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FAST APPROXIMATE BAYESIAN COMPUTATION FOR INFERENCE IN

NON-LINEAR DIFFERENTIAL EQUATIONS

by Sanmitra Ghosh

Complex biological systems are often modelled using non-linear differential equations

which provide a rich framework for describing the dynamic behaviour of many inter-

acting physical variables representing quantities of biological importance. Approximate

Bayesian computation (ABC) using a sequential Monte Carlo (SMC) algorithm is a

Bayesian inference methodology that provides a comprehensive platform for parame-

ter estimation, model selection and sensitivity analysis in such non-linear differential

equations. However, this method incurs a significant computational cost as it requires

explicit numerical integration of differential equations to carry out inference. In this the-

sis we propose a novel method for circumventing the requirement of explicit integration,

within the ABC-SMC algorithm, by using derivatives of Gaussian processes to smooth

the observations from which parameters are estimated. We evaluate our methods using

synthetic data generated from model biological systems described by ordinary and delay

differential equations. Upon comparing the performance of our method to existing ABC

techniques, we demonstrate that it produces comparably reliable parameter estimates

at a significantly reduced execution time. To put emphasis on the practical applicability

of our fast ABC-SMC algorithm we have used it extensively in the task of inverse mod-

elling of a phenomenon pertaining to plant electrophysiology. Particularly we model

the electrical responses in higher plants subjected to periods of ozone exposure. We

investigate the generation of calcium responses at local sites following a stimulation and

model electrical signals as a plant-wide manifestation of such responses. We propose

a novel mathematical model that describes the experimentally observed responses to

ozone. Furthermore, we pose the modelling task as an inverse problem where much of

our insight is gained from the data itself. We highlight throughout the inverse modelling

process the usefulness of the proposed fast ABC-SMC method in fitting, discriminating

and analysing models described as non-linear ordinary differential equations. We carry

out all these tasks using noisy experimental datasets, that provide limited information,

to derive novel insights about the underlying biological processes.
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Ioz Average ozone current for a collection of cells

Vm Average membrane potential for a collection of cells

xvii



xviii NOMENCLATURE

Vo Resting membrane potential

|| · ||2 Euclidean norm

O(t) Probability of an ion channel being in open state

C(t) Probability of an ion channel being in closed state
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Chapter 1

Introduction

1.1 Motivation

The time evolution of the variables modelled in a variety of science and engineering

branches are often described by ordinary differential equations that are characterised

by model structure – the functions of the dynamical variables – and model parame-

ters. In many practical problems it is necessary to infer both the model parameters and

an appropriate model structure from the experimental observations. We refer to these

problems as inverse problems. The task of estimating model parameters and choosing

the most appropriate among competing models from experimental observations, often

corrupted with noise, is essentially a statistical inference problem of paramount impor-

tance. It should be noted however that there exist vast differences between the principles

governing many biophysical phenomena that we wish to understand and predict, and

our description of the same in terms of mathematical models. A philosophical perspec-

tive adopted by many scientists to overcome the aforementioned differences (or lack of

precise knowledge) is the association of uncertainty. Uncertainty thus can be associated

with a model structure, the evidence (in form of experimental data) as well as future

predictions. However, in practice systematic characterisation of model uncertainty has

been given much less consideration with the majority of effort being focused on param-

eter estimation from an optimisation perspective. The Bayesian methodology (Gelman

et al., 2003; Bernardo and Smith, 2001) of inference is well suited for the quantifica-

tion of uncertainty in the estimates of parameters as well as uncertainty over a set of

candidate models. To apply Bayesian techniques we need to integrate marginal like-

lihoods, which can be computationally intractable in non-linear differential equation

models. For this reason some form of approximation such as Monte Carlo integration is

generally preferred for parameter inference. Markov chain Monte Carlo algorithms are

used most often to carry out approximate Bayesian inference in non-linear differential

equation models (Girolami, 2008). This thesis presents the process of developing a novel

approximate Bayesian inference algorithm that is built upon many recent developments

1



2 Chapter 1 Introduction

in Bayesian inference and other allied fields such as machine learning. This novel algo-

rithm, we argue through rigorous experiments, combines the benefits provided by the

state-of-the-art Bayesian parameter and model selection methods in terms of quality

of estimates, capability of handling uncertainty, and computational efficiency within a

single framework. Furthermore, a significant part of this thesis presents an application

scenario where we have applied this algorithm for a novel inverse problem pertaining

to plant electrophysiology. We have proposed electrophysiological models to explain

novel experimental results. To the best of our knowledge this is the first instance of

Bayesian inverse modelling in plant electrophysiology and through this problem we have

highlighted many useful features of this algorithm in shedding light on a complicated

physiological process. In the next section we will provide details on some of the more

recent developments in Bayesian inference in the context of differential equations on

which our proposed algorithm is built. Then in later sections we will introduce, very

briefly, aspects of plant electrophysiology leading to our chosen inverse problem.

1.2 Recent developments in Bayesian inference

A major practical hindrance to the widespread use of Bayesian methods in this context

is rooted in the computational burden of MCMC algorithms which require repeated nu-

merical integration of differential equations. For complex models such computational

burden appears prohibitive. Thus a number of methods have been proposed that allevi-

ate this computational bottleneck by circumventing the need of numerical integration.

These methods are collectively known as gradient matching methods. Any such gradient

based inference algorithm operates by smoothing the gradients or the velocity field of

the governing models without performing integration. The actual process of inference

is however based on optimisation. Macdonald et al. (2016) provides a comprehensive

review and historical perspective of many such methods. The idea of gradient based

smoothing has been incorporated in recent methods that rely on supervised learning

techniques built upon a Bayesian framework. Such methods and algorithms have been

shown to work extremely well for complex non-linear ordinary differential equations in

Calderhead et al. (2008), Dondelinger et al. (2013), Wang and Barber (2014). These

methods employ Gaussian processes to perform supervised learning (also known as re-

gression) achieving significant improvements in smoothing. Moreover, since Gaussian

processes are probabilistic models they are easier to implement within the sampling

schemes of conventional MCMC algorithms. With the use of smoothing such meth-

ods avoid numerical integration required within MCMC sampling schemes providing a

computationally faster approach towards Bayesian inference of parameters of differential

equation.

Bayesian inference algorithms also suffer from the fact that none of these algorithms

provide a holistic platform for uncertainty quantification. As for example many variants
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of MCMC algorithms such as the Metropolis-Hastings require modifications and some

amount of engineering in order to be applied for the task of parameter estimation as

well as model selection. Moreover, such MCMC algorithms do not address the issue

of sensitivity analysis. Thus designing a single inference platform within the Bayesian

framework that can quantify uncertainty associated with model structure, parameters

and sensitivity is highly desirable.

Approximate Bayesian computation (ABC) based on sequential Monte Carlo (SMC) is a

recently developed approximate inference technique that provides a consistent platform

for uncertainty quantification. It has been applied to the task of both parameter esti-

mation and model selection in Toni et al. (2009). The ABC-SMC algorithm has been

shown to work well for the examples considered in Toni et al. (2009). ABC-SMC pro-

duces reliable estimates of parameters and has been used to discriminate between a set

of candidate models using Bayesian model selection criteria. Moreover, ABC-SMC en-

ables the calculation of parameter sensitivities (Toni et al., 2009). ABC methods prove

to be most useful for large and intractable models with complex likelihood functions

that are difficult to evaluate. ABC methods are also know as likelihood-free inference

as in ABC evaluation of likelihood is replaced by simulation from a generative model.

Note that inference using ABC does not have the theoretical guarantee of recovering the

true posterior estimates. Thus, in the context of ABC we will refer MCMC algorithms

as exact Monte Carlo algorithms. Also, this method, like other Monte Carlo methods,

incurs a significant computational cost as it requires explicit numerical integration of

differential equations to carry out inference.

We have noticed that most parameter estimation algorithms proposed in recent litera-

ture are tested only on benchmark model systems. This is because such models present

formidable known challenges that any inference algorithm must be able to conquer at

the least. However, we believe the applicability and usefulness of any inference algorithm

can be fully understood and appreciated by solving previously unsolved or novel inverse

problems. Having applied the modified ABC-SMC algorithm to solve an electrophysio-

logical inverse problem (mentioned previously) we realized its true usefulness (statistical

as well as computational). We will turn to this problem next with a brief introduction

to the various electrical signals found in plants.

1.3 Electrophysiological responses in plants

Plants have the ability to sense the surrounding environment. Plants show fundamental

physiological responses to many environmental perturbations such as change in incident

light, temperature, moisture, pollutants, pesticides etc. These physiological responses

are elongation growth, respiration, moisture absorption, photosynthesis and transpira-

tion, pollination, fertilization etc. Investigation of these responses, led by plant scientists,
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revealed that most of these physiological processes are coordinated by electrical signals

found within plants. Analogies between plant and animal electrical signals have been

drawn by many plant scientists. However, fundamental knowledge about these electrical

activities within the plants is yet to be gained.

1.3.1 Types and natures of electrical signals in plants

The electrical signals in plants are found to be the potential difference between inside and

outside of the plasma membrane. The difference in electrical potential between interior

and exterior of a biological cell membrane has been a focal point among biophysicists

for over half a decade. This is the fundamental electrical signal found in plants and it

is formally defined as the membrane potential. The communication of changes in this

potential difference across the plant anatomy is manifested in different forms on the ba-

sis of plant physiology and is categorized into two categories; the action potential (AP)

and the variation potential (VP). These signals have unique morphological identifiers as

well as specific stimulus-response characteristics.

Action potential

Action potential is induced by non-damaging stimuli (cold, mechanical, and electrical

stimuli). Action potential can move across the entire plant body transmitting infor-

mation across and for this reason it is considered the most widespread signalling phe-

nomenon in plants (Pickard, 1973). AP is generally described by its different phases

shown in Figure 1.1. The first phase is the firing phase or the depolarizing phase in

which the membrane voltage rises above the resting potential and this phenomenon is

called the depolarization of the membrane potential. This depolarization voltage is gen-

erally found to be approximately between 50mV to 75mV in higher plants (Pickard,

1973). After this rise, the membrane voltage returns back towards the resting potential

gradually and this is known as the repolarization and also as the falling phase. After

the falling phase the AP can be divided into an absolute refractory period and a relative

refractory period. In the absolutely refractory period it is impossible to evoke another

AP giving the same stimulus to the same site but during the relative refractory period

strong stimulus can evoke further APs from the same site. Sometimes during the re-

polarizing phase the membrane potential shoots below the resting potential for some

duration of time and then again stabilizes at the resting potential.

Variation potential: The slow wave

Variation or slow wave potentials are propagating electrical signals like the APs which

also consist of a transient change in membrane potential (the depolarization and the

repolarization). However there exist few fundamental differences between the AP and

the VP. VPs have delayed repolarization and a large range of variation. Also, these sig-

nals vary with the intensity of the stimulus. VPs are generated in response to damaging
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Figure 1.1: Typical shape of the action potential.

stimuli like mechanical wounding, flaming or organ excision by either a local change in

hydraulic pressure or by the transmission of chemicals through the dead xylem (Fromm

and Lautner, 2007). VPs are studied in a wide variety of plants such as cucumber and

peas seedlings (Stahlberg and Cosgrove, 1992) and also in woody plants such as Vitis

Vinifera (Mancuso, 1999). The VP is characterized by three aspects: 1) Decrease in the

amplitude and speed as a function of the distance from the site of injury; 2) Ability to

pass dead regions of tissue; 3) Dependence on xylem tension (Fromm and Lautner, 2007).

Stankovic et al. (1997) suggested from their experiments on a sunflower plant, that a

locally applied wounding of the sunflower plant triggers a surge in pressure in the xylem

which activates some mechanosensitive/stretch-responsive ion channels in adjacent liv-

ing cells. Activation of these ion channels creates ion fluxes evoking a depolarization of

the local membrane voltage, which is observed extracellularly as a VP. Figure 1.2 shows

the VPs generated in the sunflower plants (Stankovic et al., 1997).

Jasmonate inducing electrical signals

Apart from the aforementioned signals, long distance electrical signals as part of a de-

fence mechanism against wounding has been discovered in (Mousavi et al., 2013; Zimmer-

mann et al., 2009; Felle and Zimmermann, 2007). In Mousavi et al. (2013) transmission

of such long distance electrical signal generated by the activity of glutamate-receptor-like

(GLR) ion channels in response to herbivore attacks has been discovered in Arabidopsis
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Figure 1.2: VP in sunflower plant Stankovic et al. (1997) triggered by flaming
is measured by three electrodes placed 5, 15 and 25 cm from the stimulated site
on the stem.

thaliana. These signals induce the increase in hormone jasmonate which triggers de-

fence responses at local and distant sites. Figure 1.3 shows a cartoon illustrating this

phenomenon termed as the “Electrical Defence” in Christmann and Grill (2013). The

Figure 1.3: Defence responses induced by electrical signalling (Christmann and
Grill, 2013). Transmission of electrical signals to local and distant sites af-
ter herbivore attack trigger defence response as jasmonate hormone increases.
These electrical signals are generated by the glutamate-receptor-like (GLR) ion
channels.

work reported in Mousavi et al. (2013) has raised many questions on the generation and

maintenance of these electrical signals. The role of calcium ions in these processes is

also being probed.
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1.4 Thesis contributions: Increasing the computational ef-

ficiency of ABC-SMC

We propose a novel algorithm based on ABC-SMC using gradient based smoothing as an

alternative to numerical integration for simulation from the generative model. Specifi-

cally, we apply Gaussian process regression for smoothing as in Calderhead et al. (2008)

while preserving the inferential advantages of ABC-SMC over conventional MCMC.

We bring together these two contrasting approaches to parameter estimation in order to

build a holistic platform for handling uncertainty without any computational bottleneck.

We will show through experiments on many model systems that the computational effi-

ciency gained in our approach outperforms not only the original ABC-SMC method but

also other MCMC methods that employ Gaussian processes. All our model systems are

previously used for benchmarking various inference algorithms and are also relevant to

many developments particularly in the field of computational biology.

1.4.1 Mathematical modelling of electrical responses

Our work is concerned with the study of the electrophysiological responses in plants due

to harmful environmental pollution. In this thesis we attempt to provide a phenomeno-

logical characterisation of electrical responses in plants subjected to a particular form

of environmental pollution: exposure to ambient ozone. We model the time courses of

electrical responses obtained experimentally to arrive at the aforementioned phenomeno-

logical characterisation. We have used ozone as our chosen stimulus because it is a global

air pollutant that harms plant productivity, and has significant negative impact on agri-

culture. It enters the plant through stomatal opening present in the leaves and also

through pores all over the plant’s stem, generating other reactive oxygen species causing

oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass ac-

cumulation (Ainsworth et al., 2012) and reduces plant productivity. Due to the harmful

(wounding) nature of ozone as a stimulus, we believe the resulting electrical responses

shall have traits of the jasmonate inducing signals. Through our proposed mathematical

models we attempt to investigate the role of calcium ions behind the generation of these

electrical responses.

In this process we will apply the modified fast ABC-SMC algorithm to validate and

choose a suitable model in light of the experimental observations. Furthermore, we

will use ABC-SMC to quantify the uncertainties associated with many aspects of our

proposed model in hope of gaining a thorough understanding of the mechanism behind

the stimulus-response phenomenon.
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1.5 Thesis structure

The thesis is organised in six chapters (including the present one). In the following we

provide a brief outline of the rest of the chapters (2-6):

• Chapter 2, ABC methods for learning in differential equation models—In

this chapter we present a literature review of the ABC-SMC methods for parameter

estimation and model selection in non-linear differential equations. ABC itself

is in a burgeoning phase with many developments published in the past couple

of years. In this chapter we primarily focus on ABC methods in the context of

inference in differential equations. However, we have indicated other developments

in the broader field of ABC that we believe is important in establishing our chosen

subject.

• Chapter 3,Gaussian processes for speeding up the ABC-SMC algorithm—

We introduce the theory of Gaussian process regression and apply the same for

smoothing the trajectories of an ordinary differential equation to obtain the em-

pirical velocity fields. We then modify the ABC-SMC algorithm by incorporat-

ing Gaussian process smoothing to replace numerical integration required for re-

peated simulations. Furthermore, we introduce briefly other Gaussian process

based MCMC algorithms published in recent literature and compare these with

the modified ABC-SMC algorithm. Thus in this chapter we introduce our major

contribution, a fast ABC-SMC algorithm which we call the GP-ABC-SMC.

• Chapter 4, Experimental evaluation of the GP-ABC-SMC algorithm—To

show the computation benefits of the GP-ABC-SMC we compare the same with

the ABC-SMC algorithm that uses numerical integration. Furthermore, we also

compare the GP-ABC-SMC with other algorithms that use Gaussian processes.

The experiments were performed using artificial data generated from benchmark

model systems. We have taken extreme care while generating such datasets to

avoid any systematic bias towards a specific algorithm under comparison.

• Chapter 5, Mathematical modelling of plant-wide electrical responses in

higher plants exposed to ozone—In this chapter we develop a novel mathe-

matical model that explains the generation of electrical responses in higher plants

subjected to ozone exposure. The first part of this chapter introduces experiments

that involve the aforementioned ozone treatments. We hypothesise that the elec-

trical signals are manifestation of a plant-wide calcium wave. We then provide

a mathematical model that quantifies the dynamics of this calcium wave. In the

second part of this chapter we apply the GP-ABC-SMC algorithm to fit this cal-

cium wave model to the experimentally observed electrical signals. Furthermore,

we use the output of the GP-ABC-SMC algorithm to further probe and predict

the behaviour of our proposed model.
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• Chapter 6, Summary and main contributions—In this chapter we summarize

our two major achievements: i) developing a fast Bayesian inference algorithm for

non-linear differential equations, and ii) solving a novel inverse problem in plant

electrophysiology. We finish this chapter and the thesis with some indication of

future work.

1.6 Publication

The primary contribution of this thesis, the GP-ABC-SMC algorithm, has been pub-

lished in the following article:

S. Ghosh, S. Dasmahapatra, and K. Maharatna. Fast approximate bayesian computation

for estimating parameters in differential equations. Statistics and Computing [Online].

Available :http://dx.doi.org/10.1007/s11222-016-9643-4.





Chapter 2

ABC methods for learning in

differential equation models

2.1 Introduction

The two major tasks related to the inverse modelling, where we strive to explain ex-

perimentally measured time courses of physical variables using a dynamical system, are

estimating the parameters that control the model behaviour and selecting the best ex-

planation or hypothesis of the experimental observations through selecting a suitable

model among many candidates. Both these tasks when posed as statistical questions

could be arguably – ‘best’ answered in the framework of Bayesian statistics. In this

chapter we will review the fundamentals of ABC methods especially based on sequential

Monte Carlo (SMC) for this purpose. Since ABC is a new field which is evolving at a

rapid pace we will thus mostly focus on the developments of ABC based methods in the

context of inference in deterministic dynamical systems.

2.2 Bayesian parameter estimation and model selection

In the Bayesian framework parameter estimation is carried out by inferring the posterior

probability distribution p(θ|Y d) of the parameters θ given the data Y d. Following the

Bayes formula the posterior is given by

p(θ|Y d) =
p(Y d|θ)π(θ)∫
p(Y d|θ)π(θ)dθ , (2.1)

where p(Y d|θ) is the likelihood function and π(θ) is the prior distribution of the param-

eters θ.

11
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Model selection within the Bayesian framework is carried out by providing evidence in

support of a model. Given data Y d and two competing hypotheses H1 and H2, we can

calculate the probability of each model hypothesis given the data. The posterior odds

(ratio) of these probabilities are given by

p(H1|Y d)

p(H2|Y d)︸ ︷︷ ︸
Posterior odds

=
p(Y d|H1)

p(Y d|H2)︸ ︷︷ ︸
Bayes factor

p(H1)

p(H2)︸ ︷︷ ︸
Prior odds

. (2.2)

If there is no preference a priori for a particular model, the prior probabilities of the

model may be set to equal. Hence for p(H1) = p(H2), the Bayes factor given by

B1,2 =
p(Y d|H1)

p(Y d|H2)
(2.3)

can be used to choose among the competing hypotheses. The likelihood of the data given

a model also known as the integrated or marginal likelihood, obtained by integrating

over the parameter space:

p(Y d|Hj) =

∫
p(Y d|θj , Hj)π(θj |Hj)d(θj) (2.4)

where a specific model hypothesis Hj is parametrized by θj and π(θj |Hj) is the prior

density of the parameter θj under the same model hypothesis. It is thus easy to un-

derstand, intuitively, that the Bayes Factor simply weighs the evidence provided by the

data in support of each model through the integrated or marginal likelihood.

In Kass and Raftery (1995) the following qualitative interpretation of Bayes Factor

was given:1 to 3 is barely worth a mention, 3 to 10 is substantial, 10 to 30 is strong, 30

to 100 is very strong and over a 100 is decisive evidence in favour of model H1. Values

below 1 take the inverted interpretation in favour of model H2.

Although the Bayesian framework provides a cohesive and probabilistic platform for

parameter estimation as well as model selection, in the case of a complex model such as

a non-linear ODEs the marginal likelihood becomes analytically intractable and thus we

have to resort to approximation schemes for inferring the posterior. Bayesian numeri-

cal methods based on Markov chain Monte Carlo (MCMC) sampling is generally used

for approximate inference in this context (Vyshemirsky and Girolami (2008),Gelman

et al. (2003),Calderhead and Girolami (2009)). In this thesis we will be using a some-

what different approach of approximate inference known as the Approximate Bayesian

Computation (ABC). ABC methods use a simulation-based procedure to eliminate the

computation of the likelihood function in cases where it is intractable. ABC based on se-

quential Monte Carlo (SMC) is one such approximate inference technique that has been

applied to different classes of dynamical systems described by deterministic or stochastic
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differential equations for both parameter estimation and model selection in Toni et al.

(2009). In the following section we would introduce the reader to a brief review of ABC

methods in practice.

2.3 The basic ABC framework

ABC methods are widely used in population genetics (Pritchard et al. (1999), Beaumont

et al. (2002)) since their introduction by Pritchard et al. (1999) in the form of the

ABC rejection sampler. ABC methods have been conceived with the aim of inferring

posterior distributions without evaluating the likelihood function. ABC methods exploit

the numerical efficiency of simulation techniques by replacing the calculation of likelihood

with a comparison between the observed and simulated data and are proven to be most

useful for large models with complex likelihood surfaces that are difficult to evaluate.

The operating principle of ABC methods lies in replacing the evaluation of likelihoods

with a simulation based procedure for inference, by using a generative modelMθ with

parameters θ drawn from a prior distribution π(θ) to simulate observations Y s ∼ Mθ

that are compared with the observed data Y d. If the likelihood p(Y d|Mθ) of observed

data Y d is intractable or infeasible to compute, then we can use the ABC algorithm to

obtain samples from the following modified posterior density

pǫ(θ, Y
s|Y d) =

1(∆(Y d, Y s) ≤ ǫ)(Y s ∼Mθ)π(θ)∫
θ

∫
Y s 1(∆(Y d, Y s) ≤ ǫ)(Y s ∼Mθ)π(θ)dθdY s

(2.5)

where ǫ > 0 is a tolerance level, ∆ is a distance function, 1 is the indicator function

and pǫ(θ, Y
s|Y d) = p(θ, Y s|∆(Y d, Y s) ≤ ǫ). A good (enough) approximation of the

true marginal posterior distribution is obtained when the distance ∆(Y d, Y s) is within

a predetermined small tolerance ǫ, i.e.,

pǫ(θ|Y d) =

∫

Y s

pǫ(θ, Y
s|Y d)dY s ≈ p(θ|Y d) (2.6)

Since ABC (including ABC-SMC) requires the generation of a number of simulated

observations Y s ∼ Mθ, the generation of observations could be a computationally ex-

pensive process. Thus although ABC-SMC mitigates the intractability of evaluating the

likelihood function through simulation, repeated simulation from complex models for

inference can itself be burdensome. For the case of dynamical systems such simulations

require explicit numerical solutions of non-linear differential equations.

ABC methods generally have the following algorithmic form:

1. Sample a candidate parameter vector θ from a prior distribution π(θ) and for each

θ ∼ π(θ), simulate a dataset Y s ∼Mθ from a generative modelMθ.
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2. Compute a distance ∆(Y s, Y d) between the simulated dataset, Y s and the exper-

imental data Y d. If ∆(Y d, Y s) ≤ ǫ, where ǫ ≥ 0 is the error tolerance of accepted

solutions, then accept θ and reject otherwise.

This scheme is repeated until N parameter values are accepted, which represent a sample

from the approximate posterior distribution pǫ(θ|Y d). Exact posterior can be obtained

from this scheme when ǫ = 0.

2.3.1 ABC-SMC for parameter estimation in ODE

If the prior distribution is very different from the posterior distribution, the basic ABC

framework is very inefficient as it spends a considerable amount of time sampling from

areas of low likelihood in parameter space, which makes the acceptance rate extremely

low. In order to improve upon poor acceptance rates and facilitate exploration of the

parameter space, ABC algorithms based on the SMC sampling method were proposed

in Sisson et al. (2007), Del Moral et al. (2006) and Sisson et al. (2009) and sequential

importance sampling (SIS) in Toni et al. (2009), Beaumont et al. (2009). Toni et al.

(2009) applied the ABC algorithm based on SIS for parameter estimation and model

selection for a variety of dynamical systems including non-linear ODEs and DDEs, which

will also be the focus in this paper. Although all the variants of ABC algorithms that

come under the SMC category can potentially be used for inference in dynamical systems,

we will specifically focus our attention on the ABC approach as adopted in Toni et al.

(2009).

We shall apply ABC-SMC to models of the evolution of state X(t) = (X1(t), . . . , XK(t))

that are governed by ODEs or DDEs dX(t)
dt = f(X(t− td),θ), where td stands for the

time delay in DDEs, with td = 0 for ODEs, and θ is a vector of parameter values.

We express the integrated solution of the differential equations X(t,X in;θ) as a map

ψt(X in;θ) that generates state trajectories X(t) given a set of parameters θ and initial

conditions X in , X(td ≤ t ≤ 0). To generate the samples Y s, we obtain the solutions

X(t,X in;θ) considering the differential equation as the generative modelMθ:

(Y s ∼Mθ)⇔ Y s = X(t,X in;θ). (2.7)

to be used in the ABC framework.

A collection of parameter values, called particles θ are sampled from the prior π(θ) to

instantiate the generative modelMθ. To decide whether a particular choice of param-

eters θ ∼ π(θ) is accepted, we need to compare if the simulated trajectory Y s ∼ Mθ

is within a tolerance level ǫ of the observed trajectory Y d, for which we introduce the

distance function

∆(Y d, Y s) =
L∑

i=1

K∑

k=1

(Y d
k (ti)−Xk(ti))

2, (2.8)
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where we assumed that the data were collected, and the state evaluated, at discrete

time points tL , {ti}i=1,...,L. Note that for dynamical systems such distance functions

are generally built by considering the entire time-series data instead of some sufficient

statistics.

The sequential stage of this algorithm involves replacing a single tolerance value ǫ by

a sequence of tolerance values ǫτ , where τ = 0, . . . , SMC denotes the sequential steps,

and ǫτ > ǫτ+1. The particles θτ are indexed by τ labelling the tolerance level, and are

sampled from the intermediate distribution p(θτ−1|∆(Y d, Y s) ≤ ǫτ−1) obtained from

the previous sequential step, thus introducing a step-wise procedure for generating pa-

rameters from a sequence of increasingly informative distributions, starting at τ = 0

with the prior distribution π(θ). To accept or reject the sampled particles for sequence

index τ , the generated trajectories from the model with parameters θτ must be closer

to the observed data Y d than those generated from the model with parameters θτ−1

in step τ − 1. The generative mechanism for the particles θτ differs from that of θτ−1

in that they are sampled from the N particles {θ(i)
τ−1}i=1,...,N with importance weights

(Toni et al., 2009) wτ−1 and each θ∗ ∼ {θ(i)
τ−1}i=1,...,N is moved in the parameter space

by using some transition kernel Kτ (θ|θ∗) (Toni et al., 2009). By movement we mean a

random walk. This movement in the parameter space is usually called perturbation and

therefore the transition kernel is called a perturbation kernel.

For each τ = 0, . . . , SMC , the N particles meeting the acceptance criterion ∆(Y s, Y d) ≤
ǫτ represent a point-wise approximation for the posterior distribution over the parameter

values:

pǫτ (θ|Y d) ≈ 1

N

N∑

i=1

w(i)
τ δ(θ − θ(i)

τ ), (2.9)

Essentially this algorithm works like a particle filter (see figure 2.1) wherein the par-

ticles sampled from the prior are filtered and passed through a series of intermediate

distributions until they represent an approximation of the target i.e the true posterior

distribution. ABC-SMC is fundamentally based on SIS and thus it draws upon the no-

tion of importance sampling by assigning weights to the particles in a population and

then sampling from the weighted distribution. Weighting the particles is done to ad-

dress the discrepancy between the true and approximate intermediate distributions. For

a sufficiently large number of particles, the population approach can avoid the problem

of getting stuck in areas of low probability unlike the basic ABC algorithm mentioned

previously. The pseudo-code for the ABC-SMC algorithm is listed in Algorithm 1.

2.4 Algorithmic settings

The success of ABC-SMC algorithm both in terms of computational complexity and

quality of the solution depends on the choice of the ǫτ schedule (the term “schedule”
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Figure 2.1: In the ABC-SMC algorithm a sample from the prior distribution is
passed through filtering steps where the probability of the particles to represent
the data best is updated during the algorithm via intermediate distributions.
The final distribution is an approximation of the true posterior distribution.
The SMC algorithm follows a particle-filtering approach.

denotes a decreasing sequence of tolerances) and the perturbation kernel Kτ . In this

section we will briefly describe these two algorithmic settings. A detailed discussion

concerning the effects of these settings can be found in Filippi et al. (2013).

2.4.1 Tolerance schedule

Until recently, tolerance values were manually tuned in practice based on prior empir-

ical knowledge about the model. An adaptive choice of the tolerance values has been

proposed in Del Moral et al. (2012) and Drovandi and Pettitt (2011). In an adaptive

schedule the value of the tolerance ǫτ is chosen as the α-th quantile, where 0 ≤ α ≤ 1 of

the distances between the observed data Y d and simulated data Y s
τ−1 generated at the

previous algorithmic time.

2.4.2 Perturbation kernel

Perturbation kernels hold the key to the acceptance rates in ABC-SMC and the speed of

the algorithm as exploited in Filippi et al. (2013). Perturbation kernels can be broadly

divided into two categories: a component-wise perturbation kernel and a multivariate
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Algorithm 1 ABC-SMC as proposed in Toni et al. (2009)

1. Given Y d, π(θ),Mθ.
2. Initialise ǫτ > 0, τ = 0, . . . , SMC , ǫτ > ǫτ+1. Set τ = 0.
3. Set i = 1.
4. if τ = 0 then

5. sample θ∗∗ independently from π(θ):
θ∗∗ ∼ π(θ)

6. else

7. from the previous population {θ(i)
τ−1}i=1,...,N

sample θ∗ ∼ {θ(i)
τ−1}i=1,...,N with associated weights w∗τ−1 and use the perturbation kernel

Kτ (θ|θ∗) to produce θ∗∗ ∼ Kτ (θ|θ∗).
8. end if

9. if π(θ∗∗) = 0 then

10. go to 4.
11. else

12. Simulate a candidate dataset Y s from the model Mθ with parameter θ∗∗: Y s ∼
Mθ|θ←θ∗∗ .

13. end if

14. if ∆(Y d, Y s) ≥ ǫτ then

15. go to 4.
16. else

17. Set θ(i)
τ ← θ∗∗ and calculate the weight for particle θ(i)

τ ,

w(i)
τ =





1, if τ = 0

π(θ(i)
τ )

N∑

j=1

w
(j)
τ−1Kτ (θ

(i)
τ |θ(j)

τ−1)

, if τ > 0

18. end if

19. if i < N then

20. Set i← i+ 1 and go to 4.
21. else

22. Normalise the weights.
23. end if

24. if τ < SMC then

25. Set τ ← τ + 1 and go to 3.
26. else

27. return particles θ
(i)
SMC

at τ = SMC .

28. end if

perturbation kernel. In a component-wise perturbation kernel θ ∼ N (θ,Στ ) where

Στ is a diagonal covariance matrix whose diagonal entries σ2τ,j j = 1, . . . , d are chosen

adaptively according to the previous population labelled by τ−1 (Beaumont et al., 2009;

Didelot et al., 2011; Filippi et al., 2013).

2.4.2.1 Multivariate perturbation kernel

A component-wise perturbation kernel is, by construction, unable to generate particles

with correlated components; therefore, for models with strongly correlated parameters
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the ABC-SMC sample generator will not be able to reflect the structure of the poste-

rior and the acceptance rate will be low. Thus, in order to capture such correlations

the particles can be perturbed according to a multivariate normal distribution with a

non-diagonal covariance matrix Στ that depends on the covariance of the particles as

reflected in the population in the previous sequential step (τ − 1) (Filippi et al., 2013).

Furthermore, a multivariate perturbation kernel operating on a subset of size N ′ of the

N particles (a local kernel) was also shown (Filippi et al., 2013) to produce a noticeable

improvement in the acceptance rate. In order to define this kernel we will introduce some

notation. Let Y
s(i)
τ denote the simulated data generated fromMθ with particle θ ← θ

(i)
τ

, i = 1, . . . , N from a population of size N at algorithmic time τ . The corresponding

importance weights are denoted as w
(i)
τ . We collect all such particles (along with the

weights) from algorithmic time τ − 1 for which Y
s(i)
τ is not only within distance ǫτ−1

of the observed data Y d but also within distance ǫτ of it. We denote such particles as

θ̃
(j)
τ−1: {

θ̃
(j)
τ−1

}
1≤j≤N ′

=
{
θ
(i)
τ−1|∆(Y d, Y

s(i)
τ−1) ≤ ǫτ , 1 ≤ i ≤ N

}
, (2.10)

with associated normalised weights w̃
(j)
τ−1 , (w

(j)
τ−1/w̄), with w̄ ,

∑
j w

(j)
τ−1.

Having defined the pairs
(
θ̃
(j)
τ−1, w̃

(j)
τ−1

)
we can now use a multivariate normal distribution

N (θ
(i)
τ−1,Σ

i
τ ), with a local covariance Σi

τ (termed the optimal local covariance in Filippi

et al., 2013), to perturb a particle θ
(i)
τ−1, where local refers to particle i. This covariance

is given by

Σi
τ =

N ′∑

j=1

w̃
(j)
τ−1

(
θ̃
(j)
τ−1 − θ

(i)
τ−1

)(
θ̃
(j)
τ−1 − θ

(i)
τ−1

)T
. (2.11)

2.4.2.2 Fisher information to construct kernel

Another construction of a local covariance matrix is possible that utilizes the Fisher

information matrix (FIM) (R. Rao, 1945; MacKay, 2003). The FIM I(θ) defined as

I(θ) = −Ex

[
∂2

∂θ2 log f(x|θ)
]

(2.12)

measures the amount of information that the observable random variable x carries about

the parameter θ ∈ RD where f(x|θ) is the likelihood function. This specific form of the

information matrix is known as the expected information and just the Hessian of the

likelihood term, without the expectation operator, is known as the observed information.

If x has a multivariate Gaussian distribution N (µ(θ),Σ), where µ(θ) is the mean vector

and Σ is the covariance matrix (not a function of θ), then the information matrix I(θ)

is given by the following identity (see Porat and Friedlander (1986) for the derivation):

I(θ) =
∂µ

∂θj

T

Σ−1 ∂µ

∂θl
, (2.13)
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where j, l = 1, . . . , D indexes a D-dimensional parameter vector θ. An important fact

about the information matrix, relevant to covariance construction, is that the variance

of the unbiased estimator θ̂ of θ (considering a point estimate) is lower bounded by the

reciprocal of the Fisher information:

var(θ̂) ≥ 1

I(θ)
(2.14)

The inequality given in equation 2.14 is known as the Cramer-Rao bound (Cramér,

1999; R. Rao, 1945). This inequality straightforwardly suggests the use of the inverse

of FIM I−1(θ)as a covariance for a multivariate normal perturbation kernel of the kind

discussed in the previous sections. One advantage here is that such a covariance, when

constructed using the parameters obtained by importance sampling, will always capture

the maximum information about the model behaviour. This will lead to the generation

of a variety of simulated data Y s that might lie close to the observed data Y d which

in turn will increase the acceptance rate of SMC. A perturbation kernel based on the

FIM was first proposed in Filippi et al. (2013). For an ODE system the FIM can

be evaluated (approximately) using the ODE sensitivity equations as in Filippi et al.

(2013) and Girolami and Calderhead (2011). We have provided a brief description of

such construction of the FIM in C.1.

2.4.3 Particle population size

The ABC-SMC algorithm as described in Algorithm 1 is based upon the gradual adap-

tation of the intermediate distributions pǫτ (θτ ) = p(θ, Y s|∆(Y d, Y s) ≤ ǫ) using the

tolerances ǫτ . To obtain samples from these intermediate distributions a correspond-

ing series of importance distributions qτ (θτ ) is used. Now success of any importance

sampling mechanism (including ABC-SMC) is based on the crucial choice of a suitable

importance distribution (see Del Moral et al. (2006)). ABC-SMC builds upon the SIS

framework by sequentially adapting qτ (θτ ) starting from the prior density q0(θ0) = π(θ).

In a standard SIS setting (see for example Del Moral et al. (2006)) the importance den-

sity is given by

qτ (θτ ) =

∫
qτ−1(θτ−1)kτ−1(θτ−1,θτ )dθτ−1, (2.15)

where kτ−1(θτ−1,θτ ) is a transition kernel for algorithmic step τ . Within ABC-SMC

the adaptation of the importance distribution is given by

qτ (θτ ) = 1(π(θτ ) ≥ 0)×
∫
pǫτ−1(θτ−1)Kτ−1(θτ |θτ−1)dθτ−1

= 1(π(θτ ) ≥ 0)×
∫
wτ−1(θτ−1)qτ−1(θτ−1)Kτ−1(θτ |θτ−1)dθτ−1

≈ 1(π(θτ ) ≥ 0)
1

N

∑

θ
(i)
τ−1∼pǫτ−1

wτ−1(θ
(i)
τ−1)Kτ−1(θτ |θ(i)

τ−1),

(2.16)
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where N is the number of samples used to approximate the integral in the above equa-

tion, wτ−1(θτ−1) = pǫτ−1(θτ−1)/qτ−1(θτ−1) and Kτ−1 are the weights and perturbation

kernel respectively for algorithmic step τ and π(θ) is the prior distribution. Essentially

equation 2.16 describes qτ (θτ ) as a perturbed version of the intermediate distribution

pǫτ−1(θτ−1) found in the previous algorithmic step τ − 1. This is a reasonable choice

leading to samples of pǫτ (θτ ) obtained from pǫτ−1(θτ−1). However, having the perfectly

engineered tolerance schedule and perturbation kernel as described in the previous sec-

tions does not guarantee the best importance distribution as inaccuracy can be intro-

duced through the Monte Carlo approximation of the integral in equation 2.16 when N

is set very low. Although a relatively higher value of N ≥ 1000 is desirable to mitigate

any approximation error, higher values of N increases the computational burden in case

of complex models for which we want to use ABC-SMC in the first place. In practice we

have found a relatively low value of the sample size N = 300 used in Toni et al. (2009).

2.5 Model selection using ABC

Model selection using ABC methods is largely an open problem. Among various model

selection approaches a consensus has not yet been reached about the most suitable

method that can be applied to a large number of problems. However, there are two basic

approaches to model selection in ABC, both requiring the estimation of a Bayes factor,

that have been used most widely. The first approach is based on a rejection sampling

idea (Grelaud et al., 2009) that uses the relative frequency (the ratio) of satisfying a

tolerance by each model as a proxy for the Bayes factor. Also, in this approach a nested

model (embedding all other models) is used and thus only a single run of an ABC

(with some modifications to accommodate the nested model) algorithm is required for

estimating the Bayes factor. In Toni et al. (2009) this idea is adopted within ABC-SMC

and further developed and used for estimating the Bayes factor. The second approach

is premised upon approximating the marginal likelihood

p(Y d|Mθ) =

∫
p(Y d|θ,Mθ)π(θ,Mθ)dθ (2.17)

of the data Y d given a modelMθ parametrized by θ and then using this for estimating

the Bayes factor. This approach is used in Murakami (2014) and had been adopted in

ABC-SMC algorithmic framework in Toni et al. (2009). The first approach based on

estimating the Bayes factor directly has been shown to work well for dynamical systems

problem in Toni et al. (2009). Thus we have chosen to use this model selection technique

for our purposes and will introduce the methodology in the following section.
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2.5.1 Model selection approaches in ABC-SMC

ABC-SMC can be used for model selection, using the rejection sampling idea, by in-

cluding a discrete parameter m = 1, . . . ,M representing the models {Mm
θ }, where M is

the number of models. We denote the model specific parameters as θ(m) ∈ RDm, where

Dm is the number of parameters for the m-th model. In each population we start by

sampling the model indicatorm∗ from a prior distribution π(m) defined on the indicator.

For a specific model Mm∗

θ we propose new particles θ∗∗ by perturbing the particle θ∗

sampled from the previous population {θ(i)(m∗)τ−1}i=1,...,N specific to m∗ in a similar

way to the parameter estimation algorithm (Algorithm 1). The weights for particles

θ(m) are also calculated in a similar way. From the collection of model indicators at

each SMC step we can calculate the corresponding frequency #m of a particular model

{Mm
θ } for being able to meet the tolerance at that step of SMC. The ratio of these

frequencies in the final step represent the Bayes factor between two competing models.

Thus for modelsMm
θ andMp

θ, where m, p = 1, . . . ,M , the Bayes factor is given by

Bm,p =
#m

#p
. (2.18)

This method of model selection can be carried out within the framework of Algorithm

1 with the aforementioned amendments in the sampling steps. Thus we present the

pseudo-code for the model selection using ABC-SMC in Algorithm 2.

Model selection using ABC has its limitations. When in ABC distance functions are

based on sufficient statistics that is in place of the data Y d, Y s some summary statistics

S(Y d, Y s) is used to build a distance function ∆(S(Y s),S(Y d)) ≤ ǫτ a correct approx-

imation to the true Bayes factor cannot be obtained. This was pointed out in Robert

et al. (2011) where a proof of this fact is shown. For dynamical systems problem, espe-

cially those involving ODEs, since no summary of the data is used this argument stands

irrelevant. However, for model selection in dynamical systems problem Bayes factor is

used (Toni et al., 2009; Murakami, 2014) and the accuracy of this quantity in comparison

with the true Bayes factor as well as those estimated using MCMC (Vyshemirsky and

Girolami, 2008) has not been explored sufficiently.

2.6 Limitations of ABC-SMC

The development of ABC is in a nascent stage and thus although a lot of work has

been done to solidify the theoretical foundations and advancing the methodology to

tackle bigger challenges, it still has several theoretical as well as practical limitations.

A comprehensive review of ABC methods is carried out in Marin et al. (2012) which

elucidates some of its major limitations. As some of these limitations are application
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Algorithm 2 ABC-SMC for model selection as proposed in Toni et al. (2009)

1. Given Y d, π(θ), {Mm
θ },π(m).

2. Initialise ǫτ > 0, τ = 0, . . . , SMC , ǫτ > ǫτ+1. Set τ = 0.
3. Set i = 1.
4. Sample m∗ from π(m).
5. if τ = 0 then

6. sample θ∗∗ independently from π(θ(m∗)):
θ∗∗ ∼ π(θ(m∗))

7. else

8. from the previous population {θ(i)(m∗)τ−1}i=1,...,N

sample θ∗ ∼ {θ(i)(m∗)τ−1}i=1,...,N with associated weights w∗(m∗)τ−1 and use the per-
turbation kernel Kτ (θ|θ∗) to produce θ∗∗ ∼ Kτ (θ|θ∗).

9. end if

10. if π(θ∗∗) = 0 then

11. go to 4.
12. else

13. Simulate a candidate dataset Y s from the model Mm∗

θ with parameter θ∗∗: Y s ∼
Mm∗

θ |θ←θ∗∗ .
14. end if

15. if ∆(Y d, Y s) ≥ ǫτ then

16. go to 4.
17. else

18. Set θ(i)
τ ← θ∗∗ and m

(i)
τ ← m∗. Calculate the weight for particle θ(i)(m(i))τ ,

w(i)(m(i))τ =





1, if τ = 0

π(θ(i)
τ )

N∑

j=1

w
(j)
τ−1Kτ (θ

(i)
τ |θ(j)

τ−1)

, if τ > 0

19. end if

20. if i < N then

21. Set i← i+ 1 and go to 4.
22. else

23. Normalise the weights for each m.
24. end if

25. if τ < SMC then

26. Set τ ← τ + 1 and go to 3.
27. else

28. return model indicators m
(i)
SMC

at τ = SMC .

29. end if

specific thus we would instead discuss here the case of ABC-SMC for learning non-linear

differential equations, which is the central theme of this thesis.

The first and most general problem of ABC-SMC is that its approximation of the true

posterior distribution is accurate when the final tolerance ǫSMC
is zero. However, in

practice this is never set to zero in differential equation problem. It then becomes

necessary to quantify the discrepancy between the estimated and the true posterior

as well as finding the guarantee, if it exists, that the estimation will converge to the

true solution, the actual posterior distribution. There had been some investigation of

the convergence properties of ABC, in a general setting, in recent literature (Barber
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et al., 2015). However, convergence properties of ABC-SMC in particular (largely) and

especially in the context of inverse problem involving non-linear differential equations has

remained unsolved. There are other challenges when applying ABC-SMC for learning

in differential equations that are specific to the SIS implementation of the ABC-SMC

algorithm. These are as follows:

1. Computational bottleneck: For dynamical systems, each simulated observation

Y s generated by the ABC-SMC algorithm is obtained through explicit numerical

solution of non-linear differential equations. Thus, this process of generating sim-

ulated observations is computationally expensive. In particular, the acceptance

criterion 1(∆(Y d, Y s) ≤ ǫ) can lead to the generation of many unused simulations

Y s ∼ Mθ, and various methods have been proposed in Filippi et al. (2013) to

improve the acceptance rate and reduce the run-time of the algorithm. These

methods, through clever choices of perturbation kernels, reduce the number of

simulations in the SMC steps, but for complex models each simulation is still

associated with expensive computations.

2. Choice of tolerances: The usage of ABC-SMC algorithm as described in Al-

gorithm 1 requires a crucial choice of the tolerance schedule. The tolerances can

be chosen by hand through multiple trials or adaptively as mentioned previously.

Both these choices do not incorporate any knowledge about the error surface on

which the distance function ∆(Y s, Y d) ≤ ǫτ is constructed. Incorporating this

knowledge while choosing tolerances remains challenging and has not been done

yet. However, without understanding geometric properties of the error surface

it remains difficult to choose the tolerances in order to save computational time

wasted in simulations while producing reliable estimates of the posterior.

2.6.1 Advantages

The limitations highlighted in the previous section pose a formidable challenge to prac-

titioners and thus alleviating such hindrances becomes necessary. Regardless of this fact

ABC-SMC, as reviewed in this chapter, does present itself as a handy tool for carry-

ing out Bayesian inference in differential equations. It provides a unified platform to

carry out both parameter estimation and model selection. Furthermore, the samples

generated in the SMC stages can be used as diagnostics of the model itself and the

final parameter population can be used to learn about parameter sensitivities (Secrier

et al., 2009). However, the most salient feature of this algorithm is that it can handle

complex non-linear models without introducing changes to the algorithm, except for the

simulation mechanism. Thus, if it is possible to simulate a dynamical systems model

then its parameters can be learnt using this algorithm.
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2.7 Conclusion and thesis goals

In this chapter we have carried out a detailed review of the ABC-SMC algorithm for

inference in dynamical systems described as ODEs and DDEs. Out of its two major

limitations almost no work had been done on alleviating its major drawback – the huge

computational burden resulting from massive number of simulations requiring numerical

integration. One of the major goals of this thesis will be solving this issue using Gaussian

processes. In the next chapter we will introduce the Gaussian process and show how

it can be applied in the context of saving time incurred in simulation within ABC-

SMC. Although we have shed light on the second limitation – construction of optimal

tolerances, in this thesis and subsequent chapters we will be entirely focusing on the first

issue as we believe speeding up ABC-SMC could potentially lead us towards solving allied

challenges.



Chapter 3

Gaussian processes for speeding

up the ABC-SMC algorithm

3.1 Introduction

In this chapter we propose a method of speeding up the ABC-SMC algorithm for pa-

rameter estimation and model selection in deterministic models described by ordinary

differential equations (ODE) or delay differential equations (DDE) by reducing the time

incurred in simulation. We achieve this speedup by: (i) completely circumventing the

process of integrating the differential equation by operating on the derivative space and

(ii) by smoothing the derivatives using Gaussian processes (GP). It should be noted that

using Gaussian processes as functional emulators in the derivative space, as a concept,

has been proposed in Calderhead et al. (2008), Dondelinger et al. (2013) for speeding up

parameter estimation in deterministic differential equations. For parameter estimation,

GP-based gradient matching has been used for ODEs and DDEs using a population

Monte Carlo sampling (Calderhead et al., 2008); an adaptive variant of this approach is

proposed for ODEs (Dondelinger et al., 2013). See Wang and Barber (2014) for a review

and comparison between these approaches. The novelty of our proposed method is the

fusion of GP regression with ABC-SMC. Our algorithm for fast parameter estimation

can be easily incorporated into methods for model selection and recovering parameter

sensitivities for deterministic differential equations.

3.2 Gradient based parameter estimation in differential

equations

We have mentioned previously that the computational bottleneck stems from the ex-

plicit integration carried out in each simulation step. In order to avoid the integration

25
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one could essentially use a gradient based estimation. If the temporal variations in ob-

servations Y d(t) are believed to be less smooth than the underlying state evolution that

is modelled by differential equations, we shall introduce the target state variable X̂(t)

to be the smoothed version X̂(t) , S(Y d) of the observations. Here, S represents any

smoothing procedure, and we will use Gaussian Process (GP) regression to perform the

smoothing below. In the ABC framework, we shall accept the trajectories X(t) from

the model Mθ (see equation 2.7) if they are close to X̂(t). Once we have X̂(t) we

can compute its numerical derivative to obtain the empirical velocity field V d(t) of the

dynamical systemMθ:

for X̂(t) , S(Y d),V d(t) ,
d

dt
X̂(t). (3.1)

In addition, while the left hand side of the ODE d
dtX(t) = f(X(t),θ) is estimated by the

empirical derivative V d(t), it should be matched by the model vector field f(X(t),θ)

on the right hand side, when evaluated on the smoothed state data f(X(t) = X̂(t),θ).

Upon introducing a new distance measure between V d(t) obtained from the smoothing

and f(X̂(t),θ) obtained from the vector field we can eliminate the original distance

metric for ABC-SMC between observed, Y d, and the simulated, Y s ∼Mθ, trajectories,

thus unburdening ABC-SMC of ODE integration at each simulation step. The gradient

based method was first suggested in Varah (1982) where a spline-based smoothing was

used to denoise the observed data. In this method a cost function was built using the

distance metric in derivative space and optimisation was used to minimise this cost

function in order to obtain point estimates. Recent developments of this methods are

described in Ramsay et al. (2007). All these approaches suffer from similar problems

of using additional regularisation parameters for smoothing and often the estimates are

sub-optimal point estimates. Although porting the derivative based distance within

an ABC scheme alleviates the computational bottleneck, this approach suffers from an

inherent shortcoming that is rooted in obtaining a numerical derivative as this might

lead to information loss.

In our approach, we replace the numerical differentiation with a zero mean Gaussian

Process (GP) prior on the state X(t) given by

p(X(t)|φ) ∼ GP(0,K(t, t′;φ)), (3.2)

where K(t, t
′

;φ) denotes a covariance function with hyperparameters φ. Once such

a prior is established then Gaussian Process regression techniques can be applied to

estimate both the state vector X̂(t) and also the derivative process V d(t). Using GP

regression the derivative process can be inferred within a probabilistic framework. Hence,

we propose to use a distance function in the derivative space where the state X̂(t) and

derivative V d(t) is modelled using GP regression, within the ABC-SMC algorithm. In

this way our proposed method is based on the GP construction in the derivative space as
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in Calderhead et al. (2008) and Wang and Barber (2014), combined with the ABC-SMC

algorithm as proposed in Toni et al. (2009).

We like to point out the fact that there is a distinction between the approach of Calder-

head et al. (2008) to that of Dondelinger et al. (2013) and Wang and Barber (2014).

The former approach is a two step method where in a GP is fitted to the data and

then the smoothed state and derivative information are used to sample the ODE pa-

rameters from a distribution p(θ|X̂(t),V d(t)). Thus the GP inference process has no

information about the ODE dynamics. The latter however induces a coupling between

the GP parameters and the ODE parameters by sampling the state from a distribution

p(X̂(t)|θ,φ) conditioned on both the GP and ODE hyperparameters. Such a condition-

ing forces the ODE system dynamics to influence the GP inference. Thus for a very noisy

dataset the GP can adapt itself using information from the ODE to better estimate the

state trajectories, which in turn improves the ODE parameter inference. Our proposed

method is built on the former two step approach as in Calderhead et al. (2008). Next,

we will introduce the theory of Gaussian processes for regression and will apply this to

the ABC-SMC algorithm.

3.3 Gaussian processes

Gaussian process (GP) is a Bayesian non-parametric model that specifies a distribu-

tion over functions, p(f), where f is a function mapping some input space X to ℜ
(f : X → ℜ) (O’Hagan and Kingman (1978), MacKay (1998), Neal (1998), Rasmussen

and Williams (2006)). Let f = (f(x1), ..., f(xn)) be an n-dimensional vector of function

values evaluated at n points xi ∈ X . Now we can formally define the Gaussian process

as follows:

Definition 1. p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X , the
marginal distribution over the finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes are characterised by a mean function µ(x) and a covariance function

or kernel, K(x, x′), of a real process f(x) as

µ(x) = E[f(x)],

K(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))],
(3.3)

and the Gaussian process can be expressed as

f(x) ∼ GP(µ(x),K(x, x′)). (3.4)
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For a finite number of inputs x = (x1, . . . , xn) we can generate a sample function f 1

from a GP prior with the covariance matrix K(x,x). This prior given by

f ∼ N (µ(x),K(x,x)) (3.5)

is simply a multivariate normal distribution following the definition of GP. For example

we can sample from a GP with the squared exponential function given by

KSE(x, x
′) = σ2kern exp

(
1

2

(x− x′)2
l2

)
, (3.6)

with hyperparameters σ2kern and l2 (variance and characteristic lengthscale). The length-

scale l determines the length of monotonicity in a function. In general it is not possible

to extrapolate more than l units. Figure 3.1 shows sample functions drawn from a GP.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 3.1: Draws from a GP with a squared exponential kernel with hyperpa-
rameters σ2kern and l2 set to 1

Now we can, instead of sampling from the prior distribution, gather information from

an observed function f = (f(x1), ..., f(xn)) for a set of n known or training inputs

x = (x1, . . . , xn) to predict an unknown function f∗ evaluated at n∗ number of test in-

puts given as x∗. The joint distribution of the training and the test output (functions)

is given by:

[
f

f∗

]
∼ N

([
µ(x)

µ(x∗)

]
,

[
Kxx Kxx∗

Kx∗x Kx∗x∗

])
, (3.7)

where the shorthand notations 2 Kxx and Kx∗x∗ denote the n×n and n∗×n∗ covariance
matrices associated with the n training and n∗ test inputs respectively. Kxx∗ and Kx∗x

1Here we term the vector of function values f = (f(x1), ..., f(xn)), evaluated at n points xi ∈ X , as
a sample function indicating a draw from the Gaussian process.

2These shorthand notations have been introduced to present the GP equations compactly
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are the corresponding n×n∗ and n∗×n cross covariances. Now the important conditional

distribution is given as

p(f∗|f) ∼ N (m,Σ), (3.8)

where the mean function m and the covariance function Σ are (detailed derivation of

these forms have been shown in the A.1 and A.2)

m = µ(x∗) +Kx∗xK
−1
xx(f − µ(x)),

Σ = Kx∗x∗ −Kx∗xK
−1
xxKxx∗ .

(3.9)

3.3.1 Noisy Observations

In almost all practical cases the realistic observations are corrupted by noise. Let us

first consider such a case where the observations y are generated from a vector of la-

tent function values f evaluated at the training input points x (mentioned previously),

corrupted by additive i.i.d Gaussian noise ǫ = N (0, σ2n). We have

y = f + ǫ, (3.10)

where,

cov(yp,yq) = Kxpxq
+ σ2nδpq (3.11)

or

cov(y) = Kxx + σ2nI, (3.12)

where δpq is Kronecker delta product which is one iff p = q and zero otherwise. Now

the joint distribution of the noisy observations and a test function f∗ is given as:

[
y

f∗

]
∼ N

([
µ(x)

µ(x∗)

]
,

[
Kxx + σ2nI Kxx∗

Kx∗x Kx∗x∗

])
. (3.13)

The posterior distribution of the test function conditioned on the observations is:

p(f∗|y) ∼ N (m′,Σ′) (3.14)

, where

m′ = µ(x∗) +Kx∗x(Kxx + σ2nI)
−1(y − µ(x)),

Σ′ = Kx∗x∗ −Kx∗x(Kxx + σ2nI)
−1Kxx∗ .

(3.15)
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3.3.2 Maximum Likelihood estimation

The marginal likelihood of the data p(y|Φ) is given by:

p(y|Φ) =

∫
p(y|f)p(f |Φ)df , (3.16)

where Φ is the set of parameters (this includes the hyperparameters of the covariance

kernel and the observation noise) and p(f |Φ) = N (µ(f),Kxx) is a Gaussian prior distri-

bution. From equations 3.10 and 3.12, the likelihood as the probability density function

of the observations conditioned on the latent function is is another normal distribution

p(y|f) = N (f , σ2nI). In most practical cases we assume the prior mean µ(f) = 0. Thus

we have

p(y|Φ) =

∫
p(y|f)p(f |Φ)df

=

∫
N (f , σ2nI)N (0,Kxx)df .

(3.17)

The above integral can be evaluated analytically and thus we have the marginal likeli-

hood given by

p(y|Φ) = N (0,Kxx + σ2nI), (3.18)

and the logarithm of the likelihood is given as

log p(y|Φ) = −1

2
yT (Kxx + σ2nI)

−1y − 1

2
log
∣∣Kxx + σ2nI

∣∣− n

2
log(π). (3.19)

The gradient of the log likelihood with respect to Φ can be obtained by

∂ log p(y|Φ)

∂Φ
=− 1

2
yT (Kxx + σ2nI)

−1∂(Kxx + σ2nI)

∂Φ
(Kxx + σ2nI)

−1y

− 1

2
tr

(
(Kxx + σ2nI)

−1∂(Kxx + σ2nI)

∂Φ

)
.

(3.20)

The maximum likelihood estimate (MLE) can be obtained by solving

∂ log p(y|Φ)

∂Φ
= 0. (3.21)

Closed form solution of such equations are intractable and that is why we have to resort

to numerical methods. Conjugate gradient is one such algorithm that is frequently used

(Shewchuk, 1994) in this context. In our work we have used minimise, a MATLAB

routine developed in Rasmussen and Nickisch (2010), which is a stable and widely used

implementation of the conjugate gradient algorithm for MLE in Gaussian processes.
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3.4 Gaussian process regression

The predictive mean function f∗ for noisy observations, assuming the prior mean µ(f∗) to

be zero, is given by m = E[f∗] = Kx∗x(Kxx + σ2nI)
−1y. To avoid numerical instability

direct inversion of the matrix Ky = (Kxx + σ2nI) should be avoided. A more robust

alternative is to compute the Cholesky decomposition given by

Ky = LLT . (3.22)

We can compute the predictive mean and covariance function as shown in Algorithm 3

given in Rasmussen and Williams (2006). This algorithm which computes the predictive

mean and covariance functions, given the training and test data and the hyperpararam-

eters to build a covariance function, is known as the Gaussian process regression. It

should be noted that the inference of the hyperparameters using the MLE as shown in

the previous section is not a part of this algorithm. It takes O(N3) time to compute the

Cholesky decomposition and then O(N2) time to solve for α = Ky
−1 = L−TL−1y. The

predictive mean and covariance functions can then be computed in O(N2) time.

Algorithm 3 Gaussian process regression

1. L = cholesky(Kxx + σ2nI).
2. α = LT \ (L \ y).
3. m = Kx∗xα.
4. v = L \Kx∗x.
5. Σ = Kx∗x∗ − vTv.

3.5 Derivative of a Gaussian process

Differentiation being a linear operator, the derivative of a Gaussian process is another

Gaussian process (Solak et al., 2002). This makes it possible to include derivative ob-

servation in the GP model, or to compute prediction about derivatives. We have

E

[
∂f

∂x

]
=
∂E [f ]

∂x
. (3.23)

And likewise the covariance between partial derivative and a function value can be

written as

K

(
∂f

∂x
, f∗
)

=
∂

∂x
K (x,x∗) , (3.24)

and the covariance between partial derivatives follows

K

(
∂f

∂x
,
∂f∗

∂x∗

)
=

∂2

∂x∂x∗
K (x,x∗) . (3.25)
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For example considering the squared exponential covariance function given in equation

3.6, we can write equation 3.24 as

K

(
∂f

∂x
, f∗
)

= −(x− x∗)
l2

exp

(
1

2

(x− x∗)2
l2

)
(3.26)

The conditional distribution of the derivative of a test function ∂f∗

∂x∗ having observed a

function f is given as

p(
∂f∗

∂x∗
|f) = N (m,Σ), (3.27)

where we have the mean function m and covariance function Σ (obtained by using

equation 3.23 and 3.24 in conjunction with equation 3.9 and considering the prior mean

of the test and training function to be zero) given as

m =
∂Kxx∗

∂x∗
K−1

xx f

Σ =
∂2Kx∗x∗

∂x∗x∗
− ∂Kx∗x

∂x∗
K−1

xx

∂Kxx∗

∂x∗
.

(3.28)

Likewise for noisy observations we have

m =
∂Kx∗x

∂x∗

[
Kxx + σ2nI

]−1
f

Σ =
∂2Kx∗x∗

∂x∗x∗
− ∂Kx∗x

∂x∗

[
Kxx + σ2nI

]−1 ∂Kxx∗

∂x∗
.

(3.29)

3.6 ABC-SMC with Derivative GP

In this section we apply the machinery presented in the previous sections to the task of

inferring parameters in differential equation models whose solution is the state trajectory

X(t). If we assign a GP prior to the state evaluated at time points tL , {ti}i=1,...,L,

then the set of values of the state X(tL) takes on a Gaussian prior distribution:

p(X(tL)|tL) = N (X(tL)|0,K(tL, tL)). (3.30)

The modelling task is to represent the experimental data as Y d = {X(tL) + ηL} where
ηL refers to L i.i.d. samples fromN (0, σ2IL), here IL is a L×L identity matrix, andX(t)

satisfies a differential equation. We can use GP regression to obtain the expectation and

variance of the posterior (given training data Y d at tL) state X(t∗) for some test input

time point t∗ as in section 3.4 (Rasmussen and Williams, 2006):

E[X(t∗)|Y d] = K(t∗, tL)(K(tL, tL) + σ2I)−1Y d,

V ar[X∗] = K(t∗, t∗)−K(t∗, tL)(K(t, t) + σ2I)−1K(tL, t∗).
(3.31)

This expected posterior state variableX(t∗) for arbitrary choice of t∗ models the smoothed

evolution of the state X̂(t) introduced above, and where it is assumed that observational
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noise accounts for deviations from the smoothed time course. The smoothed state esti-

mation enables us to compute the velocity field using the derivative GP (as in section

3.5):

E[
d

dt
X] =

∂K(t, t)

∂t
(K(t, t) + σ2I)−1E[X]. (3.32)

This completes the procedure for deriving the empirical velocity field (equation 3.1)

V d(t) = E[ ddtX].

3.6.1 Illustrations through an example model

Having observed a noisy experimental data for which we have an explanation in the form

of an ODE or DDE our first task in hand is to calculate the velocity field V d(t) using

equation 3.31 and 3.32. To illustrate the intermediate stages we chose a model system:

The Mackey-Glass delay differential equation given by

ẋ = β
xtd

1 + xtd
n
− γx, γ, β, n > 0 (3.33)

where β, γ, td and n are parameters, and xtd represents the value of the variable x

at time (t − td). Glass and Mackey (1979) proposed this delay differential equation to

model non-linear feedback control in physiology. The above equation displays several

interesting dynamic behaviours such as limit cycle oscillations and aperiodic solutions.

Furthermore for certain combination of the parameters, γ = 1, β = 2, td = 2 and

n = 9.65, this system exhibits deterministic chaos. The complex oscillatory pattern

exhibited by the chaotic state trajectory x poses a crucial challenge to both the state

and velocity estimation processes in presence of observational noise. Thus we consider a

noise corrupted version of x as an ideal test example to elucidate the velocity estimation

process. We generated 100 samples between the interval [0 : 0.1 : 10], from the chaotic

regime of the system with mentioned parameter values that can generate chaos. We

further added random noise with standard deviation σx = 0.1 to create an artificial

experimental data. Figure 3.2 shows the noisy data.

Because of the presence of multiple time-scales of oscillations and chaos we have chosen

a GP prior with the following covariance kernel called the Matern kernel:

KMatern(t, t
′) =

(
1 +

√
3(t− t′)
l

)
exp

(
−
√
3(t− t′)
l

)
, (3.34)

where the hyperparameter l denotes lengthscale. This is a stationary covariance with

lesser smoothness assumptions on the function to be estimated. Using GP regression

as in Algorithm 3 along with equation 3.31 we estimate the smoothed state trajectory.

This is plotted in figure 3.3 along with the estimated confidence region. Finally using

equation 3.32 we estimate the velocity field or the derivative process. The estimation
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Figure 3.2: Noisy state trajectory of the Mackey-Glass model.
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Figure 3.3: The estimated smoothed state trajectory of the Mackey-Glass
model.

of the state and its derivative is compared with the ground truth in both figure 3.3 and

figure 3.4 respectively.

3.6.2 The GP-ABC-SMC algorithm

To apply this derivative process within the ABC framework we need to define a distance

metric ∆(V d(t),f(X̂(t),θ)) between the smoothed velocity field derived from the ob-

served data, and the velocity field postulated in a differential equation model, where the

expected state estimation X̂(t) has been substituted for the state variable. Hence our

proposed fast alternative ABC-SMC based on GP gradient distance (GP-ABC-SMC)

works as follows:
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Figure 3.4: The estimated velocity field of the Mackey-Glass model.

1. Having given data Y d as a noisy observation of the true state variable X(t), assign

a GP prior on X(t) using (equation 3.2) and choose a covariance function, with

some unknown hyperparameters, needed to define the GP prior.

2. Learn the hyperparameters of the covariance function from the original noisy ex-

perimental data Y d using maximum likelihood estimation and then run GP regres-

sion to obtain an estimation of the smoothed state evolution X̂(t) = E[X] using

(equation 3.31) and the experimental time points t as both the training and test

input points.

3. Construct the first derivative of the covariance matrix and estimate the derivative

process V d(t) = E[ ddtX|X=X̂
] using (equation 3.32).

4. Run the ABC-SMC algorithm with a modified distance metric ∆(V d(t),f(X̂(t),θ))

≤ ǫτ for tolerance schedule {ǫτ}, where at each simulation step the simulated data

Y s = f(X̂(t),θ) is generated by evaluating the velocity field on the right hand side

of the differential equation. This yields the posterior distribution of the parameters

p(θ|Y d) (equation 2.9).

Note that we cannot interchange the order of expectation with the non-linear function

f appearing on the right hand side of any non-linear ODE:

f(X̂(t),θ) = f(E|X(t)|,θ) 6= E|f(X(t),θ)|, (3.35)

as we did while deriving the empirical velocity field V d(t). For this reason the GP-

ABC-SMC as described above does not propagate the uncertainty associated with the

state X(t) and employs the GP as an interpolant. However, we can modify the GP-

ABC-SMC distance function to include E|f(X(t),θ)| = 1
K

∑K
k=1 f(X

k(t),θ) where Xk

is sampled from the posterior of the GP on the state vector with mean and variance

given in equation 3.31.
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Since we only need to invert the covariance matrix once for sampling the posterior states

thus the computational complexity for taking the expectation of the right hand side of

an ODE is O(KL), where K is the number of state samples and L is the number of time

points. We have used the interpolating version of the GP-ABC-SMC in our experiments

and avoided the full uncertainty propagation to achieve maximum speedup.

Also note that no explicit solution of differential equation is required to generate the

simulated data within the iterations of the GP-ABC-SMC algorithm. Also note the fact

that, in order to run the GP-ABC-SMC algorithm, no knowledge of the initial condition

is required. For the sake of conformity with the ABC terminologies, we will persist in

using the terms Y d for observed data and Y s for simulated data, as before. However,

within the context of GP-ABC-SMC algorithm, observed and simulated data refer to

V d(t) and f(X̂(t),θ) respectively. That is what Y d and Y s will refer to for the rest of

the paper.

For the specific case of gradient matching applications, such as the proposed GP-ABC-

SMC, it may so happen that the experimental time points are irregularly spaced. Then

the covariance pertaining to the training points can become ill-conditioned. In such cases

we can choose the training and test time points tequidist, t
∗
equidist in (equation 3.31) and

(equation 3.32) to be equidistant to perform the GP regression, although the experimen-

tal time points tL are irregularly spaced. The resultant state X(tequidist) and derivative

V d(tequidist) trajectories can be used along with the right hand side f(X̂(tequidist),θ)

to create the distance metric ∆(V d(tequidist),f(X̂(tequidist),θ)) ≤ ǫτ without using an

ill-conditioned covariance matrix altogether.

3.6.3 The GP-ABC-SMC algorithm for DDEs

In the case of a DDE model given by

dX(t)

dt
= f(X(t),Xtd ;θ), (3.36)

the delayed state Xtd = X(t − td) consists of two parts: X(t ≥ 0) and X(t < 0).

Applying GP-ABC-SMC in this case requires the smoothed estimate of this delayed

state vector, which we denote here as X̂td , including both its parts to compute the

model right hand side f(X̂(t), X̂td ;θ) in order to build the ABC distance function. For

applying gradient matching algorithms, such as ours, this delayed state vector is obtained

from the smoothed estimate X̂(t). However, unlike an ODE system we cannot avoid the

estimation of the initial values of the delayed state while applying the GP-ABC-SMC.

Specifically, we need to estimate the initial history function X̂h = X̂(t < 0), which is not

available from the smoothed estimate of the state X̂(t ≥ 0). In most practical cases the

initial history function is taken as a constant function. For such cases we can obtain the

estimated initial history function as a vector with constant elements obtained by copying
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the first element of the smoothed state estimate as obtained by the GP regression:

{
X̂h(ti)

}
i=1,...,D

= X̂(t0), (3.37)

where D = td
ti−ti−1

, i = 1, . . . , L is delay in terms of discrete samples. Using this as

the initial history we can then use the first L − D elements of the smoothed state

X̂ lagged =
{
X̂(ti)

}
i=1,...,L−D

to create the delayed state vector as:

X̂td =
(
X̂h, X̂ lagged

)T
. (3.38)

Having obtained the delayed state vector the rest of the steps of GP-ABC-SMC remain

the same as in the case of ODEs. This method of estimating the delayed state throws

away all information pertaining to X(t < 0) for models where the initial history function

is anything other than a constant. In such cases GP regression can be used to extrap-

olate the history vector using covariance kernels specifically designed for extrapolation

proposed in Wilson and Adams (2013).

3.6.4 Working with hidden variables

The GP-ABC-SMC algorithm can be extended to the case of partially observed system

where some of the state variables cannot be measured. Let us consider the state vector

X = (Xo, Xh), consisting of an observed Xo(t) and a hidden Xh(t) state variable. We

can expand the parameter vector by including an additional parameter for the initial

value of the hidden state Xh(t = 0). We would sample this initial value along with other

parameters and then evolve the hidden state by using the GP mean function estimate of

the visible state Xo(t) using Euler or Runge-Kutta steps. In this way we can construct

the entire smoothed state vector X̂ = (X̂o, X̂h) and subsequently the right hand side of

the model Y s = f(X̂(t),θ). Finally we create the ABC distance function between the

empirical velocity field V d(t) = E[ ddtXo(t)] obtained from the observed state and right

hand side of the model Y s = f((X̂o(t), X̂h(t)),θ) using the smoothed estimate of X̂o(t)

and the Euler construction of Xh(t).

3.6.5 Comparison with other GP based algorithms

It was mentioned previously (see section 3.2) that the proposed GP-ABC-SMC algo-

rithm is similar to Calderhead et al. (2008) in terms of a two step approach. First an

interpolant is fit to data and then the interpolant’s gradient is matched to the model

function. However, there exist fundamental methodological distinctions between how

GP-ABC-SMC matches the gradient to that of Calderhead et al. (2008) and Dondelinger

et al. (2013). In Calderhead et al. (2008) the gradient matching is done by combining
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the conditional distribution of the derivative p(
˙̂
X|X̂,φ) given the GP and the model

function p(
˙̂
X|f(X̂,θ),γ) as:

p(
˙̂
X|X̂,θ,φ) ∝ p( ˙̂

X|X̂,φ)p(
˙̂
X|f(X̂,θ),γ). (3.39)

The above construction, known as product of experts (Mayraz and Hinton, 2002), in-

troduces an unnatural noise term γ to make up for the discrepancy between the model

function evaluated on the true state f(X,θ) and the smoothed state f(X̂,θ). Marginal-

izing over
˙̂
X, the joint distribution of the observations, the smoothed state and the

parameters is then given by

p(Y d, X̂,θ,φ,γ) = p(θ,γ|X̂,φ)p(X̂|,φ, Y d)p(φ|Y d)p(Y d). (3.40)

The term p(θ,γ|X̂,φ) is problematic because of the conditioning of θ on the smoothed

state X̂ obtained by the GP regression. In Dondelinger et al. (2013) the joint distribution

p(Y d, X̂,θ,φ,γ) is factored as 3:

p(Y d, X̂,θ,φ,γ) = p(Y d|X̂)p(X̂|θ,φ,γ)p(θ)p(φ)p(γ). (3.41)

Ther term p(X̂|θ,φ,γ) introduces a coupling between the parameters of the GP and the

ODE, thus no longer being a two step approach. However, both these approaches are

essentially built upon the product of experts assumption that introduces a fictisious noise

term γ. Our ABC approximation on the other hand is bereft of any such approximate

noise models and probabilistic relationship between
˙̂
X and f(X̂,θ). We only assume

that in the absence of noise both these quantities should be same. In the presence of

noise we rely upon the ABC approximation that a good match between the two gives

us the posterior approximation that is close to the true posterior distribution.

The methodology found in both Calderhead et al. (2008) and Dondelinger et al. (2013)

involves sampling of the GP posterior states X̂ at each step of the MCMC involving the

inversion of a L×L matrix, L being the number of experimental points. Moreover, these

methods need to sample nuisance parameters φ,γ unrelated to the original inference

problem. GP-ABC-SMC avoids these extra sampling (and computation) at the cost of

no coupling between φ and θ.

In Wang and Barber (2014) gradient matching, using the product of experts, is aban-

doned by conditioning the data Y d directly on
˙̂
X. This is expressed as

p(Y d| ˙̂X) =

∫
p(Y d|X̂)p(X̂| ˙̂X), (3.42)

3refer to Dondelinger et al. (2013) for the derivation of equation 3.41 and 3.40
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where an implicit numerical integration is performed through the term p(X̂| ˙̂X) 4. Al-

though this improves the weak modelling assumptions in Calderhead et al. (2008); Don-

delinger et al. (2013), sampling of posterior states and nuisance parameter is still re-

quired. Furthermore, this method unlike Calderhead et al. (2008); Dondelinger et al.

(2013) and GP-ABC-SMC peforms the estimation of initial state X0, rendering this

algorithm not so useful for DDEs.

3.7 Conclusion

In this chapter we have proposed a method that could significantly speed up the task

of parameter inference in comparison with state of the art methods that use ABC and

SMC based approaches when applied to dynamical system models that are described by

ordinary and delay differential equations. We achieve this speed-up by circumventing

the need to numerically integrate the differential equations, a task that is repeatedly

required in other ABC methods to generate samples from candidate models for com-

parison with the observed data. The key idea behind our method lies in building on

Calderhead et al. (2008), Ramsay et al. (2007) and Wang and Barber (2014) to work

directly with the vector field of the dynamical system, which we model using Gaussian

process regression, and thus create a distance function in derivative space for use in the

ABC-SMC algorithm as proposed in Toni et al. (2009). Thus we proposed a modified

ABC-SMC algorithm for parameter estimation (and can be trivially extended to model

selection) in ODEs or DDEs. Furthermore, improvements of ABC-SMC through pertur-

bation kernels as proposed in Filippi et al. (2013) could be integrated with our approach

to obtain enhanced performance. Note that Gaussian processes can accommodate other

noise models (Rasmussen and Williams, 2006) which are more complex than the zero

mean i.i.d Gaussian noise. Thus for real data more flexibility can be introduced while

modelling the state and its derivatives.

Interestingly, saving time in simulation could potentially open up space for exploring

other algorithmic settings. For example, a variety of tolerance schedule and perturbation

kernels can be explored to reach the best estimation. These sort of explorations remain

computationally prohibitive without transforming the problem into the derivative space

as in our approach.

Our proposed approach is fundamentally limited by the ability of the Gaussian process

regression in smoothing the observed time series data while retaining the essential char-

acteristics that are meant to be captured by the dynamical system model. Thus in those

cases where smoothing the experimental data by GP regression introduces artefacts, the

GP-ABC-SMC algorithm is more likely to produce poor parameter estimates.

4see Wang and Barber (2014) for further details of this implicit integration
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In the next chapter we will apply the GP-ABC-SMC algorithm to the task of estimating

posterior parameter and model probabilities of various ODE and DDE model systems.

Through these experiments we will highlight the benefits of using our proposed GP

based ABC-SMC compared to ABC-SMC with explicit integration and other GP based

MCMC methods.



Chapter 4

Experimental evaluation of the

GP-ABC-SMC algorithm

4.1 Introduction

To evaluate the GP-ABC-SMC algorithm we have chosen five benchmarking differential

equations: The Lotka Volterra predator-prey model (Murray, 2002), the Hes1 loop model

(Monk, 2003), signal transduction cascade model (Vyshemirsky and Girolami, 2008;

Wang and Barber, 2014), a family of SIR models (Anderson et al., 1991) and the Mackay-

Glass model (Glass and Mackey, 1979) that we presented in the previous chapter. Each

is a set of non-linear differential equations modelling biological systems and show non-

trivial dynamical phenomena such as limit cycle oscillations, chaos and non-stationary

time evolution. For all these examples we have used the distance function given by

(equation 2.8) and have run the ABC-SMC algorithm with explicit integration using

a component-wise univariate normal kernel (ABC-SMC-Comp) (Toni et al., 2009) as

well as a multivariate normal kernel with the optimal local covariance matrix (ABC-

SMC-OLCM) (Filippi et al., 2013). For our proposed GP-ABC-SMC we have also used

both the aforementioned perturbation kernels. We refer these as the GP-ABC-SMC

and GP-ABC-OLCM respectively. We believe a comparison between these four variants

of ABC-SMC is required to capture the difference in speed of execution between the

GP based ABC-SMC and the previous approaches reported in (Toni et al., 2009; Filippi

et al., 2013), while comparing posterior estimates of the parameters. For all the examples

presented here, we ran all these variants of ABC-SMC, including the proposed GP based

ones, with N = 100 particles using an adaptive tolerance schedule set to the α = 0.1

quantile of the distances in the previous populations. Note that we have used such a small

number of particles primarily to expedite the simulation time for the Hes1 DDE using

explicit integration and have maintained the same population size for other problems as

well. Our goal here is the comparison between different variants of ABC-SMC for which

41
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we have found N = 100 particles being of adequate size. We arrive at this conclusion

after repeating many of the following experiments with higher particle size (N = 10000)

and obtaining similar estimates.

The ABC-SMC routines are written in MATLAB and for the GP regressions the GPML

package (Rasmussen and Nickisch, 2010) for MATLAB is used in the predator-prey,

Mackay-Glass, SIR and Hes1 loop example. For the signal transduction cascade model

the GPMat toolbox for MATLAB https://github.com/SheffieldML/GPmat is used

which has an implementation of the multi-layer perceptron (MLP) covariance kernel

(Wang and Barber, 2014), required to handle the non-stationarity of some of the state

variables. The explicit integrations are carried out using MATLAB’s built in ODE and

DDE solver routines.

4.1.1 ODE: The predator prey model

The Lotka Volterra (Murray, 2002) model depicts an ecological system that is used to

describe the interaction between a predator and prey species. This ODE given by

ẋ = αx− xy
ẏ = βxy − y,

(4.1)

shows limit cycle behaviour and has been used for benchmarking in (Toni et al., 2009;

Dondelinger et al., 2013). θ = (α, β) is the set of parameters and X(t) = (x(t), y(t))

is the state vector comprising the concentrations of the predator and the prey species

respectively. To create a realistic dataset we generated 11 uniformly spaced samples

between the time interval (0 ≤ t ≤ 10) from the model with parameters θ = (1, 1) and

added random Gaussian noise with zero mean and standard deviation σ = 0.5 to each

point. The initial values of the ODE for generating the synthetic data are chosen as

X(t = 0) = (1.0, 0.5). In order to inspect the consistency of our proposed algorithm

we created two more datasets obtained by adding two other realizations of the random

noise to the ODE time courses. Thus we have three sets of artificial data (denoted as

Dataset 1, 2 and 3), each of which has been corrupted by Gaussian noise with zero mean

and standard deviation σ = 0.5 and sampled separately. Note that the GP-ABC-SMC

algorithm does not require the estimation of additional nuisance parameters related to

the initial values. The time evolution of the state and its derivative is predicted through

the GP regression as described in section 3.6. We have used the squared exponential

covariance function given by (equation 3.6) for the GP regression in this example.

From the synthetic data we perform the task of parameter inference using the four

different variants of ABC-SMC discussed in the last section to compare their perfor-

mance. Both α and β are chosen from uniform prior distributions U(−10, 10) in all

cases. The number of algorithmic iterations, the value of SMC is set to SMC = 6 for the
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ABC-SMC-Comp and ABC-SMC-OLCM while it is set to SMC = 5 for GP-ABC-SMC

and GP-ABC-OLCM. The values differ because we have chosen these on the criteria

of minimum number of adaptive iteration required for estimating a reliable posterior

distribution. As the ABC-SMC with integration and the GP based variants operate on

different spaces thus setting same values for SMC does not produce comparable results.

The specific values of SMC for this and subsequent examples are chosen on the basis

of multiple trials of all the four ABC-SMC algorithm on each of the datasets. The

chosen value of SMC produce similar posterior marginal densities, in most cases, if the

corresponding variant of ABC-SMC is run multiple times on the same dataset.

The resulting parameter estimates are listed in Table 4.1 and the evaluation of the per-

formance in Table 4.2 (top). We show in Table 4.1 the mean and standard deviation

of the last population of parameters, approximating the marginal posterior, for each

variants of the ABC-SMC. The approximate marginal posterior distributions of each of

the two parameters learnt by the GP-ABC-OLCM and the ABC-SMC-OLCM are shown

in Figure 4.1. The histograms in Figure 4.1 are based on the final particle populations

generated by the respective algorithms after they are run on Dataset 1. Note that the
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Figure 4.1: Histograms of the final particle populations generated by the
GP-ABC-OLCM and the ABC-SMC-OLCM algorithms, approximating the
marginal posterior distribution for each of the parameters of Lotka Volterra
model. The black line marks the ground truth in each plot.

run-time of the GP-ABC-SMC and the GP-ABC-OLCM algorithms is the sum of the

run-time of the ABC and the GP regression (including the estimation of covariance

hyperparameters). The value of σ is estimated as part of the GP regression. These es-

timated values are σ = {0.4752, 0.8090}, σ = {0.6219, 0.3940} and σ = {0.6432, 0.4592}
for the dataset 1, 2 and 3 respectively. In Figure 4.1 the marginal densities differ be-

tween the ABC-SMC-OLCM and the GP-ABC-OLCM variants. We believe the reason

behind this being the fact that although both these algorithms are working on the same

parameter space the state and the velocity field show different sensitivities to parameter
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Table 4.1: Estimated parameters of the Lotka Volterra predator-prey model de-
noted by the mean and standard deviation of the particles of the final population
for datasets 1-3 respectively in each row.

Parameters True value ABC-SMC-Comp ABC-SMC-OLCM GP-ABC-SMC GP-ABC-OLCM

α 1
1.0688± 0.0108 1.0722± 0.0494 1.0373± 0.0410 1.0356± 0.0359
1.0389± 0.0318 1.0305± 0.0277 1.0843± 0.0472 1.0718± 0.0523
1.0293± 0.0805 1.0421± 0.0374 1.0103± 0.0882 1.0144± 0.0713

β 1
0.9698± 0.0128 0.9763± 0.0792 0.9567± 0.0426 0.9540± 0.0344
0.9749± 0.0477 0.9966± 0.0421 0.9846± 0.0410 0.9760± 0.0426
1.0103± 0.1056 0.9924± 0.0487 0.9887± 0.0792 0.9906± 0.0646

Table 4.2: Run-time and the ratio of total number of particles accepted (θ∗∗

in Algorithm 1) to that of generated (θ∗) for the four ABC-SMC algorithms
when applied to the three artificial datasets pertaining to the Lotka Volterra
predator-prey model (left) and Hes1 model (right). The values for run-time are
rounded to nearest integers.

Algorithms Run-time (seconds) Accept/Generate

ABC-SMC-Comp
397 700/14737
477 600/12294
516 500/13381

ABC-SMC-OLCM
184 800/7846
221 700/6369
212 600/6086

GP-ABC-SMC
25 500/7650
26 500/7547
26 500/7642

GP-ABC-OLCM
21 500/4655
20 500/4316
16 500/3193

Algorithms Run-time (seconds) Accept/Generate

ABC-SMC-Comp
106980 1300/763045
840330 1600/8026943
201710 1600/1656197

ABC-SMC-OLCM
5496 1300/31342
8399 1500/50968
5999 1400/36519

GP-ABC-SMC
30 1100/31439
38 1000/38911
32 1000/36521

GP-ABC-OLCM
18 1000/7387
18 1000/8183
17 1000/7969
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changes. Difference in sensitivity results in different adaptive influences on the learning

updates: that is how the particles are updated through the filtering steps of SMC. Thus,

it is inevitable that the marginal densities (collection of the final particles) will be no-

ticeably different. In Transtrum et al. (2011); Gutenkunst et al. (2007) it is argued that

model sensitivity is related to the geometric structure of the likelihood surface. In ABC

the likelihood surface is the same as the surface spanned by the distance function for

normally distributed observational errors. In ABC-SMC we encode our prior assump-

tion about the geometric structure of the distance surface through a tolerance schedule.

Further enquiries about the intrinsic geometric properties of these (involving state and

velocity fields) surfaces are necessary for designing better tolerance adaptation schemes

that could lead towards estimating the true (and thus similar) posterior densities irre-

spective of the sensitivities of the state and velocity field. However, in practice no such

geometrically aware method for designing tolerance schedules exist. We like to point out

that we have also investigated the role of the particle population size N varying it from

N = 100 to N = 10000 without noticing convergence among the state and derivative

space ABC-SMC algorithms reinforcing our aforementioned conclusions.

4.1.2 DDE: The Hes1 model

Our proposed algorithm is also able to estimate parameters of delay differential equa-

tions. The Hes1 model system is used in systems biology to provide a simplified account

of the oscillatory behaviour of the concentrations (µ(t), p(t)) of a species of mRNA and

its corresponding protein. The model, introduced in Monk (2003), is described by the

following delay differential equations:

µ̇ =
1

1 + (p(t− td)/p0)n
− µmµ

ṗ = µ− µpp,
(4.2)

where the parameters µm and µp are decay rates, p0 is the repression threshold, n is the

Hill coefficient and td is the time delay. We generated data from the above model with

parameters µm = 0.03, µp = 0.03, p0 = 100 and td = 25 and initial conditions µ(t0) = 3

and p(t0) = 3 for the concentrations between the interval (0 ≤ t ≤ 300) with uniform

spacing of ∆t = 2 by numerically solving the DDE. n is fixed at a value of 5 (Monk,

2003). We estimated the standard deviations σµ = 6.0020 and σp = 121.7670 of the

generated data, for each of the concentrations µ(t) and p(t). We then added noise, with

standard deviation set to 0.1 times these estimated standard deviations σµ and σp, to

the data to create the artificial datasets. As in the previous example we created three

datasets in a similar fashion.

For comparison of performance of the four methods in the parameter estimation task, we

keep the same algorithmic settings, as well as the same covariance function for the GP
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regression as in the previously example. Unlike the ODE case where our algorithm does

not need to guess the initial state values, it does need a history function for X(t ≤ 0)

for DDEs in order to work. In most practical cases the initial history function is taken

as a constant function. Thus in order to make our algorithm work, we shifted the first

element of the estimated state evolution backward in time to create the history function.

The four variants of ABC-SMC having the same settings as before, are applied to this

artificial dataset. We chose uniform priors for each of the parameters: µm ∼ U(−2, 2),
µp ∼ U(−2, 2), po ∼ U(0, 200) and td ∼ U(0, 50). The number of iterations are chosen as

SMC = 14 while running ABC-SMC-Comp and ABC-SMC-OLCM. For GP-ABC-SMC

and GP-ABC-OLCM this is chosen as SMC = 9. As in the previous example these SMC

values are also found through multiple trials of each of the algorithms on these datasets.
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Table 4.3: Estimated parameters of the Hes1 loop model.

Parameters True value ABC-SMC-Comp ABC-SMC-OLCM GP-ABC-SMC GP-ABC-OLCM

µm 0.03
0.0307± 0.0011 0.0305± 0.0015 0.0295± 7.1431× 10−4 0.0293± 5.7062× 10−4

0.0341± 3.3622× 10−4 0.0342± 2.2271× 10−4 0.0304± 0.0014 0.0302± 0.0012
0.0336± 2.1358× 10−4 0.0336± 4.3991× 10−4 0.0291± 9.6005× 10−4 0.0292± 9.5677× 10−4

µp 0.03
0.0294± 0.0010 0.0297± 0.0015 0.0300± 1.9791× 10−5 0.0300± 1.4669× 10−5

0.0267± 2.2945× 10−4 0.0267± 1.5221× 10−4 0.0300± 2.1089× 10−5 0.0300± 1.5644× 10−5

0.0268± 1.4991× 10−4 0.0268± 3.0731× 10−4 0.0297± 1.8138× 10−5 0.0297± 1.8876× 10−5

p0 100
99.4130± 0.2574 99.4518± 0.3574 99.5991± 1.5108 99.6997± 1.0554
102.1872± 0.1856 102.2306± 0.1441 100.8624± 1.3447 100.8624± 1.1805
101.2097± 0.1431 101.2549± 0.2538 100.0403± 1.4338 100.0593± 1.2610

td 100
25.1318± 0.0559 25.1580± 0.0774 25.0496± 0.5481 25.0502± 0.4467
25.2317± 0.4154 25.2428± 0.0287 25.9357± 1.0415 25.6215± 0.8149
25.0730± 0.0282 25.0714± 0.0549 25.3187± 0.7251 25.4469± 0.7790
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The results are listed in Table 4.3 and Table 4.2 (bottom). The marginal posterior

distributions of each of the four parameters learnt by the GP-ABC-OLCM and the

ABC-SMC-OLCM are shown in Figure 4.2. As in the previous example the histograms

in Figure 4.2 are based on the final particle populations generated by the respective

algorithms. In this example we see a huge speedup while using our proposed GP-ABC-
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Figure 4.2: Histograms of the final particle populations generated by the
GP-ABC-OLCM and the ABC-SMC-OLCM algorithms, approximating the
marginal true posterior distribution for each of the parameters of Hes 1 re-
spectively. Inference based on Dataset 1 is shown here. The black line marks
the ground truth in each plot.

SMC and GP-ABC-OLCM algorithms, demonstrating the benefits of this approach. As

in the previous example we noticed higher acceptance rates (fewer generated particles)

for the GP variants of ABC-SMC. The noise is estimated as σµ = 6.8080, σp = 128.6910,

σµ = 6.9280, σp = 123.2920 and σµ = 6.1220, σp = 128.1290 for the dataset 1, 2 and

3 respectively. As in the case of Lotka Volterra model we see differences between the

marginal densities for the Hes1 model parameters as shown in Figure 4.2. We believe

the same geometric reasons explain these differences. Furthermore, from Table 4.2 it is

evident that the acceptance rates increase slightly for the Lotka Volterra (Table 4.2, top)

and significantly for the Hes1 (Table 4.2, bottom) model. Also, for the Hes1 model (see

Table 4.3) better parameter estimates are produced by the GP based ABC-SMC variants

since the estimated means (obtained from the final population) are closer to the true

parameter values. Increase in acceptance rates results from an increase in sensitivity

of the velocity field, which in turn reinforces our geometric intuitions about the output

of ABC-SMC algorithms. For similar reasons an increase in the identifiability of the

model (as evident from better estimates) can be attributed to the increase in model

sensitivity when the velocity field is used to create the ABC distance function. We also

like to point out the fact that for GP-ABC-SMC (with both the perturbation kernels)

no knowledge of the initial history function is supplied. Thus, in a practical setting
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we believe a GP based ABC-SMC algorithm is the optimal choice among these four

methods for parameter estimation in DDEs.

4.1.3 ABC variability

Our proposed method comprises of two levels of approximation, one induced through

the GP regression and the other one resulting from the approximate inference scheme.

Thus in order to check the robustness of our proposed algorithm we repeated the GP-

ABC-SMC and GP-ABC-OLCM parameter inference steps for 50 runs on each of the

three artificial datasets for both the Lotka Volterra and Hes1 models. We used the same

algorithmic settings and prior distributions as in the previous examples. Figure 4.3

and 4.4 summarize the distributions of the sample mean and variance (corresponding

to the final particle population for each run of GP-ABC-SMC and GP-ABC-OLCM on

the three artificial datasets) across all the 50 runs on the data from Lotka Volterra and

Hes1 respectively. It is evident from Figure 4.3 that the GP-ABC-OLCM algorithm

produces fewer outliers compared to the GP-ABC-SMC for both the mean and variance

estimates. This can be attributed to the local moves in the parameter space caused

by the multivariate (OLCM) perturbation kernel. However, presence of these outliers

indicate that the marginal densities for these runs are noticeably different from the rest

of the runs.

In case of the Hes1 model it is apparent from Figure 4.4 that the distributions are less

variable across multiple runs and variants of the algorithms. Moreover, in this case we

notice that the distribution of the variances have very few outliers indicating greater

accordance among the posteriors learnt after each run of the algorithms.

The outliers present in both Figure 4.3 and 4.4 point to the fact that the final tolerances

have a definitive role in the differences among the densities, thus the variances, obtained

from many runs of GP-ABC-SMC. The final particle population in each run constitutes

those parameter values that produce distances (in the parameter space) that satisfy the

corresponding final tolerance values. Now for an adaptive schedule the final tolerances,

corresponding to each run, are not constrained to be the same and thus the resulting

particle populations are also not constrained to gather around the same region in the

parameter spaces. For this reason some of the marginal densities among the 50 runs are

noticeably different from others and generate outliers.

Figure 4.5 and 4.6 show the learnt state trajectories of the Lotka Volterra and Hes1

model compared against the true state trajectories for each of the datasets. The true

trajectories correspond to the true parameters and the reconstructed trajectories are

generated by solving the Lotka Volterra (equation 4.1) and Hes1 (equation 4.2) model
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Figure 4.3: The boxplots represent the distributions of the mean and variances
(across 50 runs) of the final population representing the marginal approximate
posterior parameter distributions learnt by the GP-ABC-SMC and the GP-
ABC-OLCM from the three artificial datasets of Lotka Volterra model.
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Figure 4.4: Distributions of the mean and variances learnt by the GP-ABC-SMC
and the GP-ABC-OLCM from the three artificial datasets of Hes1 model.

equations. While solving (numerically integrating) these differential equations the pa-

rameters are taken as the median of the parameters learnt by the GP-ABC-SMC algo-

rithm considering all the 50 runs. The median value is considered here to reflect the

effect of variability (in parameter learning by the GP-ABC-SMC) in reconstructing the

dynamics of the considered models.

4.1.3.1 ABC variability: Effect of population size

In order to investigate the effect of particle population size we ran the GP-ABC-SMC

algorithm using the component-wise perturbation kernel on dataset 1 pertaining to the

Lotka Volterra model using different values of N . Furthermore, we used a single fixed
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Figure 4.5: Reconstructed and true state trajectories of the Lotka Volterra
model. The results corresponding to the three datasets (1, 2, 3) are shown
using blue, red and magenta colours respectively. Reconstructed trajectories
are represented as curves and observations as stars. The ground truth is the
black (dashed and circled) curve.

tolerance schedule in each case to stop the introduction of variability due to differences

in final tolerance values. Figure 4.7 shows the different posterior marginal densities cor-

responding to 5 different population sizes N = {100, 500, 1000, 5000, 10000}. Differences

among the posterior densities corresponding to the population sizes are barely noticeable

in Figure 4.7. Thus this analysis confirms the fact that variability can only appear when

an adaptive tolerance schedule is used within GP-ABC-SMC.

4.1.4 Signal transduction cascade

We have, so far, used the benchmarking examples to compare our proposed GP-based

ABC-SMC approach to others of that ilk that exist in the literature. In this example

we will compare the parameter estimation results for the proposed GP based ABC-SMC
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Figure 4.6: Reconstructed and true state trajectories of the Hes1 model.

with other (methods not falling under ABC) recent GP based approximate inference

methods for parameter estimation in ODEs. For this purpose we have chosen the signal

transduction cascade model (Vyshemirsky and Girolami, 2008). Using this model, a

comparison between the competing GP based approaches were reported in Wang and

Barber (2014). Thus evaluating the proposed GP based ABC-SMC algorithm on this

model (with identical settings to those in (Wang and Barber, 2014)) will enable us to

draw comparisons with these other methods. This model is described by a 5-dimensional
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Figure 4.7: Posterior marginal densities for the Lotka Volterra model parame-
ters for different population sizes used in GP-ABC-SMC. We have used kernel
density estimation for plotting these densities. The black vertical lines denote
the ground truth and the black thick curve in both plots shows the respective
posterior densities for N = 100.

coupled ODEs given by

d[S]

dt
= −k1[S]− k2[S][R] + k3[RS]

d[Sd]

dt
= k1[S]

d[R]

dt
= −k2[S][R] + k3[RS] +

V [Rpp]

Km + [Rpp]

d[RS]

dt
= k2[S][R]− k3[RS]− k4[RS]

d[Rpp]

dt
= k4[RS]−

V [Rpp]

Km + [Rpp]

,

(4.3)

where θ = (k1, k2, k3, k4, V, km) are the parameters of this model and X(t) =

([S], [Sd], [R], [RS], [Rpp]) are the concentrations of the state variables. Following Wang

and Barber (2014) we generated data from the model between the time interval (0 ≤ t ≤
100) with parameters θ = (0.07, 0.6, 0.05, 0.3, 0.017, 0.3) and initial values of the state

variable [S] = 1, [Sd] = 0, [R] = 1, [RS] = 0, [Rpp] = 0. We then sampled the data at

time tL = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} and added random noise with

standard deviation σ[S], σ[Sd], σ[R], σ[RS], σ[Rpp] set to 0.1 for generating the synthetic

data. For inferring parameters in this example we apply the GP-ABC-OLCM algorithm

from our study with multiple runs, where we found this algorithm to provide a stable

and fast inference mechanism. The non-stationarity in the time evolution of the state
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Table 4.4: Estimated parameters of the signal transduction cascade by all the
GP based approaches including the GP-ABC-OLCM. The estimates for GP-

ODE, AGM and GM are taken from Wang and Barber (2014).

Parameters True value GP-ABC-OLCM GP-ODE AGM GM

k1 0.070 0.0708± 0.0086 0.0747± 0.0130 0.0771± 0.0130 0.0762± 0.0130
k2 0.6 0.5806± 0.0706 0.6230± 0.1246 0.5460± 0.1259 0.5632± 0.1256
k3 0.05 0.0480± 0.0074 0.0530± 0.0135 0.0593± 0.0111 0.0594± 0.0115
k4 0.3 0.3439± 0.0659 0.2960± 0.0281 0.3750± 0.0999 0.3754± 0.1051
V 0.017 0.0170± 0.0009 0.0177± 0.0014 0.0172± 0.0015 0.0173± 0.0014
km 0.3 0.3110± 0.0774 0.4220± 0.0690 0.4090± 0.0911 0.4186± 0.0953

variables is captured by the MLP covariance function given by

k(t, t′) = σ2kern ×
2

π
asin


 σ2wt

⊤t′ + σ2b√
σ2wt

⊤t+ σ2b + 1
√
σ2wt

′⊤t′ + σ2b + 1


 , (4.4)

where the kernel variance σ2kern, the neural network weight variance σ2w, and the bias

variance σ2b are the hyperparameters of the covariance function. The derivative of this

kernel with respect to the input time t is given by

∂k(t, t′)

∂t
=

σ2kern√
1− Z2

∂Z

∂t
, (4.5)

where

Z =
σ2wt

⊤t′ + σ2b
Znorm

(4.6)

with Znorm =
√
σ2wt

⊤t+ σ2b + 1
√
σ2wt

′⊤t′ + σ2b + 1. All the other algorithmic settings

were kept the same. The prior distributions are chosen as k1 ∼ U(0.05, 0.09), k2 ∼
U(0.4, 0.8), k3 ∼ U(0.03, 0.07), k4 ∼ U(0.1, 0.5), V ∼ U(0.015, 0.0195) and km ∼
U(0.1, 0.5). In this example SMC is set to 3.

The resulting parameter estimates are furnished in Table 5.1 along with the parameter

estimates obtained from other GP based algorithms run on the same model. These

algorithms are the GP-ODE method proposed in Wang and Barber (2014), the adap-

tive gradient matching (AGM) proposed in Dondelinger et al. (2013) and the gradient

matching (GM) proposed in Calderhead et al. (2008). In Table 5.1 we have summarised

the GP-ABC-OLCM output using mean and standard deviation where the choice of the

latter has been made to facilitate comparison. We have compared the true state trajec-

tories with the reconstructed trajectories in Figure 4.8. We generated the reconstructed

trajectories by solving (equation 4.3) using the mean of the final population of GP-ABC-

OLCM, representing the marginal posterior densities of the parameters. The estimated

values of the standard deviations are σ[S] = 0.0964, σ[Sd] = 0.0818, σ[R] = 0.0707,

σ[RS] = 0.0591 and σ[Rpp] = 0.0754.
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Figure 4.8: Results of GP-ABC-OLCM for the signal transduction cascade ([S]–[Rpp] in plots (a)–(e) respectively). In all the plots
observations are the black stars, the true state trajectory is the red (dashed) curve and the blue curve shows the reconstructed trajectory.
We have also plotted the GP mean function as the magenta curve and the 95% confidence region is shown as the shaded area. The
reconstructed trajectory is generated by numerically integrating (equation 4.3) with the parameters set to the mean of the posterior
distribution estimated by the GP-ABC-OLCM algorithm.
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We avoided the comparison of run-time or acceptance rates as the GP-ABC-OLCM

and other GP based algorithms depend on completely different approximate inference

scheme. However, GP-ABC-OLCM is significantly faster than the other approaches. The

GP-ABC-OLCM finishes the estimation in around 20 seconds while the other methods

were run for 30 minutes to obtain a properly mixed Markov chain. The ratio of the last

two parameters V/km (Dondelinger et al., 2013) is a crucial quantity that determines

the reconstruction accuracy. GP-ABC-OLCM is able to infer this quantity with the best

(based on the estimated posterior means of V and km) accuracy among all the GP based

algorithms.

It is interesting to note that the variance in estimates for the parameters are less than

other GP based approaches which use Markov chain Monte Carlo (MCMC). Since we use

ABC for inference our estimated variance should be bigger compared to MCMC based

inference results. One reason for this could be particle degeneracy which drives all but

a few weights to near zero values. Particle degeneracy could be monitored through

quantifying the effective sample size (ESS) (Del Moral et al., 2012) given at SMC step

τ by

ESS(w(i)
τ ) =

(
N∑

i=1

(w(i)
τ )2

)−1

, (4.7)

where w
(i)
τ is the weight of particle i and N is the population size. The value of ESS

lies between 1 and N and its interpretation is that inference based on N weighted

samples is approximately equivalent inference based on ESS(w
(i)
τ ) perfect samples from

the intermediate distribution at SMC step τ . Although ESS is not a perfect measure, it

does provide a probe into the behaviour of the algorithm. Generally when ESS falls below

a threshold N ′, generally greater than N/2 the particles are resampled. In the ABC-

SMC the importance sampling is performed with the weights and thus resampling is not

required unlike SMC samplers (Del Moral et al., 2006). However, for corner cases such as

this example where the priors have very narrow support, monitoring degeneracy through

ESS is useful. Thus we calculated the ESS values for each of the SMC steps (plotted

in Figure 4.9, blue curve) and from these values, indicating the number of healthy

particles, it is clear that the posterior estimates have less than half of the total particles

representing a believable sample approximating the true posterior. This specific example

highlights a crucial fallacy that the ABC-SMC, for unnatural priors, can potentially fall

prey to particle degeneration. To be absolute sure about the choice of priors leading to

this problem we ran the ABC-SMC keeping the same GP estimates of the states and the

velocities with increasing the support of the priors. The new priors are thus chosen as

k1 ∼ U(0, 2), k2 ∼ U(0, 2), k3 ∼ U(0, 2), k4 ∼ U(0, 2), V ∼ U(0, 0.1) and km ∼ U(0.1, 2).
We have kept the prior for V comparatively narrow to ensure reconstruction accuracy.

The SMC is set to 4. The resulting posterior distributions are shown as histogram

plots of the final population of particles in Figure 4.10. We have also monitored ESS

(shown in Figure 4.9 brown curve) which with these choices of prior distributions do
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Figure 4.9: The ESS values indicating number of healthy or alive particles at
each of the SMC steps. Except the first SMC step the number of alive particles
fall well below 50 particles indicating particle degeneracies when using narrow
priors (blue dashed curve) centred on the true values of the parameters. While
using a wider prior we see a marked improvement in the ESS above 90%(brown
dashed curve).
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Figure 4.10: Posterior distributions shown as histogram plots. The standard
deviations std for each parameters’ final particle populations are shown on top
of each of the plot. Clearly the posterior variances are bigger than those using
MCMC in Table 4.

not show particle degeneracy. The reconstruction accuracies of the state time courses

is shown in Figure 4.11. Clearly the reconstruction suffers in comparison to Wang and

Barber (2014) and Dondelinger et al. (2013). Compared to Wang and Barber (2014)
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we use a much less informative priors. Also note that our proposed algorithm lacks a

feedback mechanism (Dondelinger et al., 2013) from the ODE system while carrying

out GP regression and thus since some of the states are not well estimated by the GP

model, the resulting posterior estimates suffer when uninformative priors are chosen.

In Dondelinger et al. (2013) the posterior GP estimates are noticeably better than ours

because of the feedback mechanism resulting in better estimates than what we achieve in

Figure 4.11. However, when we use narrower prior we achieve similar or better estimates

than Wang and Barber (2014); Dondelinger et al. (2013) (see Figure 4.8), albeit at the

cost of population degeneracy. Thus a critical comparison of GP-ABC-SMC and GP-

ODE (which use the aforementioned feedback mechanism) is required for these choices of

priors to benchmark our two-step against adaptive methods such asGP-ODE. However,

our primary goal is to resolve the computational issues of ABC-SMC. Thus, we believe

this critical comparison is not essential for the development of ABC-SMC.
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Figure 4.11: Results of GP-ABC-OLCM for the signal transduction cascade using a wide support for the priors. In all the plots the
true state trajectory is the black (dashed) curve and the magenta curve shows the reconstructed trajectory generated by numerically
integrating (equation 4.3) with the parameters set to the mean of the posterior distribution estimated by the GP-ABC-OLCM algorithm.
The yellow thin curves are reconstructions based on each of the N = 100 posterior parameter sample from the last step of GP-ABC-
OLCM.



Chapter 4 Experimental evaluation of the GP-ABC-SMC algorithm 61

4.2 Model selection with GP-ABC-SMC

To test GP-ABC-SMC for model selection we have chosen an example previously pre-

sented in Toni et al. (2009). In this example the ABC-SMC model selection algorithm

was used to find the most suitable among four epidemic models that describe a 21 day

common-cold data from October 1967. This data-set was provided in Toni et al. (2009).

The common-cold broke out on an isolated island called Tristan da Cunha in the At-

lantic ocean with a population of 300 individuals. In this example we will carry out a

model selection exercise on three of those epidemic models. These three are ODEs and

the one that we have left out is a DDE. All these models are variations of the SIR model

(Anderson et al., 1991). SIR models describe the spread of such disease in a population

of susceptible S(t), infected I(t) and recovered R(t) individuals. The simplest model,

Model 1, is the basic SIR model given by

Ṡ = α− γSI − dS
İ = γSI − vI − dI
Ṙ = vI − dR.

(4.8)

where α is the birth rate, d– the death rate, γ–the infection rate and v–the recovery

rate. The second model, Model 2, introduces another state L(t) to model individuals

with a latent phase of infection. In this phase one gets infected but yet cannot infect

others. This model is given by

Ṡ = α− γSI − dS
L̇ = −γSI − δL− dL
İ = δL− vI − dI
Ṙ = vI − dR.

(4.9)

Here δ is the transition rate from the latent to the infective stage. The final model,

Model 3, allows the recovered individuals to become susceptible again.

Ṡ = α− γSI − dS + eR

İ = γSI − vI − dI
Ṙ = vI − (d+ e)R,

(4.10)

where the new parameter e denotes the rate of becoming susceptible again.

This common-cold dataset is presented in Figure 4.12 as time courses of the numbers of

infected I(t) and recovered R(t) individuals. Thus while using GP-ABC-SMC we have

to consider S(t) as a hidden variable. This hidden variable will be handled within GP-

ABC-SMC using explicit integration (using the Euler method) as mentioned in section

3.6.4 in Chapter 3. Thus we need to consider the initial condition S(t = 0) as an



62 Chapter 4 Experimental evaluation of the GP-ABC-SMC algorithm

2 4 6 8 10 12 14 16 18 20
Time (Days)

0

5

10

15

20

25

30

35

40

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
a
ls

 

Tristan Da Cunha, disease spread data

R(t)

I(t)

Figure 4.12: Common-cold data from Tristan da Cunha collected in October
1967 (Toni et al., 2009).

Table 4.5: Total number of times m indicates the corresponding models in the
final population generated in each run of GP-ABC-SMC. Model 1, 2, and 3
correspond to the ODEs in equation 4.8, 4.9 and 4.10.

Run Model 1 Model 2 Model 3

1 18 79 3
2 42 45 13
3 50 50 0

additional parameter, which we denote as So. We define the model indicator m ∈
{1, 2, 3} representing the above models in the same order. Since the data is for a 21

day period we have set, following Toni et al. (2009), α and d to 0 assuming no new

birth or death in that period. The model specific parameter vectors are defined as

θ(m) : θ(1) = (γ, v, So); θ(2) = (γ, v, δ, So); θ(3) = (γ, v, e, So). We ran the GP-ABC-

SMC algorithm for model selection on this data-set three times. The model selection part

of the GP-ABC-SMC followed Algorithm 2 (see Chapter 2). We chose the same prior

distributions as found in Toni et al. (2009): γ ∼ U(0, 3), v ∼ U(0, 3), δ ∼ U(−0.5, 5),
e ∼ U(−0.5, 5) and So ∼ U(37, 100). A univariate perturbation kernel is chosen and the

squared exponential kernel is used for the GP regression. The choices of priors and the

perturbation kernel are motivated by the fact that we want to set up the inference task in

a similar way to Toni et al. (2009) for a fair comparison. An adaptive tolerance schedule

is used where SMC is set to 6. Table 4.5 furnishes the posterior of the model indicator

corresponding to the final populations generated in each run of GP-ABC-SMC. Each

number in Table 4.5 thus represents the number of times m indicates a specific model

in the final population. To choose the most suitable among any two models the ratio of

the indicator frequencies has to be evaluated. This ratio gives us the Bayes factor. The

third model (Model 3) is found to be the least suitable model in all the three runs as the

Bayes factor (the ratio), BF1/3 > 3 and BF2/3 > 3. For the first run Model 2 emerges
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as the winning model, BF1/2 > 3. For the subsequent runs both Model 1 and 2 describe

the data equally well. In Toni et al. (2009) similar observation was made in terms of

models ranking, however Bayes factors were not reported. We have plotted the model

indicator allocation for all the SMC steps in the third case where a tie occurs between

the first two models. These plots are presented in Figure 4.13. Population number 5 in

Figure 4.13 is perhaps an indication of Model 2 getting stuck near a local minima which

it manages to escape in the next population.
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Figure 4.13: Histograms show populations 1−6 of the model particles m for the
third run of GP-ABC-SMC. Population 6 represents the final posterior marginal
estimate of m. The third model get eliminated from population 3 onwards.

We have presented the posterior distributions of each of the model parameters for Model

1 & 2 in Figure 4.14. The posterior distributions for Model 3 are centred on similar

values found in Toni et al. (2009). This indicates that the GP-ABC-SMC can recover

the desired posteriors while operating in the model selection mode. However, note that

the initial value estimates from both the models are quite low considering the total

number of inhabitants of the island. This indicates that none of these models are fully

capable of explaining the disease spread accurately. We have compared the observations

with reconstructed data in Figure 4.15. Reconstruction is done using the mean of the

particles (for each model parameter) from the final populations of Model 1 & 2. As

indicated through the model selection process it is difficult to distinguish between both

these models in terms of reconstruction accuracies.

4.3 Chaotic attractor: The Mackey-Glass equation

So far we have concentrated our efforts on model systems with oscillatory time courses as

well as non-stationary ones (see time course of [RS] in the signal transduction example).

Thus in this final example we will showcase the GP-ABC-SMC applied to a chaotic
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Figure 4.14: Histograms show the posterior marginal densities of the learned
parameters. Posteriors in the top & bottom rows correspond to Model 2 and
Model 1 parameters respectively.

time series. This problem presents a significant challenge to any inference algorithm

as parameters need to be estimated from observations of a chaotic state trajectory

corrupted with noise.

In order to test our algorithm we generated 200 samples between the interval [0 : 0.1 : 20],

from the chaotic regime of the Mackey-Glass model system (equation 3.33) with the

parameter values, γ = 1, β = 2, td = 2 and n = 9.65, that can generate chaos. Please

see the illustration of the velocity estimation process using this system in section 3.6.1 of

Chapter 3. We further added random noise with standard deviation σx = 0.1 to generate

synthetic data. As given in section 3.6.1 of Chapter 3, we have chosen the Mattérn

covariance kernel for the GP. Furthermore, we have chosen OLCM perturbation kernel

and set SMC to 5. The priors are chosen as β ∼ U(0, 5), n ∼ U(2, 12), γ ∼ U(0.5, 2),
td ∼ U(0, 5). The resulting parameter estimates obtained by the algorithm are listed in

Table 4.6. The posterior distributions are plotted in Figure 4.16. The reconstructed

β n γ td
ground truth 2 9.65 1 2
estimated 1.7225 9.6713 0.8504 2.0092

Table 4.6: Estimated parameters of the Mackey-Glass equations.

time course of x is shown in Figure 4.17 along with the actual and corrupted time

courses. Reconstruction is carried out using the mean of the final population as in some

of the previous examples.
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Figure 4.15: Comparison of the actual common-cold data with the reconstructed
time courses from Model 1 & 2. The reconstruction is done using mean of the
final particle populations generated in the third run of GP-ABC-SMC. In terms
of model selection none of these models stand out from the other. Plot (a)
shows the time courses of I(t) and (b) shows R(t).

Although it may be evident from Figure 4.17 that a fair degree of accuracy is maintained

in the reconstruction, the real challenge presented in this problem is highlighted when

we plot a comparison between the original chaotic attractor and the reconstructed one.

This comparison is presented in Figure 4.18. Clearly the reconstructed attractor differs

significantly from the orignal. This failure points out that evaluating distances between

time series is not optimal for chaotic systems. Thus for these systems distances within

ABC should incorporate phase space features commonly found in non-linear dynamics

literature. Furthermore, it will be interesting to compare the two step and adaptive

methods on a chaotic differential equation model such as this one. We have found

that GP regression (using different covariances) achieves a fairly accurate smoothing

performance on the trajectory of x, indicating the fact that smoothing is not the problem.

Thus, this deceptively simple model can be used as a good benchmark for testing the

influence of coupling between the GP and ODE parameters (in an adaptive method)

on the attractor reconstruction. Having said this we like to point out that almost

no evidence (in literature) can be found about the application of Bayesian inference
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Figure 4.16: Posterior distributions of the parameters of the Mackey-Glass
model as histogram of final populations (for each parameter respectively) of
GP-ABC-OLCM.
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Figure 4.17: Reconstructed time course of the variable x along with the ground
truth trajectory and its noisy version.

algorithms on chaotic ODE or DDE systems. This is an open problem that require

novel investigations.
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Figure 4.18: Comparison between the original attractor (left) and its recon-
struction (right) based on the outputs of GP-ABC-OLCM.

4.4 Computational limitations of GP-ABC-SMC

The number of observations creates a significant problem for any GP method in terms of

memory and computational time. Each step of likelihood optimisation and the inference

requires inverting a matrix of size n× n with complexity O(n3) and storage O(n2). For
GP-ABC-SMC we need to carry out GP regression once and thus as long as we are able

to complete GP regression within a suitable time (≈ 200 seconds for the Lotka Volterra

model as an example) and without running out of memory, the rest of the SMC steps

involving simulating f(X̂(t),θ) is always faster than solving the corresponding non-

linear ODE. On our machine (Intel(R) Core(TM) i7-2600 CPU 3.40GHz, 16 GB RAM)

using the GPML package (Rasmussen and Nickisch, 2010), running GP regression on

one of the species of Lotka Volterra for n = 3000 input time points require 305 seconds

while using exact inference for the GP. Generation of ≈ 13000 simulated observations

as required while running ABC-SMC-OLCM (see Table 2) takes around 2 hours, where

we have calculated the time for generating a single simulated trajectory, by solving the

Lotka Volterra ODE, to be ≈ 0.08 seconds using MATLAB’s ODE45 routine. Hence for

a similar model with ≤ 3000 input time points we recommend the use of GP-ABC-SMC

over ABC-SMC using exact inference for the GP regression.

4.5 Conclusion

We ran several experiments using toy models to compare the statistical and compu-

tational performance of GP based ABC-SMC algorithm(s) to that of ABC-SMC with

explicit integration. These experiments suggest that GP based ABC-SMC algorithm(s)

can produce similar quality of estimates to that of ABC-SMC with explicit integration
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while achieving a significant speed-up in the parameter estimation process. We found

similar results for model selection using the GP based approach. We incorporated all

the previous developments of ABC-SMC such as multivariate perturbation kernels and

adaptive tolerance schedules in our implementation. We also noticed an increase in ac-

ceptance rates for the GP based approaches which indicates a smoothing (or annealing)

of the distance function surface when the inference is performed on the derivative space.

We also compared our proposed approach with other GP based methods proposed in

recent literature and found that our proposed GP-ABC-SMC (with the local multivariate

perturbation kernel) performs significantly faster to obtain similar estimates. However,

careful choices of prior distributions and other experimental parameters should be made

in order to achieve true comparison between the ABC (GP-ABC-SMC) and exact MCMC

(GP-ODE, GP-GM, GP-AGM) based gradient matching algorithms. We like to point

out that none of the experiments in Calderhead et al. (2008); Dondelinger et al. (2013);

Wang and Barber (2014) report the posterior estimates of the noise standard deviations.

This parameter is extremely important for gauging the accuracy of the GP regression

in estimating the ODE states. Particularly in Dondelinger et al. (2013) the posterior of

some of the states of the signal transduction cascade (see Figure 7 in that paper found in

the supplementary material) obtained through GP regression point to the fact that the

noise standard deviation is wrongly estimated. This is because the GP mean function,

for these states ([R],[RS]), pass through the data points. This can only be true if the

noise amplitude is negligible compared to the signal amplitude, which is not the case in

the signal transduction example.



Chapter 5

Mathematical modelling of

plantwide electrical responses in

higher plants exposed to ozone

5.1 Introduction

Plants respond to their environmental stimuli which are often localised in nature, by pro-

ducing long distance signals. For example wounding stimuli such as pathogen attacks on

the leaves, or salt stresses encountered through the root system evoke localized sensory

responses that are coordinated throughout the plant body. Such complex coordination

asserts the existence of long distance signalling mechanisms where the sensory informa-

tion is communicated to distant locations and as a result the plant acts as a whole on the

basis of such sensory information. In animals a rapid ionic/membrane potential driven

signalling system integrates activities across the organism via the nervous system in ad-

dition to long distance hormonal and chemical signals. In recent literature long distance

signalling systems for plants have been proposed that transfers information through sig-

nals such as electrical/ ion fluxes (Mousavi et al., 2013; Zimmermann et al., 2009; Felle

and Zimmermann, 2007), levels of reactive oxygen species (ROS) (Capone et al., 2004;

Miller et al., 2009) hydraulic waves through xylem (Christmann et al., 2007). The role

of calcium as an important mediator of systematic long distance electrical signals as a

response to wounding is elucidated in Zimmermann et al. (2009); Christmann and Grill

(2013). Also Choi et al. (2014) reported the existence of long distance calcium wave in

response to a variety of stimuli. Thus expanding our understanding of these calcium

waves and their roles in plant physiology, and especially its relation to the stimuli, is of

great importance. One possible step towards assimilating this understanding may ger-

minate from modelling the mechanism of the calcium wave. Such model may shed light

on several aspects of a plant-wide regulatory information exchange and relating that

69
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to the sensory perception. In this chapter we have studied the electrical responses at

the surface (tissue) of Solanum lycopersicum (tomato) and Cucumis sativus (cucumber)

plants on application of ozone as a stimulus. In Mousavi et al. (2013) surface electrical

signal has been shown to induce jasmonate, triggering defence responses, at local and

distant sites. Our primary aim is to build a mathematical/phenomenological model of

such responses with a hypothesis of the involvement of calcium wave as a key coordina-

tor of such responses. Such a model should be able to quantify the relationship between

the stimulus, the electrical response and the hypothesised calcium wave. Furthermore,

we have applied the GP-ABC-SMC methods to fit such model to data and also select

the best among candidate models. We have used the time courses of electrical responses

recorded from the surface of the plant to validate as well as calibrate our models.

Although we are modelling the surface electrical potentials, much of our mechanistic

intuitions are based on cellular electrophysiology and thus our work builds upon pre-

vious mathematical models of cellular electrical mechanisms. In regards to cellular

electrophysiology mathematical models have been proposed for primarily explaining the

action potential generation mechanism (Gradmann and Mummert (1991), Sukhov and

Vodeneev (2009), Beilby (2007)). All these models provide a mechanistic explanation

based on microscopic ionic currents that exist within a typically excitable plant cell. An

analogous model had been proposed by Sukhov et al. (2013) to explain the variation

potential. In this model the variation potential is argued to be generated by a turbu-

lent influx of calcium ions in the cell, triggered by some unknown substance following a

wounding suffered by the plant. This model describes a complex physiological process

involving several species of microscopic ionic currents. There are other simpler models

(Buschmann and Gradmann (1997), Gradmann and Buschmann (1997)) that attempted

to explain oscillatory time course of the membrane voltage observed at the periphery

of a plant cell. The minimal model of membrane voltage proposed in Buschmann and

Gradmann (1997) is perhaps the best starting point for understanding the basic build-

ing blocks that constitute the electrical activities in a plant cell. Our proposed model

borrows the dynamical properties of ion channels as shown in the Buschmann and Grad-

mann (1997), and extrapolates these dynamics to explain plant-wide electrical activities.

We like to point out that unlike the mechanistic models mentioned in the previous para-

graph, our proposed model is phenomenological. Thus to describe the stimulus-response

phenomenon succinctly, we solve an inverse problem using experimental observations. To

the best of our knowledge, this is a point of departure from the tradition of plant electro-

physiological research pertaining to mechanistic modelling. Phenomenological modelling

of plant-wide, as in our case, or cellular electrical signals has not been explored yet.
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5.2 Ozone as stimulus: Experiment design and analysis

The air pollutant ozone can be used to study in planta processes including stomatal

signalling. In Vahisalu et al. (2010) ozone was used to study the reactive-oxygen-species

(ROS) dependent rapid transient decrease (RTD) of stomatal conductance 1 in intact

Arabidopsis plants. It was shown in Vahisalu et al. (2010) that the RTD involves the

production of ROS. An important property of the RTD is the existence of a refractory

period (a period of insensitivity to further stimulus) between two consecutive RTD

episodes. This refractory period is experimentally found to be 90 minutes (see Figure 5.1

for a depiction of this refractory period). Similar experiments in Clayton et al. (1999);

Evans et al. (2005) show ozone induced rapid transient increase in systolic calcium .

However, the existence of calcium as a part of RTD is not proven yet. It is worth noting

that stress signals such as wounding or herbivore attack triggers the stress hormone

jasmonic acid through a plant wide electrical wave. Recent studies (Christmann and

Grill, 2013) have put focus on the role of calcium as a mediator of such responses.

Thus it is a natural question to ask whether any stressful signal such as ozone would

generate a fundamental defence signal - a plant wide electrical signal in addition to that

of the ROS signal found in RTD. Also if such electrical responses emerge then, how

are they controlled and managed by the calcium channels? To answer these questions

it is necessary to study the responses (electrical) generated by the plants due to ozone

exposure. This will potentially help us in modelling the quantifiable relationship between

fundamental signals related to the innate stimulus-response signalling mechanism in

plants. Especially, we want to investigate a plausible association of a calcium wave

alongside the reported ROS in the generation of RTD. We thus conjecture the existence

of a possible calcium wave that precedes the ROS signal where we interpret the electrical

responses as a manifestation of a plant wide calcium current surge. To investigate the

electrical response to ozone stimulus 2 sets of experiments were carried out. In the first

set of experiments two plants from the same species were exposed to the simultaneous

treatment of ozone. This treatment was repeated 10 times after an interval of 2 hours

after each spray. 10 replicates of this experiment was done resulting in a total of 100

stimulus-response episodes of 2 hours each. The second experiment was motivated by

the study of ozone induced RTDs. To verify the existence of a refractory period one

of the experiment given in Vahisalu et al. (2010) was replicated in which one tomato

plant was exposed for 6 consecutive ozone treatment at an interval of 15 minutes. For

both sets of experiments the ozone exposition duration was of 1 minute. Details of the

experimental setup are given in the following section.

1 Stomata are small pores on the aerial parts of the plant that control carbon dioxide (CO2) influx
for photosynthesis and water vapour loss. Stomatal conductance is the measure of the rate of CO2 influx
and water vapour loss. This is usually measured in mmol1m−2s−1.
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(a)

(b)

Figure 5.1: Refractory period of the rapid transient decrease in stomatal con-
ductance as found in experiments reported in Vahisalu et al. (2010). In the first
experiment (a) successive ozone expositions have no further effects. However,
when successive ozone expositions are seperated in time for ∼ 90 minutes or
more (b) then a second episode of conductance decrease can be observed.

5.2.1 Experimental setup

The experiments were conducted within the framework of the PLEASED project (PLants

Employed As SEnsing Devices, PLEASED) by members (see the list of authors affiliated

to the University of Florence in Chatterjee et al. (2015)) of the International Laboratory

http://pleased-fp7.eu/
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of Plant Neurobiology, University of Florence. Two of the major computational goals of

this project were: i) exploration of classification strategies for identification of stimulus

from plantwide electrical responses and ii) characterisation of such electrical responses

using mathematical models. 2 Within this framework an initial experimental setup

for measuring plantwide electrical responses subjected to varying amplitude of light as

an external stimulus was proposed in Chatterjee et al. (2014). This setup was further

refined and was used to carry out experiments with various stimuli including ozone

in Chatterjee et al. (2015) for achieving the first goal of the PLEASED project and

also for the inverse problem presented in this chapter. The second set of experiments

involving shorter duration of ozone pulses were carried out by Dr. Ilaria Colzi from

London Institute of Mathematical Sciences. For both sets of experiments tomato and

cucumber plants, grown for 3 weeks, have been used. For the first set of experiments

none of the plants are reused for replicate experiments. For each plant, we used three

stainless steel needle electrodes - one at the base of the stem as a reference, one in the

middle and the other on the top of the stem as shown in Figure 5.2. The electrodes

were connected to the instrumentation amplifier (data Acquisition (DAQ) system) in the

same way as previously studied in Chatterjee et al. (2014). A detail circuit diagram is

shown in Figure 5.3. Plants were then enclosed in a plastic transparent box with proper

openings to allow the presence of cables and inlet/outlet tubes, and exposed to artificial

light conditions (LED lights responding to plant’s photosynthetic needs, mimicking the

day/night cycle of 12 hours). Each experiment was conducted in a dark room to avoid

external light interferences. The whole setup was then placed inside a Faraday cage

to limit the effect of electromagnetic interference as shown in Figure 5.2. After the

insertion of the electrodes into the plant, we waited for about 45 minutes to allow the

plant(s) to recover before starting the stimulations. Electrical signals acquired by the

electrodes were provided as input to a 2-channel high impedance (1015Ω) electrometer

(DUO 773) while data recording was carried out through 4-Channel DAQ (LabTrax)

and its dedicated software LabScribe (Chatterjee et al., 2015). The sampling frequency

was set as 10 samples per second. Ozone produced by a commercial ozone generator

(Chatterjee et al., 2015), was injected into the box through a silicone tube, while a second

outlet tube removed the ozone from the box to a chemical hood. The concentration of

ozone inside the box was monitored using a suitable sensor at an interval of 15 minutes

for the first set of experiments (inter-spray interval of 2 hours) and at an interval of 1

minute for the second set of experiment (inter-spray interval of 15 minutes). The plants

were exposed to ozone of concentration 16 and 19 part per million for the respective sets

of experiments.

2The author of this thesis was responsible for characterisation of electrical responses using mathe-
matical models in the PLEASED project.
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Figure 5.2: Experimental setup showing a tomato plant inside a plastic trans-
parent box, kept inside a Faraday cage. The placement of the electrodes on the
stem is also shown.

5.2.2 Electrical responses to ozone as stimulus

Our first experiment consists of an ozone stimulus applied repetitively at an interval of 2

hours on both the tomato and cucumber plants. Figure 5.4 shows plots of some typical

electrical responses as contiguous time courses, representing a batch of ozone exposure

on a cucumber plant, with the location (in time) of each ozone stimulus marked with a

vertical line. The ambient diffusion of the applied ozone is also plotted as a time course

of the measured concentration of ozone within the box and is denoted as U(t) (see Figure

5.4(b)).
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Figure 5.3: Circuit connection diagram for a dual channel instrumentation
amplifier-data acquisition system
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Figure 5.4: Typical electrical responses from the tomato plant. The blue and red curves indicate the amplitudes recorded with the 1st
(bottom) and 2nd (top) electrodes on the stem. The black dashed curves (vertical) indicates the time location of the application of
ozone stimuli.
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The experimentally recorded voltage V (t), at any one electrode location x = {1, 2}
which we denote as Vx(t), is the difference between the electrical signals S(t) (within

the plant) picked up at the chosen electrode x and the reference electrode ref due to

the nature of our circuit arrangement. From the circuit diagram (see Figure 5.3) and

electrode arrangement (see Figure 5.2, within the dashed line) this fact can be observed.

Each channel output is thus the output of a differential amplifier. Hence we have

Vx(t) = A(Sx(t)− Sref (t)), (5.1)

where A is the amplifier gain.

A fair degree of baseline wandering is present for each batch of experiments as evident

from Figure 5.4. These could be attributed to sensor drift as well as an inherent steady

state response Vb(t). We also observe the marked ozone driven electrical response Vd(t)

as indicated by the upward curve of the amplitudes corresponding to each channel im-

mediately after the ozone stimulus. The experimentally recorded voltage V (t) (dropping

electrode specification) is then given by

V (t) = Vd(t) + Vb(t). (5.2)

We will follow the convention of denoting Vd(t) as the excitation and Vb(t) as the base

(spontaneous) component of the electrical response. We are primarily concerned with

only the excitation component Vd(t) and thus we applied a moving average filtering to

extract such responses as a necessary pre-processing step which we will explain next.

Consider an experimentally observed time series X(t) consisting of T samples. Then the

moving average XMA(t) is given by

Xm
MA(t) =

X(t) +X(t− 1) + ...+X(t−m− 1)

m
(5.3)

where m ≤ T is the span of the moving average. For our signals substituting the moving

average VbMA
(t) of Vb(t) in the above equation leads to an estimate of Vd(t) which we

denote as V̂d(t). Figure 5.5 shows the raw as well as the smoothed time courses of the top

channel from the same batch of experiment as shown in Figure 5.4. For understanding

the nature of the excitation component which is our prime objective we subtract the

amplitude as recorded by the top from that of the bottom channel. We denote this

differential voltage δV̂d(t) as the difference of amplitudes, after applying moving average

filter, V̂d1(t) and V̂d2(t) at these electrodes on the stem respectively. This differencing has

been done to gauge the pattern of evaluation of the amplitudes at both the electrodes

simultaneously as we consider a plant wide current surge moving across the length of

the plant as the primary response signal. We will follow this convention throughout this

paper and by electrical response we will continue to mean the differential amplitudes

considering the top two electrodes. The pattern of the electrical response δV̂d(t) for an
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Figure 5.5: Electrical responses pertaining to the (estimated) excitation com-
ponent V̂d(t) obtained by smoothing is shown as the green curve for the same
batch of experiment as shown previously. The blue curve indicates the net re-
sponse V (t) and the red curve is the smoothed response representing moving
average VbMA

(t) of the base amplitude Vb(t). All these amplitudes are based on
the recording of the 1st (bottom) electrode.

ozone exposure episode can be identified, for many replicate batch experiments, with a

sharp decrease in the differential amplitude followed by a gradual increase back towards

the baseline (and beyond it in certain cases). See Figure 5.6 for an example of the

differential amplitude for one of the replicate experiments consisting a batch of ozone

expositions. For most of the experimental replicates we tend to see similar electrical

responses as shown in Figure 5.6. However there are experiments with some episodes

where an upward rise of δV̂d(t) following an ozone exposition is observed (not shown

here). Although the downward or upward (in some cases) deviance of the differential

amplitude is prevalent in most of the stimulus-response episodes, there are a few episodes

which do not show a recognizable change in the differential amplitude. Thus we have

chosen to analyse and model those experimental episodes that show a downward deviance

of the differential amplitude. It is worth mentioning that the direction of change in δV̂d(t)

is dependent on the subtraction convention (bottom to top electrode). With the chosen

convention it is then necessary to identify the dominant pattern of the time evolution of

δV̂d(t).

As mentioned in section 5.2 we carried out a different experiment with shorter (15 min-

utes) ozone exposure period to enquire about the existence of a refractory period. In

contrast to the findings in Vahisalu et al. (2010), in our second experiment the electri-

cal responses (plotted as the differential amplitude) clearly depict the absence of any

refractory period (see Figure 5.7). The ozone diffusion in this experiment is sped up
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Figure 5.6: Differential response time course for a batch ozone exposures on
a cucumber plant. The black curve shows differential excitation component
while the blue curves show the corresponding amplitudes recorded at the two
electrodes on the stem. The blues curves here show the net amplitude V̂d1(t)
and V̂d2(t). The blown up sections show the differential amplitudes after the
second and third ozone exposures within that batch.

considerably than the previous experiment using a faster outlet exhaust in the glass

box thus producing a (almost) pulse type stimulus, in order to reproduce the stimuli

duration in Vahisalu et al. (2010).
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Figure 5.7: Typical electrical responses from the tomato plant using a shorter inter exposition time. The blue curve shows the differential
amplitude obtained after smoothing. Here the stimulus is repeated after every 15 minutes.
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From both sets of experiments (stimulus at 2 hours and 15 minutes intervals respectively)

it is evident that the ozone stimulus produces a discernible electrical response having

no refractory period. However, a gradual adaptation to the stimulus can be observed,

notice the responses corresponding to the 4th and onwards ozone expositions in Figure

5.7 (experiment 2). Thus we hypothesise here that the electrical responses to ozone

possibly have no ROS signal associated with it. This reinforces our assumption that

the possible signal that is encoded in the electrical response is a calcium wave. We

would now build a mathematical model around this assumption in the next sections and

validate such models using these experimental observations.

5.3 Phenomenological model of calcium current

In order to establish a phenomenological characterisation of the electrical activities as

evident from our experiments, we consider a hypothetical calcium current to be the fun-

damental signal and messenger of a plant wide response to the ozone stimulus, which we

measure in the form of electrical signals. Thus we want to quantify, through a mathe-

matical model, the dynamics of this current in relation to the stimulus. We consider the

observable quantity to be the surface electrical potentials excitation component, the dif-

ferential amplitude δV̂d(t) mentioned in the previous section. Furthermore, we consider

δV̂d(t) to be the manifestation of the calcium current at the tissue (phloem in contact

with the electrodes) level which is an agglomeration of the microscopic ionic currents.

Thus from the modelling perspective the calcium current picked up by the electrodes

as δV̂d(t) is assumed to be a macroscopic average of the cellular current response. The

source sites of these emissions include the guard cells which play a quintessential role in

gas exchange and therefore stomatal modulations.

5.3.1 Cellular current model

The ion channels and associated currents that are directly affected by the ozone and the

ROS compounds is yet to be understood. In Vahisalu et al. (2010) the SLAC1 (slow

anion channel 1) and K+ channels are hypothesized to be acting as the mediator of the

rapid stomatal aperture modulations with substantial experimental support. However,

through our experimental protocol it is impossible to probe and infer the exact signalling

pathway for the generation of calcium current within the cell. Thus, we consider the

following currents to be crucial in setting up a hypothetical mechanism leading to the

generation of the calcium current.

We like to mention here that we lack a mechanistic understanding of how some of the

molecular compounds produced upon ozone entering the plant interact with several ionic

species found in plants. We first assume that such interactions disturb the electrical equi-

librium within a plant cell. We then assume that the rate at which these interactions
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disturb the equilibrium is proportional to the availability of ozone in the plant’s environ-

ment, which is experimentally measured as U(t). Although this availability of ozone is

controlled by regulating the flow between inlet and outlet of the glass box, the resulting

(molecular) interactions can vary between episodes giving rise to varied effects on all the

other ionic species. With these assumptions we model these ozone induced interactions

by considering a current Ioz(t), in addition to other currents (corresponding to the ionic

species found within the cell), that can potentially disturb the electrical equilibrium.

For all the ionic species, we treat the net contribution rather than individual ion channel

effects as we lack sufficient information of individual channels role. This net current is

denoted as Iion(t). Furthermore we consider a calcium current Ica(t) which is related to

the change in the membrane potential Vm(t). When the plant is exposed to ozone, Ioz(t)

is generated which drives Iion(t) affecting the charge balance within the cell resulting in

the deviation of the membrane potential Vm(t) from its equilibrium potential V0. This

deviation affects the voltage gated (Hille, 2001) calcium channel’s probability of being

in an open state, generating a spurt of Ca2+ ion efflux resulting in the calcium current

Ica(t). This mechanism is shown in Figure 5.8 where the cell is considered to be a Guard

cell. The steady state open probability of the calcium channel under the voltage gating,

Figure 5.8: Interactions of ionic currents within a Guard cell after ozone expo-
sition. A sample time course of the cellular calcium current is also shown as a
magenta curve.

assuming a Markov switching (Buschmann and Gradmann, 1997) between its two states

– open O(t) and closed C(t) is a reversible process O ⇋ C given by

O(t) =
1

1 + eB(Vm−V0)
(5.4)
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where rO/C = eB(Vm−V0) is a voltage dependent rate constant of the reversible process.

The calcium current is then given by

Ica(t) = gO(t)(Vm − V0) (5.5)

where g is the calcium channel conductivity.

5.3.2 Macroscopic current model

We assume that the electrodes, when inserted in the stem, come in contact with an

electrically conducting patch in the phloem, pick up the cellular calcium current Ica(t)

from many cells within that patch. Our assumption here is that among many other ionic

imbalances (leading to the generation of different ionic currents) that take place due to

the ozone exposure, the significant current that the electrode picks up is the calcium

current. This assumption is based on prior empirical observations found in Schroeder

and Hagiwara (1989). The resulting current as picked up by the electrodes (along with

the base potential Vb(t) ) can be represented as the average calcium current Ica(t) =

1/N
∑N

k=1 Ica(t) , considering N cells generating individual calcium currents. We thus

observe Ica(t) experimentally as V̂di(t), where i denotes the corresponding electrode

number. Thus the net response (excitation) quantity δV̂d(t) is the difference δIca(t) =

Ica(t)1 − Ica(t)2, observed experimentally, between two locations on the phloem where

the electrodes are inserted. The resulting scenario is depicted in Figure 5.9.
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Figure 5.9: Hypothetical mechanism behind the net effect of cellular microscopic currents generated at two different locations (where
the top two electrodes are inserted) resulting in a macroscopic calcium current along the phloem.
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Along with Ica(t) we can represent the other currents, established in the cellular model,

at the tissue level using the same averaging and differencing principle. Note that the

exact number of cells N cannot be determined or speculated. Thus we would now work

with these average currents while describing a macroscopic model for the observed (as

δV̂d(t)) calcium current Ica(t). Now assuming that ozone affects a large number of guard

cells that affect and results in generating individual calcium currents Ica(t) separated

at the time instant of generation within the cells (see Figure 5.6), we can abstract the

hypothetical mechanism behind the generation of δIca(t) within the cell to that at the

tissue level where the patches of phloem are in contact of the electrodes. Thus we can

now quantify the dynamics of Ica(t) as coupled differential equations using the same

cellular mechanism behind Ica(t). This coupled differential equation is given by

d(δIoz)

dt
= −µδIoz

d(δIion)

dt
= k1δIoz − k11δIion

d(δVm)

dt
= k2δIion + k22δIca − kdδVm

d(δIca)

dt
= k3δIion + g

δVm − V0
1 + e−kB(δVm−V0)

− kca
(

δIca
2

k2m + δIca
2

)

(5.6)

where each dynamical variable δX = X1 −X2 is the difference of the average (over a

collection of cells) currents and voltages at the tissue level. As we are interested in the

characterisation of the phenomenon at a macroscopic level we will use these variables

and the proposed equation 5.6 as the model of the ozone driven electrical excitation.

The first term in the expression of dδIca
dt quantifies the charge imbalance in each cell

through the actuation of the differential ionic current δIion and the second term is

an approximation of the open probability over a collection of cells at the electrode

contact locations. We have introduced another term that models the homeostasis of

the dynamics of the differential response δIca through a Hill function. This term

accounts for the pumping of Ca2+ ions into the interior of the cells out of the cy-

toplasm following a calcium current generation. The model has 12 parameters θ =

(µ, k1, k11, k2, k22, kd, k3, kB, kca, km, g, V0) which define the rate constants and channel

conductivities with parameters g, V0 being approximations of the channel conductivity

and equilibrium potential for a collection of cells. These phenomenological parameters

define the rate of interactions over a collection of cells and macroscopic terms controlling

the dynamics of δIca(t). We seek a probability distribution over each of these parame-

ters by fitting this model to the experimental time courses of electrical responses δV̂d(t).

These probability distributions of the model parameter would then enable us to predict

a range of behaviour of the model under each experimental outcome as a direct method

of the validation of this model. Furthermore, such models will propagate the uncertainty

in the parameters to the model behaviour as predicted time courses of δIca(t).
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5.3.3 Ligand gated channel

For the cellular current model described in section 5.3.1, there can be an alternative de-

scription of the calcium current generation mechanism. Such an alternative mechanism

consists of a ligand gated calcium channel (Hille, 2001) at its heart. A ligand gated

calcium channel can be activated by initial efflux of calcium ions rather than a voltage

gradient. Thus, for our model we can consider the charge imbalance within the cell

caused due to the stimulus current δIoz(t) leading to the efflux of some amount of Ca2+

ions from the cell. These ions activate the ligand gated calcium channels resulting in

more calcium ions getting out of the cell. This mechanism can be interpreted as a cal-

cium driven calcium current. The steady state open probability of the calcium channel

under the ligand gating, considering the same two states – open O(t) and closed C(t) is

now given by

O(t) =
I2ca

k2l + I2ca
, (5.7)

where kl is the rate constant of the reversible process between the two states. Considering

the above probability term we modify the differential equation for the differential calcium

current, within the macroscopic model, in equation 5.6 as follows:

d(δIca)

dt
= k3δIion + g

(δVm − V0)δIca2
k2l + δIca

2 −KcaδIca. (5.8)

Note that for this model we have assumed a linear homeostasis term KcaδIca attributing

the non-linearity of the resultant time course of δIca(t) to the probability term only.

5.4 Model fitting to experimental data using GP-ABC-

SMC

Having proposed a set of models our next endeavour is to estimate the parameters of

the model (model fitting) using the GP-ABC-SMC algorithm. Before venturing on the

said objective it is worth mentioning that some form of preprocessing is required to be

able to run the GP-ABC-SMC algorithm. Also suitable choices about the algorithmic

settings such as tolerance schedule, perturbation kernel and GP covariances have to be

made alongside choosing appropriate prior distributions of the model parameters. In

the next sections we would establish these setting and explain our choices.

5.4.1 Preprocessing

For the purpose of model fitting we considered many replicates of the differential exci-

tation component δV̂d(t) of individual stimulus-response episodes lasting for 2 hours as

the observed experimental data, Y d in ABC context. With the sampling frequency of
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10 Hz we have 72000 samples for a single 2 hour episode. However, we have noticed that

the time evolution of the excitation component of electrical responses occurs at a much

slower time scale than the sampling frequency. Considering the differential amplitude

of the two sample episodes shown in Figure 5.6, the peak amplitude is reached between

30−60 minutes. Hence we have downsampled the time series retaining the mean of every

500 samples resulting in only 143 samples for a 2 hour episode. We have purposefully

ignored the details of amplitude fluctuations, such as an action potential, at a much

higher time scale as we have modelled the evolution of the excitation component for the

entire time duration between two successive ozone exposures under a batch experiment.

We considered here the time evolution of stomatal responses to ozone, which also occurs

at similar time scales (Vahisalu et al., 2010), as an affirmation of our choice. Figure

5.10 compares the voltage traces of the electrical potential, for one episode of ozone

exposures, to its downsampled version.
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Figure 5.10: The time series on the left portrays one episode represented using
the original sampling rate (10 samples / second) and the plot on the right is its
downsampled version.

Many of the parameters of our model are correlated and many separate parameter combi-

nations could result in similar time courses of the dynamic variables. Thus a multivariate

kernel with a local covariance (Filippi et al., 2013) (OLCM perturbation kernel) which is

well suited for tackling parameter correlations is chosen as the perturbation kernel, gen-

erating samples in ABC-SMC, to efficiently navigate the parameter space. Furthermore,

we have chosen an adaptive tolerance schedule where tolerance ǫτ for an intermediate

SMC step τ is set to the α = 0.1 quantile of the distances ∆(Y d, Y s) ≤ ǫτ−1 in the

previous (particle) population corresponding to the step τ − 1.
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5.4.2 Prior distributions

The choice of prior distributions is one of the most crucial aspects of Bayesian inference,

indeed considering the fact that we have already constructed the best model that explains

the regularities in the data sufficiently. These priors can be constructed from a first

principle understanding of the physical properties of a system that these parameters

represent or control. However, in case of inverse problems, involving a phenomenological

model such as ours the parameters do not capture precise physical properties. Rather

in our model the parameters control the collective effects of the dynamical variables to

recreate the phenomenon of interest. Thus we need to find alternatives to first principle

approaches towards engineering a particular prior distribution for the parameter(s).

This alternative approach consists of using point estimates of the parameters to build the

prior distributions. To explain this prior construction let us first introduce the variables

of interest in the context of a voltage gated model (same technique can be used for the

ligand gated variant). We consider the observed data δV̂d(t) (the differential amplitude)

to be given by

δV̂d(t) ∝ δIca(t) + η(t) (5.9)

where η(t) is i.i.d Gaussian measurement noise. In the above equation we are explicitly

assuming that the differential current response is measured with noise as the differential

voltage excitation component, obtained as the difference between the output of the

instrumentation amplifiers. Now if we assign a GP prior on the state of the differential

calcium current then we have

p(δIca(t
L)|tL) = N (δIca(t

L)|0,K(tL, tL)), (5.10)

considering L = 144 downsampled 3 experimental time points. Using the GP machinery

we can thus evaluate the smoothed derivative of the state, which we denote as
˙̂

δIca(t) =

E[ ddt δ̂Ica]. Also from equation 5.6 we have the functional form for the right hand side

f(δ̂Ica(t),φ) of the derivative of δIca(t). Since only the state evolution of δIca(t) is

observed as the differential voltage measurements we used the technique to construct

the hidden variables δIoz(t), δIion(t) and δVm(t) as in section 3.6.4 to represent the right

hand side f(δ̂Ica(t),φ) of
˙̂

δIca which is coupled to these hidden variables. Furthermore,

we have augmented the parameter vector φ by adding three more parameters which are

the initial values δIoz(t = 0), δIion(t = 0) and δVm(t = 0) of the hidden states.

We have then used non-linear least squares for minimizing the Euclidean distance

∆(
˙̂

δIca(t),f(δ̂Ica(t),φ)) between the velocity field
˙̂

δIca(t) obtained by GP smoothing

and f(δ̂Ica(t),φ). This results in the point estimate of the optimal parameter vector φ̂

3For a two hour episode we have 72000 samples. Now downsampling by keeping the average of every
500 samples result in L = 72000/500 = 144 time points.
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given by

φ̂ = argmin
φ

L∑

i=1

(
˙̂

δIca(t
L)− f(δ̂Ica(t

L),φ))2. (5.11)

We have used the Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) algorithm

with many initial guesses and chose those parameters which generated the minimum

distance following Transtrum and Qiu (2012). Having obtained the point estimate for

the parameter vector

φ̂ = (µ̂, k̂1, k̂11, k̂2, k̂22, k̂d, k̂3, k̂B, k̂ca, k̂m, ĝ, V̂0, δIoz(t̂ = 0), δIion(t̂ = 0), δVm(t̂ = 0))

(5.12)

including the initial values, we build a prior distribution for each of its elements by con-

structing a uniform distribution bounded between ±K×φ̂j where j indexes each element

of φ̂ and K is a multiplication factor controlling the spread of the support of these uni-

form priors. So for example we have the prior distribution for µ as U(µ̂−K×µ̂, µ̂+K×µ̂).
We have constructed the prior distributions for rest of the phenomenological parame-

ters in a similar way. Figure 5.11 shows the histogram plot of the parameter vector

obtained through this optimisation process considering 54 episodes from all the batches

that show a discernible of response to ozone exposure. We have tried to summarize their
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Figure 5.11: Histogram plots for each of the model parameters. Histograms are
constructed from the collection of point estimates found after minimizing the
r.h.s of equation 5.11. In total 54 episodes from different batches of experiments
are used.

dynamics by reconstructing (by numerically solving the ODE system in equation 5.6)

the dynamical variables of the model using the mean points of the histogram as param-

eter values. The said reconstructions are shown in Figure 5.12. The point estimates of

the initial values for hidden variables are used for solving the model ODE. The initial
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value
˙̂

δIca(t = 0) is chosen as the mean of the first sample of the smoothed time course

δ̂Ica(t) obtained using GP regression.
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Figure 5.12: Reconstructed trajectories of the dynamical variables in equation
5.6.

The choice of the GP covariance is much more tricky as we need to have a working idea

about the smoothness of the actual time evolution of δIca(t). This becomes extremely

difficult to asses a priori due to the amount of variability in the experimental dataset.

Taking a closer look at some of the episodes it is evident that the time evolution of

δIca(t) appears as the sum of exponentials. So, for example if we consider a particular

episode as shown in Figure 5.13 to which we want to fit a GP, our initial choices of

covariance functions can be either a Matern kernel:

KMatern(t, t
′) =

(
1 +

√
3(t− t′)
l

)
exp

(
−
√
3(t− t′)
l

)
, (5.13)

or a squared exponential kernel:

KSE(t, t
′) = σ2kern exp

(
1

2

(t− t′)2
l2

)
, (5.14)

both of which are well suited for modelling smooth exponential time series. Now, if we

compare the negative log marginal likelihoods of GPs comprising each of these kernels

then clearly the Matern kernel describes the data best. Consequently the smoothed

times series of δ̂Ica(t) (black curve in Figure 5.13(b)) obtained using a Matern kernel

tracks the data δV̂d(t) (red curve) more closely than the exponential covariance (see

Figure 5.13(a)) at around 30-th and 60-th minute time points. However, in lieu of

our modelling assumptions we consider the calcium current δIca(t) trajectory as an
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Figure 5.13: Comparison of smoothed time course δ̂Ica(t) (black curve) achieved
using two different GP covariance kernels, the squared exponential kernel in (a)
and the Matern kernel in (b) on a representative episode (red curve).

excitation that reaches its maximum between 30 to 60 minutes since its inception and

any other excitation on top of that at a faster time scale (as seen in Figure 5.13 around

30-th and 60-th minute time points) cannot be related to the stimulus and thus need not

be accurately modelled. Thus, we argue that the exponential kernel is a better choice

to obtain a smoother representation of the time course of δIca than what is achieved

using the Matern. Hence, we have consistently used the squared exponential covariance

throughout the model fitting process.

5.4.3 Results

We used the algorithmic settings (GP covariance, tolerance schedule, perturbation ker-

nel) and prior distributions as they were introduced in the previous sections while

applying the GP-ABC-SMC on the experimental data consisting of consecutive repli-

cate episodes from two batches of experiments, one from each species of plants. We

like to point out that with each run of the algorithm we fit our model to one sin-

gle episode among the consecutive ones and then repeat the algorithm for the next

episode. Within the context of GP-ABC-SMC we have used the Euclidean distance

∆(
˙̂

δIca(t),f(δ̂Ica(t),φ)) given in equation 5.11 at every SMC iteration to be compared

against the tolerances. We have not used a fixed SMC value, the number of SMC steps.

While working with real data and a phenomenological model such as ours, it is not

possible to correctly guess the ideal number of SMC steps (or the final tolerance value)

that might produce a refined posterior distribution, since we do not have the slight-

est hint on the ideal parameter ranges. Rather, we keep on running the algorithm until
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|ǫτ−1−ǫτ | ≤ Cstop, where Cstop is a constant chosen according to the peak-to-peak am-

plitude range for individual episodes. In general we have chosen Cstop = 0.001 for those

episodes where the peak-to-peak amplitude is less than 0.005 Volts and Cstop = 0.1

otherwise. We have tried using other values for Cstop in the same range and similar fit

is obtained. While choosing the value of the multiplication factor K in the prior distri-

bution, we have to simultaneously monitor its effect on population degeneracy. Thus we

ran the GP-ABC-SMC with multiple choices of K and chose the maximum out of those

which ensures ESS ≥ 60 for the final population of particle. Here we have considered

N = 100 particles. We again point out that this is a small population size. However,

this is a first study of this inverse problem where we are primarily trying to show the

applicability of the GP-ABC-SMC algorithm for carrying out a complex inference task.

Thus we believe the chosen population size is adequate for this first study.

Voltage gated channel model

The model fitting results, for the voltage gated model (see equation 5.6), are presented

in Figure 5.15 & 5.16 where we have included 8 (tomato) and 8 (cucumber) consecutive

episodes from each of the plant species respectively. We have compared the time course

of δV̂d(t) with the reconstructed time courses of δIca(φ, t) for each episode under con-

sideration. This reconstruction is done by solving the model differential equation 5.6 to

obtain the time course of δIca(φ
(i)
SMC , t) using the particles {φ

(i)
SMC}i=1,...,N from the final

population of GP-ABC-SMC which (as a collection) represent the (approximate) pos-

terior distribution p(φ|∆(
˙̂

δIca(t),f(δ̂Ica(t),φ)) ≤ ǫSMC
). Through this reconstruction

the uncertainty in the parameters propagate to the uncertainty in the model predic-

tions. Thus for those episodes where the posterior estimates of the parameters have

higher levels of uncertainty, the reconstructions show much higher range of variability.

The episodes shown in Figure 5.15(a) and 5.15(f), both from batch 1 (tomato), exem-

plifies such higher uncertainties in model predictions. The time courses of the episodes

from the second batch in Figure 5.16, for cucumber plant, clearly show evidence of adap-

tation to the stimulus. The last few episodes, Figure 5.16(e)-5.16(h), has much lesser

amplitude than the preceding ones. This shrinking in the net response is accurately

picked up by the inference algorithm and reflected in the increased uncertainty of the

model predictions. By the prediction we mean reconstruction in this context. Notice

the reconstructed time courses (yellow curves in Figure 5.16) which are much widely

spread in plots 5.16(e)-5.16(h) than the preceding plots. The change in uncertainty in

model predictions, indicating a regime change, is firstly reflected in the posterior distri-

butions of the parameters. We have plotted the posterior parameter distributions of two

episodes from batch 2 in Figure 5.14 corresponding to Figure 5.16(d) & 5.16(e) which

clearly show the change in levels of response to stimulus. 10 out of the 15 parameters

show an increase of the support of the posterior (marginal) densities. The corresponding

densities of these 10 parameters are plotted using a red curve whereas the remaining

parameter’s densities are plotted using a magenta curve. Clearly such increase in the
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support accounts for increased variance of the posterior distributions thus indicating the

said drop in amplitude as a result of adaptation to stimulus. However, the dynamics

(a)

(b)

Figure 5.14: The posterior densities of each of the model parameters as obtained
after applying the GP-ABC-SMC on episodes 4 (see Figure 5.16(d)) and 5 (see
Figure 5.16(e))from batch 2 corresponding to cucumber plant. We have used
kernel density estimates rather than histogram to ensure that the spread of the
support of these densities are clearly visible.
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of the other variables δIion(t), δVm(t) and most importantly δIoz(t) (plots not shown)

does not show a regime change, indicating adaptation in their own dynamics for the last

few episodes. Rather, these quantities show more variability in their time evolution than

that of δIca(t), making it difficult to interpret any underlying regularities that underpin

the observations of the calcium wave through δIca(t).
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Figure 5.15: Model fitting results after applying the GP-ABC-SMC algorithm on episodes from batch 1, using the voltage gated model.
Experimental data δV̂d(t) is shown as blue curves. The reconstructed time courses of δIca(φ, t) are plotted as yellow curves. The

smoothed time courses of δ̂Ica(t) as obtained through the GP regression are plotted as the red curves.
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Figure 5.16: Model fitting results after running the GP-ABC-SMC algorithm based on experiments on the cucumber plant, that is batch
2. Notice how the reconstructed curves are more spread around the data in the plots (e-h) indicating a regime change or shrinkage of
the electrical responses.
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Ligand gated model results

We also ran GP-ABC-SMC for the ligand gated model (see equation 5.8). For this model

we have constructed the priors using point estimates following the methods presented

in section 5.4.2. We have retained all other algorithmic settings that are used for the

voltage gated variant.

The model predictions and fit for the most of the episodes from both the batches (except

episode 2 from batch 1 and episodes 1 and 20 from batch 2) are presented in Figure 5.17

& 5.18. It is hard to differentiate the results between the two models, both in terms of fit

and predictive uncertainties. However, just like the voltage gated model, we can clearly

see the reflection of adaptation to stimulus in the predictive distributions while moving

from episode 4 (Figure 5.18(c)) to 5 (5.18(d)) in batch 2. Interestingly, for episode 4

we can see changes in the predictive uncertainty at the points of inflections around the

30-th and after the 90-th minute (see Figure 5.18(c)). Moreover, for both these episodes

we can notice a slight improvement in the model fit. However, to choose between these

two models in their ability to describe the data succinctly, we need to carry out Bayesian

model selection.
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Figure 5.17: Model fitting results for the ligand gated model based on experiments on the tomato plant, that is batch 1.
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Figure 5.18: Model fitting results for the ligand gated model based on experiments on the cucumber plant, that is batch 2.
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Table 5.1: Total number of particles assigned to each model as obtained after
running the GP-ABC-SMC for model selection.

Episodes Voltage gated Ligand gated Bayes factor

1 tomato 20 80 4
7 tomato 72 28 2.5714
2 cucumber 73 27 2.7037
3 cucumber 67 33 2.0303
7 cucumber 27 73 2.7037

5.5 Choosing the best model: ABC model selection

Having established two models, the voltage gated and the ligand gated, it is important

to select or rank among them. We have thus used the ABC model selection procedure

as mentioned in Chapter 2 in conjunction with the GP-ABC-SMC algorithm for this

purpose. Furthermore, we have selected 2 episodes, number 1 and 7, from batch 1 (see

Figure 5.15(a) & 5.15(g) respectively for tomato plant) and 3 episodes, number 2 ,3

and 7 from batch 2 (see Figure 5.16(b), 5.16(c) and 5.16(g) respectively for cucumber

plant). Although we could have chosen all the episodes from both batches for this

purpose we specifically selected the aforementioned episodes as they show some specific

traits. For example, except episode 1 from batch 1 all other chosen episodes show

equally good fit for both models and it is thus difficult to rank the models by simple

visual inspection of these time courses. Episode 1 from batch 1 is however used here

for a sanity check of the ABC-SMC model selection algorithm as for this episode the

ligand gated model fit appears more convincing. Furthermore, episode 7 from batch 2

represents a shrunken response after the plant’s adaptation to stimuli. Hence we believe

that a Bayesian ranking of the two models for these specific episodes is essential in

uncovering the underlying dynamics of the calcium channel gating. We have used the

same prior distributions as before, for the respective models. Rest of the algorithmic

settings are kept the same. The model selection results are furnished in Table 5.1 which

essentially furnishes the number of model indicators (out of 100), from the final step

of the SMC, that remain assigned to each model for each corresponding episode. The

winning model in each case has higher number of indicators assigned to it. The difficulty

of choosing a better model is apparent in the estimated Bayes factors. Except the first

episode from batch 1, where clearly the ligand gated model produces a better fit, none

of the other episodes generate a Bayes factor greater than 3. Thus from Table 5.1 it

is evident that statistically both the models are able to describe the data equally well

for all the chosen episodes (except episode 1 where we already know that the ligand

gated model provides a better fit). Figure 5.19 illustrates the intermediate SMC stages

and their corresponding particle assignments for episode 1 from batch 1 (tomato plant).

Although statistically both the models are equally good descriptions of the underlying

dynamics, we will use the voltage gated variant for further studies as it has more model
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indicators associated with it for 3 out of 5 episodes. However, our choice does not deem

this model more suitable by any means.
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Figure 5.19: The number of particles assigned to each model, the voltage and
the ligand gated variant, are plotted as bar graphs. We have plotted these
graphs for all the SMC time steps for episode 1 from batch 1 (tomato plant, see
Figure 5.15(a)).

5.6 Posterior sensitivity analysis

Apart from elucidating uncertainties associated with model predictions the posterior

distributions can be used to find out additional regularities in the parameter space.

Presence or absence of such regularities can indicate the extent to which the model

(through its parameters) convey information about the stimulus-response episodes. To

this end we have used the collection of particles representing the posteriors to carry
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out sensitivity analysis. Sensitivity analysis gives us the opportunity to reflect upon

the effect that individual as well as a collection of parameters, in our model, have on

the net response. Moreover using the output of the inference mechanism, the posterior

distribution, for this purpose highlights the crucial connection between the output and

the parameters of the model in lieu of observed data. Before presenting the results of this

analysis let us introduce the methodology behind using the ABC-SMC output in terms

of particles from the final population for carrying out sensitivity analysis. Following

Toni et al. (2009) if we carry out PCA on the particles from the final SMC population,

collected in a RN×D matrix where N is the number of particles and D is the number of

parameters, then those principal components which explain most of the variance in this

particle collection represent the linear combination of “sloppiest” (Gutenkunst et al.,

2007; Toni et al., 2009) or the least sensitive parameters. Variance of the joint posterior

here is accentuated by the principal components predicated upon the notion that lesser

sensitivity leads to higher variance in the posterior. Furthermore, the contribution of

each parameter in the linear combinations that are the principal components indicates

the sensitivity of the parameters in combination. With this idea we ran PCA on the

particles obtained after running GP-ABC-SMC, on the voltage gated model, on two

consecutive episodes from each batch that have similar time courses. The inference

results for chosen episodes from batch 1 (tomato plant) are already shown in Figure

5.15(f) & 5.15(g) and from batch 2 (cucumber plant) in Figure 5.16(g) & 5.16(h). The

first (component 1) explaining the most and the last (component 15) explaining the

least amount of variance of the joint posterior distribution of the parameters are shown

in Figure 5.20 & 5.21. These are obtained from some chosen episodes from batch 1 and

2 respectively. We have also plotted the amount (%) of variance explained by each of

the 15 principal components. For the episodes from batch 1, that is tomato plant, we

see the stiffest component (component 15) is dominated by parameter k22, the rate of

δIca in the differential equation for the differential membrane voltage δVm, whereas the

sloppiest component (component 1) is dominated by separate parameters, kca (plot on

left) and kB (plot on right), both found in the differential equation for δIca. For the

second batch we find almost the identical parameter combination forming the stiffest

component, with the dominant ones being µ, k11, kd. Since µ quantifies the rate of the

stimulus current the presence of this parameter asserts our modelling assumption about

the crucial triggering role that the stimulus current plays. The appearance of k22 and kd

among the most sensitive parameters reinforces our hypothesis about the actuation of

the calcium current bieng related to change in membrane voltage since these parameters

control the voltage and calcium current interaction. The sloppiest component for both

the episodes is dominated by the parameters k3 and δIion(t = 0)..
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Figure 5.20: Results of the sensitivity analysis are plotted through the principal components and their associated explained variances.
The loadings, as the linear parameter combinations, of the 1st (comp 1) and the last (comp 2) principal components are plotted as bar
charts in (a) and (b). The height in both direction of the bars indicate the contributions of each of the parameters for both (1st and
the last) the components. We have also plotted the (%) of variance explained by all the components in decreasing order.
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Figure 5.21: Results of the sensitivity analysis on episodes from batch 2.
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At this point we like to point out that the results of the sensitivity analysis cannot be

trivially generalized across a host of different episodes within the same batch and species.

This is due to the massive variability in the time series associated with the episodes.

However, from responses with similar time courses the output of the GP-ABC-SMC can

be used to unearth the commonalities between the parameters that have the largest

effect on the response itself, as furnished above.

5.7 Population approach

The ability of the posterior distributions in summarizing the uncertainty with individ-

ual episodes have been established in the previous sections. However, the nature of the

variability among the episodes makes it hard to draw a generalized understanding about

uncertainty, especially concerning model predictions, while shifting our focus from in-

dividual episodes to the batch as a whole. One possible step towards gaining such a

holistic perspective leads us towards a population approach. By the term population we

mean a population of models such as ours. These models differ from each other through

a difference in parameter values. Thus, while one model with its specific parameters can

be taken as a representation of the calcium current δIca(t) for a single episode, a collec-

tion of models then becomes a representation of a batch of episodes. Moreover, drawing

these parameter values from the posterior distributions learnt using GP-ABC-SMC will

provide the desired holistic representation of uncertainty.

In order to summarize the posterior distributions, considering all the episodes from a

certain batch, firstly we collect the particles {φ(i)
SMC}i=1,...,N from the final population

of GP-ABC-SMC for each episode of that batch in a matrix Φ ∈ RMN×D where M

is the number of episodes, N = 100 is the number of particles and D = 15 is the

number of parameters. In this case we are using the voltage gated model. We build

the matrix Φ from episodes of batch 1 and then fit a mixture of Gaussian densities

to this collection using the expectation maximization algorithm (Bishop, 2006). The

fitted mixture of Gaussian densities now represent a distribution on all the particles

where each component of the mixture approximates episode specific posterior densities

of parameters. From this distribution we can now draw parameter values and simulate

a variety of calcium current trajectories. Furthermore, we accept those trajectories of

δIca(t) which satisfy the following criteria:

∥∥∥∥∥∥


 1

M

M∑

j=1

δ̂Ica(t)


− δIca(t)

∥∥∥∥∥∥

2

≤ Tol, (5.15)

where δ̂Ica(t) is the smoothed (by GP regression) calcium current, M = 8 is the number

of episodes (from batch 1 in this case) and Tol is the threshold of the Euclidean norm

between the average of the smoothed currents and the simulated calcium current δIca(t).
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With the value of Tol we can control how much the simulated calcium currents can

deviate from the average behaviour in light of the data. In Figure 5.22 we have plotted

500 such simulated episodes along with the true episodes from batch 1 (tomato) plant.
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Figure 5.22: The black thick curve representing the average of all the episodes
and most of the coloured thick curves representing the smoothed (through GP

regression) time courses of δ̂Ica(t) falls within the ranges of the population of
simulated calcium currents plotted with thin magenta curves.

It is clearly evident from Figure 5.22 that the population of the simulated current tra-

jectories are able to capture a fair amount of variability and can convey the desired

uncertainty for a batch of episodes.

5.8 Conclusion

In this chapter we proposed a phenomenological model to quantify the electrical re-

sponses in higher plants subjected to ozone exposure. Furthermore, we have argued

that the electrical signals recorded from the surface of the plants are manifestation of

plant-wide calcium signals triggered due to the intrusion of ozone in plants. We built

mathematical models to describe these calcium signals as calcium ionic currents within

the guard cells and then extrapolated our assumptions to tissue level models. We used

the GP-ABC-SMC algorithm to fit and compare such models to experimental record-

ings of ozone driven electrical signals– which we term episodes. Although our models

are based on simplistic assumptions of the ionic interactions within the cell and their

dynamics at the tissue (the phloem) level, the inference algorithm is able to shed light

on some of the interesting aspects of this stimulus-response phenomenon.

Apart from model-fitting and propagating posterior parameter uncertainties to model

predictions, the inference algorithm is applied in order to rank two competing model

assumptions –(1) a voltage gated model where the calcium current is generated through
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a change in cellular membrane voltage and (2) a ligand gated model where the efflux of

Ca2+ ions leads to the generation of the same. GP-ABC-SMC, the inference algorithm

developed in previous chapters, found both the models equally good in explaining test

episodes. We also carried out sensitivity analysis using the output of the algorithm

for the voltage gated model. From the sensitivity analysis we found out that the most

sensitive parameters include k11, k22, kd and µ. The parameter µ which is the rate of

ozone current (the input in our model) is expected to have high sensitivity. However,

k22 and kd control the rates of interaction of the calcium current and the membrane

voltage, both of which appear in the differential equation for the membrane voltage.

Such a result can be interpreted in the support of an underlying voltage gated calcium

channel dynamics.

We have also noticed that GP-ABC-SMC captures the regime change, the shrinkage of

the electrical response, in the latter episodes from the batch of experiments involving

cucumber plants. We attribute this regime change to a gradual adaptation to the repet-

itive stimulation of the cucumber plant. However, our conclusions here are based on

the fact that we have chosen only two batches of experiments which include consecutive

episodes with discernible responses. Other batches have only few episodes that show

clear electrical responses. For this lack of repeatability strong conclusion can only be

drawn in the light of a more concrete evidence within an elaborate dataset. Amidst

such repeatability issues we have gone on to fit the voltage gated model to 55 episodes

in total including the ones shown in this chapter. In most cases we have noticed similar

level of fit to the experimental data.

The dynamical variables of the model other than the calcium current do not show traces

of any underlying regularities through their dynamics. Thus, to truly validate our central

hypothesis and the model involving a long distance calcium wave (current), we need to

carry out further experiments of the same ilk while using some form of calcium channel

blocking. Absence of the electrical responses thereafter could be taken forward as a

strong evidence in favour of our hypothesis.





Chapter 6

Summary and main contributions

6.1 Summary

In this thesis, we have presented the various stages in the development of a novel Bayesian

inference algorithm for deterministic dynamical systems that utilizes some of the recent

developments in this field, such as the ABC-SMC algorithm and Gaussian processes

for smoothing trajectories of an ODE system. The proposed algorithm was applied to

solve an inverse problem in plant electrophysiology, incorporating a novel mathematical

model and experimental results. The thesis primarily reports two major achievements—

i) Modifying the ABC-SMC algorithm to achieve a significant speedup, ii) Postulating a

novel mathematical model that describes the generation of plant-wide electrical signal in

response to ozone as a stimulus. In the following paragraphs we will briefly summarize

individual chapters of this thesis and highlight the main achievements.

6.1.1 Chapter 1

We started by presenting the task of uncertainty quantification in dynamical systems

models described as non-linear ordinary differential equations as a statistical problem.

A task that needs to be addressed within the Bayesian statistical framework. We then

stated the main motivation behind this work: designing a fast Bayesian inference algo-

rithm that can handle the above mentioned task of uncertainty quantification.

We also introduced our secondary aim of the thesis–Applying the GP based ABC-SMC

algorithm to solve an inverse problem in plant electrophysiology. We introduced this

problem by providing a brief description of various electrical signals found to exist in

plants, and the biophysical motivation behind modelling such signals.

109
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We finish this chapter by furnishing a brief summary of the content presented in the

remaining chapters of this thesis.

6.1.2 Chapter 2

In this chapter we pursue a literature review of ABC methods in the context of param-

eter estimation and model selection in ordinary differential equations. We explain how

the ABC-SMC algorithm can be applied for these two tasks, pointing out the major

advantages and limitations of this inference method. We also mentioned, where nec-

essary, the connections between ABC-SMC and other major achievements (as well as

limitations) of the burgeoning field of ABC.

6.1.3 Chapter 3

Having established our main thesis goal of resolving the computational burden of ABC-

SMC, resulting from explicit integration in the previous chapters, we start by introducing

Gaussian process regression and show how GPs can be used to model empirical velocity

field of an ODE. We then apply this machinery to transform the ABC distance func-

tion from state to derivative space, bypassing the requirement of explicit integration

and thus the computational bottleneck. We also highlighted the major differences be-

tween our approach and previous gradient matching techniques that employ Gaussian

processes. Especially, we pointed out that our GP based ABC-SMC does not require

the sampling of states and other nuisance parameters as in methods that use GP with

exact MCMC. Furthermore, it was also shown how operating in the derivative space

frees us from learning the initial values of the states as additional parameters. How-

ever, the proposed method achieves these through a compromise. No direct feedback

exist between GP regression and sampling of posterior ODE parameters in the proposed

method, resulting in a two state approach vulnerable to extremely noisy measurements.

Finally, we concluded this chapter by stating other potential advantages that can be

gained through speeding up ABC-SMC such as carrying out many trials runs, with vari-

ety of algorithmic settings, of the GP-ABC-SMC algorithm to obtain the most accurate

posterior estimates. This was previously unattainable, due to a huge computational

burden, while using the ABC-SMC algorithm based on explicit integration.

6.1.4 Chapter 4

We applied the GP-ABC-SMC algorithm, proposed in the previous chapter, to estimate

parameters of several toy ODE and DDE model systems. For the chosen problems,

GP-ABC-SMC obtained similar estimates to that of ABC-SMC based on explicit inte-

gration. Although we attempted to compare GP-ABC-SMC to other MCMC algorithms
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based on GP, we found that some of these methods were tested with informative priors.

Thus, it is difficult to draw conclusion in favour of GP-ABC-SMC or any of these other

GP based algorithms. Interestingly, we found that ABC-SMC suffers from population

degeneracy when populations are sampled from such narrow priors. However, GP-ABC-

SMC performed well on two models, Hes 1 and the signal transduction cascade, that have

been used previously for benchmarking other gradient matching algorithms proposed in

Calderhead et al. (2008) and Dondelinger et al. (2013); Wang and Barber (2014) respec-

tively. For all the models on which we tested GP-ABC-SMC the process of parameter

estimation finished within 1 minute consistently. For the Hes 1 model such performance

is better than the state-of-the-art, since GP-ABC-SMC does not require the knowledge

and estimation of initial history function of the states.

Utilizing the speed benefits of GP-ABC-SMC we ran multiple trials of the algorithm

to test the performance of various perturbation kernels as well as tolerance schedules.

Furthermore, we presented a variability analysis of the estimates. To the best of our

knowledge such variability analysis of estimation results is seldom done in the context

of Bayesian inference in dynamical systems, including ABC-SMC.

Retaining the most important aspect of ABC-SMC, that is providing a holistic platform

for uncertainty quantification, we applied the GP based ABC-SMC model selection

algorithm for ranking four candidate epidemic models of the SIR family. These models

have been previously used for benchmarking the ABC-SMC model selection algorithm

using a common-cold dataset. In this experiment real data was used and the GP-ABC-

SMC algorithm had to tackle the issue of hidden state. GP-ABC-SMC arrived at similar

results as found previously at a significantly reduced execution time.

Through the various experiments presented in this chapter, we showcased all the benefits,

as was indicated in the previous chapter, that can be achieved using a gradient matching

approach within ABC-SMC.

6.1.5 Chapter 5

We tested various aspects of the GP-ABC-SMC algorithm on benchmarking model sys-

tems. Although these models present formidable challenges, the success and also the

applicability of the proposed algorithm can be tested through solving new problems. In

such novel applications we will be forced to starve the algorithm of any a priori informa-

tion about the model, making the inference algorithm work harder to achieve desirable

estimates. In this chapter we applied the GP-ABC-SMC to fit phenomenological models

of electrical responses in plants to data, which is a novel inverse problem of its kind.

In this case we developed novel mathematical models that describe plant-wide electrical

responses to exposure of ozone as a stimulus. We modelled these electrical responses to

be the manifestation of Ca2+ ion efflux actuated by the ozone exposure. Furthermore,
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we separately modelled the mechanism behind this efflux as bieng voltage as well as

ligand gated. We found, upon applying GP-ABC-SMC, that the voltage gated variant

fit well to the experimental data and is chosen as the more suitable variant in terms of

Bayesian model selection criteria (relying on the Bayes factor). This fact was supported

by the results of sensitivity analysis done using the posterior (as particle population)

estimates of the model parameters.

Our main contributions of this chapter are the proposed mathematical models which

described an important biophysical phenomenon in plants: electrical responses in plants

subjected to a harmful environmental pollutant such as ozone. Apart from modelling,

we also showcased how the GP-ABC-SMC can be successfully used to quantify uncer-

tainty related to parameters, structures and predictions of a novel model, using a novel

experimental dataset. We believe the work reported in this chapter will pave the path

for further explorations of the stimulus-response phenomenon in plants, using a Bayesian

statistical framework and hopefully the GP-ABC-SMC algorithm.

6.2 Future work

In this section we will outline some of the future research directions for extending the GP-

ABC-SMC and also the stimulus-response mathematical models that we have proposed

in the previous chapter.

6.2.1 Feedback between GP and ODE parameters

One way of guiding the GP model to reflect the characteristics of the ODE model is by

sampling the GP parameters Φ within the SMC steps and constructing the empirical

velocity using these sampled parameters and the observation Y d. So, in this procedure

we start by sampling the GP parameters Φ ∼ π(Φ) as well as the ODE parameters

θ ∼ π(θ). Now, we can evaluate the smoothed state X̂(t) = E[X(t∗)|Y d] using equation

3.31, where we construct the covariance matrices K(tL, t∗;Φ) using the sampled GP

parameters Φ. We can then evaluate, using equation 3.32, the empirical velocity V (t) =

E[ ddtX] using the smoothed state X̂(t). Now we construct the same distance function

∆(V d(t),f(X̂(t),θ)) ≤ ǫτ to implement ABC. However, in this case a sample of Φ will

only be accepted if the tolerance is satisfied depending on the sample of θ. Note that this

is still a two step approach as we are evaluating the smoothed state and its derivative in

two steps, but now the acceptance ofΦ and θ are inter-related. Thus now the acceptance

(not the sampling) of Φ is dependent on the ODE dynamics. The implementation of

this modified sampling scheme present some challenges. The first challenge is related

to the design of suitable prior distribution π(Φ). Following Dondelinger et al. (2013),

we can initially use GP regression and then use the point estimates to construct the
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support of π(Φ). However, we need to carefully balance between a narrow prior that

can cause population degeneracy and a wider one that can lead to lower acceptance.

Lower acceptance on the other hand will result in a number of computationally expensive

inversion of the GP and derivative GP covariance. Thorough exploration using many

model systems needs to be carried out to find the best tradeoff. Carrying out such

exploration is a task that we like to pursue in the future.

6.2.2 Geometric tolerance schedule

The choice of a suitable tolerance schedule in ABC-SMC is perhaps the most critical

algorithmic setting in the inference process. This schedule essentially determines how the

algorithm navigates the parameter space. A carefully designed tolerance schedule ensures

that the filtering steps explore the parameter space sufficiently without getting stuck in

areas of low likelihood. The α-th quantile method does not require prior empirical

knowledge about the model itself but the very choice of α is complex and has an impact

on the tradeoff between exploration and computational efficiency. Many different values

of α shall be tested systematically to find out those which ensure consistent posterior

estimates. This entire task at the least is computationally prohibitive considering ABC-

SMC run on the state space (using numerical integration).

Using the speed benefits of the GP-ABC-SMC platform multiple tolerance schedules

can be tested for a specific problem for best inferential results within a practical time

frame. However, we believe a fair amount of engineering is still required in this regard,

for example we need to choose multiple start ǫτ=0 and end ǫτ=SMC
tolerance values, the

quantile adaptation rate α as well as the number SMC of algorithmic steps.

In order to protect the user from having to decide these settings (as well as multi-

ple testing of multiple combinations) without affecting the inference we consider using

the gradient and curvature of the distance function surface to automatically construct

a suitable tolerance schedule. For non-linear least squares problems the Levenberg-

Marquardt algorithm use the knowledge of the curvature of error surface effectively to

navigate towards a local minima. We can morph such an optimisation algorithm with

the ABC-SMC to automatically construct the best possible tolerance schedule.

The non-linear least squares problem is concerned with finding the optimal parameter

vector θ ∈ Rd that minimizes the following cost function:

r(θ) =
1

2

L∑

i=1

(
ydi − f(xi, θ)

)2
, (6.1)

between the observed data ydi ∈ R and the non-linear function f(xi, θ) evaluated at

the input xi ∈ R, i = 1, . . . , L. The Hessian matrix H with elements H(j, l) = ∂2r
∂θj ,∂θl



114 Chapter 6 Summary and main contributions

being the second order partial derivatives of the cost function is used to obtain the

curvature information. Using this curvature and the gradient ∇r of the cost function,

the Levenberg-Marquardt algorithm updates the parameter vector at each iteration τ

as:

θτ+1 = θτ − (H+ λD)−1∇r, (6.2)

where D represents the diagonal elements of H. As λ, a damping factor, gets small the

update rule uses curvature information and as λ is bigger then the gradient descent is

followed.

In ABC-SMC we choose, before hand, a path on an Euclidean space from a starting point

that is the initial tolerance ǫτ=0 to the final point which is the final tolerance ǫτSMC
.

The points on this path, representing each tolerance value ǫτ , can then be collectively

interpreted as the tolerance schedule. For an adaptive schedule the successive points on

this path are chosen as the α-th quantile of the previous distances. Alternatively, we can

choose the next tolerance level by applying the Hessian to run an implicit Levenberg-

Marquardt update over the posterior mode, of the intermediate distributions, calculated

from the accepted particles in each SMC step. Thus while the algorithm is at SMC step

τ − 1 we approximate the sample mean of the particle population

θ̄τ−1 = 1/N
N∑

i=1

θ
(i)
τ−1 (6.3)

at that step that have satisfied the corresponding tolerance ǫτ−1, {θ(i)
τ−1}i=1,...,N =

{θ(i)
τ−1|∆(Y d, Y s(θ

(i)
τ−1)) ≤ ǫτ−1, 1 ≤ i ≤ N} where N is the population size. We then use

the Levenberg algorithm to update this mean (of parameter samples) vector to obtain

θ̄τ = θ̄τ−1 − (H + λD)−1∇C(θ̄τ−1). (6.4)

where H and C(θ̄τ−1) are the Hessian and Jacobian of the ODE cost function (see

equation C.10 and C.8). The next tolerance in schedule is then adaptively chosen as:

ǫτ =
1

2

K∑

k=1

L∑

i=1

(
Y d
k (ti)− f(Xk(ti, θ̄τ ), θ̄τ )

)2
, (6.5)

where Xk is the k-th state of a K state coupled ODE system. The update given in

equation 6.4 is repeated until we find a tolerance lower in value than the previous

one. Until that occurs the λ is successively increased by a factor, say 10. Once a

new tolerance is found the optimisation is stopped and the rest of the ABC steps are

carried out. Note that the choice of α is now replaced by the choice of λ. It is thus

interesting to see whether a generic setting of λ can be used for a variety of problems.

Furthermore, note that the optimisation is started at different points on the distance

surface during different SMC steps. This can be interpreted as starting the optimisation

with many initial parameter values, thus being more likely to recover a final ǫ close
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to the global minima. The quantile adaptation method on the other hand does not

ensure the same. Interestingly, applying the update method as shown in equation 6.4

on the Fisher information matrix (see Appendix C) rather than the Hessian transforms

the tolerance adaptation to track the curvature of the log-likelihood surface. Since the

Euclidean distance function and the log-likelihood for a normally distributed noise model

are directly related, this transformation essentially introduces data dependency (through

the covariance matrix associated with the FIM) on the curvature estimation.

To test the fruitfulness of this tolerance adaptation scheme we need to run many exper-

iments comparing the quantile and the optimisation based tolerance schedules. Also,

we need to find a way to evaluate the Hessian and the gradient of the distances in the

derivative space, when using this tolerance method within GP-ABC-SMC. We would

like to take up these tasks in the future.

6.2.3 Partially observed systems

We have so far handled partially observed systems, with one or many hidden states

using explicit integration. However, introducing integration for hidden states defeats

the purpose of this and any other gradient matching algorithm. Considering the state

vector X = (Xo, Xh), ideally we want to use the GP covariance K(t, t′) and the ODE

right hand side f(X(t),θ) to directly estimate Xh(t) given the observations for Xo(t).

The multi-task Gaussian process (MTGP) model (Bonilla et al., 2007; Durichen et al.,

2015) can be employed for this task. Modelling a coupled ODE system using the MTGP,

we can construct covariance functions on outputs/tasks (states) along with inputs (time

points). For a K state ODE system, in GP-ABC-SMC we model each of the K states

using different GPs with different covariances. However, using MTGP we can model

the correlations across state dimension using a covariance K(k, k) and the time input

using a covariance K(t, t′). The full joint covariance of the MTGP is then given by

a Kronecker product of these two covariances. The resulting scenario is depicted in

Figure 6.1. Thus, using this joint covariance we can model inter-state dependencies that

could potentially lead us towards estimating the hidden states directly. So far we have

not found a systematic way to achieve this, but we believe we can exploit the MTGP

framework to solve this issue.

Furthermore, for some systems the output is observed as a mixture of the individual

states, such as a linear combination. None of the gradient matching algorithms (includ-

ing GP-ABC-SMC) can be applied on this sort of systems. We need to get rid of these

limitations, using the Gaussian process framework, to make GP-ABC-SMC more widely

applicable.
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ODE single output GP

ODE multi-task GP

Figure 6.1: The block diagram on top represents the single-output GP modelling
framework, wherein separate GP priors are placed on each state of a coupled
ODE. In the MTGP framework, a single prior is placed on all the states through
the Kronecker product covariance.

6.2.4 Further work regarding the modelling of plant electrical responses

Before suggesting any improvements of the stimulus-response model we need to consider

more elaborate validation of our model. We have so far used some of the salient features

of GP-ABC-SMC to support our hypothesis around the association of a calcium current

to the electrical response. However, for a more rigorous validation we need to design

experiments to practically test this hypothesis. Experiments involving calcium channel

blockers can be applied to this task. But since we are dealing with plant-wide electric

responses thus we have to consider the difficulties associated with blocking channels

across the length of phloem. However, we believe, our results can potentially motivate

plant scientists to design such experiments in the future.

Apart from validating our hypothesis, experimentally, we can extend the mathematical

model to describe spatio-temporal properties of electrical responses. The experimental

setup that we are using is not adequate for recording spatial behaviour, such as prop-

agation dynamics, of the electrical responses. Thus, we need to conduct experiments

employing more number of electrodes to carefully record the propagation of the electrical

responses. We can then attempt to solve the associated inverse problem, using a spatio-

temporal model, to elucidate several interesting attributes of the dynamics (spatial and

temporal) of long distance electrical responses.

Finally, considering this work as a platform, in the future we like to study and ob-

tain a more generalized representation of stimulus-response episodes combining different

stimuli. For example extending our basic idea of investigating the effects of harmful

environmental pollutants on electrical responses can be extended to include pollutants

such as acid rain. In the current experimental framework, experiments have been done
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Figure 6.2: Time course of electrical potential obtained after adding 5ml of
0.05M H2SO4 to the soil.

on plants using H2SO4 as a stimulus. In this case H2SO4 is applied to the soil and

the resulting electrical response is shown in Figure 6.2. Modelling this sort of responses

presents new challenges such as: a) modelling the absorption of H2SO4 by the plants, b)

understanding the mechanism behind the delayed onset of response and c) incorporating

repetitive oscillations (bursting) in the model. Since we already have some amount of

data for the said stimuli, and the GP-ABC-SMC algorithm for inference, we can start

modelling this very interesting phenomenon.





Appendix A

Multivariate Gaussian Identities

A.1 Schur complement

In this appendix we provide details of Schur complement in order to derive multivariate

Gaussian distribution following Gallier’s work (Gallier, 2010). Let a k × k matrix be

partitioned as 2× 2 block matrix:




A︸︷︷︸
m×m

B︸︷︷︸
m×n

C︸︷︷︸
n×m

D︸︷︷︸
n×n


 (A.1)

where A,B,C and D are: m ×m, m × n, n ×m and n × n matrices, respectively. And

k = m+ n. Now if we consider a linear system, where

Ax+By = c,

Cx+Dy = d.
(A.2)

We can solve the system for y to obtain

y = D−1(d− Cx), (A.3)

where D is invertible. Substituting y in equation A.8, we get

Ax+B(D−1(d− Cx)) = c, (A.4)

and

(A−BD−1C)x = c−BD−1d. (A.5)

By assuming that the matrix A−BD−1C is invertible, the solution becomes:

x = (A−BD−1C)−1(c−BD−1d), (A.6)
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and

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)). (A.7)

We can rewrite the above equations as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d,

y = −D−1C(A−BD−1C)−1c+ (D−1 +D−1C(A−BD−1C)−1BD−1)d.
(A.8)

And finally the solution for the matrix

[
A B

C D

]−1

is given as,

[
A B

C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D−1 +D−1C(A−BD−1C)−1BD−1)d

]

=

[
I 0

−D−1C I

][
(A−BD−1C)−1 0

0 D−1

][
I BD−1

0 I

]
.

(A.9)

A.2 Multivariate Gaussian

Let x (x ∈ ℜ) be an n-dimensional random vector whose each variate has an univariate

Gaussian distribution. The probability density function of such a vector is a multivariate

Gaussian distribution given as

P (x|µ,Σ) = (2π)1/2 |Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (A.10)

where µ (µ ∈ ℜ) is the mean vector and Σ (Σ ∈ ℜn×n) is a covariance matrix, which

must be positive definite in order to be valid. In order to explain the concept of a

multivariate Gaussian vividly, we can consider a bivariate example here by generating a

two-dimensional vector a (a ∈ ℜ2,a = [a1, a2]
T ) where

a = N (µ,Σ). (A.11)

The mean and the covariance matrix are given as:

µ =

[
µ1

µ2

]
, and

Σ =

[
σ21 ρσ1σ2

ρσ2σ1 σ22

]
.

(A.12)

ρσ1σ2 is the cross-covariance of the two variates a1 and a2. The correlation between a1

and a2 is high with a large correlation parameter ρ, and is zero when the two variates

are independent.
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We now consider two vectors a (a ∈ ℜ) and b (b ∈ ℜ), which have joint Gaussian

distribution: [
a

b

]
∼ N

([
µa

µb

]
,

[
A CT

C B

])
(A.13)

The covariance matrixΣ = [ACT ;CB] is separated into block matrices in equation A.13,

in which, A and B are corresponding covariance matrices for a and b, respectively. C

is the cross-covariance matrix between a and b. With a zero-mean assumption (µa =

0, boldsymbolµb = 0, the joint distribution can be written as

P (a, b) ∝ N


−1

2

[
a

b

]T
,

[
A CT

C B

]−1 [
a

b

]
 (A.14)

By the Schur complement, the block matrix is given by

[
A CT

C B

]−1

=

[
I O

−B−1C I

][
(A−CTB−1C) O

O B−1

][
I −CTB−1

O I

]
(A.15)

The joint distribution in equation A.14 can be written using this as

P (a,b) ∝ exp



[
a−CTB−1b

b

]T [
(A−CTB−1C) O

O B−1

][
a−CTB−1b

b

]


P (a,b) ∝ exp

(
−1

2
(a−CTB−1b)T (A−CTB−1C)−1(a−CTB−1b)

)
exp

(
−1

2
bTB−1b

)

(A.16)

The conditional distribution of a given b can obtained as

P (a|b) = P (a,b)

P (b)
= N (CTB−1b,A−CTB−1C) (A.17)

Relaxing the zero-mean assumption, equation above becomes

P (a|b) = N (µa +CTB−1(b− µb),A−CTB−1C) (A.18)





Appendix B

ABC-SMC

The ABC SMC algorithm is derived from the sequential importance sampling. Let π

be the target distribution we want to sample from. If it is impossible to sample from π

directly then one can sample from a suitable proposal distribution, η, and use importance

sampling weights to approximate π. For example let ϕ be a distribution having the same

support as π and we wish to obtain the expectation of ϕ w.r.t π. This is given as

Eπ[ϕ(x)] =

∫
ϕ(x)π(x)dx. (B.1)

The above equation can be written as

Eπ[ϕ(x)] =

∫
ϕ(x)

π(x)

η(x)
η(x)dx

=

∫
ϕ(x)w(x)η(x)dx,

(B.2)

where w(x) = π(x)/η(x) is the unnormalized importance weight function. Equation B.2

is known as the importance sampling identity. By sampling N particles (samples)
{
X(i)

}

from the proposal distribution η and substituting the Monte Carlo approximation

η(dx) =
1

N

N∑

i=1

δX(i)(dx), (B.3)

where δx0(x) is the Dirac delta function which is defined as

∫

x
f(x)δx0(x)dx = f(x0), (B.4)
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of this distribution into equation B.2 we can obtain the approximation of Eπ[ϕ(x)].

Therefore using the importance weights the target density can be approximated point-

wise as

π̂(dx) =
1

N

N∑

i=1

w(X(i))δX(i)(dx). (B.5)

Hence one can, in order to sample from a target distribution π, sample from the proposal

distribution, η, and then weight the samples by importance weights, w. In SIS, one

reaches the target distribution πT through a series of intermediate distributions πT ,

where t = 1, ..., T − 1 are the indexes of these intermediate distributions. By using the

importance sampling idea described above one can sample from from a series of proposal

distributions ηt and weight the samples by importance weights

wt(xt) =
πt(xt)

ηt(xt)
. (B.6)

Within the SIS, the proposal distributions are defined as

ηt(xt) =

∫
ηt−1(xt−1)kt(xt−1, xt)dxt−1, (B.7)

where ηt−1 is the previous proposal distribution and kt is a Markov kernel (also called a

perturbation kernel in SMC literature)which defines a random walk around the sample

xt−1.

To apply SIS in the ABC context, we need to define the intermediate and proposal

distributions. Considering the SIS framework as the base we can define the ABC-SMC

algorithm to be a special case of the SIS algorithm. We now choose the intermediate and

proposal distributions in an ABC fashion (incorporating the distance metric ∆(Yd, Ys) ≤
ǫ while defining these distributions). The intermediate distributions are defined as

πt(xt) = π(x)1(∆(Yd, Ys) ≤ ǫt) (B.8)

where π(x) is the prior distribution; 1(x) is the indicator function and ǫt is the tolerance

satisfied by particles contributing to the intermediate distribution πt(xt). We define the

first proposal distribution equal to the prior η1 = π and the proposal distributions at

time t(t = 2, ..., T ), ηt, is defined as the perturbed intermediate distribution at time

t − 1, πt−1, such that for every particle we have π(x) ≥ 0, satisfying the condition

πt(xt) ≥ 0⇒ ηt(xt) ≥ 0. Hence we have

ηt(xt) = 1(πt(xt) ≥ 0)×
∫
πt−1(xt−1)Kt(xt−1, xt)dxt−1, (B.9)

where Kt denotes the perturbation kernel.

To calculate the weights defined as

wt(x) =
πt(xt)

ηt(xt)
, (B.10)
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we need to evaluate ηt(xt) in an appropriate way. Standard Monte Carlo approximation

can be used ∫
ηt−1(x)Kt(xt−1, xt)dx =

1

N

N∑

i=1

Kt(xt−1, xt), (B.11)

as shown in Del Moral et al. (2006) to obtain

ηt(xt) = 1(πt(xt) ≥ 0)×
∫
πt−1(xt−1)Kt(xt−1, xt)dxt−1

= 1(πt(xt) ≥ 0)×
∫
wt−1(xt−1)ηt−1(xt−1)Kt(xt−1, xt)dxt−1

= 1(πt(xt) ≥ 0)× 1

N

∑

x
(i)
t−1∼πt−1

wt−1(x
(i)
t−1)Kt(x

(i)
t−1, xt),

(B.12)

where N denotes the number of particles and x
(i)
t−1, i = 1, ..., N , are all the particles from

the intermediate distribution πt−1. The unnormalized weights can then be calculated as

wt(xt) =
π(xt)∑

x
(i)
t−1∼πt−1

wt−1(x
(i)
t−1)Kt(x

(i)
t−1, xt)

, (B.13)

for all accepted particles xt.





Appendix C

Fisher information matrix for

ODEs

C.1 Evaluating the Fisher information matrix for ODEs

Let us consider a coupled ODE system having K states where Y d are the experimental

measurements of the states X(tL,θ) at discrete time points tL , {ti}i=1,...,L. We further

assume that Y d
k is the state trajectory Xk (a vector of state values evaluated at tL)

corrupted by additive Gaussian noise η ∼ N (0, σ2kIL), where σ
2
k is the standard deviation

for the k-th state. For such a Gaussian noise model we have the log likelihood given by

L(Y d|X,σ) =
K∏

k=1

N (Y d
k |Xk, σ

2
kIL)

∝
K∑

k=1

(Y d
k −Xk)

TΣ−1
k (Y d

k −Xk),

(C.1)

where Σ−1
k = σ2kIL. It is worth noting that with a constant noise for each of the state

dimensions we can approximate the Mahalnobis distance in the above equation with an

Euclidean distance. This results in the likelihood to be equivalent to the ABC distance

function that we have used previously:

L ∝
K∑

k=1

(Y d
k −Xk)

T (Y d
k −Xk)

=
K∑

k=1

L∑

i=1

(
Y d
k (ti)−Xk(ti)

)2

= ∆(Y d, Y s).

(C.2)
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The derivative of the log likelihood with respect to each of the elements of the parameter

vector θ is given by

∂L
∂θj
∝

K∑

k=1

(Y d
k −Xk)

TΣ−1
K Zkj , (C.3)

where the L-dimensional sensitivity vector Zkj has its elements as the gradient of the

k-th state with respect to the j-th parameter, denoted as zkj(t) =
∂Xk(t)
∂θj

. One way to

obtain these first order sensitivities is to use numerical derivatives using finite differ-

ences, while compromising accuracy. The best way to calculate these sensitivities is by

augmenting the original set of differential equations d
dtX(t) = f(X(t),θ) with the first

order sensitivity equations given as:

zkj(t) =
∂

∂θj

∂Xk(t)

∂t
=

K∑

i=1

∂fk
∂Xi(t)

∂Xi(t)

∂θj
+
∂fk
∂θj

. (C.4)

The entire set of equations describing the state and the sensitivities can now be solved

together using any standard numerical ODE solver. Although this later method of

obtaining the sensitivities is the most accurate one, it introduces additional computa-

tional overload by increasing the number of differential equations needed to be solved.

Since the log likelihood given in equation C.1 has the form of a product of multivariate

Gaussian densities, we can use the expression of FIM I for a single multivariate normal

N (µ(θ),Σ) given by (Porat and Friedlander, 1986)

I(θ)j,l =
∂µ

∂θj

T

Σ−1 ∂µ

∂θl
, (C.5)

to calculate the FIM IODE for the ODE model trivially as (Girolami and Calderhead,

2011):

IODE(θ)j,l = E

[
{ ∂
∂θj
L(Y d|X,σ)}{ ∂

∂θl
L(Y d|X,σ)}

]
=

K∑

k=1

ZT
kjΣ

−1
K Zkl. (C.6)

This expression of the FIM is used in Filippi et al. (2013) to design the covariance of

a multivariate perturbation kernel and in Girolami and Calderhead (2011) to design a

geometrically motivated Hamiltonian Monte Carlo algorithm.

C.2 Approximation of the Hessian matrix for ODEs

Apart from the FIM we can use the sensitivity equations to approximately evaluate the

Hessian of the least squares cost function (which is same as the Euclidean ABC distance

function) for an ODE system. Considering the same ODE model with K states we can
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define the least squares cost function C(θ) as:

C(θ) =
1

2

K∑

k=1

L∑

i=1

(
Y d
k (ti)−Xk(ti)

)2
. (C.7)

We can define the gradient of this cost function as:

∂C

∂θj
= −

K∑

k=1

L∑

i=1

∂Xk(ti)

∂θj
= −

K∑

k=1

L∑

i=1

rk(ti)zkj(ti) (C.8)

where rk(ti) = Y d
k (ti) − Xk(ti) is defined as the residual at time ti. The curvature of

C(θ), the Hessian matrix, can be evaluated by taking the second derivative of the cost

as:

∂2C

∂θj∂θl
=

K∑

k=1

L∑

i=1

zkj(ti)zkl(ti)−
K∑

k=1

L∑

i=1

rk(ti)
∂zkj(ti)

∂θl
. (C.9)

The second term in equation C.9 can be neglected if the residuals are small. The element

of the Hessian matrix HODE at (j, l) is then approximated by

HODE(j, l) ≈
K∑

k=1

L∑

i=1

zkj(ti)zkl(ti) (C.10)
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