seconds per submission by both our tool and Hawk-Eye. 254 times our

tool was a fraction of a second ahead, 48 times Hawk-Eye was a fraction of a second

ahead, and twice our tool hit too many pathological cases to adapt and only provided

results at the tool’s ten second time-out.

When looking at the 125 submissions for which our tool returned an ideal result, Hawk-

Eye ranked the repair statement after an average of 65% of other statements. Only 15

of those submissions provided the repair in the first third of the ranked list. The best

ranking from Hawk-Eye for the statement the student used to repair the program was

after 25% of other statements.

The limited number of failing test cases did not hinder our tool on this sample of short,

real-world student programs. This strongly supports the use of our tool for assisting stu-

dents in repairing single-assignment faults in small program submissions, even when only

specified by a very small test suite. When a student has made a mistake on constructing

an assignment in an otherwise solid submission, an expensive debugging process may be

averted by use of this feedback with consistently high absolute localisation performance

over the range of student program submissions.

On this selection of actual student submissions which were later brought into full com-

pliance with the test suite with a single assignment edit, our tool provides strong lo-

calisation performance, either looking at absolute rank or percentage rank results. We

also provide equivalent run-time performance on these localisation tasks when compared

to a spectrum-based tool, while ranking the location later used to repair the program

significantly higher.

5.4 Results for Extended Test Suites

The provided test suites for these student courseworks were hand-written to provide

high coverage with very few tests. The original weakness our tool is designed to over-

come [RQ1] is only exposed when localising using a large number of test cases, where
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Figure 5.4: Histogram grouping programs by their percentage localisation per-
formance (relative rank of injected fault, x-axis) using the extended test suite

Figure 5.5: Bubble plot counting programs by absolute localisation using the
extended test suite (x-axis) vs assignment count

traditionally spectrum-based techniques have significantly outperformed a Griesmayer-

derived localisation. We therefore significantly expanded the test suite, as described in

section 5.1.

Our tool, provided with an average of 80 failing test cases, did not vary from the 16%

localisation score achieved previously. Both the distribution of percentage localisations

plotted in figure 5.4 and the plot of the assignment count (x-axis) against the absolute

localisation rank (y-axis) in figure 5.5 shows that the localisation performance does not

significantly shift when using the extended test suites. Running the average of 154

test cases through each submission, Hawk-Eye showed a modest improvement; although

figure 5.6 shows it continued to lag our tool significantly, at a 42 percentage point

deficit (dashed line). Hawk-Eye never ranked the statement that was used to repair the
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Figure 5.6: Comparison of percentage localisation performance using the ex-
tended test suite: our tool (+ve) vs Hawk-Eye
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program as the most suspicious when localising on the data set, with either the original

or extended test suite.

The consistent localisation performance of our tool is due to a combination of different

factors. Over a third of these submissions, with the smaller test suite, already provided

perfect results using our tool; some programs will contain several assignments where a

genuine repair is possible so there is no more compact list of repair locations; and some

programs are resistant to analysis by symbolic analysis, which does not change with test

suite size. This may have provided very little room for improvement by our tool.

However, the run-time on these much larger test suites confirm the scalability of our

tool, an area where model-based fault localisation has traditionally suffered [39]. Our

tool averaged 0.9 seconds per submission while Hawk-Eye lagged behind, averaging 1.1

seconds. Included in that average, three times our tool hit too many pathological cases

to adapt and only completed at the time-out.

When significantly extending the test suite size from the instructor-authored suites,

our tool retains the same strong localisation performance, looking at absolute rank

or percentage rank results. While the spectrum-based technique does improve with the

addition of many extra test cases, those results still rank the location later used to repair

the program significantly below the ranking provided by our tool. We also provide faster

run-time performance on these localisation tasks when compared to a spectrum-based

tool, taking the lead due to our efficient scaling thanks to our optimised search process.

5.5 Dual-Fault Extension

The currently discussed algorithm uses a single toggle value which activates a single

location, performing the alternative assignment (of a symbolic value). Our whitelist

prunes locations based on this single-fault assumption, where a single test case not

being repairable causes the location to cease to be searched. If multiple toggles were

used with ( t1 == 3 || t2 == 3) conditions activating the modified locations, then

the search would be able to produce localisations searching for multiple faults (up to

the number of toggles inserted and chained in the or-conditions). This multiple toggle

method was proposed as an extension by Griesmayer et al. [39] to provide results for

n-fault programs. This increases the solver cost due to additional non-determinism and

would also increase the total combination of counter-examples returned, which may

severely limit the applicability of this technique to very small input programs in order

to retain tractability. We explored an extension to our narrowing whitelist which would

allow the collection of more results without using multiple toggle values to explore an

n-fault assumption [RQ4].
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To explore student submissions pruned from our original slice due to containing more

than one fault, as explained in section 5.1, we reprocessed the entire database with

slightly tweaked parameters. In this new slice, we rejected submissions using the same

criteria except identifying pairs where a student had submitted a failing program which,

after exactly two assignment edits, was later found in the database passing the full test

suite. This yielded 125 pairs. These programs contain an average of 4 assignments in

12 statements (as counted by GCov), making them of the same scale as our initial slice

of single-fault programs.

We analysed these pairs by performing a manual code review. The majority of these

pairs, 77, contain two faults which cannot both be executed in the same trace. We

characterise this class of dual-fault program as twin-fault programs, which have a test

suite that mixes the two fault-exercising subsets of test cases. The remaining 48 pairs

are defective programs where traces from failing test cases will either always or some-

times execute both fault locations during a single trace. We call this class double-fault

programs. In the example in figure 5.7, if lines 3 and 5 are incorrect then this would

be a double-fault program where some test cases would exercise both lines and others

would only exercise faulty line 3 (and then exiting via line 7). However, faults on lines

5 and 7 would make it a twin-fault program as all test cases would either only exercise

line 5 or only line 7, no trace can exercise both faults.

1 int main(void) {

2 /* ... */

3 int z=14*a*c;

4 if((bb -z)<0) {

5 return pack(co1 , co2);

6 } else {

7 return pack(re1 , re2);

8 }

9 }

Figure 5.7: Potential dual-fault program example

For this new data set, the original test suites contain an average of 8.8 test cases per

program, 5.7 of them failing. This can be insufficient to exercise each pair of assignments

in a dual-fault program and classify the pair as twin-fault or double-fault. In figure 5.7,

if the omitted code includes a branch that provides three paths, then simply covering

each different path through this small program fragment requires six failing test cases,

assuming no duplication of trace paths. Although program flow analysis can detect

when a pair of toggled locations being searched will result in a twin-fault program, this

analysis can be expensive. In fact, the sorting of test cases alone is as expensive as

running Hawk-Eye, due to the similarity in work done to execute and assess each test

case trace. Hawk-Eye averages a third of a second per program and provides an average

localisation of 67% on this data set using the original test suites. We generated extended

test suites in the same manner as with the original data set, discussed in section 5.1.

These contain an average of 270 test cases per program, 94 of them failing.
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To adapt our tool to search for localisation results in twin-fault and double-fault pro-

grams, the whitelisting discussed in section 3.2 had to be replaced. A failing test case

which exercises line 5 of figure 5.7 cannot flag line 7 as a potential repair location (as it

is not exercised at all) so the lack of a localisation does not remove it from the search

space for future test cases. Dual-fault programs require the consideration of previously

completed localisations in order to reason about the possible narrowing of the whitelist

of locations. If previous failing test case have always either flagged line 5 or 7 but not

other lines then, under a twin-fault assumption, we can eliminate other lines from the

search space.

However, this whitelist adaptation can, for some programs, lead to no narrowing of

the whitelist for the entire duration of the localisation run as no location can be ruled

impossible to be one of the two repair sites. This assumption also cannot localise with

a failing test case that exercises both locations on double-fault programs; this results in

no locations being flagged as a possible repair site. If lines 3 and 5 must always both be

changed to fix any failing test case in figure 5.7 then no single toggle value can exercise

that widened symbolic behaviour to find that repair. Those negative localisation results

must be ignored (dropped) rather than integrated into the narrowing process.

To accelerate the process for larger test suites, we rank the frequency in which the

locations are capable of repairing previous failing test cases and use early narrowing to

reject locations which have been flagged significantly below the bulk of other locations.

This optimisation allows early search space reduction with a very low chance of erroneous

rejection in much the same way the early termination in section 3.2 does. This ranking is

used to provide a ranked list of all locations with associated suspiciousness, allowing our

tool to provide ranked results (cf. section 5.2 where our original algorithm only provides

one and zero suspiciousness levels to any assignment). These changes produce a search

which narrows less often and less early.

5.5.1 Results for Dual-Fault Extension

2P 2nP 1P 1nP F Loc Rank Time

Twin (orig) 47 24 4 2 0 24% 2.0 0.3s
Twin (ext) 37 32 4 4 0 24% 2.0 2.5s
Twin (ext, opt) 40 31 4 2 0 24% 2.0 1.0s

Double (orig) 7 34 3 4 0 34% 2.3 0.8s
Double (ext) 6 35 3 4 0 36% 2.3 4.2s
Double (ext, opt) 6 35 3 4 0 37% 2.3 2.0s

Table 5.1: Dual-fault localisation performance. 2Perfect double localisation;
non-perfect double (2nP) localisation; 1Perfect single, localisation; non-perfect
single (1nP) localisation; Failed localisation; mean Localisation rank; mean
absolute localisation Rank; completion Time
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In table 5.1, after submitting the dual-fault data set to our adapted tool, we analysed (via

manual code inspection) and split the results into twin and double-fault subsets based

on our knowledge of the repair locations used by students to later bring the programs

into full compliance with the test suite. We present the results using the original test

suites, where the early narrowing optimisation does not have time to trigger, and for

extended test suites both with and without the (early narrowing) ranking optimisation

discussed above. We have calculated averages of: the mean absolute localisation rank

(Rank) of the two faults later used to repair the program; the completion time (Time)

to run localisation on a program with all failing test cases; and the mean localisation

rank (Loc) of the two faults as a percentage of the of the full range of rankings possible.

We also divide the 77 twin-fault programs and 48 double-fault programs by the final

whitelist results they generated. This classifies our results based on our hybrid approach,

described above, where locations are both given suspiciousness ranks and narrowing

reduces the list of locations returned. Perfect (2P) results flag exactly two locations,

both of the faults used to later repair the program to bring it into full conformance with

the test suite. Non-perfect (2nP) results flag both locations but include other locations

as possible repair sites, which is often due to other genuine repairs existing. Some of

these non-perfect results rank the two fault locations most highly (i.e. Loc of 0%, Rank

of 1.5) despite also marking other locations as viable repair sites.

Suppose figure 5.7, with a twin-fault on lines 5 and 7, was localised with a test suite that

only exercised line 7. A result where the suspiciousness of all locations other than line 7

was zero while line 7 was 100% is plausible. In this case, the dual-fault search indicates

a single-fault repair solution has been found as the only repair location. There also

exists dependent assignment fault chains, for example a = x*y; b = a/z-p;, which

generate single-fault repairs (at b) to a double-fault program. We use perfect (1P) to

classify a singleton localisation, non-perfect (1nP) includes other repair sites with the

one detected fault. Finally, failures (F) are where the localisation fails to return either

fault location, which we did not experience with this data set.

The dual-fault programs, which are the same scale of source code as the previous data set

with similar test suite sizes, are localised within the same time window. Double-faults

localise with run-times in the same order of magnitude while twin-faults match the run-

times of our earlier single-fault programs, when using our optimisations. The absolute

and percentage ranked localisation performance also shows a similar characteristic to

the single-fault data set where additional failing test cases do not significantly change

the performance of the tool. However, the added complexity of this search does not

provide identical narrowing performance. The whitelist localisation results exhibit some

variability. This may be caused by the randomised test case order influencing the search

space exploration. Twin-faults that find additional locations for potential repairs when

exercised by larger test suites (2P to 2nP shift) may also indicate the limitations of

smaller test suites to reason over which locations can be dropped as potential repairs.
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However, the unvarying ranked performance indicates the locations used by students

to repair the submissions are not penalised by this limited data leading to a tighter

localisation with the original test suites.

This tool extension offers a path to localising programs beyond our original slice in

section 5.1 without the likelihood of exploding symbolic analyser time costs caused by

implementing a model-based dual-fault search using multiple toggle variables. We find

this extension allows the processing of many additional student programs that occur in

our database, extending the use of this tool beyond the single-fault programs previously

localised. Programs with twin faults are often perfectly localised without requiring test

suites be divided before processing or knowing in advance if the locations being searched

are in a twin-fault relationship.

5.6 Grading Support

Figure 5.8: Histogram of test suite compliance score for “almost correct” pro-
grams using the original test suite

To confirm the value of this localisation data for detecting “almost correct” student sub-

missions that test suites do not highlight, we extracted the test suite results for the data

set. As each of these student submissions was selected because there exists a single edit

to an assignment which brings it into compliance with the complete instructor-authored

test suite, they should be graded within a generally narrow distribution, reasonably close

to a fully compliant solution. However, as figure 5.8 shows in a histogram of the test

suite compliance score of these programs, this is not the case. The average submission

fails for 51% of the test cases (dashed line) and the distribution of scores is very uneven,

not clustering around a single value. As there are so few test cases per submission, the

histogram buckets have been set to best show the distribution curve.
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Figure 5.9: Histogram of test suite compliance score for “almost correct” pro-
grams using the extended test suite

When expanding out to the much larger test suite in figure 5.9, the average submission

fails for 59% of the test cases (dashed line). Here the distribution of grades is less flat,

with clumping at both poles. Half of the “almost correct” submissions are scored with

80% or more of the test suite failing. Our tool will accelerate automation-assisted mark-

ing by flagging nearly-good code with the likely location of a repair that will radically

increase a test suite-based grading.

5.7 Effects of Programming Language

Comparing data for submissions originally written in Java to those in Python showed

no significant skew to the data points explored. Translating a simple subset of each

language into C syntax generated comparable sets. At least on this simple translated

subset, the language originally used does not appear to strongly bias the characteristics

of single-faults introduced by students.

5.8 Conclusions

We have applied our tool and comparing those results to spectrum-based methods on

real programs [RQ2] with large test suites [RQ1]. This published research [10] into the

efficacy of our tool in the pedagogical domain [RQ5] also provides an extension to our

narrowing algorithm with some preliminary results on a class of dual-fault programs

found in our data set [RQ4]. This allows a wider search for dual-fault repairs if our

original single-fault search fails to isolate a single potential repair location. We go on to

cover the limitations and threats to validity in section 6.4.
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Discussion

We have described a fast, model-based fault localisation algorithm which, given a test

suite, uses symbolic execution methods to fully automatically identify a small subset of

program locations within which (under a single-fault assumption) a genuine program

repair exists. Our main contribution is an improved search through the test suite that

drastically reduces the effort for the symbolic execution of the models.

In chapter 4 we have evaluated this improved search against the originally published

results for this method without those optimisations. We also reimplemented Gries-

mayer’s design to allow us to compare it when running on modern hardware with a

current SMT solver. This is where, in subsection 4.3.1, we have found several orders of

magnitude of speed improvements from using our search algorithms. We also compare

our performance on the benchmark program variants used against a competing state of

the art model-based fault localisation method. In subsection 4.3.2 we explain how our

tools doesn’t narrow too quickly or approximate too early and so can always isolate the

injected fault for every variant with every failing test case. We also discuss how this

benchmark has performed with spectrum-based localisation methods in section 4.4. We

have also investigated the generation of high-quality repairs to replace the low-quality

repair that our model-based localisation process creates as a side effect of localising

using a test suite. However, the negative results shown indicate that repair synthesis

by concrete execution of the same search space will outperform an optimised version

derived from this search method.

In chapter 5 we apply our tool to real-world student code submissions and compare

the results against an implementation of a spectrum-based method. Our speed improve-

ments allow us to retain parity with this fast, inaccurate localisation for small test suites

and even slightly improve upon the speed when extending the test suite scale thanks to

our better than linear scaling. This tests our tool on many new programs which are not

just variants of a single benchmark from 1994 and are formatted in a style consistent with

current novice programmers. We also, in section 5.5, have provided positive preliminary
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results for an extension to some n-fault programs by demonstrating a relaxed search

optimisation on dual-fault programs from the same data source. Finally, we have shown

in section 5.6 that functional correctness over test suites does not predictably grade

the class of nearly correct student programs which our tool isolates during localisation.

Although expanding the test suite does generate grades that cluster around the poles

(0% and near 100% compliance), this is only a slight improvement over no clustering

as many of the programs are being pushed towards no marks. Our tool will accelerate

automation-assisted marking by flagging nearly-good code with the likely location of a

repair that will radically increase a test suite-based grading.

6.1 Model-Based Localisation Acceleration

We initially demonstrated the time and localisation performance of our tool on the

Siemens test suite’s TCAS program variants and test universe, a common localisation

benchmark from 1994. We compare the results of our optimised search algorithm against

our näıve reimplementation of Griesmayer’s algorithm in chapter 4. We demonstrate

multiple orders of magnitude completion time improvements over these non-optimised

searches. The average halving, at most six-fold, decrease in completion time from Gries-

mayer’s results (696 seconds average) to our näıve reimplementation (325 seconds aver-

age) shows some performance increase is derived from using a modern symbolic analyser

on modern hardware. But, for example, variant 1 moving from over 49 minutes to over

24 minutes to return a location set is not viable compared to our optimised algorithm

when also using ESBMC, at 9 seconds. This quite clearly demonstrates the speed im-

provements are derived primarily from our search optimisations, with hardware platform

and symbolic analyser used making only minor differences to the recorded times for the

benchmark variants.

When comparing the localisation performance of these tools, we must consider that

there is an injected fault location for each of the single-fault variants of TCAS. For all

the Griesmayer-derived techniques then the injected fault location (the location where

a variant was seeded with a fault) is always included in the returned list of locations.

Jose and Majumdar convert an input C program to a maximum Boolean satisfiability

problem which is analysed with MAX-SAT solver [61]. However, because it returns the

complement of the maximal subset of clauses that can be true for each single test case,

their approach can omit genuine repair locations. For six of the 33 single-fault variants

they indicate that there exist subsets of the failing test cases for which they would not

flag the injected fault. It therefore relies on summing the results of the different test

cases, providing a ranking of most to least commonly flagged locations. For 31 of the 33

single-fault localisation benchmark variants we improve on the localisation performance

of their results, sometimes by a significant percentage. In the two of those 33 variants
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where our tool performs worse, v41 returns a set of locations only one larger than those

returned by Jose and Majumdar, and v8 returns a set three locations larger.

For the single-fault localisation benchmark variants, we always maintain time perfor-

mance within the same order of magnitude as the current model-based fault localisation

state of the art, Jose and Majumdar. Our tool, using the KLEE back-end, averages

a completion time of 2.87 seconds per TCAS variant, compared to an average of 2.80

seconds in Jose and Majumdar’s results. We guarantee returning the location of the

injected fault in every failing case, which Jose and Majumdar cannot. Their results for

each full test suite do flag the injected fault location for TCAS as most common. But

they indicate that there exist subsets of the failing test cases for which they would not

flag the injected fault in the case of six single-fault variants.

These results support our claim that a Griesmayer-derived model-based localisation

technique can be modified to be fast, comparable to the current alternatives for small

programs, even with large test suites. This is shown with an intelligent pruning of the

search space to minimise the symbolic execution load while minimising the disruption

of a slow or intractable search node, facilitated by a multiprocess design that takes

advantage of modern consumer processor architectures.

6.2 Comparisons to Spectrum-Based Localisation

Spectrum-based fault localisation techniques, compared in [79, 121, 123], operate by

examining passing and failing test cases separately. They assume that faults are more

likely to be exercised by failing test cases and less likely to be exercised by passing test

cases. The statements in a program can then be ranked based on the different weighting

techniques. The analysis of the performance of these approaches is typically based on

several scoring formulas that roughly correspond to how much of a program must be

explored, given an ordered list of locations as tool output, before the genuine fault is

found.

We return to the worked example from chapter 3, here in figure 6.1, where line 9 contains

an error where the integer literal should be 2. When a spectrum-based localisation

technique is applied to a test suite using this example, the first 12 lines will always be

executed. Their suspiciousness will be defined by the ratio of passing and failing test

cases in the suite.

Some passing test cases, where the employee is between 21 and 39 years old but doesn’t

work overtime that week, will exercise line 13; this line will also be exercised by all

failing test cases. Surfacing the fault on line 9 as a visible error in output (so creating a

failing test case) requires non-zero overtime and an age between 21 and 39 to cause the

SelBonus value to be incorrect and then used on line 13. All other passing test cases,
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1 #DEFINE BR 15

2

3 // normalHours , overtimeHours , age

4 int payMe(uint nH , uint otH , uint age) {

5 uint bonus = BR * (otH * 2);

6 uint normalPay = BR * nH;

7 uint ageHigher = age % 20;

8 uint SelBR = BR + ageHigher;

9 uint SelBonus = otH * (3 * SelBR );

10 uint SpecialNormalPay = nH * SelBR;

11 uint specialPay = BR + 20;

12 if ((age > 20) && (age < 40)) {

13 return SpecialNormalPay + SelBonus;

14 } else if (age >= 40) {

15 return (nH * specialPay) + (( specialPay * 2) * otH);

16 } else {

17 return normalPay + bonus;

18 }

19 }

20

21 int main(int argc , char ** argv) {

22 int result = payMe(atoi(argv [0]), atoi(argv [1]), atoi(argv [2]));

23 }

Figure 6.1: Worked example: Original faulty (at line 9) code

with ages too low or high, will flag lines 14 to 17 as less suspicious. The cumulative

effect of this, for any test suite composition, will be to rank the suspiciousness of line 9

as lower than line 13 and identical to the majority of lines. This gives a good example of

how the spectrum-base localisation process can fail to elevate the faulty line of code. If

there was a significant volume of code rather than the single statements in the block at

line 13 then all those lines would be flagged as the most suspicious. If the if clauses were

tested in the opposite order (so the statement on line 13 was on line 17), lines 14 and 16

would also be painted by all test cases. That would leave only two lines as painted as

less suspicious than the actual fault location. The localisation would be approximately

equal to a random chance ordering.

The best-known example of spectrum-based fault localisation techniques is the Tarantula

tool [98]. For over 50% of the variants of the Siemens small programs (including TCAS)

Tarantula ranks the injected fault location in the top 10% of lines by suspiciousness.

But this performance is inconsistent and for 7% of these variants, it fails to rank the

injected fault location in the top 80% of locations. We look at this directly in section 4.4,

showing our tool provides 100% of the single-fault TCAS variants with a localisation

performance that puts the injected fault location in the top 10% of lines returned. Even

if we assume the injected fault was always ranked at the bottom of our list of returned

locations, rather than averaging somewhere in the middle, that would only drop to 97%

of variants.

State of the art spectrum-based fault localisation methods have recently been compared

using different theoretical frameworks [79, 123, 124]. Several methods have been iden-

tified as optimal under these frameworks; there is also empirical data over various of

the Siemens small programs. While Tarantula is not optimal [123], it is also not far
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behind the state of the art for TCAS. In empirical results [79, Table XI, p. 11:23], the

only method identified as optimal under that paper’s framework ranked the injected

fault location on average at the 17th returned location (9.9%) over all TCAS variants.

Tarantula returned the injected fault location at an average location between the 18th

and 19th ranked location (10.8%).

This is significantly below the worst performance of our tool. To compare these results,

we must convert the unranked sets in table 4.2 to ranked lists from which to derive

averages. Randomly ranking all the returned lines above a list that randomly ranks all

the lines not returned provides this conversion. The injected fault location, when it is

returned as part of the unranked set, will, on average, be in the middle of the ranked

returned lines. Using this conversion, the KLEE average result over the TCAS single-

fault variants is equivalent to returning the injected fault location at the 4th ranked

location (2.3%). Jose and Majumdar provide results equivalent to a 3.9% average on

the same set of variants.

When we directly compare our tool to a spectrum-based localisation tool in chapter 5, we

almost always outperform the spectrum-based ranking. For small test suites we provide

run-time parity (0.3s) and even take the lead (0.9s vs 1.1s) when extending the test

suite scale, thanks to our better than linear scaling with test suite size. Spectrum-based

localisation, as it simply iterates all test cases using concrete execution, scales linearly

with test suite size once the overhead has been factored out.

Our tool regularly pin-points the assignment later used by the student to bring the

submission into compliance with the test suite, returning the faulty assignment after,

on average, only 16% of other assignments. 125 of the 304 student submissions were

returned from our tool with only that assignment flagged. All other assignments were

eliminated as viable repair candidates for the test suite specification. The spectrum-

based tool ranked the statement the student later used to repair the program after an

average of 63% of other statements when using the small test suite and only improved

to 58% with a large test suite. Our unchanging performance with the larger test suite is

still a far higher ranking for the statement the student later used to repair the program.

Our results in chapter 5 strongly support the use of our tool for assisting students in re-

pairing single-assignment faults in small program submissions, even when only specified

by a very small test suite. When a programmer has made a mistake on constructing

an assignment in an otherwise solid submission, an expensive debugging process may be

averted by use of this feedback with consistently high absolute localisation performance

over the range of student program submissions.
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6.3 Extensions beyond Single-Fault Assumption

Most of our results have been achieved under a single-fault assumption. This is a com-

mon assumption [16, 39, 61] but also does not reflect the majority of real-world situations

in which automated localisation will be deployed. Our data set in section 5.1 does show

that there are real-world single-fault programs on which to apply our tool but expanding

this beyond this limitation is highly desirable. However, using n toggles to expand the

symbolic analysis to a genuine search for any n-fault repair rapidly increased the solver

cost due to additional non-determinism and would also increase the total combination

of counter-examples returned. This may severely limit the applicability of this tool to

very small input programs in order to retain tractability.

In section 5.5 we have shown a method of relaxing and reshaping the optimised search

process we have developed which allows the isolation of some dual-fault programs. The

dual-fault programs, which are the same scale of source code as the previous data set

with similar test suite sizes, are localised within the same time window. Double-faults,

where both faults can be exercised in a single trace, localise within the same order

of magnitude while twin-faults equal our earlier single-fault programs, when using our

optimisations. The absolute and percentage ranked localisation performance also shows

a similar characteristic to the single-fault data set where additional failing test cases do

not significantly change the performance of the tool.

Our preliminary results show a valuable extension beyond our single-fault assumption,

adding an additional 125 dual-fault pairs to the 304 single-fault pairs in our data set on

which we can process to provide localisation results. The 77 twin-fault pairs show the

most promising results, which are in-line with our single-fault pairs. The remaining 48

double-fault pairs also provide some positive results and maintain a run-time completion

time within the same order of magnitude as our other results.

This tool extension offers a path to localising programs beyond our original slice in

section 5.1 without the likelihood of exploding symbolic analyser time costs caused by

implementing a model-based dual-fault search using multiple toggle variables. We find

this extension allows the processing of many additional student programs that occur in

our database, extending the use of this tool beyond the single-fault programs previously

localised. Programs with twin faults are often perfectly localised without requiring

test suites to be divided before processing or knowing in advance if the locations being

searched are in a twin-fault relationship.

6.4 Limitations and Threats to Validity

In subsection 4.3.2 we have already discussed issues with making direct localisation per-

formance comparisons. These are not direct “apples to apples” comparisons as each
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localisation method brings with it various limitations and assumptions. The gran-

ularity and fault classes being searched for varies between the different model-based

and spectrum-based localisation methods compared in this thesis. Different localisation

scopes for each technique’s implementation means their localisation performance is not

precisely comparable which is a caveat noted whenever we have presented a comparison.

We have provided results on both commonly used benchmark program variants and

against programs where the repair site is defined where a human debugger later repaired

the program after the faulty version was submitted to the system. We also argue that

any location returned by our tool is a genuine repair opportunity to allow the entire

test suite to pass, due to the method of localisation generating a low-quality repair at

the returned locations. So when many locations are returned, this is a function of the

weak specification being exposed, not an error in ranking the seeded/used repair location

lower than it should be. Fault localisation does, ultimately, result in comparing the size

and composition (or rank order) of sets of proposed fault sites where developers must

then search for a genuine repair. It is by this metric and run-time performance that we

have attempted to offer insight into how the various approaches compare, even if we are

not comparing apples to apples.

The fault-seeded variants of the small Siemens program we are testing on are not a

representative sample of C programs and the faults they contain. The TCAS variants

explored all contain injected faults inserted at return expressions or assignments. Our

results may not generalise to other C programs. Our focus on a subset of programs, and

use of real-world code which is atypical in the heavy use of global variables, may obscure

comparative analysis of performance against other tools with different program features.

Performance on relatively small, loop-free programs like TCAS does not provide guidance

into how this process scales to large programs with more complex control flow. However,

this issue is common to all tools which demonstrate their localisation effectiveness on

the TCAS variants.

We have expanded to other library-call-free, integer programs using our database of

student code submissions, including some programs with loops. These are generally of

a much smaller scale than the Siemens benchmarking programs outside of TCAS and

don’t use other variable types (which our downstream tools cannot handle due to no

floating point symbolic analysis). However, this does provide a real-world niche in which

our tool is generating localisation results which would assist students in completing the

debugging of their coursework submissions.

The slicing of the student programs via a simple language translation stage, without any

translation of library calls, and rejection of unparseable code restricts the form of pro-

grams explored. This slice assumes a repair possible via assignment modification. The

choice of symbolic analyser (with an integer solver) also restricts the type of programs

processed. Some programs are not suitable for automated localisation, such as those
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that never terminate on some inputs, and these would not make it through the database

slice. These restrictions could add a bias to the student programs explored which could

unfairly advantage one tool or call the generalisability of these results into question.

Our tool and the slice used on the database of student programs to generate the pairs

for analysis makes a single-fault assumption for the majority of our results. This is a

common assumption in the fault localisation field [16, 39, 61] but does not reflect real-

world debugging, although the existence of many code pairs in this data set does confirm

real-world applicability. We have partially relaxed this constraint to a limited dual-fault

assumption in section 5.5.

We can use any (C99 comprehending, supporting assume functionality) symbolic anal-

yser to process our generated C code but our results are linked to either KLEE or

ESBMC. Any issues related to those tools may affect our results, if not our method-

s/process. No high performance symbolic analyser of C can perfectly transform an input

program into an exact representation according to the full C specifications. The lack

of exact specification compliance by the various widely used (optimising) C compilers

also makes such an impracticable achievement undesirable. Real compiled code does

not perfectly map to a strict adherence to a single, deterministic interpretation of the C

specifications.

The open-source script used to execute the spectrum-based localisation was written in

Java. Executing Java scripts is known to come with a high initialisation time cost to

start the JVM. Due to the short run-times involved, this may have inflated the run-

time costs of this technique beyond some competing implementations based on the same

GCov underlying tool.

To minimise the risk of over-tuning our design to the test data, our choice of time-out,

sleep delay, and early termination values have not been tuned or selected for optimising

with respect to the data set as this would compromise the generalisability of our results.
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Conclusions

Our main contribution is an improved search algorithm through the test suite, reducing

the effort for the symbolic execution of the model. Our results show Griesmayer’s tech-

nique works in comparable time to the state of the art when driven with our optimised

algorithm for the small C programs tested. This algorithm outperforms the naive reim-

plementation of the technique and the technique’s originally published implementation

by more than two orders of magnitude.

We generate genuine lists of repair locations as specified by test cases for any repair that

could be expressed as a look-up table for the right-hand side of an assignment, within the

limits of symbolic analyser accuracy. These low-quality repair tables provide assignment

values to correct all failing test cases in the suite. Our time performance is in line with

recent alternative model-based fault localisation techniques, but narrows the location

set further without rejecting any genuine repair locations where faults can be fixed by

changing a single assignment. This is more consistent than the localisation performance

of other techniques and does so without compromising the narrowing extent, which

might be done to avoid the false negatives shown in the competition.

Applying our tool in an educational context must meet the demands of novice program-

mers who are unlikely to be capable of advanced debugging techniques. Coursework

and charettes provide an opportunity for fast, accurate fault localisation to assist in

educational institutions, which have already built up databases and workflows around

test suite specified exercises. We have demonstrated a fast, model-based fault local-

isation tool on a collection of single-fault, real-world student submissions. The high

quality localisation information reduces the search space for novice debuggers working

down a list of potential repair locations when compared to the results from spectrum-

based techniques. In over a third of the sampled failing student programs, our tool

used the test suite to provide a localisation result that uniquely identified the location

later used by the student to repair the program and rejected all other locations. This

reinforces the qualitative difference between model-based fault localisation that reasons
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over a model of the student program to derive a list of feasible repair locations compared

to a spectrum-based ranking process that infers suspiciousness of each program state-

ment. These short, often exact singleton, lists of potential assignment repair locations

can direct students to the site of improvement, assisting in the construction of a final

submission that fully complies with the test suite. The run-time cost of our high qual-

ity localisation matches that of fast, inaccurate spectrum-based fault localisation, even

with large test suites, ensuring that our approach is viable even at the scale required by

MOOCs.

We have demonstrated that submissions which are a single assignment edit away from

full compliance with a test suite would not be graded predictably if scoring were based

on compliance with the test suite only. This confirms the need for tools which can isolate

such “almost correct” student submissions.

We have also proposed an extension to our algorithm to account for collections including

n-fault programs with different test case coverage of those faults. We have explored the

frequency of different classes of dual-fault programs in our data set of student submissions

and demonstrated the preliminary application of our tool using an extended algorithm

covering these programs without the solver cost of using a classic extension to n-faults

with multiple toggle variables.

In this thesis we have answered the research questions set out in section 1.1:

RQ1 We have found that, for the small programs analysed here, model-based fault local-

isation provides better narrowing results in the same time constraints as spectrum-

based methods when using large test suites.

RQ2 Our model-based fault localisation approach has accurately pin-pointed fault lo-

cations (in absolute and relative terms) on the real programs which we have tested

it against.

RQ3 We have not found an expansion of this model-based fault localisation techniques

to synthesise high-quality repairs from the low-quality repair byproducts of the

localisation process in competitive run-time.

RQ4 Our model-based fault localisation approach has provided initial results beyond

a single-fault assumption without significantly expanding the symbolic load of

analysis of the programs localised.

RQ5 Our approach has shown potential benefits for the pedagogical domain in the areas

of automated student feedback, grading feedback, and isolating a class of programs

which some automated grading fails to correctly classify as “almost correct”. This

has been shown applied to real-world student coursework code submissions.
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7.1 Future Work

Future studies to continue this research can survey the real-world performance of our

tool on new data sets and expanding our tools to new program types (including new

languages), fault classes, and symbolic analysis tools. The underlying methods and op-

timised algorithms developed and implemented into our current tools are programming

language and symbolic analyser agnostic. This will allow future tests using other pro-

gramming languages and beyond the restrictions (such as no floating point symbolic

analysis) of the currently selected downstream components. Such an extension would

provide results for the limits of scalability of this approach when attempting a wider

range of larger programs than the Siemens suite. An extended transformation system

that extracted more implicit assignments or modelled non-assignment points of repair

would demonstrate localisation on a larger set of program locations.

Our current research points towards the study of tool-assisted learning in classroom

environments and the effect on student progress when one group is provided with this

high quality localisation information in typical student programming tasks. Such studies

can validate this feedback as valuable for novices, improving total debugging time and

reducing the number of students who stop before completing a source code submission

fully conforming to the provided test suite. The integration of this localisation feedback

into student integrated development environments must be managed to maximise and

quantify student comfort and views on the ease-of-use of this additional information.

Future studies could be done with direct interaction tracking, surveys, or analysis of

achievement changes when this tool is introduced to an existing course.





References

[1] A. Adam, J.-P. Laurent: LAURA, a System to Debug Student Programs. In

Artificial Intelligence 15(1–2), pp. 75–122. Elsevier, 1980.

[2] M. Ahmadzadeh, D. Elliman, C. Higgins: An Analysis of Patterns of Debugging

Among Novice Computer Science Students. In Proc. 10th Annual Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’05, pp. 84–

88. ACM, 2005.

[3] K. M. Ala-Mutka: A Survey of Automated Assessment Approaches for Program-

ming Assignments. In Computer Science Education 15(2), pp. 83–102. Taylor &

Francis, 2005.
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