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In this thesis we investigate two problems: the measurement of nematic liquid crystal

material parameters and the modelling of liquid crystal colloids. Specifically we have devel-

oped an optical method of measuring liquid crystal viscosities, and by combining multiple

measurements of the transmitted intensity we can measure the variations in boundary

pre-tilt and cell thickness across a planar cell. We find that it is possible to measure

the rotational viscosity γ1 using an amplitude modulated driving potential. This method

allows us to probe the dynamics of a nematic liquid crystal across a range of frequencies.

In addition we are able to recover the combination of viscosity coefficients α4 + α5 from

high voltage high frequency measurements. The model of a nematic colloid that we have

developed is based on the asymptotic homogenisation of a Q-tensor model. These colloidal

systems are inherently difficult to model as they contain a large range of physically rele-

vant length-scales. The dopant particles disturb the alignment of the nematic locally and

complicate the interaction with externally imposed fields. On the macro-scale both the

dopant and nematic realign across a length scale of several microns. By using homogenisa-

tion we have derived a set of coupled equations for the evolution of the nematic and dopant

alignment. The system consists of a set of cell problems solved on the micro-scale which

determine effective material parameters and a set of macroscopic equations in which the

influence of the dopant is confined contain to effective material parameters. The theory

we obtain is accurate for rather arbitrarily shaped metallic dopants. In particular we are

able to directly link the geometry, volume concentration and material parameters of the

dopants to the behaviour of the macroscopic system.
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1.1 Typical molecular configurations in: (a) the isotropic phase (b) the nematic

phase and (c) a crystalline phase. The range of colours indicates the degree

of ordering. The isotropic phase possesses the highest symmetry and least

order. Rotational symmetry is broken and a preferred alignment axis exists

in the nematic phase. Both orientational and translational symmetry are

broken in the crystalline phase. . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 For a nematic with director n̂ along the vertical axis the ellipse represents

a typical molecular alignment. The scalar order parameter measures the

clustering of the distribution of molecular alignments with θ1. The biaxiality

parameters measures the clustering of alignments with θ2. In a uniaxial

phase all values of θ2 are equally likely whereas in a biaxial phase there is

a preferred value of θ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Characteristic orientational deformations in a nematic liquid crystal. Each

can be identified by considering possible deformations of the director that

satisfy n̂ · n̂ = 1 upon travelling away from the origin with n̂(0) = (0, 0, 1)

(see [110] page 16). (a) bend: travel in the direction of n̂ deformation is

orthogonal to n̂ (b) twist: travel orthogonal to n̂ deformation is orthogonal

to displacement and n̂ and (c) splay: travel orthogonal to n̂ deformation is

in direction of displacement. Each is charactered by an independent elastic

constant, it should be noted that in a biaxial nematic additional elastic

constants are required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 (Left) parametrisation of the director within a splay cell by the angle θ.

(Right) Tilt angle profile for applied voltages of V = 2.5, 5, 10, 20 obtained

numerically for pre-tilt values θ0 = 0◦ and θd = 1◦. The distortion is largest

away from the edges of the cell, at high voltage the distortion saturates and

the director is aligned with E with the exception of small layers near the

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1.5 (Left) Schematic representation of the experimental set-up used for the

cross polarised intensity experiment discussed in chapter 2. The nematic is

anchored to the glass substrate by means of a rubbed PI layer. A voltage

is applied across the cell reorientating the nematic. Light polarised at 45◦

to the initial director in transmitted through the cell. Components of the

polarisation parallel and orthogonal to the initial director are exposed to

different refractive indices. The phase difference determines the exit polar-

isation, the final polariser and analyser allows this change to be measured

as a change in intensity. (Right) a typical CPI trace as a function of peak

to peak AC voltage applied to the cell. . . . . . . . . . . . . . . . . . . . . 36

1.6 Cross polarised intensity for a twisted cell with input polarisation parallel

to the initial director. The twisted structure of the director rotates the

polarisation of the input beam as a function of the voltage applied to the

cell. As the applied field increased the director distorts until it is parallel to

the applied field throughout the bulk of the cell. The transmitted intensity

was computed using the extended Jones matrix method. The liquid crystal

used was E7 with parameters K1 = 11.7 pN, K2 = 8 pN, K3 = 19.5 pN,

ε‖ = 19.54, ε⊥ = 5.17 and d = 2.4 µm. . . . . . . . . . . . . . . . . . . . . . 40

2.1 Reproduction of figure 4.1 from page 155 of [110] showing the Miesowicz

viscosities, arrows represent fluid velocity while the ellipsoids represent the

director (a) η1, (b) η2 and (c) η3. We use the convention outlined in [110]. . 46

2.2 Schematic of experimental set-up originally published by Beens and de

Jeu [8]. The nematic is forced through the capillary by the pressure differ-

ence created by the two fluid filled volumes V1 and V2. The alignment of

the director is controlled by a magnetic field. The rate of flow of nematic

through the capillary is related to the pressure difference across the capillary

and the viscosity of the nematic. By measuring the decay of the pressure

difference the viscosity of the nematic is measured, measured viscosities are

given in table 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Illustration of shear wave viscosities ηA, ηB and ηC originally published by

Kiry and Martinoty [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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2.4 Schematic representation of the experimental set-up used for a cross po-

larised intensity measurement. The nematic is anchored to the glass sub-

strate by means of a rubbed PI layer. A voltage is applied across the cell

reorientating the nematic. Light polarised at 45◦ to the initial director in

transmitted through the cell. Components of the polarisation parallel and

orthogonal to the initial director are exposed to different refractive indices.

The phase difference determines the exit polarisation, the final polariser

and analyser allows this change to be measured as a change in intensity. . . 51

2.5 Amplitude of the director oscillations and velocity profiles across a standard

cell. The cell is driven by a 500 Hz sinusoidal voltage with a 20 V peak to

peak amplitude. For the solid black line γ1 = 203.6 mPas and α4 + α5 =

431 mPas. The red dash-dot and the blue dash lines correspond to a change

of γ1 of ±10% respectively. In both cases α4 +α5 has been adjusted so that

the standard deviations of the CPI was unchanged. . . . . . . . . . . . . . 57

2.6 Optimisation landscapes for two different sets of viscosity values. Colour

indicates the residual of the least square distance, blue being ≈ 10−6 and

red being > 10−3. The green cross indicates the true value of the viscosities

used. The main feature is the valley structure showing a degeneracy between

γ1 and α4+α5. In particular for a liquid crystal with low γ1 and high α4+α5

the valley is aligned with the α4 + α5 axis. . . . . . . . . . . . . . . . . . . 58

2.7 Trend followed by the oscillations of the director as a function of the fre-

quency fl. The inset shows the corresponding mean CPI, the red region

bounds the typical range of the oscillations. The linear regime is used to

obtain values for γ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Comparison of the solution to equation (A.26) and of equation (A.27) to

numerical simulations for an 18 µm cell filled with the liquid crystal E7.

(Left) θ1 the oscillations in θ and ∆θ1 the difference between numerical and

asymptotic solutions. (right) Comparison of velocity profiles v and point-

wise errors ∆v. The results from the matched asymptotic expansions are in

red, the blue points/broken line are from numerical simulations, different

curves correspond to 1/4, 1/2 and 3/4 of a period. The agreement of the

velocity shown on the right hand panels is excellent and ,due to symmetry,

the blue curve in ∆v is masked by the purple curve. However, the oscilla-

tions in θ shown on the left panels predicted by the matched asymptotics

fail to account for the relative phase of the oscillations at different points

in the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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2.9 Fit to average and standard deviation of cross polarised intensity for E7.

Left: low frequency regime, solid red curve is theoretical fit black points are

experimental. Right: high frequency regime, solid black line is experimental

data solid red curve is theoretical fit. Insert: average CPI as a function of

peak to peak amplitude: solid red line is theoretical fit broken blue line is

experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.10 As in figure 2.9, except that the LC is TL205. . . . . . . . . . . . . . . . . 65

2.11 As in figure 2.9, except that the LC is ZLI4792. . . . . . . . . . . . . . . . 65

2.12 The relative error on the high voltage 500 Hz measurements of the CPI from

top to bottom E7 (black), TL205 (blue) and ZLI4792 (red). The error is

defined as the ratio of the difference between experimental and theoretical

values divided by their sum. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.13 The relation between the unprimed coordinate system used in 2.4 and that

used to account for pre-twist at the boundary. . . . . . . . . . . . . . . . . 68

2.14 Examples of the crossed-polarised intensity as a function of the peak-to-

peak amplitude of the applied voltage measured at different point in the

cell, red lines are theory blue lines are experimental data. The fits shown

correspond to one subset of data used during the first step of the fitting

process which involved subdividing the data and fitting for K1, K3, d and

pre-tilt. The liquid crystal used was E7 with planar alignment and PI/PVK

alignment layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.15 Trend of CPI for different pre-twist angles δφ0 = 0◦, 10◦, 20◦ degrees for a

12 µm, E7 cell with K1 = 11.7 pN, K2 = 8 pN and K3 = 19.5 pN with

zero pre-tilt as a function of peak-to-peak voltage. The initial intensity is

shifted, there is lifting off, most notably of the final minima, and the final

portion of the trace is shifted. . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.16 Cell thickness in microns (Top left), pre-tilt in degrees (Top right), error

on cell thickness (µm) (bottom left) and error on pre-tilt (degrees) (bottom

right) for an E7 cell with PI-PI alignment layer. The points at which the

CPI was measured formed a 8× 6 grid. . . . . . . . . . . . . . . . . . . . . 73

2.17 Cell thickness in microns (Top left), pre-tilt in degrees (Top right), error

on cell thickness (µm) (bottom left) and error on pre-tilt (degrees) (bottom

right) for an TL205 cell with PI-PI alignment layer. The points at which

the CPI was measured formed a 12× 4 grid. . . . . . . . . . . . . . . . . . 74
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2.18 Scatter plot of fitted values for the cell thickness (x-axis measured in µm)

and pre-tilt (y-axis measured in degrees). There is a one to one correspon-

dence between the subplots in this figure and in figure 2.14. . . . . . . . . . 75

2.19 Main GUI panel with a single set of static CPI data displayed. The user

can input material parameters for an arbitrary liquid crystal or select from

the database included with the software using the right hand panel of the

GUI. Selecting which results to display as well as initiating fits is handled

by the panel in the bottom left. . . . . . . . . . . . . . . . . . . . . . . . . 78

2.20 Graphical user interface used to import CPI data from text files and produce

standardised MATLAB data files for use in the main GUI. This interface

allows the user to smooth both the mean CPI, the time-dependent CPI

and the standard deviation of the oscillations. The standard deviation in

the CPI is automatically extracted from time dependent data. The data

is smoothed using either a moving average of the moving least squares

Savitzky-Golay filter, both of these are implemented using the MATLAB

function smooth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.21 The materials panel allows the user to select, edit, save and load liquid crys-

tal material parameter data. In addition when performing fits to the static

part of the CPI the user has the option of fitting using any combinations

of the elastic constants, cell thickness and pretilt as fitting parameters. . . 79

2.22 The high and low frequency part of the interface and the multiple point

analysis panel. Each allows the user to import data, run fits for the relevant

parameters as well as viewing and exporting the results. . . . . . . . . . . 80

2.23 A graphical illustration of the peak detection algorithm. First, all data

points that lie immediately before and after the line I = 0.5 (shown in red)

are identified. A subset of these are labelled 1, 2, 3 and 4 in the figure. This

allows the data trace to be broken up into subintervals In for n = 1, .., N .

Each of these subintervals contains either a maxima or minima, for instance

the interval I3 which contains a single minima. In general for all but the

first and last subinterval it suffices to use the maximum/minimum value

attained within the interval to identify the peaks. The first subinterval is

treated using the same process as shown by the second red line. In the case

shown an initial minima is detected. This process is also applied to the final

subinterval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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3.1 Domains used in defining scale separation. The macroscopic domain con-

sists of an open region D, with external boundary ∂D, constructed from

unit cells Ω with outer boundaries B and impermeable boundary Γi. . . . . 92

3.2 Domains used in defining scale separation. The macroscopic domain con-

sists of an open region D, with external boundary ∂D, constructed from

unit cells Ω with outer boundaries B and inclusions of volume Ωnp and

boundary Γi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Comparison of numerical simulation of the full and homogenised equations

for spherical and ellipsoidal particles inside a twisted geometry, zero pretilt

at boundaries and homeotropic anchoring on dopants. (a) Spherical parti-

cles of radius r = 0.3µm at applied voltages of 1.5 V and 3 V (lower and

upper curves respectively). (b) Ellipsoidal dopants V = 0 with anchor-

ing energy W1 = 50 (bottom) and W1 = 100 (top) orientation given by

(θp, φp) = (45o, 30o). The semi major axis of the ellipsoids is 0.3µm the two

minor axes are 0.1µm. (a) & (b) Red points are from homogenisation, bro-

ken black line is undoped and blue line from Comsol numerical simulations.

(c) Absolute error Error = |θH − θN | where θH is the tilt angle from the

homogenised equations and θN is extracted from numerical simulations of

the full system. (d) Schematic diagram of the system studied: planar cell

of size Lx with spherical/ellipsoidal dopants with spacing Ly. . . . . . . . . 111

3.4 Bifurcation diagrams for spherical and ellipsoidal inclusions. Top spheres

of radius from 0.05µm in steps of 0.05µm to 0.45µm. Bottom: ellipsoids

with major axis r1 = 0.3µm and minor axis’ r2 = r3 = 0.1µm, oriented

in the plane of the director at an angle of 0o, 30o, 60o and 90o to the initial

director alignment. Circles indicate the position of the Fredericks transition

computed using equation (3.67). . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 Diagonal component of the elasticity tensor for spherical inclusions and

components of the source term q for ellipsoidal particles confined to the

x1-x3 plane. The angle θp is measured from the ellipsoids major axis to the

x3 axis, q3 = q5 = 0 (not shown). The approximate linear relation between

K33 and r3 indicates that the excluded volume effect is dominant. . . . . . 115
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3.6 Switch-off (left) and on (right) time at V = 2V for colloidal nematic with

ellipsoidal particles as a fraction of undoped on/off times in the splay ge-

ometry. Ellipsoids oriented orthogonal (top) or parallel (bottom) to initial

director with homeotropic anchoring on inclusions and anchoring strength

W1 = 10. Vertical dopants reinforce stability of the θH = 0 state while

horizontal dopants reduce it. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Schematic of the system, the macroscopic domain D consists of several unit

cells Ω with boundary Γ. The angle ψ(j) measures the orientation of the

j − th particle within the system. . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Illustration of the screening effect quantified by Bij. The director (black

arrows) obeys hybrid anchoring conditions on the cells top and bottom

surfaces and periodicity on the remaining sides. The anchoring energy is

µ̃ = 0 and there is no externally applied field. The colour and contours

indicate value of the director tilt angle θ. With the particle horizontally

aligned there is a reduced gradient in its vicinity. . . . . . . . . . . . . . . 144

4.3 (Left) Example of the meshing scheme used when solving (4.33), (4.38),

(4.36) and(4.39). The particle motion is achieved by the entire circular

region rotating as a solid body motion. This removes the need to re-

mesh while solving. (right)Solution of the cell problems (4.64) and (4.67)

for asymmetric particles. Plots show from top right proceeding clockwise:

χ1, χ2, R2 andR1. The solution to these problems is used to compute the

material parameters needed to solve the homogenised equations. . . . . . . 146

4.4 Solution of the homogenised/macroscopic equations for elliptic particles at

V = 2 to V = 5 Volts in increments of 0.5 Volts for anchoring energy µ̃ =

10−6 Jm−2. Solid black lines are from the macroscopic equations, colored

points and circles are solutions of the microscopic equations computed using

Comsol with N = 64 particles. . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.5 Comparison of the homogenised/macroscopic equation (red) to microscopic

equations for N = 8, 16, 32 elliptic particles (black, green blue) at V = 3.

Dimensional anchoring of µ̃ = 10−6 Jm−2 (top) and µ̃ = 10−6

N
Jm−2 (bot-

tom). The bottom set of plots shows the sequence of problems correspond-

ing to finite total anchoring strength in the limit as η → 0. . . . . . . . . . 148
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4.6 (Top) Comparison of the homogenised equation (red) to full equations for

N = 8, 16, 32, 64 asymmetric particles (purple, green, blue and black) with

µ̃ = 10−6 Jm−2 with an applied voltage of V = 0. (Bottom) As in top

figure but for N = 8, 16, 32 asymmetric particles (purple, green and blue)

with V = 3. The solutions to the homogenised equations are obscured by

the solution to the microscopic equations, additionally the purple and green

curves coincide nearly exactly. The uniform ground state is disturbed by

the presence of the particles and this effect does not diminish as the particle

number increases. The jump in ψ shown in both cases is of magnitude π

radians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1 Cross polarised intensity for E7 as a function of applied voltage measured

at different point in the cell, traces 1 to 16. . . . . . . . . . . . . . . . . . . 158
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Chapter 1

Introduction

Nematic liquid crystals consist of elongated organic molecules which are arranged with a

degree of orientational order but without translational order. This combination produces

many interesting and useful physical effects. As the constituent molecules are free to move,

liquid crystals flow. This in conjunction with orientational ordering produces a viscous

birefringent fluid in which flow and reorientation are tightly coupled. When doped with

small nano-to-micrometer size particles the local alignment is disturbed. This further

complicates the behaviour and description of the system. Liquid crystals are clearly not

easy systems to model and the remainder of this chapter contains background material

including a brief introduction to Ericksen-Leslie theory, Q-tensor modelling and optics.

This thesis is primarily concerned with two problems: measuring nematic liquid crystal

material parameters and obtaining a macroscopic description of a liquid crystal colloid.

Although these problems are seemingly different in nature they do both involve the deter-

mination of material parameters, for a pure or doped liquid crystal respectively. This is

achieved by analysing experimental data in the former case or through theoretical means

in the latter. Estimation of material parameters through experimental data is discussed

in chapter 2, while the theoretical model of a colloid is the focus of chapters 3 and 4. More

specifically, in chapter 2 we review existing methods of measuring the nematic viscosities

and report a new optical method of measuring liquid crystal viscosities using a time vary-

ing electric field. We find that it is possible to extract information about both the dynamic

viscous behaviour of the system and the elastic behaviour of a liquid crystal by optical

means. Chapters 3 and 4 are devoted to the use of mathematical homogenisation to study

liquid crystal colloids. In chapter 3 we use homogenisation to obtain the macroscopic

response of a nematic liquid crystal containing stationary obstruction of arbitrary shape.

We obtain excellent agreement with large-scale finite element simulations. In chapter 4

we extend the model to include rotating obstructions and derive equations that capture
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the competing torques on the dopant and nematic. We identify and interpret the various

interactions and validate our model against finite element simulations. We summarise our

findings in chapter 5 and discuss possible future work for each project.

1.1 Describing liquid crystals

Different phases of matter possess different symmetries or equivalently different degrees

of order. For instance the atoms in a crystalline solid form a periodic array. This degree

of translational and orientational ordering can be identified with a broken symmetry.

In this case the symmetry of the Euclidean group is broken by the lattice and only a

small subset of possible rotations and translations remains. In general the nature of the

broken symmetries determine the type of order parameter. While the order parameter

itself encodes the information needed to define the state of the system. For instance

to describe a phase with broken orientational symmetry you must at least specify the

preferred alignment axes.

The melting transition from a well ordered solid phase to an isotropic fluid phase

involves gaining symmetry or equivalently losing order. Certain compounds formed of

elongated organic molecules do not show a single melting transition [36]. Instead there

exists a temperature window which hosts a variety of phases possessing different symme-

tries that go under the generic name of liquid crystal (LC) phases, as they have properties

intermediate between these two states of matter. These phases possess some of the orien-

tational or positional order of an ordered solid. For example, in a smectic liquid crystal

the molecules align along a common direction and form well defined layers. This breaks

both part of the translational and orientational symmetry of the isotropic phase and as

a result the LC phase has properties characteristic of both a liquid and a crystal. This

thesis is concerned with the the non-chiral nematic mesophase, referred to as the nematic

phase throughout the remainder of this thesis. Nematic liquid crystals possess only broken

rotational symmetry aligning along a spontaneously chosen axis. The centres of mass of

the constituent molecules are uncorrelated.

Nematic liquid crystals are characterised by having both the dynamic properties of a

fluid, they may be sheared and flow in response to applied stress, and the optical and

dielectric properties of a crystalline solid. These properties can be seen to result from

the symmetry of the phase. Within the bulk of a nematic liquid crystal the position of

the constituent molecules is uncorrelated. However, they align their molecular axis with

one another on average. The transition from isotropic fluid to nematic is illustrated in

figure 1.1. The full rotational symmetry of the isotropic phase is broken by the transition
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into the nematic. This broken symmetry and the resulting anisotropic properties of the

nematic phase are responsible for the usefulness of this phase. The director field describes

the degree of freedom associated with the broken orientational symmetry. We now dis-

cuss in detail the order present within the nematic phase and how it may be described

theoretically.

In the absence of external influences a nematic liquid crystal will align into a uniform

configuration possessing uniaxial order [64]. Under uniaxial order only a single preferred

alignment axis exists, the principal axis or anisotropic axis [110]. The orientation of this

axis is often described by a unit vector field n̂ called the director [36, 110]. The constituent

molecules align their long axis on average with n̂ with non-polar order. Non polar order

is achieved either because the constituent molecules are non-polar themselves, molecular

heads and tails are indistinguishable, or they arrange themselves with an equal number of

heads and tails pointing in either direction along n̂. As a result both n̂ and −n̂ represent

the same physical state. In a thermotropic liquid crystal the degree of orientational order

is temperature dependent, characterised by a scalar order parameter. The interpretation

of the scalar order parameter is illustrated in figure 1.2: it measures the width of the

angular distribution of molecular axis about the principal axis. For a uniaxial nematic the

distribution of molecules about the preferred alignment axis is rotationally symmetric. In

a biaxial phase this symmetry is broken and a second principal axis emerges. The degree

of ordering along the second principal axis is characterised by the biaxiality parameter.

In general the orientational order of a nematic is uniaxial [64], with biaxiality generally

confined to the cores of topological defects [97].

Although the director description is widely used there does exists a more complete

description of the liquid crystal phase. This can be achieved by combining the two broken

symmetries, the principal and secondary axis, with the degree of ordering along each axis.

The result is a tensor order parameter, the Q-tensor. In this description the first and

second principal axis and order parameters are encoded into a single construct, a traceless

symmetric 3× 3 tensor. The Q-tensor is given by [99]

Q̃ =

√
3

2
S̃

(
n̂⊗ n̂− 1

3
I
)

+

√
3

2
β̃
(
l̂⊗ l̂− m̂⊗ m̂

)
, (1.1)

where n̂ is the director, l̂ is the biaxial axis and m̂ = n × l, the parameters S̃ and β̃

measure the scalar and biaxial order respectively. The
√

3/2 factor is present to ensure

that in the uniaxial state Tr(Q̃2) = S̃2. The eigenvalues ofQ encode information about the

degree of ordering while the eigenvectors specify the alignment axes. To quickly determine
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Figure 1.1: Typical molecular configurations in: (a) the isotropic phase (b) the nematic
phase and (c) a crystalline phase. The range of colours indicates the degree of ordering.
The isotropic phase possesses the highest symmetry and least order. Rotational symmetry
is broken and a preferred alignment axis exists in the nematic phase. Both orientational
and translational symmetry are broken in the crystalline phase.

if a Q̃ describes a biaxial state the following function can be used

∆(Q̃) = 1− 6
Tr(Q̃3)2

Tr(Q̃2)3
. (1.2)

This function can be derived by computing the discriminant of the characteristic equation

of the Q̃-tensor. Function (1.2) has the property that ∆(Q̃) = 0 in the uniaxial and

∆(Q̃) 6= 0 in the biaxial phase.

Under either the Q-tensor or director description the state of a nematic is not generally

uniform throughout space. To determine the configuration a free energy formalism is

employed. It is this formalism that is used in chapters 3 and 4 to investigate the properties

of a doped nematic system. If the scalar order parameter is constant throughout the

sample and the nematic is uniaxial a full Q-tensor description is often unnecessary. In

this case the Q-tensor is determined by the unit vector n̂, the director. We use Ericksen

Leslie theory, a director based formalism that includes the fluid motion of the nematic, in

chapter 2 to model the dynamic response of a confined nematic to fast forcing. We now

give an overview of director and Q-tensor based modelling of nematic liquid crystals.
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q1

q2

Figure 1.2: For a nematic with director n̂ along the
vertical axis the ellipse represents a typical molecu-
lar alignment. The scalar order parameter measures
the clustering of the distribution of molecular align-
ments with θ1. The biaxiality parameters measures
the clustering of alignments with θ2. In a uniaxial
phase all values of θ2 are equally likely whereas in a
biaxial phase there is a preferred value of θ2.

Figure 1.3: Characteristic orientational deformations in a nematic liquid crystal. Each
can be identified by considering possible deformations of the director that satisfy n̂ · n̂ = 1
upon travelling away from the origin with n̂(0) = (0, 0, 1) (see [110] page 16). (a) bend:
travel in the direction of n̂ deformation is orthogonal to n̂ (b) twist: travel orthogonal
to n̂ deformation is orthogonal to displacement and n̂ and (c) splay: travel orthogonal
to n̂ deformation is in direction of displacement. Each is charactered by an independent
elastic constant, it should be noted that in a biaxial nematic additional elastic constants
are required.
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1.2 Director based modelling

Director based modelling of nematic liquid crystals can be used to explore both static and

dynamic effects. The origins of the static theory of nematics can be traced back to the work

of Frank [40], Oseen [76] and Zocher [119]. A development of both the static and dynamic

theory of liquid crystals is presented by Stewart [110]. We summarise this approach here

and retain the notation used in [110]. A free energy density wF which depends on the

director field n̂ and its gradient ∇n̂ is associated with the nematic. The configuration

taken by the nematic in some volume V is that which minimises the total free energy.

The total free energy contains contributions from both internal elastic interactions and

interaction with externally applied fields. We now detail the construction of such a free

energy density. First we obtain the elastic contribution and then the electrostatic term.

The form of the elastic free energy is found by seeking the most general functional

that obeys the symmetry requirements of the nematic. These requirements are: that the

ordering is non-polar n̂ ≡ −n̂ and the energy of the system is invariant under a global

rotation of n̂. These requirement can be enforced by seeking a free energy obeying

wF (n̂,∇n̂) = wF (−n̂,−∇n̂),

wF (n̂,∇n̂) = wF (Rn̂, R∇n̂RT ), (1.3)

for any constant rotation matrix R ∈ SO(3). The first requirement enforces nematic

rather than polar ordering, the second states that the energy of a given configuration is

invariant upon solid body motion provided every point undergoes the same motion. We

also require that the free energy is positive semi-definite. The development of such a free

energy is summarised by Stewart [110]. The final form of the free energy density is

wF =
1

2
K1[∇ · n̂]2 +

1

2
K2[n̂ · (∇×n̂)]2 +

1

2
K3‖n̂× (∇×n̂)‖2

+
1

2
(K2 +K4)∇ · [(n̂ ·∇)n̂− (∇ · n̂)n̂] ,

(1.4)

where K1, K2 and K3 are the splay, twist and bend elastic constant, K2 +K4 is the saddle

splay constant and is removed from the bulk equations by means of the divergence theorem.

The distortions corresponding to pure splay twist and bend are illustrated in figure 1.3.

Experimentally, the orientation of a nematic LC is often controlled by an externally driven

electric or magnetic field. To describe this interaction we seek an addition to the free

energy density to account for applied electric fields. The case of a magnetic field follows

in a similar way and can be found in [110, 36].
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Nematic liquid crystals acquire a spontaneous polarisation under an applied electric

field. The electric displacement field D that results from an applied electric field E is

[110]

D = ε0ε⊥E + ε0εa(n̂ ·E)n̂, εa = ε‖ − ε⊥, (1.5)

where ε‖ and ε⊥ are the relative dielectric anisotropy measured parallel or perpendicular

to the director respectively and ε0 is the vacuum permittivity. The electric energy density

of a nematic liquid crystal under a fixed potential drop is given by [110]

wE = −1

2
D ·E. (1.6)

With this addition the electric field acts as a symmetry breaking parameter within the

total free energy wT = wF +wE favouring n̂ aligned parallel or perpendicular to E for εa

positive or negative, respectively. The electric field can be determined either by minimising

the electrostatic free energy with respect to the electrostatic potential or by employing

Maxwell’s equations, specifically that the displacement field obeys

∇ ·D = 0, (1.7)

in the absence of free charges.

The most widely accepted dynamical theory for nematic liquid crystals was developed

by Ericksen [38] and Leslie [57] and constitutes a generalisation of the static theory de-

veloped by Frank [40], Oseen [76] and Zocher [119]. The Ericksen-Leslie (EL) theory uses

the director representation of the nematic. The fluid velocity is specified by a vector field

v. The governing equations are derived in the isothermal and incompressible regime by

Stewart [110]. Here we present an outline of the derivation. The starting point for EL

theory are the balance laws for mass, angular and linear momentum. Consider an ar-

bitrary volume V containing nematic liquid crystal subject to externally applied surface

and volume forces and moments. The conservation laws can be written in integral form

as follows:
D

Dt

∫
V

ρdV = 0, (1.8)

D

Dt

∫
V

ρvdV =

∫
V

ρF dV +

∫
∂V

tdS, (1.9)

D

Dt

∫
V

ρ(x× v)dV =

∫
V

ρ(x× F +K)dV +

∫
∂V

(x× t+ l)dS, (1.10)

where the mass density of the nematic is given by ρ, F is the externally applied body

force per unit mass, x is the position vector, t is the surface force per unit area, K is
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the external body moment per unit mass, l is the surface moment per unit area and
D
Dt

= ∂
∂t

+ v ·∇ is the material time derivative. The surface forces and moments are due

to contact with another phase on the boundary of the nematic volume ∂V , for instance

a submerged solid body or liquid crystal outside of the volume V . These surface terms

depend on the material parameters of the nematic, the configuration of the nematic at

the surfaces and the orientation of the surfaces. This is captured by the stress tensors tij

and couple stress tensor lij through the relations ti = tijνj and li = lijνj where ν is the

unit normal to the surface. The stress and coupled stress tensor contain the, at this stage

unknown, material parameters of the nematic.

Equations (1.8)-(1.10) are supplemented by a balance of work hypothesis. The rate at

which external forces and moments do work on the system is equal to the rate of change

of kinetic and elastic energy in the system plus the total viscous dissipation. Symbolically

this is written as∫
V

ρ(F ·V +K ·w)dV +

∫
∂V

(t·v+l·w)dS =
D

Dt

∫
V

(
1

2
ρv · v + wF

)
dV +

∫
V

DdV (1.11)

where D is the viscous dissipation per unit volume and w is the local angular velocity of

the director satisfying
Dn̂

Dt
= w × n̂. (1.12)

By putting (1.8)-(1.11) in point form and requiring that the viscous dissipation be positive

we find constraints on the possible forms of the stress and coupled stress tensors. The

stress tensors must have the form

tij = −pδij −
∂wF
∂np,j

np,i + t̃ij (1.13)

and

lij = εipqnp
∂wF
∂nq,j

+ l̃ij, (1.14)

where p is a pressure arising from the enforced incompressibility, t̃ij and l̃ij denote possible

dynamic contributions, δij is the Kronecker delta, εipq is the Levi-Civita symbol, the

notation f,i denotes the partial derivative of f with respect to the i-th coordinate and

we sum over repeated indices. The dynamic contributions are determined by considering

the most general form possible that obeys the symmetries of the nematic and ensures that

the dissipation function is positive, see Stewart [110] for details. The dynamic contribution

to the coupled stress tensor is zero, while the contribution to the stress tensor tij contains

28 Chapter 1 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

six viscosity coefficients coupling the fluid flow to the rotations of the director. The number

of viscosities is set by the symmetry requirements of the nematic. By use of the Parodi

relations [78] the total number of viscosity coefficients can be reduced to five, as one can

show that α2 + α3 = α6 − α5. With this simplification the final form of the viscous

dissipation function is

D = α1(niAijnj)
2 + 2γ2NiAijnj +α4AijAji + (α2 +α3 + 2α5)niAijAjknk + γ1NiNi (1.15)

with Aij = 1
2

(vi,j + vj,i) the rate of strain, Ni = ni−Wijnj the co-rotational time flux of the

director, Wij = 1
2

(vi,j − vj,i) the vorticity tensor and αi, i = 1, ..., 5 are known as the Leslie

viscosity coefficients with γ1 = α3−α2 the rotational viscosity and γ2 = α2 +α3 the torsion

coefficient. We now give the final form of the governing equations. By parametrising the

director n̂ by two angles θ1 and θ2 the governing equations may be written in terms of

the scaled dissipation function D̂(vi,j, θα,t, θα) = 1
2
D(Aij, Ni, ni), potential energy density

Ψ̂ and Frank free energy ŵF . The balance of angular momentum is given by [110],(
∂ŵF
∂θα,i

)
,i

− ∂wF
∂θα

− ∂D̂
∂θα,t

+
∂Ψ̂

∂θα
= 0, α = 1, 2 (1.16)

and the balance of linear momentum is

ρ
∂vi
∂t

=

(
∂D̂
∂vi,j

)
,j

− ∂D̂
∂θα,t

− p̃,i i = 1, 2, 3. (1.17)

Here ρ is the mass density, p̃ = p+ŵF−Ψ̂, with p the pressure, Ψ̂ the total potential energy

density due to electromagnetic and gravitational fields, and summation over repeated

indices is implied. By parametrising the governing equations (1.16) and (1.17) using two

angles the normalisation condition n̂·n̂ = 1 is automatically satisfied. The only remaining

constraint is that the flow is incompressible,

vi,i = 0. (1.18)

The Ericksen-Leslie equations (1.16)-(1.17) and constraint (1.18) determine the dynamic

evolution of the director. In order to use EL theory the value of the elastic constants

and viscosity coefficients must be known. The elastic constants are easily measured by

various means. However, measuring the Leslie viscosity coefficients is more difficult. Var-

ious existing methods, based around extending traditional viscometer techniques, optical

methods and more exotic set-ups, are reviewed at the start of chapter 2. For the remainder
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of chapter 2 Ericksen-Leslie theory is used to model the dynamic response of a confined

nematic liquid crystal. Optical measurements sensitive to the dynamics of the director

are then used to measure combinations of the Leslie viscosity coefficients. We now give

an example of applying Ericksen-Leslie theory to a planar liquid crystal system.

1.2.1 Planar liquid crystal cell

We illustrate the use of Ericksen-Leslie theory by applying it to a standard problem,

the case of a planar liquid crystal. This system is shown in figure 1.4 and consists of a

d ≈ 10 µm thick glass cell containing nematic liquid crystal of positive dielectric anisotropy.

We assume that the nematic is aligned roughly parallel to the upper and lower glass planes

at angles θ0 and θd respectively and that the alignment varies only with z the coordinate

into the cell. The nematic is realigned by a high frequency AC field applied orthogonally

to the cell walls. Parametrising the director by the tilt angle θ(z), n̂ = (cos(θ), 0, sin(θ)).

The governing equations for this system can be found by seeking stationary solutions

to the Ericksen-Leslie equations (1.16) to (1.18) and Maxwell’s equation for the electric

displacement (1.7). The stationary solution is governed by

[K1 cos2(θ) +K3 sin2(θ)]
d2θ

dz2
+
K3 −K1

2

(
dθ

dz

)2

sin(2θ)

+
εaε0

2

(
dφ

dz

)2

sin(2θ) = 0,

(1.19a)

θ(z = 0) = θ0, θ(z = d) = θd. (1.19b)

Maxwell’s equation for the electric displacement can be readily integrated to give the

potential in the cell

φ(z) =

∫ z

0

V

1 + εa
ε⊥

sin2(θ)
dz′

(∫ d

0

1

1 + εa
ε⊥

sin2(θ)
dz′′

)−1

. (1.20)

Here V is the voltage applied to the cell and all other symbols have their usual meanings.

The general trend of θ with increasing voltage V is shown in figure 1.4. As the applied

field increases the director realigns itself with E, the distortion is greatest at the centre of

the cell and saturates at π/2. At high voltage only the nematic towards the boundaries is

not realigned.

In the symmetric case θ0 = θd = 0 the ground state θ(z) = 0 ∀z is a solution of equation

(1.19a) for all values of the applied field. However the stability of this solution does depend

on the magnitude of the applied voltage. At a critical value of the voltage θ = 0 becomes
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Figure 1.4: (Left) parametrisation of the director within a splay cell by the angle θ. (Right)
Tilt angle profile for applied voltages of V = 2.5, 5, 10, 20 obtained numerically for pre-tilt
values θ0 = 0◦ and θd = 1◦. The distortion is largest away from the edges of the cell, at
high voltage the distortion saturates and the director is aligned with E with the exception
of small layers near the boundaries.

unstable and two new stable states emerge from a pitchfork bifurcation. This transition

is known as the Frederiks transition. A detailed derivation of the transition voltage for

various systems can be found in [110]. Here we show how the transition voltage can be

obtained through a linear stability analysis. The governing equations are the linearised

Ericksen-Leslie equations. Neglecting fluid flow we find that θ is governed by

K1
∂2θ

∂z2
+ εaε0

(
V

d

)2

θ = γ1
∂θ

∂t
. (1.21)

To find the critical value of the voltage we seek a Fourier series solution to equations (1.21)

θ =
∞∑
n=1

an(t) sin
(nπz

d

)
. (1.22)

Substituting (1.22) into (1.21) and projecting onto sin
(
πz
d

)
we find that the fundamental

mode a1 is governed by

a1

(
−K1π

2

d2
+ εaε0

V 2

d2

)
= γ1

∂a1

∂t
. (1.23)

Chapter 1 Thomas Paul Bennett 31



Multiscale modelling and experimental estimation of liquid crystals parameters

The fundamental mode a1 grows when

V > VFT ≡ π

√
K1

ε0εa
. (1.24)

1.3 Q-tensor based modelling

In 1.2 we outlined the construction of Ericksen-Leslie theory, a director based model, that

includes both static and dynamic effects. In this section we outline the Q̃-tensor model

developed initially by de Gennes [35]. This section is based on the development of the

Q̃-tensor theory reported by Sonnet and Virga [106, 107]. This model will be used in

chapters chapters 3 and 4 when studying colloidal suspensions. Throughout this section

variables that have a tilde ∼ have not been rescaled or non-dimensionalised, this notation

was chosen to allow for consistency with chapters 3 and 4. Additionally we distinguish

between the free energy densities in the director theory discussed in section 1.2 and the

Q̃-tensor models by using different notation for the various contributions to the free energy

density.

To describe the static properties of a nematic we need a free energy density written

in terms of Q̃. The free energy density contains: an elastic contribution written in terms

of the gradients of Q̃, a thermotropic contribution which sets the scalar order parameters

and a symmetry breaking contribution which couples the nematic to external fields. To

find an expression for the thermotropic free energy contribution Sonnet and Virga [107]

seek a polynomial expression in the invariants of the order parameter Q̃. The invariants

of a tensor are defined as the coefficients of the characteristic polynomial [107] and take

the same value regardless of the basis in which they are evaluated. This construction

guarantees that the free energy, a scalar valued function of a tensor variable, is objective,

that is, takes the same value in any reference frame [107]. The thermotropic free energy,

which sets the scalar and biaxial order, depends only on Q̃. The relevant invariants

are [107]

I1 = Tr(Q̃), (1.25a)

I2 = Tr(Q̃2), (1.25b)

I3 = Tr(Q̃3). (1.25c)

The first invariant is zero by symmetry of the Q̃-tensor. The expression for the ther-

motropic free energy density that we will use, often referred to as the Landau de Gennes
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free energy [35], is

F̃t =
1

2
A (T − T ∗) Tr

(
Q̃2
)
−
√

6BTr
(
Q̃3
)

+
1

2
C
[
Tr(Q̃2)

]2

. (1.26)

Here T is the temperature, T ∗ is the temperature at which the isotropic phase becomes

unstable, A, B and C are the thermotropic coefficients and are assumed to be temperature

independent. The temperature dependence in (1.26) is captured entirely by the first term.

It is possible to extend (1.26) to include higher order terms in the invariants, this is not

pursued here. Finding a general elastic energy density for a Q̃-tensor based model has been

investigated in a number of publications [60, 59, 51, 107]. As there are a large number

of elastic constants within a general Q̃-tensor framework to simplify the exposition we

make the single elastic constant approximation. Under this approximation the elastic free

energy density is

F̃B =
L̃

2
‖∇̃Q̃‖2, (1.27)

where L̃ is the single elastic constant. It is possible to capture the full elastic anisotropy

found in Ericksen-Leslie theory within a Q̃-tensor theory. However, terms of up to third

order in Q̃, more precisely linear in Q̃ and quadratic in ∇Q [107], must be included. The

final two contributions to the free energy density are due to external symmetry breaking

interactions. The surface free energy density captures the interaction of the nematic

with an external barrier such as an aligning polymer layer. One possible form for this

contribution was proposed by [74] which extends the Rapini-Papoular [90] director model

to the Q̃-tensor case. The surface energy density is [74]

F̃S =
µ̃

2
Tr

[(
Q̃ − Q̃S

)2
]
. (1.28)

Here µ̃ is the surface anchoring energy density and Q̃S is the preferred surface alignment

tensor. This form of the surface free energy has a unique minima when Q̃ coincides with

Q̃S. Other anchoring conditions have been proposed such as the planar degenerate case

studied by Fournier and Galatola [39] in which any alignment in a chosen plane with given

scalar order is a minimum. The final contribution we will need is the electrostatic energy

density. This contribution is given by,

F̃e = −1

2
Ẽ · (ε0εrẼ), (1.29)

where εr is the relative dielectric permittivity tensor. The relative permittivity can be
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written directly in terms of the Q̃-tensor as

εr = εuI +
εa
√

2

S̃
√

3
Q̃, (1.30)

where εu =
2ε⊥+ε‖

3
is the uniform part of the dielectric permittivity. To describe dynamic

effects rather than starting with the conservation of linear and angular momentum and in-

corporating the dissipating effects due to viscosity by a rate of work hypothesis, as is done

for Ericksen-Leslie theory, Sonnet and Virga [106, 107] use a dissipation principle. They

formulate the principle of minimum reduced dissipation which can be seen as a general-

isation of the classical Rayleigh dissipation principle. The Rayleigh dissipation principle

allows frictional forces which are proportional to the velocities within a system to be in-

corporated within a Lagrangian framework [107, 41]. Roughly speaking the dissipation

principle is a requirement that the change in internal energy within a system is balanced

by the rate of dissipation. Hence, to employ this methodology both a free energy density

and a dissipation function must be constructed. Sonnet and Virga [107] use symmetry

considerations to construct a dissipation function for a nematic liquid crystal. Details of

this construction can be found in [107], the end result is

R̃(D̃, ˚̃Q) =
1

2
ζ1Tr( ˚̃Q2) + ζ2Tr(D̃ ˚̃Q) + ζ3Tr(D̃ ˚̃QQ̃) + ζ4Tr(D̃2Q̃)

+
1

2
ζ5Tr(D̃2Q̃2) +

1

2
ζ6(Tr(D̃Q̃))2 +

1

2
ζ7Tr(D̃2)Tr(Q̃2) +

1

2
ζ8Tr(D̃2),

(1.31)

where D̃ is the symmetric part of the velocity gradient (denoted Ã in 1.2 and [110]),
˚̃Q = ˙̃Q− W̃ Q̃+ Q̃W̃ is the co-rotational derivative of the Q̃ tensor and ˙̃Q is the material

derivative of Q̃. The viscosities ζi, i = 1, ..., 8 captures the full range of dynamic coupling

within a nematic between the alignment and flow fields that are of second order in D̃ and

Q̃ [107]. Various simplifications to (1.31) have been proposed Qian and Shen [89] proposed

a theory with five viscosities that neatly maps onto the Ericksen-Leslie model that may

be obtained from (1.31) by setting ζ3 = ζ5 = ζ7 = 0. The associated stress tensor is,

T̃ = −P̃I −∇Q̃ � ∂FB
∂∇Q̃

+ Q̃∂R̃

∂ ˚̃Q
− ∂R̃

∂ ˚̃Q
Q̃+

∂R̃

∂D̃
, (1.32)

where P̃ is the pressure, I the identity matrix and the second rank tensor ∇̃Q̃ � ∂F̃B

∂∇̃Q̃ =

Q̃kl,i ∂FB

∂Q̃kl,j
ei⊗ej with (e1, e2, e3) any positively oriented orthogonal frame. The governing
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equations for the Q̃-tensor and velocity field are

∂R̃

∂ ˚̃Q
= ∇̃ · ∂F̃V

∂∇̃Q̃
− ∂F̃V

∂Q̃
, (1.33a)

∇̃ · T̃ = 0 (1.33b)

where the total volume free energy density is

F̃V = F̃B + F̃t + F̃e. (1.34)

On the boundary the Q̃-tensor and velocity field obey,

ν̂ · ∂F̃V
∂∇̃Q̃

= −∂F̃S
∂Q̃

(1.35a)

ṽ = ṽb, (1.35b)

where ν̂ is the outward unit normal on the boundary, ṽ is the flow velocity of the nematic

and ṽb is the boundary velocity. It should be noted that in (1.33b) we have neglected fluid

inertia. This is typical for most liquid crystal applications as the fluid flow equilibrates on

a far faster time scale than the director. We investigate this approximation on page 55 in

the context of driven oscillations.

1.4 Optical modelling

In this section we outline basic results concerning the optics of liquid crystal. These will

be used in chapter 2 to model the results of optical measurements. First we describe the

experimental set-up that forms the basis of the method developed in chapter 2. Next

we model light propagating through a planar liquid crystal cell. We follow the method

outlined by Daly [31] where additional details can be found. The final part of this section

is dedicated to modelling twisted nematic cells.

1.4.1 The cross polarised intensity experiment

Nematic liquid crystals are birefringent possessing two distinct refractive indices no and

ne the ordinary and extraordinary index. Linearly polarised light propagating with po-

larisation parallel to n̂ experiences ne, polarisations orthogonal to n̂ experiences no. As

a result light propagating through a sample of nematic will experience a different travel
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Figure 1.5: (Left) Schematic representation of the experimental set-up used for the cross
polarised intensity experiment discussed in chapter 2. The nematic is anchored to the glass
substrate by means of a rubbed PI layer. A voltage is applied across the cell reorientating
the nematic. Light polarised at 45◦ to the initial director in transmitted through the cell.
Components of the polarisation parallel and orthogonal to the initial director are exposed
to different refractive indices. The phase difference determines the exit polarisation, the
final polariser and analyser allows this change to be measured as a change in intensity.
(Right) a typical CPI trace as a function of peak to peak AC voltage applied to the cell.

time depending on its polarisation. One result of this is that a liquid crystal cell can be

used to alter the polarisation state of light. The change in polarisation state is determined

by the alignment of the nematic throughout a device. We now describe how, by clever use

of polarisers, this change in polarisation state can be detected as a change in intensity.

The experimental set-up used during a cross polarised intensity (CPI) measurement is

shown in figure 1.5. Planar liquid crystal cells, in which the director is anchored nearly

parallel to the boundary by means of a rubbed polymer layer, are characterised using

incident laser light at 532 nm. The incident polarisation is at an angle of 45◦ with respect

to the PI rubbing direction. The phase difference between the two orthogonal components

of this beam after passing through the cell is measured by adding an analyser polariser,

with transmission axis set orthogonal to the initial polarisation, and observing the resulting

changes in intensity using a photodiode. The intensity of transmitted radiation is recorded

as a function of applied voltage. A typical trace is shown in figure 1.5.

The plot in the right hand panel of figure 1.5 shows the effect of nematic realignment
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with increasing voltage. Initially the intensity is roughly constant before the onset of the

Frederiks transition. The transition is slightly smoothed due to the presence of non zero

boundary pre-tilt which breaks the symmetry of the bifurcation. As the voltage is increase

the phase different increases, the peaks and troughs correspond to total phase changes that

are an integer multiple of π. Finally as the voltage increases and the nematic saturates the

transmitted intensity tends asymptotically to zero. In order to extract information from

these measurements we must determine the nematic alignment and model the transmission

of polarised light through a nematic cell. We address the second point in the following

subsection.

1.4.2 Light transmission through a liquid crystal cell

We now outline how to model the experiment described in the previous subsection. Light

propagating through liquid crystal obeys Maxwell’s wave equation, which for a field with

time dependence exp(−iωt) is given by [18]

∇2E = −ω2µ0µrε0εrE, (1.36)

with µr and εr the relative permittivity and permeability of the material. Liquid crystals

are uni-axial and as a result have two independent permittivities ε‖ and ε⊥ the permittivity

measured parallel and orthogonal to the director respectively. For a liquid crystal the

permittivity tensor is related to the director by,

εr = ε⊥I + εa(n̂⊗ n̂), (1.37)

where I is the identity matrix. The corresponding refractive indices are no and ne, the

ordinary and extraordinary indices. If biaxiality is present the nematic possesses three

distinct refractive indices and the form of the dielectric tensor (1.37) must be modified

accordingly. As a result, the phase velocity of light propagating through a liquid crystal

cell depends on the angle between the polarisation vector and the director. To model

the cross polarised intensity experiment studied in chapter 2 we need to determine this

relationship. Choosing a coordinate system aligned with the principle axes of εr and by

seeking plane wave solutions to (1.36) we arrive at Fresnel equation for wave normals (see

[18] page 792)

k̂2
x(v

2
p − v2

y)(v
2
p − v2

z) + k̂2
y(v

2
p − v2

x)(v
2
p − v2

z) + k̂2
z(v

2
p − v2

x)(v
2
p − v2

y) = 0 (1.38)
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where k̂x, k̂y and k̂z are the components of the unit wave-vector and vp is the phase velocity

of the wave. As nematics are uniaxial the components of the phase velocity can be written

as vx = vy = vo and vz = ve. Next we write the wave-vector in spherical polar coordinates

k̂ =

sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 , (1.39)

where θ and φ are the spherical polar coordinate angles, θ being the angle between n̂ and

k̂. Substituting (1.39) into (1.38) we find four solutions

v2
p1 = v2

o ,

v2
p2 = v2

o sin2(θ) + v2
e cos2(θ).

(1.40)

The first set of solutions {vp1} describes forward and backwards propagation with polar-

isation orthogonal to the plane containing n̂, the second set {vp2} describes propagation

with polarisation in the plane containing n̂. The associated indices can be computed by

considering the dielectric ellipsoid of the system [18] and are given by

n1 = no,

neff =
neno√

n2
e cos2(θ) + n2

o sin(θ)
.

(1.41)

We now return to computing the intensity of transmitted light. The set-up for the cross

polarised intensity experiment is shown in figure 1.5. The electric field of a plane polarised

ray travelling in the ẑ direction arriving with polarisation at 45· to the director is given

by

E = E0 exp(i(kz − ωt)) 1√
2

1

1

0

 . (1.42)

After exiting the cell, the x̂ component of the field has acquired a phase shift relative to

the ŷ component. After transmission through the analyser polariser the field is given by,

E =
E0

2
√

2
exp(i(kz − ωt))(1− exp(i∆φ))

−1

1

0

 . (1.43)
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Computing the intensity I = EE where E is the complex conjugate of E we find,

I = I0 sin

(
∆φ

2

)
, (1.44)

where the accumulated phase lag is calculated by integrating the local phase difference

over the cell

∆φ =
2π

λ

∫ d

0

(no − neff )dz. (1.45)

Here d is the cell width and λ is the free space wavelength of the light. Formulas (1.44)

and (1.45) suffice for computing the light transmission through a planar cell. To deal with

the more general case including a twisted cell we use the extended Jones matrix method

[58], [117] although the full 4× 4-Berreman matrix method could also be used [16]. This

method involves slicing the sample into thin layers and approximately representing each

by a homogeneous medium. Within each layer two transmitted and two reflected waves

propagate. The extended Jones matrix method involves neglecting the reflected waves

and matching the tangential electric field components across the interface. From this a

transmission matrix is formed for the entire system,

J = JNJN−1...J1, (1.46)

where Jn is the extended Jones matrix for the n-th layer [58]. The output wave is related

to the input by, [
Eout
x

Eout
y

]
= J

[
Ein
x

Ein
y

]
(1.47)

from which the transmittance can be computed. The transmittance of a 90◦ twisted cell is

shown in figure 1.6. Light enters the cell with linear polarisation parallel to the director,

the output analyser polariser is orthogonal to the initial polarisation. Under zero applied

field the polarisation is effectively rotated by the twisted director. As the applied field

increases the nematic reorients parallel to the electric field and the transmitted intensity

drops.

In this chapter we have introduced the background material needed to understand

chapters chapters 2 to 4. Further details about the liquid crystal modelling can be found

in the textbooks by Stewart [110] Chandeskra [27], deGennes [36]
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Figure 1.6: Cross polarised intensity for a twisted cell with input polarisation parallel to
the initial director. The twisted structure of the director rotates the polarisation of the
input beam as a function of the voltage applied to the cell. As the applied field increased
the director distorts until it is parallel to the applied field throughout the bulk of the cell.
The transmitted intensity was computed using the extended Jones matrix method. The
liquid crystal used was E7 with parameters K1 = 11.7 pN, K2 = 8 pN, K3 = 19.5 pN,
ε‖ = 19.54, ε⊥ = 5.17 and d = 2.4 µm.
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Chapter 2

Measuring liquid crystal properties

2.1 Introduction

The Ericksen-Leslie model of a nematic liquid crystal discussed in chapter 1 contains many

different material parameters. These material parameters capture the elastic behaviour of

a nematic and its dielectric and dynamic properties in a single consistent framework. These

parameters take different values for different liquid crystals, are temperature dependent

and, in the case dielectric parameters, also frequency dependent. This chapter outlines the

work undertaken to develop a new optical measurement techniques to obtain: the elastic

constants K1 and K3, the cell thickness and surface pre-tilt, the rotational viscosity γ1 and

the combination of Leslie viscosities α4 +α5. The aim of this work was to develop a simple

methodology for obtaining relevant parameters using methods that are adapted to the

liquid crystal devices investigated in our labs. The methods rely on a simple optical set-

up requiring only a stable laser, optical polarisers, a photodiode and a desktop computer

outfitted to capture and record the output of the photodiode.

Without an adequate theoretical model it is not possible to obtain a detailed un-

derstanding of a given system or to predict its behaviour to new stimuli. Instead the

system can be treated as a black box that performs some task, for instance focusing a

laser beam. Even in the absence of adequate theory the performance of a system can

be still characterised as a function of some externally controlled stimulus. However, us-

ing this information to predict the response under different experimental conditions, or

combining the results of two separate experiments that utilise a common component is

all but impossible without adequate theory. With this observation in mind, reported ex-

perimental research can be generally split into two categories, device characterisation and

measurement of material parameters.

Device characterisation involves measuring some quantity directly relevant to device
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performance such as switching time [111], transition voltage or diffraction efficiency. This

can and often is carried out with only a rudimentary understanding of the physics in-

volved. Device characterisation is distinct from the second category measuring material

parameters. The latter requires both a valid theoretical model and a fitting procedure.

Device characterisation is often pursued to justify investigating a new material, or alterna-

tively, when necessary data or theoretical understanding is lacking. This typically involves

two steps: the first is choosing a figure of merit. This is device specific and often has a

particular application in mind, for example the switching time [111] for displays or the

diffraction efficiency [33] for photo-refractive systems. The second step involves perform-

ing a sequence of measurements that can be related to the figure of merit chosen in step

one. In the case of a display the switching times, relevant to maximum refresh rate, are

often determined by measuring the time taken for a device to undergo a given change in

transmitted intensity. By using this methodology it is possible to quantify the change in

device performance when different component parts, such as dopant particles, substrate

material or liquid crystal mixture, are added or altered, without the need for a complete

understanding of the physics involved.

These figures of merit can often be related to material parameter when a valid model

is available. This is illustrated by the Frederiks transition and switch on time in a splay

cell [110],

VFT = π

√
K1

ε0εa
, (2.1a)

τon =
γ1d

2

ε0εa (V 2 − V 2
FT )

. (2.1b)

respectively where d is the cell thickness, V is the applied voltage, K1 is the splay elastic

constant, ε0 is the vacuum permittivity, εa the dielectric anisotropy and γ1 the rotational

viscosity.

Virtually any measurable quantity that is sensitive to the alignment of the liquid

crystal, such as the transmitted intensity or capacitance, contains an indication of the

Frederiks transition. This typically shows up as a sudden change in the measured variable

at around V = VFT . As a result the value of VFT is often important for device design and

there are many ways to measure to measure its value. However, to move beyond device

characterisation and actually determine the values of the material parameters, K1 and εa,

care must be taken to overcome the degeneracy present in equation (2.1a). The simplest

way to overcome this problem is to measure the dielectric anisotropy εa separately.

This chapter starts with a literature review. Section 2.2 provides a general introduction

to some of the main methods used to investigate liquid crystal devices or to measure liquid
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crystal material parameters such as: elastic constants, flexo-electric constants, dielectric

and conductive properties, cell thickness as-well as boundary pre-tilt and twist angles.

Section 2.3 contains a review of methods for measuring the nematic viscosities. In section

2.4 we outline how to obtain many of these parameters from a single optical method.

Extensions to the method developed in 2.4 are discussed in section 2.5.

2.2 Measuring elastic and dielectric parameters of

liquid crystals

Among the methods used to isolate material parameters are: impedance measurements of

the complex permittivity [96], chirality induced optical measurements of the flexo-electric

effect [26] and capacitive measurements of the dielectric and elastic constants [66]. These

techniques all use similar set-ups: liquid crystal filled cells are subjected to externally

imposed fields and the optical transmission or impedance of the cell is measured. An

example of how elastic constants may be measured is given by Haller [45]. Haller [45]

measured the elastic constants K1 and K3 for MBBA by measuring the retardation (δ)

of light transmitted through splay and bend cells as a function of the externally applied

magnetic field. To determine the elastic constant the relation H = HFT +bδ+cδ2 between

the phase lag δ and the applied field H was used. The Frederiks transition field H0 was

estimated through least squares fitting to the extrema in the transmitted intensity as a

function of applied field H. With approximate values for the critical field and existing

measurements of the diamagnetic anisotropy, the elastic constants were determined using

the expression for the Frederiks transition in the splay or bend geometry. Later in this

section we discuss wide area measurements of liquid crystal properties. The method

presented is similar to that of Haller but more direct and allows for the determination

of K1 and K3 in a single set of measurements without the need to construct different cells.

A similar method was employed by de Jeu et al. [50] who determined a full set of

elastic constants for the liquid crystals PAA and MBBA. The cross polarised intensity

was measured as a function of magnetic field strength and the elastic constants were

found from the Frederiks threshold. The threshold itself was determined by extrapolation

from measurements made above the threshold. Having found a value for the threshold

this was then related to the elastic constant using [50](
K1 +

1

4
K3 −

1

2
K2

)
π2 = χaH

2
FTd

2, (2.2)

Chapter 2 Thomas Paul Bennett 43



Multiscale modelling and experimental estimation of liquid crystals parameters

where K1, K2 and K3 are the splay, twist and bend elastic constants, Hc is the magnetic

Frederiks threshold field, χa is the diamagnetic anisotropy and d is the sample thickness.

Hence, after determining the bend and splay elastic constants the value of K2 can be

determined. The authors supposed that boundary pre-tilt and weak anchoring effects

were the largest sources of error. In particular de Jeu et al. [50] note that it was difficult

to determine the location of the transition if boundary pre-tilt was present.

To employ either of the above methods, the magnetic anisotropy must be known. The

situation is similar if electric fields are used: in this case the dielectric constants are needed.

The magnetic susceptibility can be determined by the Faraday-Curie method [22]. This

method relies on measuring the force felt by a diamagnetic material in a non-uniform

magnetic field through careful use of a balance and an applied field. In such a system the

force exerted is directly proportional to the magnetic susceptibility, mass of the sample,

field strength and derivative of the field. Hence, measuring the exerted force provides the

magnetic susceptibility. Using this technique in the nematic and isotropic phases yields

both χ‖ and 1
3

(
χ‖ + 2χ⊥

)
[22] where χ‖ and χ⊥ are the magnetic susceptibility measured

parallel and perpendicular to n̂.

Lastly we discuss measurements of the dielectric constants. The dielectric constants ε‖

and ε⊥, which refer to the values obtained with E parallel or orthogonal to n̂, may both

be obtained from capacitance measurements. The main principle of these measurements

is to treat a liquid crystal cell as a planar capacitor and the liquid crystal as the dielectric

medium [81]. By measuring the capacitance of a planar cell while under small bias V , the

value of ε⊥ may be obtained. Similarly under large bias almost all of the liquid crystal

is reoriented with the exception of thin layers near the boundaries. Hence, by measuring

at high bias it is possible to estimate the value of ε‖ [81]. To extract more accurate

values the non uniform alignment of the liquid crystal within the cell must be taken

into account. This was the approach taken by Meyerhofer [66] who performed capacitance

measurements for a mixture of the liquid crystals MBBA and PEBAB [66]. The alignment

within a planar cell was computed numerically as a function of voltage. By fitting to the

measured capacitance as a function of voltage values for both ε⊥ and ε‖ were extracted.

The general trend is that the capacitance initially varies linearly with applied voltage V ,

before approaching saturation as V −1 [66].
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2.3 Measuring nematic viscosities: a literature re-

view

The viscosity of an incompressible isotropic Newtonian fluid can be interpreted as its

resistance to shearing or tendency to smooth out velocity gradients [110]. The larger the

viscosity, the harder it is to shear the fluid. Viscosity also plays a dominating role in

determining the interactions of a fluid with a submerged body and the behaviour of a flow

near boundaries. In a nematic liquid crystal all of these behaviours are coupled to the

orientation of the director. As a result, the viscosity measured in a typical viscometry

experiment depends on the alignment of the director. In addition the alignment of the

director is itself coupled to the fluid flow. The general picture is that spatially non-

uniform reorientation of the nematic induces fluid flow, which can influence the alignment

throughout a sample away from the original distortion. The coupling of orientation to

fluid flow results in several unusual effects. These include: flow alignment [110] in which

the director is aligned relative to the velocity gradient, the optical bounce observed in

twisted nematic cells [28] upon removal of a large bias and the asymmetric back-flow [17]

responsible for the movement and aggregation of dye particles within a twisted cell.

All of these physical effects are captured by the Ericksen Leslie (EL) theory [38],

[57]. The five Leslie viscosity coefficients αi, i = 1, ..., 5 introduced in chapter 1 needed to

describe these effects can not, in general, be measured independently. Instead experimental

results are sensitive to a combination of viscosities determined by the alignment of the

nematic throughout the system. By determining which experiments are sensitive to which

parameters it is possible to give a physical interpretation to some of the viscosities. In

the following section we discuss which combinations of Leslie coefficients allow for such

a physical interpretation and how they may be measured. Additional details about the

measurement methods cited can be found in the review by Belyaev [9].

2.3.1 Mechanical methods

One of the most straightforward ways to understand the physical relevance of the Leslie

coefficients is to analyse the behaviour of flow under uniform alignment. By doing this, an

analogy can be made to other anisotropic material parameters. For instance, applying an

electric field across different crystal axis allows for measurement of different components of

the dielectric tensor. This was the approach taken by Miesowicz [67] who performed one of

the first experiments to measure the viscosities of a nematic liquid crystal. The Miesowicz

viscosities are given in terms of the Leslie viscosities in table 2.1 and are illustrated in
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Figure 2.1: Reproduction of figure 4.1 from page 155 of [110] showing the Miesowicz
viscosities, arrows represent fluid velocity while the ellipsoids represent the director (a) η1,
(b) η2 and (c) η3. We use the convention outlined in [110].

figure 2.1. The Miesowicz viscosities η1, η2 and η3 may be identified with shear flow in

which the director is aligned with the velocity, with the velocity gradient or orthogonal to

both the velocity and velocity gradient. The fourth Miesowicz viscosity η12 does not have

a simple geometric interpretation and is required to describe the general case of shear flow

with arbitrary director configuration [110].

The Miesowicz viscosities can be measured by fixing the orientation of the director

with an externally driven magnetic field. Once the alignment of the nematic has been

fixed, which constitutes choosing which Miesowicz viscosities to measure, existing vis-

cometery techniques can be employed to measure the chosen viscosity. This method as-

sumes that the chosen alignment is maintained throughout the experiment. One method

involves measuring the damping of a submerged oscillating plate under the different di-

rector configurations [68]. An alternative experiment used by Beens and de Jeu [8] to

measure the two nematic liquid crystals p-methyoxyp′-butylazoxybenze (N4) and p,p′-
dibutylazoxybenzene (DIBAB) employs a capillary viscometer. They used a rectangular

capillary set-up as shown in figure 2.2. A pressure difference created by gas filled chambers

either end of the capillary drives the flow of the nematic through the capillary. As the ne-

matic flows through the capillary, the pressure difference decays exponentially with time.

The decay rate of the pressure difference is determined by the viscosity and geometry of

the capillary. By measuring the drop in pressure with time the viscosity is inferred. In

doing these measurements care must be taken to ensure that the nematic remains in the

desired alignment throughout the experiment. Misalignment can be caused by the flow

induced torque when measuring η1 or η2 or by boundary effects more generally. Beens and

de Jeu [8] report values from 26◦C to 70◦C for N4 and from 21◦C to 30◦C for DIBAB and

find that the Parodi relations are satisfied to within experimental error. At 23◦C values

46 Chapter 2 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

found for the LC DIBAB are η1 = 0.067, η2 = 0.015 and η3 = 0.025. The viscosities of

N4 are η1 = 0.0178, η2 = 0.024 and η3 = 0.047 at 26◦C. For both liquid crystals η1 is

obtained by using the Parodi relations and direct measurements [8]. For this system the

Parodi relations [78] yield

η1 = η2 + γ1

(
1 + tan2(θ0)

1− tan2(θ0)

)
. (2.3)

Here θ0 ≈ 0 is the flow alignment angle caused by the torque on the director due to the

velocity gradient. By using values for γ1 obtained by measurements of the dynamics of the

Frederiks transition Beens and de Jeu [8] found that the Parodi relations yielded values

for η1 that are within experimental error.

The dissipation function introduced in the previous chapter (1.15) allows us to identify

another viscosity that possesses a physical interpretation, the rotational viscosity γ1 =

α3 − α2. The rotational viscosity is the only viscosity which enters the equations for

nematodynamics in the absence of fluid flow. As a result γ1 plays a dominant role in setting

the typical time scale on which different liquid crystals realign in response to an external

stimulus. The Zwetkoff experiment [110] was one of the first methods used to measure

the rotational viscosity of a nematic. In it, a cylinder filled with nematic liquid crystal

is suspended by a wire along its symmetry axis. A magnetic field is applied orthogonal

to the symmetry axis and rotates at constant angular velocity about the cylinder. In

such a system, there is negligible fluid flow and the nematic can be considered at rest.

The director, however, feels a torque due to the applied field. The nematic transmits the

magnetic torque to the cylinder which results in torsion in the suspending wire. The torque

is only non-zero because the rotational viscosity is non-zero, that is the director does not

equilibrate instantaneously. Instead the director lags behind the rotating magnetic field.

Measurements of the torsion in the suspending wire determine the rotational viscosity.

Both this experiment and the form of the dissipation function justify interpreting the

rotational viscosity as partly defining the time scale on which the nematic reorientates.

This technique has been applied by Prost and Gasparoux [87] to 4′-methoxybenzylidene-

4-n-butylanili (MBBA) and 4-n-octyloxyphenyl 4-n-pentyloxybenzoate (8O-O5) for a range

of temperatures obtaining the following best fit functional relations

γ1 = 3.482× 10−4

(
1− T

319.83

)0.2942

exp

(
841.35

T − 170.0

)
Pa s, (2.4a)

γ1 = 1.994× 10−3

(
1− T

357.65

)0.2783

exp

(
590.24

T − 214.0

)
Pa s, (2.4b)
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Figure 2.2: Schematic of experimental set-up originally published by Beens and de Jeu [8].
The nematic is forced through the capillary by the pressure difference created by the two
fluid filled volumes V1 and V2. The alignment of the director is controlled by a magnetic
field. The rate of flow of nematic through the capillary is related to the pressure difference
across the capillary and the viscosity of the nematic. By measuring the decay of the
pressure difference the viscosity of the nematic is measured, measured viscosities are given
in table 2.3.
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η1 = α2+2α3+α4+α5

2
ηA = α4

2

η2 = α4+α5−α2

2
ηB = α3+α4+α6

2
− α3

2

(
1 + γ2

γ1

)
η3 = α4

2
ηC = α4+α5−α2

2
− α2

2

(
1− γ2

γ1

)
η12 = α1

Table 2.1: Relation between viscosities and Leslie coefficients αi, i = 1, ..., 5, Miesowicz
viscosities η1, η2, η3 [110] and η12 and shear wave viscosities ηA, ηB and ηC [53].

respectively. In their set-up Prost and Gasparoux [87] fix the magnetic field and rotate

the sample.

By taking this approach smaller sample sizes and larger applied fields are possible

resulting in greater accuracy.

The final set of mechanical techniques we discuss are the ultrasonic shear wave tech-

niques. Kiry [53] measured the viscosities of PCB by determining its complex shear

impedance. Measured viscosities are identified by the same line of reasoning employed

to delineate the Miesowicz viscosities. Figure 2.3 taken from Kiry and Martinoty [53]

identifies the measured viscosities ηA, ηB and ηC defined in table 2.1. Each viscosity is

identified by a different relative orientation of the ultrasonic displacement vector and di-

rector. The experiment involved measuring the reflection loss and phase change of an

acoustic pulse at normal incidence to a nematic quartz interface under different director

alignments. The planar alignments were obtained by rubbing the quartz substrate while

the homeotropic alignment was obtained by chemical treatment of the surface. The real

and imaginary parts of the complex impedance of the sample are related to the impedance

of the quartz, reflection loss and phase change [53]. Finally, the viscosity of the nematic

is related to the impedance and acoustic frequency. The technique requires precise con-

trol over the temperature of the sample in order to accurately measure the phase change.

Lastly, this method provides a direct test of the Parodi relations [53, 36]. If the Parodi

relations hold, the viscosities ηB and ηC should be equal. This was confirmed for PCB by

Kiry and Martinoty [53].
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Figure 2.3: Illustration of shear wave viscosities ηA, ηB and ηC originally published by
Kiry and Martinoty [53].

2.3.2 Optical methods

In addition to mechanical measurements various optical techniques exist to determine

some combination of viscosity coefficients. It is these newer techniques which generally

require smaller sample sizes and do not require specialised viscometry equipment that we

will be concerned with for the rest of this section. In general, optical techniques involve

measuring the dynamic change in light transmission through a nematic liquid crystal cell.

As nematics are birefringent, different polarisations of light are transmitted at different

rates. Adjusting the polarisers allow changes in polarisation state, due to the nematic

liquid crystal, to be measured as changes in intensity. A typical set-up for a cell with the

splay geometry is shown in figure 2.4.

One family of optical techniques involve measuring the change in optical transmission

as an applied field is turned on or off. These techniques associate a geometry-dependent

time constant τon, τoff with the exponential growth or decay of the director distortions.

These time constants, known as switching times, are defined by linearising the governing

equations about some initial configuration and seeking exponentially growing/decaying

solutions. The switching time is identified as the time constant of the slowest decay-

ing/fastest growing modes. By use of optical set-up similar to figure 2.4, the time de-

pendence of the director translates into a time dependent optical signal. Methods for

computing the optical transmission of a liquid crystal cell were discussed in 1.4.2. Calcu-

lations of switching times are carried out in [110] for bend and splay geometries with and

without fluid flow accounted for. Twisted and super twisted nematic devices are addressed

by Tarumi et al. [111].

In general, for a cell of thickness d the switch-off time has the form [110]

τoff =
γ∗1d

2

Keff

, (2.5)

50 Chapter 2 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

Figure 2.4: Schematic representation of the experimental set-up used for a cross polarised
intensity measurement. The nematic is anchored to the glass substrate by means of a
rubbed PI layer. A voltage is applied across the cell reorientating the nematic. Light
polarised at 45◦ to the initial director in transmitted through the cell. Components of
the polarisation parallel and orthogonal to the initial director are exposed to different
refractive indices. The phase difference determines the exit polarisation, the final polariser
and analyser allows this change to be measured as a change in intensity.

where γ∗1 and Keff are the effective rotational viscosity and elasticity. The exact form is

determined by the geometry of the system. The effective viscosity takes into account the

flow induced by the evolution of the small deformations. In the splay geometry for small

deformations, the effective rotational viscosity differs negligibly from the rotational viscos-

ity. However, this is not the case in the bend and twist geometries. By fitting to measured

optical data as a field is applied or removed, values for one or more viscosity coefficients

can be measured. This method assumes that the cell-size d and elastic constants Keff

can be determined independently. One early optical method optimised for thick > 150µm

homeotropic cells was developed by Pieranski, Brochard and Guyon [20, 80]. Their method

involved applying a stepwise magnetic field to a liquid crystal cell and measuring the re-

sulting transient in the transmitted intensity. In these thick cells the transient undergoes

many oscillations before decaying. By measuring the time lapse between successive max-

ima in transmission, a value for the switching time and hence rotational viscosity can be

obtained. Wu and Wu [116] used a similar technique to determine the rotational viscosity

in a thin 10µm, splay cell. They measured the decay of the phase lag introduced into a

linearly polarised light beam by a liquid crystal cell as the nematic relaxed after the appli-

cation of a stepwise potential. In general, a linear description of the dynamic response is

insufficient and the dynamics must be computed by solving the Ericksen Leslie equations

numerically. This approach was utilised by Kelly et al. [52]: the Ericksen Leslie equations

were solved for the response of a twisted nematic device to an applied voltage. By fitting
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the time dependent transmission to experimental data, values the values of γ1 and α4 +α5

were found.

A novel method of measuring the rotational viscosity has been suggested by Grinfeld et

al. [43] which exploits the ‘kickback effect’ in a splay cell. In the splay geometry, when a

large field is applied, the nematic in the centre of the cell aligns. However, at the edges

of the cell, a thin layer exists in which the director is rotated through π/2 radians with

respect to the alignment at the centre of the cell in order to obey the boundary conditions.

When the external field is switched off, the director first begins to relax at the sides of the

cell, where the distortion is large. This reorientation induces shear fluid flow, transferring

angular momentum towards the centre of the cell. This results in the counterintuitive

situation where the distortion at the centre of the cell initially increases before relaxing.

Grinfield et al. [43] determined the maximum angle the director is reorientated through

by the kickback effect after a large electric/magnetic field is turned off. This angle can

be analytically related to the rotational viscosity, bend elastic constant, cell width and

the Leslie viscosity coefficients αi i = 2, 4, 5 [43]. Grinfeld et al. proposed fitting to the

transient in the cross polarised intensity due to the kickback effect, but did not test the

technique.

We now examine efforts to accommodate and exploit the temperature dependence of

the Leslie viscosities. Wang et al. [115] used the work of Haller [46], de Jeu [37] and Imura

and Okano [49] to investigate the temperature dependence of the Leslie viscosities. Wang

et al. [115] included two fundamental effects in their model: variations due to the changing

order parameter and variations due to the increased kinetic energy of the molecules. Haller

[46] posit the following relation between the scalar order parameter and temperature:

S =

(
1− T

T †

)βH
. (2.6)

Here T † is a temperature just above the nematic isotropic transition (see Haller [46] for a

discussion) and βH (changed from β in [46]) a material constant. By measuring the tem-

perature dependence of the refractive index, the authors determined the material constant

β in (2.6) for E7 and UCF-2. Having determined the relation between order parameter and

temperature the authors the relations proposed by Imura and Okano [49] (IO relations) to

relate the Leslie coefficients to the order parameter. In these modified relations the Leslie

coefficients have a polynomial dependence on the order parameter, as in the original the-

ory developed by Imura and Okano [49]. However, in addition α4 is supposed to have an

exponential Arrhenius term to capture the isotropic part of α4. Wang et al. [115] also find

that γ1 is better described by the relation proposed by Wu and Wu [116]. The coefficients
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in these expressions are weakly temperature dependent and almost all are universal. As

a result they should have the same value for all liquid crystals. By taking advantage of

existing MBBA data at a range of temperature Wang et al. [115] obtain values for all

of the universal parameters viscosity relations. Measurements of the transient optical re-

sponse of a planar liquid crystal cell at a range of temperatures were used to determine the

non-universal parameters. The fitting was done by solving the Ericksen-Leslie dynamic

equations to compute the transient response of a splay cell from a highly distorted state.

The authors report values for all Leslie viscosities for the liquid crystal mixtures E7 and

UCF-02 at 20.3◦, 33.3◦ and 46.9◦ for E7 and 70◦ in UCF-02. Though this method is novel

and provides a wealth of information there are drawbacks. Firstly the method is not self

starting. In order to employ the fitting procedure described in [115] existing temperature

dependent data for the Leslie viscosities must be available. This tethers the uncertainty

associated with this method to existing data.

We conclude this section, by noting that there exist other classes of measurements.

For instance, it is possible to use NMR to probe the relaxation of the director. Bender,

Holstein and Geschke [10] used combined magnetic and electric fields to control the director

orientation with respect to the magnetic field used by the NMR. For a given set of fields

(B,E) different equilibrium configurations are possible. The dynamics of the director as is

reaches equilibrium is determined by the fields strength, γ1, χa, εa and the angle between

the fields. Using this set-up, they were able to measure different ratios of the rotational

viscosity, magnetic and electric susceptibility. By combining their measurements with

existing data for εa, they arrived at values for the rotational viscosity in the temperature

range 295 − 325◦ K for the liquid crystal BCH-5 F.F.F.

All of the methods discussed have certain inherent advantages and drawbacks. Mechan-

ical methods are typically very accurate. However, they rely on non standard equipment

and require large sample sizes in comparison to optical methods. Existing optical tech-

niques use transient measurements of transmission in various different cell geometries.

Though these techniques are simple to apply they place undue weight on the initial di-

rector configuration. In section 2.4 we will discuss a new optical method that does not

rely on transient measurements. Instead the dynamic optical response of the nematic to

a rapidly varying electric field is used.

2.4 A new optical method for viscosity measurement

In this section we report a new method for measuring some of the Leslie viscosities of a

nematic liquid crystal using a time dependent electric field. We explain in detail how to
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extend the standard CPI experiment discussed in 1.4 to measure viscosities and we present

results for various different liquid crystals. The viscosity measurements reported in this

section were performed by Dr Matthew Proctor (Physics and Astronomy) and the text

is partly based on a draft joint paper that we have co-written that will be submitted to

Phys. rev. applied.

2.4.1 Modelling the nematic response to periodic forcing

Our method is built on a typical cross polarised intensity (CPI) measurements used to

determine elastic constants, pre-tilt, birefringence and/or cell thickness as discussed in

1.4. We extend this method by using a time dependent driving potential to probe the

dynamics of the liquid crystal. This drives oscillations of the director about an average

deflection, determined by the amplitude of the applied field, which lead to modulations

of the light phase lag. These are detectable in the standard deviation of the CPI. The

director oscillations are coupled to the fluid flow within the cell and as a result optical

measurements are sensitive to multiple viscosity coefficients. We have found that for low

average deflections, the measurements are sensitive only to the rotational viscosity γ1, so

that this regime can be used to measure γ1. With γ1 determined, the oscillations about a

larger average deflections can be used to determine α4 + α5.

We start by examining the equations governing the evolution of the director under

the application of a time dependent potential. The director field n̂ is parametrised by

the angle θ that it forms with the x-axis, n̂ = [cos(θ(z)), 0, sin(θ(z))] where x and z are

defined in figure 2.4. In this configuration the fluid velocity of the nematic is given by

v = [v, 0, 0]. The governing equations take the form of two non-linear coupled partial

differential equations that describe the director and fluid dynamics [110]. The governing

equation for the director describes a balance between electrostatic torque and the elastic

restoring force in the nematic and includes a term coupling the director rotation to the

fluid flow. The fluid flow is due entirely to the reorientation of the director. In dimensional

form, the governing equations are [110]:

[K1 cos2(θ) +K3 sin2(θ)]
∂2θ

∂z2
+
K3 −K1

2

(
∂θ

∂z

)2

sin(2θ)

+
εaε0

2

(
∂φ(z, t;ω)

∂z

)2

sin(2θ)−m(θ)
∂v

∂z
= γ1

∂θ

∂t
, (2.7)

∂

∂z

[
g(θ)

∂v

∂z
+m(θ)

∂θ

∂t

]
= 0, (2.8)
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with

m(θ) =
1

2
[(α3 − α2) + (α3 + α2) cos(2θ)] , (2.9)

and

g(θ) =
1

2
(α3 + α2) cos(2θ)− α1

8
cos(4θ) +

1

2
(α3 + α4 + α5 + α1/4) . (2.10)

The boundary and initial conditions are,

θ(z = 0, t) = θ0

θ(z = d, t) = 0

θ(z, t = 0) = θ0(1− z

d
)

(2.11)

The electric potential is given by

φ(z, t;ω) =

∫ z

0

V (t;ω)

1 + εa
ε⊥

sin2(θ)
dz′

(∫ d

0

1

1 + εa
ε⊥

sin2(θ)
dz′′

)−1

. (2.12)

In these equations K1 and K3 are the splay and bend elastic constants, ε0 is the vacuum

permittivity and εa = ε‖ − ε⊥ the dielectric anisotropy of the nematic, with ε‖ and ε⊥

the component of permittivity along and orthogonal to the director respectively. The

rotational viscosity γ1 is related to the Leslie viscosity coefficients αi, i = 1, ..., 5 by

γ1 = α3 − α2. For most liquid crystals α1 and α3 are small in comparison to the other

viscosity coefficients. In formulating our model we have neglected fluid inertia, this is

typical and can be justified by analysing the ratio of time scales involved (see [98] chapter

5). The ratio of time scales is set by the number

Nr =
Re

Er
=
ρK1

γ2
1

(2.13)

where the Reynolds number is defined as Re = ρud
γ1

and the Ericksen’s number are defined

as Er = γ1ud
K1

with u is a characteristic velocity. For a typical liquid crystal with parameters

γ1 ∼ 100 mPas, ρ = 1000 kgm−3 and K1 = 10 pN we have Nr = 10−6. Hence any effect

due to fluid inertia is negligible and the flow equilibrates one million times faster than the

director does. With a given solution for θ(z, t), the cross polarised intensity is given by

equation (1.44). The oscillations in the director lead to modulations in the phase shift

across the cell detectable in the dynamics of the CPI trace. The standard deviation of the

CPI gives a measure of the dynamic response of the nematic and can be used to measure

its viscosities.
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In order to do this, it is important to understand the role played by the major viscosities

in equation (2.7) and (2.8). First we note that α1 and α3 are in general small in comparison

to the other Leslie coefficients. As discussed in section 2.3 page 47 γ1 = α3 − α2 sets the

time scale on which the director responds to an applied field and in conjunction with

γ2 = α3 + α2 ≈ −γ1 determines the strength of the coupling function m(θ). From the

form of g(θ) in equation (2.10) we can see that the combination α4 + α5 plays a role in

setting the magnitude of the velocity gradient regardless of the orientation of the nematic.

For a sinusoidal applied field, the measured signal is, in general, sensitive to both γ1 and

α4 + α5 and these two parameters cannot be determined independently from CPI data.

As an example, figure 2.5 shows the standard deviation of θ(z, t) and the velocity profile

for different values of γ1 and α4 + α5, each of which produces the same value for the

standard deviation of the CPI. To produce figure 2.5 the governing equations (2.7) and

(2.8) were solved numerically using spectral collocation [113] to discretise in space and

an implicit variable step algorithm (Matlab routine ode15s) to integrate in time. The

oscillations in θ, shown in figure 2.5, towards the edges of the cell are driven directly by

the alternating potential: here the LC alignment is not saturated by the strength of the

electric field and the time variations of the latter can induce fluctuations in the former.

These, in turn, induce the fluid flow responsible for driving the oscillations at the centre of

the cell. Decreasing the value of γ1 primarily increases the oscillations at the edge of the

cell, as the nematic is more able to follow the alternating potential, while α4 +α5 governs

the overall velocity gradient which plays a dominant role in setting the amplitude of the

oscillations at the centre of the cell. Degeneracy in the measurement of γ1 and α4 + α5 is

present because the optical measurements are insensitive to the region the oscillations are

taking place in, and as a result it is possible to compensate for a change in γ1 by changing

α4 + α5.

The degeneracy shown in figure 2.5 can also be detected by examining the relevant

minimisation landscape. When performing fits it is typical to minimise the sum of the

squared difference between theoretical and experimental values. For a two parameter

fit this process is equivalent to finding the lowest point on a landscape whose height is

the residual of the square distance, the minimisation landscape. Figure 2.6 shows the

minimisation landscape for simulations of the standard deviation of the CPI for voltage

values 3 to 20 V peak to peak at a frequency of 500 Hz. For the left plot the true values

of the viscosities were chosen to be (γ1, α4 + α5) = (269.8, 296.7) mPas, for the right

(γ1, α4 +α5) = (242.8, 445) mPas. The landscapes have a clear valley structure and shows

saturation at large α4 + α5. The valley structure indicates the same degeneracy as in

figure 2.5. The for the left-hand plot in figure 2.6 moving along the valley corresponds
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Figure 2.5: Amplitude of the director oscillations and velocity profiles across a standard
cell. The cell is driven by a 500 Hz sinusoidal voltage with a 20 V peak to peak amplitude.
For the solid black line γ1 = 203.6 mPas and α4 + α5 = 431 mPas. The red dash-dot
and the blue dash lines correspond to a change of γ1 of ±10% respectively. In both cases
α4 + α5 has been adjusted so that the standard deviations of the CPI was unchanged.

to compensating for a change in γ1, which alters the oscillations at the edges of the cell,

by changing α4 + α5, which effects the oscillations at the centre of the cell. There is a

slightly different feature apparent in the right-hand plot. The valley becomes vertical for

large α4 + α5 because at large α4 + α5 there is very little fluid flow and as a result the

oscillations at the centre of the cell shown in figure 2.5 are negligible. Hence, increasing

α4 + α5 further does not alter the behaviour of the nematic significantly. With this in

mind we may also interpret α4 + α5 as controlling the (inverse) strength of the coupling

between the director and velocity field. At low values the coupling is strong and fluid flow

is easily induced.

However, it is possible to break this degeneracy by operating at a low voltage. To

measure γ1 we require that equation (2.7) is uncoupled from the flow velocity of the

nematic, as in this way only γ1 enters the governing equation for θ. This can be achieved

if the velocity gradient is small. From equation (2.8) we see that it is driven by the source

term m(θ)∂θ
∂t

. Examining equation (2.9) and using the assumption that α3 is small, a value

of θ ≈ 0 will cause m(θ), and hence the source term in equation (2.8), to vanish.

As a result, oscillations in the director close to the θ = 0 state are sensitive only to γ1

and their amplitude can be used to estimate this parameter. Once γ1 is known, α4 + α5

can be estimated by the CPI oscillation amplitude at high voltage. We explore these two

regimes theoretically in the next subsection before presenting experimental results.
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Figure 2.6: Optimisation landscapes for two different sets of viscosity values. Colour
indicates the residual of the least square distance, blue being ≈ 10−6 and red being > 10−3.
The green cross indicates the true value of the viscosities used. The main feature is the
valley structure showing a degeneracy between γ1 and α4 + α5. In particular for a liquid
crystal with low γ1 and high α4 + α5 the valley is aligned with the α4 + α5 axis.

2.4.2 Low voltage measurement regime

To determine γ1 we use a modulated potential of the form

V (t) = Va cos(2πfHt) [1 + Vb cos(2πflt)] , (2.14)

where fH � fl is chosen so that the liquid crystal is unable to follow the rapid oscillations.

This choice also has the additional benefit of minimising ion movement. This form of

the potential is chosen so that the mean deflection can be set independently from the

oscillations of the director. Figure 2.7 shows the general trend in the standard deviation

of the oscillations of the CPI for mean deflection just above the Frederiks threshold. The

mean CPI is shown as an inset, the red region shows the range of the oscillations. The

oscillation amplitude varies as 1/ω and saturates at low frequency. At saturation the

director is able to follow the oscillating potential almost perfectly. To determine γ1 we use

the linear regime.

2.4.3 High Voltage measurement regime

To obtain value for α4 + α5 we seek a regime with large coupling to the flow. To this

end we have used both numerical and analytical approaches. As noted previously at low

deflection there is negligible coupling between the liquid crystal alignment and the fluid

flow. Using the method of matched asymptotic expansions to seek high voltage solutions

58 Chapter 2 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

Figure 2.7: Trend followed by the oscillations of the director as a function of the frequency
fl. The inset shows the corresponding mean CPI, the red region bounds the typical range
of the oscillations. The linear regime is used to obtain values for γ1.

to equations (2.7) and (2.8) we obtain leading order expressions for the deflection of the

director and the velocity of the nematic. The details of the derivation are in appendix A.1

and the main results are given by equations A.27.

Figure 2.8 shows the agreement between the matched asymptotics and numerical re-

sults for the director oscillations and fluid flow. The asymptotics capture the shape and

magnitude of the oscillations well, however, the asymptotics predict that there are times

at which the amplitude of the director oscillations vanishes everywhere throughout the

cell simultaneously. This feature is not present in the numerical simulations. For this rea-

son we do not use the analytical results when fitting to experimental data. This is likely

caused by a simplifying assumption in which the full detail of boundary layer structure

present in the mean deflection was neglected when computing the boundary layer in the

oscillations.

2.4.4 Experimental method

This section summarises the CPI experiments performed by Dr. M. Proctor. The experi-

mental set-up is identical to that outlined in section 1.4.1.

Standard LC cells were prepared using ITO glass substrates, coated with rubbed poly-

imide (PI). They were filled with one of the three LCs chosen for this investigation. The

choice of LCs (E7, TL205, ZLI4792) was driven by the availability in the literature of their
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Figure 2.8: Comparison of the solution to equation (A.26) and of equation (A.27) to
numerical simulations for an 18 µm cell filled with the liquid crystal E7. (Left) θ1 the os-
cillations in θ and ∆θ1 the difference between numerical and asymptotic solutions. (right)
Comparison of velocity profiles v and point-wise errors ∆v. The results from the matched
asymptotic expansions are in red, the blue points/broken line are from numerical simula-
tions, different curves correspond to 1/4, 1/2 and 3/4 of a period. The agreement of the
velocity shown on the right hand panels is excellent and ,due to symmetry, the blue curve
in ∆v is masked by the purple curve. However, the oscillations in θ shown on the left
panels predicted by the matched asymptotics fail to account for the relative phase of the
oscillations at different points in the cell.
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physical, electrical and optical parameters, so our results could be compared with them

and verified. In order to test the method using a range of cell thickness, different sized

spacer beads were used.

The experiment had three aims: to determine the static parameters of the liquid crystal

namely K1 and K3, to determine γ1 and to determine α4 +α5. The first step was to ramp

the amplitude of a 10 kHz voltage from 0-20 V peak to peak, and measure the average

intensity at each voltage; the resulting data were used to fit values for K1, K3, the cell

thickness, and pre-tilt. The fitting procedure for all of the experimental data is described

in more detail in 2.4.5.

To measure γ1 we used the potential given by equation (2.14). As discussed previously

this allows independent tuning of the mean deflection and oscillations as well as minimising

ion movement. Values of Va and Vb that result in a large variation of the CPI while inducing

only a small variation of θ were chosen. Typically the voltage would vary by ∼ 5% about

a point close to the Frederiks transition. The frequency fH was set to 10 kHz, while the

frequency fl was ramped in steps of 0.5 Hz from 0.1 Hz to 9.6 Hz. γ1 was then used to fit

to the data. This corresponds to the linear region in figure 2.7.

The measurement of α4+α5 was performed by ramping the amplitude of a 500 Hz signal

from 0 V to 20 V peak to peak in steps of 0.02 V(E7), 0.04 V(ZLI4792) and 0.05 V(TL205),

waiting 5 s for the transient to elapse and measuring the crossed polarised intensity at each

voltage value for 0.02 s. The standard deviation of the signal at each point was extracted,

and the resulting data were fitted by varying α4 + α5, and using the previously measured

value of γ1.

2.4.5 Fitting and Validation

In order to compute the cross polarised intensity, the governing equations (2.7) and (2.8)

were solved in Matlab using the method detailed by Mottram et al [70] to reduce the

coupled governing equations (2.7) and (2.8) to a single equation for θ containing a non

local source term representing the flow. A spectral collocation method [113] was used

to discretise space, and an implicit variable step algorithm (Matlab routine ode15s) to

integrate in time. As noted previously α1 and α3 are generally very small in comparison

to the other viscosities and so we have taken α1 = 0 mPas bad α3 = 0 mPas.

To compute the cross-polarised intensity the integral in equation (??) was computed

using a Clenshaw-Curtis quadrature [113]. Its average and standard deviation were ex-

tracted to compare it with the experimental data.

Fitting of the experimental data was done in two steps. First, the average of the cross

polarised intensity taken at 500 Hz and 10 kHz was fitted giving values for the cell size,
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d θ0 K1 K3 γ1 α4 + α5

E7 [115] 14.4 µm 0.5◦ 10.9 pN 18.0 pN 203.6 mPa s 431 mPa s

(280.8 mPa s) (316.8 mPa s)

TL205 15.0 µm 1.22◦ 16.5 pN 20.3 pN 303.0 mPa s 403.0 mPa s

(367 mPa s)

ZLI4792 [52] 11.7 µm 1.78◦ 14.8 pN 19.8 pN 109.6 mPa s 133.4 mPa s

(95.0 mPa s) (115.0 mPa s)

Table 2.2: Cell and material parameters for fitted viscosities for E7, TL205 and ZLI4792
obtained from the fits shown in figures 2.9-2.11. The available literature values are reported
in parenthesis below the corresponding fitted values. The literature parameters were
measured at 20.3◦C, 20◦C and “room temperature” respectively for the three LCs. The
TL205 literature datum is from the corresponding Merck data sheet.

n0 ne ε‖ ε⊥ Va Vb
E7 1.5282 1.7558 19.54 5.17 2.875 0.0365

TL205 1.527 1.744 9.1 4.1 5.54 0.018051

ZLI4792 1.4794 1.5763 8.3 3.1 5.6750 0.0485

Table 2.3: Optical, dielectric and voltage parameters used for numerical simulation. Va
and Vb define the voltage form given by equation (2.14) and Va is peak to peak.
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elastic constants and pretilt. These values were then used when fitting the viscosities to

the standard deviation of the oscillations of the CPI measured in the two regimes. The cell

thickness d determines the maximum polarisation phase shift in propagation. The pretilt

θ0 regulates how sharp the Frederiks transition is and, in conjunction with d, determines

the zero voltage intensity. The splay elastic constant K1 locates the Frederiks transition

and controls the low voltage portion of the trace. The bend elastic constant K3 only affects

the high voltage behaviour.

Fitting was done using a least square algorithm (Matlab routine lsqrcurvefit) as

follows: first the cell thickness, pretilt and splay elastic constant were fitted to the low

voltage portion of the trace (up to just above the Frederiks transition). With the values

of the cell thickness and pretilt fixed the entire data trace was fitted using the two elastic

constants as fitting parameters. The fitted values of thickness, pretilt and elastic constants

determined from the average of the 500 Hz or 10 kHz data were used for subsequent fits

to the standard deviation of the 500 Hz and amplitude modulated data.

Once thickness, pretilt and elastic constants were known, the viscosities were obtained

by a least square fit minimisation. The fit was performed using the Matlab constrained

optimisation function fmincon and the active-set and sqp algorithms. Where available,

we have used literature values of the viscosities as starting point for the minimisation

process (see table 2.2). Otherwise, reasonable guesses were used. To ensure convergence,

we have used an iterative fitting procedure. The low voltage, low frequency measurements

were fitted using only γ1 as a fitting parameter and keeping α4 + α5 fixed. With γ1 thus

found, the high voltage data was used to determine α4 + α5. With these updated values

for γ1 and α4 +α5, the process was repeated to ensure convergence. The final fitted values

of γ1 and α4 + α5 are shown in table 2.2 and the values of the non fitted parameters are

shown in table 2.3.

We have verified that the fitted values of γ1, deduced from the low frequency mea-

surements, are independent of α4 + α5. To this end we have determined the minimisation

landscape in a neighbourhood of the fitted values for γ1 and α4 + α5. The degeneracy

between these two sets of parameters discussed in section 2.4.1 implies that the landscape

has the shape of a valley steep in one direction, but fairly flat in the other. As discussed in

section 2.4, in general, increasing γ1 while decreasing α4 +α5 just moves the minimisation

point along the floor of the valley thus making it impossible to determine independently

these two sets of parameters. However, in the case of the low frequency measurements

that we have used to determine γ1, the minimisation valley is approximately parallel to

the α4 + α5 direction so that the fit is several orders of magnitude more sensitive to γ1

than α4 + α5, as expected (and desired).
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Figure 2.9: Fit to average and standard deviation of cross polarised intensity for E7. Left:
low frequency regime, solid red curve is theoretical fit black points are experimental. Right:
high frequency regime, solid black line is experimental data solid red curve is theoretical fit.
Insert: average CPI as a function of peak to peak amplitude: solid red line is theoretical
fit broken blue line is experimental data.

The experimental data along with the fits to Ericksen–Leslie theory are shown in

figures 2.9-2.11 while the fitted parameters and comparison with the literature values are

reported in Table 2.2. In general the theoretical fits agree well with the experimental

results and the obtained viscosity values are physically reasonable and in good agreement

with the literature.

2.4.6 Conclusions

We have presented a versatile and elegant technique, based on a familiar experimental set-

up, that quickly yields values for γ1 and α4 + α5. The method was verified for some well

known liquid crystals, such as E7, TL205 and ZLI4792, providing values of γ1 and α4 +α5

that are in good agreement to those found in the literature, as well as elastic constants, cell

thickness, and pretilt. This is done by working in a regime where α4 + α5 does not affect

the fluid flow, followed by working in a regime where both coefficients are relevant. Time

constants can then easily be calculated using the fitted parameters. Discrepancies between

measured and literature values can be attributed to experimental conditions, most likely

the differences in the temperature at which the time constant was measured. As an added
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Figure 2.10: As in figure 2.9, except that the LC is TL205.

Figure 2.11: As in figure 2.9, except that the LC is ZLI4792.
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Figure 2.12: The relative error on the high voltage 500 Hz measurements of the CPI from
top to bottom E7 (black), TL205 (blue) and ZLI4792 (red). The error is defined as the
ratio of the difference between experimental and theoretical values divided by their sum.
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bonus, the analysis of the measurement procedure and the complementary roles of γ1 and

α4 + α5 give a very clean and insightful example in the complex, but rewarding world of

fluid dynamics of liquid crystalline materials.

The method described here is very general and could be extended in some fashion

to different geometries, e.g. twisted cells, and LCs, including novel materials such as

nematic LCs doped with nano-particles [24]. The main issue with extending this method

to alternative geometries is retaining the ability to separate the viscosities. We now explore

how this method may be extended to characterise devices by using multiple measurements

taken at different points on the LC cell.

2.5 Wide area measurements of liquid crystal and cell

parameters

In this section we investigate how to use multiple measurements of the CPI taken at

different points on the cell to obtain information about the splay and bend elastic constants

of the liquid crystal, cell thickness and pre-tilt. We also discuss the use of statistical

methods to obtain effective bounds on the measured parameters. The measured CPI

data used in this section was obtained by Master students Matthew Sugden and Roger

Kirke under the supervision of Dr. M. Proctor and Prof. M. Kaczmarek. The statistical

methodology was devised with the help of Prof J. Forster.

The aim of this project is to measure variations in material parameters of a LC filled

cell over a relatively wide area. This system is composed of two components: the liq-

uid crystal and the cell hosting the liquid crystal. All parameters related to the liquid

crystal must necessarily be constant across measurements performed using a particular

cell. Hence, significant variations in the measured CPI indicate non-uniformities in the

cell itself. In addition to detecting non-uniformities the method developed here allows for

a more accurate determination of the liquid crystal elastic constants and an estimate of

the error on the measured parameters.

In the following subsections we detail the numerical model of the nematic, the statistical

methods used to analyse the data and finally we discuss the initial results of this project.

2.5.1 Theoretical modelling of the cross-polarised intensity mea-

surements

The steady director field at a given voltage is determined from Frank-Oseen theory dis-

cussed in chapter 1 and the electric potential is modelled by Maxwell’s equation for the
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Figure 2.13: The relation between the unprimed coordinate system used in 2.4 and that
used to account for pre-twist at the boundary.

electric displacement field. We minimise the Frank free energy given by equation (1.4)

for the general case of a director field within a twisted cell. If the standard spherical

coordinate angles (θ, φ) shown in figure 2.13 are used to parametrise the director the twist

angle becomes undefined when θ = π
2
. To avoid this problem we used a rotated coordinate

system given by xy
z

 =

0 0 −1

0 1 0

1 0 0


x
′

y′

z′

 , (2.15)

where the unprimed and primed systems are shown in figure 2.13. The polar coordinate

angles associated with the primed system are (α, β). Using this system the director is

given by n̂ = (− sin(β), cos(β) sin(α), cos(β) cos(α)) where α is measured up from the x′-

y′ plane and β is measured from the x′ axis within the x′-y′ plane. By using this coordinate

system we do not encounter a coordinate singularity provided the net twist does not exceed

90◦. The Frank-Oseen equations where solved using spectral collocation to discretise in

space and the implicit MATLAB routine ode15s to integrate in time. To compute the

transmitted intensity we use the extended Jones matrix method, details may be found in

the papers by Lien [58] and Yu and Kwok [117].

2.5.2 Fitting and statistical methods

We use a statistical model to obtain an estimate of the variation of d and pre-tilt across

a large area of the cell. We assume that the data measured at each site corresponds to

sampling from an unknown multivariate normal distribution N (µ(x, V ),Σ(V )) with mean

vector µ(V ) and covariance matrix Σ(V ), with V = Vi, i = 1, 2, ..., NV the voltage values
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at which the CPI is measured and x the position on the cell. It is important to note

that we have assumed the covariance matrix does not depend on position within the cell.

We have allowed for the mean intensity to vary with position to account for variations in

thickness, pre-tilt or other parameters. Conversely sources of error, which are captured

by the covariance matrix, are assumed to be identical at every point.

To obtain accurate estimates of the cell and material parameters we estimate both µ

and Σ for low voltages only, as we extract cell size and pre-tilt from the low voltage part

of the CPI. This involves fitting to multiple data traces measured at different locations

on the cell. Once we have estimated µ and Σ, a parametric bootstrap method is used to

obtain error estimates on d and pre-tilt. The bootstrapping process involves generating a

large number of traces with mean µ(x, V ) for each cell site x with noise determined by

Σ. By fitting to these traces we obtain a range of values for d and pre-tilt for each cell

site, from which we infer standard errors on both parameters. In other words we estimate

the distribution governing the experimental data and use this to estimate uncertainties in

d and pre-tilt. We now describe the procedure used to estimate µ and Σ.

The first stage in the analysis of the experimental traces is to perform a least squares fit

to obtain the material and cell parameters K1, K3, d and pre-tilt. As the elastic constants

K1 and K3 are properties of the liquid crystal used, they must not vary from measurement

to measurement. To enforce this constraint we divide the data for each cell into Ns subsets

containing Nt traces and fit to each subset using Nt-independent values for d and pre-tilt

and a single value for K1 and K3. For this portion of the fitting only we utilise the full

range of voltage values measured, several hundred points in the range 0 ≤ V ≤ 20 Volts.

From the Ns values for the elastic constants we compute the sample means K̂1, K̂3 which

we take as an estimate of the true value of K1 and K3. Next we fit to the low voltage

portion of the traces using the values obtained for the splay and bend constants in the

previous step.

The covariance matrix Σ(V ) is estimated as [112]

Σ̂ =
1

Np

Np∑
i=1

(Iexp(xi,V )− g(xi,V )) (Iexp(xi,V )− g(xi,V ))T . (2.16)

Here Np is the number of measurement points on the cell, Iexp(xi,V ) is the experimental

CPI at point xi on the cell for the range of voltages V = [V1, V2, ..., VNV
] and g(xi,V ) its

theoretical counterpart. Having computed Σ̂ a set of m traces is generated for each cell site.

The traces are formed by drawing m instances from the distribution N (µ̂(x,V ), Σ̂(V ))

for each x position on the cell. Finally we perform a least squares fit using cell size and

pre-tilt as fitting parameters.
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2.5.3 Results and analysis

Selected experimental traces and fits computed using the method discussed in subsection

2.5.2 are shown in figure 2.14. The remainder of the data and fits are in appendix A.2.

The agreement at low voltage is excellent and the deviations of theory from experiment

are confined to the high voltage portion of the trace.

At high voltage there are two features present in the E7 data in figure 2.14: the final

maxima in the top left experimental trace does not reach a normalised intensity of 1 and

the predicted asymptotic decrease in the CPI is more rapid in nearly all traces. The first

feature, lifting off of the final maxima, is present in only the top left trace in figure 2.14

and is most likely caused by scattering losses. The second feature, disagreement at high

voltage seen in most traces, is more of an anomaly and indicates that the distortion of the

nematic increases more rapidly with increasing voltage in the theory than in practise. At

these voltage values (V > 10 V) the nematic is aligned orthogonally throughout most of

the cell. The only region that is not aligned is at the boundaries. For this reason we have

attempted to determine what additional physics may be governing the alignment at the

boundaries under high voltage.

One possible contributing factor to both the lifting off, and incorrect asymptotic be-

haviour in our model is a small boundary pre-twist. The effect of including pre-twist is

shown in figure 2.15. Introducing a pre-twist changes the predicted traces in several ways.

The zero voltage intensity is shifted, the maxima and minima exhibit lifting off and the

final portion of the trace is shifted. The lifting off due to pre-twist shown in figure 2.15

mostly alters the final minima. As we do not observe this feature in the experimental

data we can bound the pre-twist to only a few degrees. This also eliminates the pre-twist

as a possible explanation of the lifting off in 2.14. The pre-twist does influence the final

portion of the trace and shifts the final maxima to lower voltage. We have found that

pre-twist cannot account for the deviation at high voltage. The pre-twist needed is too

large and causes lifting off where non is present in the experimental traces.

The second factor is finite anchoring effects. These may be added to our model by using

weak anchoring conditions derived from the Rapini-Papoular surface free energy density

[90] (see [110] for an exposition in English). Finite anchoring has the effect of stretching

and shifting the CPI towards lower voltages. Unfortunately attempting to fit to each of

the traces in figure 2.14 using finite anchoring strength does not reduce the error at high

voltage. It is possible that a combination of pre-twist and weak anchoring is responsible.

However, this leads to a proliferation of parameters we would need to determine: the

boundary pre-twist, pre-tilt, in-plane and out of plane anchoring energy densities. We

have not attempted to fit using all of these parameters.
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Figure 2.14: Examples of the crossed-polarised intensity as a function of the peak-to-peak
amplitude of the applied voltage measured at different point in the cell, red lines are theory
blue lines are experimental data. The fits shown correspond to one subset of data used
during the first step of the fitting process which involved subdividing the data and fitting
for K1, K3, d and pre-tilt. The liquid crystal used was E7 with planar alignment and
PI/PVK alignment layer.
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Figure 2.15: Trend of CPI for different pre-twist angles δφ0 = 0◦, 10◦, 20◦ degrees for a
12 µm, E7 cell with K1 = 11.7 pN, K2 = 8 pN and K3 = 19.5 pN with zero pre-tilt as a
function of peak-to-peak voltage. The initial intensity is shifted, there is lifting off, most
notably of the final minima, and the final portion of the trace is shifted.
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Figure 2.16: Cell thickness in microns (Top left), pre-tilt in degrees (Top right), error on
cell thickness (µm) (bottom left) and error on pre-tilt (degrees) (bottom right) for an E7
cell with PI-PI alignment layer. The points at which the CPI was measured formed a 8×6
grid.

The resulting thickness and pre-tilt maps for a typical LC cell filled with E7 or TL205

are shown in figures 2.16 and 2.17. The colour of the map indicates thickness (pre-tilt),

with blue colours indicating lower thicknesses (pre-tilt). The data was taken over a year

before it was analysed. As a result when figure 2.17 was constructed the data did not

appear to be lie on a 8 × 6 grid as had been recorded. Instead upon closer inspection

based on the periodicity of the data the TL205 data appeared to have been taken on a

12× 4 grid. For both of the cells there is a clear indication that the thickness is lowest in

the centre of the cell, and is thicker near the corners (where the spacers were introduced

between the two glass slides). There is no obvious correlation between the cell thickness

and the pre-tilt however the point-wise errors on the cell thickness and pre-tilt are well

correlated in space for both cells. The elastic constants and estimated errors are shown in

table 2.4. The error bars were obtained by taking the standard deviation of the values of

K1 and K3 obtained by subsetting.

A sample of the results from the parametric bootstrapping process are shown in figure

2.18. Figure 2.18 shows the results of fitting for the cell size and pre-tilt to the data

generated by the parametric bootstrap. In general there is a clear elliptical shape to the

distribution showing a correlation between changes in the cell thickness and pre-tilt as the

result of noise generated by the parametric bootstrap. This is expected as both of these
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Figure 2.17: Cell thickness in microns (Top left), pre-tilt in degrees (Top right), error
on cell thickness (µm) (bottom left) and error on pre-tilt (degrees) (bottom right) for an
TL205 cell with PI-PI alignment layer. The points at which the CPI was measured formed
a 12× 4 grid.

K1 K3 σ(K1) σ(K3)
E7 11.8 pN 15.7 pN 0.11 pN 0.107 pN
TL205 16.6 pN 23 pN 9.52× 10−2 pN 1 pN

Table 2.4: Splay and bend elastic constants for the liquid crystals E7 and TL205, the
standard deviation is also shown.

parameters influence the initial intensity. There is a correspondence between the plots

shown in figure 2.14 and figure 2.18. Comparing the first and second plots from the top

left of figure 2.14 and figure 2.18 we see that if the initial intensity is close to zero then the

nature of the distribution is altered. In the second case the parametric bootstrap process

produces two families of curves those with an additional minima and those without, this is

responsible for the clustering shown. This does not occur in the first subfigure as the zero

volt intensity is too close to zero and the noise added to the phase lag by the parametric

bootstrap cannot produce a new minima.

We have demonstrated that it is possible to combine multiple measurements of the

CPI to obtain information about the variations in cell thickness and pre-tilt across a liquid

crystal cell. Work by Treidel [7] has shown that it is possible to vary the thickness of a

liquid crystal cell using mechanical pressure, the resulting thickness profile is qualitatively

similar to those found here. Our method has the added advantage of being able to measure

74 Chapter 2 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

11.5101 11.6454
−0.2398

0.6285

11.4464 11.6912
0

2.2558

11.2354 11.3439
0.6255

1.8927

11.0612 11.1683
0.9487

1.9338

11.015 11.1334
0.9433

2.032

11.0792 11.1904
1.0645

2.0984

11.3231 11.4209
0.6589

1.9534

11.6201 11.7204
0.9326

2.0848

11.2025 11.2941
0.3435

1.4789

11.0633 11.1644
0.8893

1.8822

10.9221 11.0175
1.1415

2.118

10.8183 10.9168
1.1923

2.1064

10.9062 10.9988
1.201

2.1328

11.0286 11.1196
1.1191

2.0525

11.2279 11.318
0.8043

1.8773

11.4003 11.5224
0.565

2.0381

Figure 2.18: Scatter plot of fitted values for the cell thickness (x-axis measured in µm)
and pre-tilt (y-axis measured in degrees). There is a one to one correspondence between
the subplots in this figure and in figure 2.14.
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the pre-tilt and elastic constants as well as providing error bounds on the parameters.
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2.6 User friendly measurement procedure

We are aiming to implement the measurement methods discussed in 2.4 and 2.5 into a

single device. As a first step we have collected the algorithms needed to perform the data

analysis into a graphical user interface (GUI). This section provides a brief overview of

the existing software.

The main GUI is shown in figures 2.19. The software is split into two user interfaces:

the first allows the user to import experimental data from text files, view and smooth the

data, the second performing the numerical fitting. The first GUI is shown in figure 2.20.

The main GUI 2.19 allows the user to fit K1, K3 the cell size and pre-tilt to the mean

CPI. The fitting algorithm involves essentially two steps: firstly when data is imported

into the GUI a peak detection algorithm is used to identify the maxima and minima in

the data (see figure 2.23). This allows bounds to be placed on the cell size and splits the

trace into the low and high voltage sections. The interface allows the user to manually

correct any mistakes in the peak detection process. Secondly the least squares fit is run

with fitting parameters as selected by the user. The low voltage part of the fit determines

K1, the cell size and pre-tilt, the high voltage section only determines K3. The routine

automatically samples the data to reduce computation time. A larger number of points

are used at low voltage where the data is sensitive to multiple parameters. At high

voltage only the extrema are needed. Fitting to the low and high frequency oscillations is

implemented in a similar way although without the need for peak detection. The wide area

measurements interface uses the procedure outlined in section 2.5.2 to split the multiple

traces into subsets. The results can be visualised via scatter plots (see for example 2.18),

line graphs or surface plots as depicted in figure 2.22.
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Figure 2.19: Main GUI panel with a single set of static CPI data displayed. The user
can input material parameters for an arbitrary liquid crystal or select from the database
included with the software using the right hand panel of the GUI. Selecting which results
to display as well as initiating fits is handled by the panel in the bottom left.
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Figure 2.20: Graphical user interface used to import CPI data from text files and produce
standardised MATLAB data files for use in the main GUI. This interface allows the user
to smooth both the mean CPI, the time-dependent CPI and the standard deviation of
the oscillations. The standard deviation in the CPI is automatically extracted from time
dependent data. The data is smoothed using either a moving average of the moving least
squares Savitzky-Golay filter, both of these are implemented using the MATLAB function
smooth.

Figure 2.21: The materials panel allows the
user to select, edit, save and load liquid
crystal material parameter data. In addi-
tion when performing fits to the static part
of the CPI the user has the option of fitting
using any combinations of the elastic con-
stants, cell thickness and pretilt as fitting
parameters.
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Figure 2.22: The high and low frequency part of the interface and the multiple point
analysis panel. Each allows the user to import data, run fits for the relevant parameters
as well as viewing and exporting the results.
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Figure 2.23: A graphical illustration of the peak detection algorithm. First, all data points
that lie immediately before and after the line I = 0.5 (shown in red) are identified. A
subset of these are labelled 1, 2, 3 and 4 in the figure. This allows the data trace to be
broken up into subintervals In for n = 1, .., N . Each of these subintervals contains either a
maxima or minima, for instance the interval I3 which contains a single minima. In general
for all but the first and last subinterval it suffices to use the maximum/minimum value
attained within the interval to identify the peaks. The first subinterval is treated using
the same process as shown by the second red line. In the case shown an initial minima is
detected. This process is also applied to the final subinterval.
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2.7 Conclusions

We have demonstrated that a new optical technique which probes the dynamics of a

nematic liquid crystal in the frequency domain can provide measurements of the Leslie

viscosities γ1 and α4 + α5. Although we do not find particularly good agreement between

the measured values for E7 and those from the literature we have not controlled the

temperature during these experiments which is likely the largest source of error. This

could be applied to doped nematics in which case the ability to control the frequency of

the driving field may reveal information that is not easily accessed by transient methods.

By combining the data from several measurements of the cross polarised intensity

we have devised a robust statistical method which us to incorporate: global constraints,

K1 and K3 are identical between measurements, and the computation of point-wise and

global errors. We have found that there is no spatial correlation between cell thickness and

pre-tilt. However, there is a rather strong spatial correlation between their uncertainties.

Additionally the cells appear to bow in towards the middle.
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Chapter 3

Homogenisation of systems with

static micro-structure

This chapter is the first of two dedicated to the use of homogenisation theory to study

the interaction between a nematic liquid crystal and dopant particles. In this chapter

first we review existing approaches to modelling nematic colloids in section 3.1, in section

3.2 we explain the homogenisation method using the example of diffusion in spatially

inhomogeneous media finally in section 3.3 we apply homogenisation to the problem of a

nematic liquid crystal hosting fixed metallic inclusions.

3.1 Literature review

In this section we review existing literature related to colloidal or doped nematics. We

begin in 3.1.1 by discussing the basic physical facts of these systems before reviewing

existing approaches to deriving effective medium theories. In the 3.1.2 we discuss the

method of mathematical homogenisation.

3.1.1 Nematic colloids

Colloidal nematic systems are formed from a suspension of nanometre to micron sized

particles held within nematic liquid crystal. These systems are typically manufactured

to alter the properties of the host nematic. Alternatively, the nematic component of the

system may act as a lab or tunable background medium to investigate the properties of

dopant particles. We are primarily interested in the first case.

The nature of the inclusions used ranges from simple metallic or dielectric particles to

more exotic ferroelectric [61, 62] or ferromagnetic [19, 23, 24, 83] particles. In general the
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dopants interact with both the nematic director and any imposed electromagnetic field.

The end result of this interplay is that the suspension possesses altered electric or magnetic

properties and, in addition, their ground state is no longer uniform. Instead, the director

is distorted due to the presence of dopant particles.

It is possible to roughly split nematic colloidal research into two regimes: strong and

weak anchoring. In the former particles typically induce topological defects in the nematic.

These are singularities in the director field that emerge due to the incompatibility between

particle anchoring and the uniform ground state of the nematic. In the latter the dopant

acts to enhance the response of the nematic to electromagnetic fields. In both regimes a

primary question is the stability of different colloidal suspensions. In the weak anchoring

regime this often means estimating the aggregation time, for strong anchoring this means

determining which of the many defect structures has the lowest free energy.

In the strong anchoring regime for homeotropic anchoring to a spherical particle

Stark [108] has shown that the stability of the dipole, Saturn ring and surface ring states

depend on the size, anchoring strength and strength of the applied field (see also the review

by Stark [109]). For weak anchoring Ruhwandl and Terentjev [94] studied the interaction

between a pair of spherical colloidal particles with homeotropic anchoring conditions. By

deriving a linearised theory valid at low anchoring or small particle size they obtained a

rough estimate of the particle aggregation time. This is proportional to the elastic con-

stant and viscosity of the nematic and inversely proportional to the square of the anchoring

energy. These results concern the interaction of individual or pairs of particles with the

nematic, we now examine suspensions.

When the anchoring is strong the nematic alignment is significantly disturbed and the

distortions mediate long range interparticle interactions. These systems often contain

complex defect networks stretching between particles. Numerical work by Araki and

Tanaka [3] predicted the formation of disclination loops encircling multiple particles. These

loops mediate complex interparticle interactions. Subsequent experimental [55, 101, 65]

and theoretical [114] studies have investigated the formation of disclination loops in various

colloidal systems. Defect structures formed around nano particles can also be used within

self assembly. Senyuk et al. [100] show that gold nano particles can be trapped by the

defects induced by large spherical colloidal dopants and demonstrate assembly of chains

and other structures through use of optical tweezers.

In this thesis we are primarily interested in the weak anchoring regime. This occurs for

systems with low anchoring energy density or small particles [95] in this regime topological

defects are absent. In this case the dopants alter the elastic, electrostatic and thermal

response of the nematic [85, 88] producing a new material. Despite the lack of disclinations
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and large elastic distortions the dopants can still have a non-trivial effect on the response

of the nematic. Various classes of particles have been considered, here we consider gold,

ferroelectric and ferromagnetic.

Gold

Gold inclusions have been shown to lower the nematic-isotropic transition temperature

and increase the conductivity albeit at the loss of conductivity anisotropy [85]. When

used in frequency modulated displays gold particles have been shown to result in faster

switching speeds [69] than pure nematics. Gold inclusions have also been used to tune the

dielectric anisotropy [88] resulting in lower operating voltages for liquid crystal devices.

Alternatively liquid crystals have been used as a host medium to study and tune the

plasmon resonance of the gold particles [86]. In this case it is the dielectric environment

provided by the nematic that alters the response of the inclusions. Recently nanoparticle

structures [100] have been explored as candidate tunable metamaterials. Podoliak et

al. [82] found that low concentration gold nano particle are sufficient to enhance optical

nonlinearity and also lead to altered anchoring strength and pretilt values.

Ferromagnetics

One class of colloidal nematics that have attracted a large amount of attention from

both theorists and experimentalists are systems doped with ferromagnetic particles. In-

terest in these systems was initially raised by Brochard and de Gennes [19]: they found

that the addition of dopants alters the response of the nematic host to external fields.

The nematic experiences a torque due to the surface anchoring to the dopants. As a re-

sult the orientation of the dopants is correlated with the director. The dopant particles

interact strongly with the applied field. The end result is an altered interaction between

the nematic and the magnetic field.

An effective medium theory for ferromagnetic systems was initially developed by Brochard

and de Gennes [19] and has been extended by Burylov and Raikher [23, 24] to include finite

anchoring strength and re-derived more formally by Calderer et al. [25]. The Burylov and

Raikher model has been experimentally tested by Podoliak et al. [83]. They find that at

low particle concentration there is good agreement with the Burylov and Raikher [23, 24]

model, at higher concentrations evidence of particle aggregation is found through mi-

croscopy. We now outline the main features of the effective medium theories for ferromag-

netic suspensions.

A free energy for the colloidal system was proposed by considering the interactions
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between the nematic and a single dopant particle [19, 23, 24]. The torque exerted by

the nematic on the dopant particles and vice versa are estimated for cylindrical dopants.

Surface interaction are shown to align the dopants parallel or perpendicular to the director.

The stability of each state depends on whether the anchoring is planar or homeotropic.

The final form of the free energy contains contributions due to the magnetic energy of

the dopants, mixing entropy and anchoring with the nematic. The free energy is derived

under the assumption that the dopants are already magnetised. Within this framework

the director n̂, dopant concentration f and dopant dipole m̂ are found by minimising the

total free energy. Burylov and Raikher [23] predict a segregation effect, a non-uniform

distribution of particles will form under an applied field. This effect occurs because, in

an appropriate geometry, a uniform applied magnetic field will result in a non uniform

director distribution. The dopants then migrate to regions where the elastic and magnetic

energies are at a minima. More recently Caldereret al. [25] derived the effective free energy

proposed by Burylov and Raikher [23] through a more rigorous homogenisation procedure.

The addition of ferromagnetic particles to a nematic liquid crystal can have addi-

tional effects beyond simply altering material parameters. Zadorozhnii [118] found that

for homeotropic anchoring the interactions between magnetic field, director and dopants

lead to a range of possible switching behaviours. For weakly coupled dopants there is

an inverse Frederiks effect in which the distortion first increases before decreasing and

vanishing at a critical field. In chapter 4 we find a similar change in switching behaviour

for a nematic liquid crystal doped with metallic particles.

Ferroelectrics

Ferro-electric particles are nano to micrometer sized particles that poses a permanent

electric dipole. Theoretical work has shown that ferroelectric suspensions posses reduced

Frederiks thresholds [91, 103], asymmetric Frederiks behaviour [30], increased [61] nematic

isotropic transition temperatures and an increase in nematic order [61, 42]. In general

many of these effects depend on the composition of the suspension. Reshetnyak et al. [91]

assumed the anchoring was strong enough that the dopant particles align with dipoles

parallel or anti parallel to the director. The free energy is modified to take into account

the mixing entropy of the particles and the interaction of permanent particle dipoles with

an applied field. The dopants are assumed to see an effective field given by the field in

the nematic multiplied by a local field correction, a phenomenological parameter. The

model predicts a decrease in the Frederiks transition due to the dopants. The model put

forward by Shelestiuk et al. [103] improves upon [91]. An effective medium theory is used to

replace the phenomenological local field correction factor with effective dielectric constants.
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Shelestiuk et al. [103] note that the effective permittivity entering the nematic free energy

differs from that which would be measured experimentally via capacitance measurements

due to the non-uniform nature of the material. This is because the spatial averages

< E ·D > and < E > · < D > are not in general equal in non-uniform materials [103].

Lopatina and Selinger developed a statistical mechanical model of ferro electric nano

particles in liquid crystals [61]. The starting point for their model is the interaction energy

between a liquid crystal and the dipole field of a spherical nano particle. They argue that

near the nano-particle the nematic director cannot follow the rapid variations in the electric

field. Hence, the director is assumed to be constant in the vicinity of each nano particle.

In general the dipoles are not all aligned in the same direction throughout space and hence

the free energy density is written in terms of the nano particle order tensor [61], which

expresses the mean orientation of the dipoles. Using this model Lopatina and Selinger

find that the nematic-isotropic transition temperature increases. The local interaction

between particle and host also couples the scalar order parameter to the applied field [61].

Although ferroelectric particles can increase the transition temperature the dilution effect

modelled by Gorkunov and Osipov [42] results in decrease of the transition temperature

for spherically isotropic particles.

Suspensions formed of liquid crystal TL205 or 18523 and ferro electric barium titanate

(BTO) or tin thiohypodiphosphate (SPS) particles were investigated by Podoliak et al.[84].

The dielectric, elastic and dynamic properties of these suspensions were investigated. In

total three different particle species were investigated: milled BTO, milled SPS and ablated

BTO the concentration by weight was estimated at ≈ 1%. The milled particle retain the

ferroelectric state while the ablated particle appeared dielectric in nature, possibly due

to heating during ablation [84]. The dielectric response was measured by a capacitance

method and an increase in the dielectric anisotropy was found when ferroelectric particles

were added [84]. The splay elastic constant K1 was measured by cross polarised intensity

measurements near the Frederiks transition. For the ferroelectric particles the splay elastic

constant decreased by approx 10% in 18523, larger decrease of up to 20% was observed

in TL205. This change in elastic behaviour was further investigated, the role of the

surfactant introduced to alongside the dopants was ruled out by manufacturing cells with

small amounts of surfactant and solvent added to the liquid crystal. In this case the change

in dielectric and elastic behaviour was not observed [84]. To further probe the origin of

the changing elastic behaviour K1 was measured for TL205 doped with the dielectric

ablated BTO particles, K1 was found to decrease by ≈ 15%. Finally the switching time

in a twisted cell was found to follow a more complicated relation with applied voltage

than for a pure liquid crystal [84]. Depending on the magnitude of the applied field the
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doped LC suspensions were found to reorient faster or more slowly than undoped cells [84].

Experimental work by Cook et al. [30] showed that low concentration ferronematics show

hysteresis behaviour in the DC Frederiks transition. This was postulated to be caused by

the reorienting of the dopant particles under the applied field. After cycling a cell from

0 to V volts the dopant are aligned by the field, as a result when the cycle is reversed

(V to 0 volts) a shift is observed in the Frederiks threshold of up to 0.8 Volts. The shift

originates from the internal field generated by the dopants.

3.1.2 Homogenisation literature

In the previous section we reviewed the existing approaches to deriving effective medium

theories for doped nematics. These suspensions are inherently multi-scale systems, that is

they involve physics which takes place across multiple different length scales, the scale of

the dopant particles themselves and the larger length-scale of the device or sample. One

method for treating this class of problems in and general manner is homogenisation theory.

This collection of formal up-scaling methods has proven to be effective when applied to

various multi-scale systems.

Homogenisation theory allows complex, often though not always periodic, multiple

scale problems to be decomposed into two sets of problems posed on two disparate length

scales. These two sets are referred to as the cell problems, capturing the small scale

physics, and the macroscopic or homogenised equations, representing the large length scale

behaviour of the system. In general, when dealing with periodic systems the cell problems

capture the physics occurring within a unit cell while the homogenised equations predict

the large scale variation across many such cell in response to external or internal forcing.

An introduction to the method of asymptotic homogenisation can be found in the book

by Pavliotis and Stuart [79], application to porous material is explored by Hornung [47],

the history is explored by Tartar [63]. Here we review the existing literature pertaining to

homogenisation and specifically homogenisation and liquid crystals.

The methods of homogenisation theory have been developed to study the solutions of

partial differential equations that involve a rapidly varying microstructure. This structure

is captured by some combination of the domain of the problem, whose geometry is often

complex and multiply connected, rapidly oscillating coefficients in the equations them-

selves. The challenge in each of these case is to obtain effective equations describing the

limiting case of vanishing microstructure. This results in a macroscopic or homogenised

descriptions in which the effect of the microstructure has been smoothed out. Formally a

general homogenisation problem can be stated as follows [1, 79]. A sequence of problems
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for some field uη is posed

Lηuη = fη x ∈ Ω (3.1)

along with sufficient boundary conditions. Here the parameter η gives the scale separation

in our problem, Lη is a sequence of differential operators and fη is a source term. For

periodic homogenisation η is the dimensionless period of the microstructure or the period

of oscillations in Lη. The task is then to obtain effective equations in the limit as η

tends to zero in some appropriate weak sense. The resulting equation for u, the limit

of the sequence uη, contains additional terms that represent the contribution from the

microscopic variations. This is often accomplished by using multiple scale expansions in

the parameter η. We now briefly outline the development of homogenisation theory.

In general homogenisation applies to quite general non-periodic multi-scale systems.

In this case relatively weak results are found by difficult formal methods. Typically these

results include bounds on material parameter and it is not usually possible to arrive at more

explicit expressions or to determine governing equations [63]. Major work in the general

area has been carried out by Tartar and Spagnolo who developed specialised notions of

weak convergence [102, 63]. Progress towards developing more useful techniques was made

during the 1970’s. A less formal approach was developed [4, 5, 6, 79], this approach known

as multiple-scale expansions allows one to guess the form of the homogenised equations

and cell problem by use of asymptotic expansions.

In addition to being a practical tool for finding governing equations the multiple scale

expansion method lead to the development of the two-scale convergence method by Nguet-

seng and Allaire [72, 1]. Their method applies to periodic problems and utilises the periodic

structure more efficiently by making use of the results of multiple scale expansions. The

end result is twofold a proof of convergence and an alternative form of the homogenisation

problem referred to as the two scale system. The two scale system contains contribution

from both the micro-scale and macro-scale. From a practical point of view the notion

of two-scale convergence allows for a justification of the guess made when employing

multiple-scale expansions (see [79] page 26, Lemma 2.34). Additional work has been car-

ried to further simplify the proofs of convergence such as the periodic unfolding method

developed by Cioranescu et al. [29]. Two-scale convergence has also been extended by

Nguetseng [73] beyond the periodic case.

The method used in this thesis is that of multiple-scale expansions. This is often

the first step used in a formal proof of convergence and in addition the method has

been extended beyond the periodic case to include more general problems. These include

materials in which the periodic lattice is distorted, this is realised by e.g. biological

systems and spatially amorphous systems [21, 92] are in which there are slow variations
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in the microstructure, e.g. diffusion problems [21] and in ion transport within batteries

[93, 21].

Homogenisation is applied to a wide range of physical phenomena. It is used to model

flow in porous media [56, 48], charge and discharge of batteries [93], study electrical ac-

tivity in biological systems [92], obtain effective mass theorems for crystalline solids [2]

and model the elastic deformation of perforated bodies [75]. In each of these cases the

main result is a computationally efficient model of the system being studied that provides

a direct and self consistent link between macroscopic parameters and microstructure. In

fluid flow problems this is typically realised by obtaining an equation for the macroscopic

flow velocity containing various terms describing the viscous interaction with the porous

microstructure. In the case of deformable materials there is often feedback between the

effective parameters, obtained by means of cell problems, and the macroscopic behaviour.

For a liquid crystal colloid the cell problems allow the extrapolation of macroscopic prop-

erties from the local interaction of dopant particles with the nematic.

Existing literature [104, 14, 15] proves under general conditions the convergence of the

homogenization scheme based on the director representation of the nematic liquid crystal.

Shen and Calderer [104] considers a system of periodic inclusions representing polymer

fibers anchoring to the liquid crystal via a Rapini-Papoular surface potential [110] under

application of a uniform magnetic field. By using the method of two-scale convergence [1]

a free energy is derived for the system in the limit of vanishing microstructure. The

resulting free energy contains an effective elasticity tensor and a polymer alignment term

representing the anchoring effect of the inclusions. This formalism has been extended to

non-periodic geometries [14] and random inclusions [15].

At first glance it is not obvious if the more formal approach offered by homogenisation

is entirely separate to the ad hoc methods employed in the physics literature or if one or

both of these approaches may be obtained as the limiting case of the other. Firstly both

the approach taken in the physics literature [23, 24, 91, 103] and the more formal approach

taken in the applied mathematics literature [104, 14, 15] describe the system using a free

energy approach. Where the approaches differ is in how additional degrees of freedom

are introduced and constrained. The method followed by Brochard and de Gennes [19]

consists of making free energy considerations to determine the preferred alignment of the

magnetic filaments within the nematic. Next a new free energy is proposed to describe

a ferro-nematic at low volume fractions under the assumption that grains align with the

director. The modified free energy contains an altered magnetic susceptibility for magnetic

misalignment and an entropy term. No changes are made to the elastic free energy of the

nematic to account for dilution. Burylov et al. [23, 24] follows a similar approach but
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allows for misalignment of the director and dopant particles. The initial attempts to

study ferro electric systems by Reshetnyak et al. [91] followed a similar method.

A typical homogenisation scheme involves a more formal process, we focus on the

method of two-scale expansions. An example of applying this method is given in section

3.2, the general procedure involves extracting a series of cell problems and a macroscopic

average equation from the governing equations of the full system by means of asymptotic

expansions. Physics included in the governing equations of the full system generates cell

problems and representative terms in the homogenised equation. As we will show in 3.3

under a homogenisation scheme an anisotropic elasticity tensor drops out of the analy-

sis (see [104, 14, 15, 11]) as an inevitable consequence of the volume excluded by the

inclusions. The form of the elasticity tensor is computed directly from the microscopic

geometry, no unknown phenomenological parameters are introduced. All parameters in-

troduced are computed from their accompanying cell problem in a self consistent manner.

As a result it is possible to compute the new material parameters as a function of inclu-

sions geometry and composition. In addition interaction that occur across length scales

can also be captured. The downside is that more work is required to include the breadth

of physics found in a mean field theory without sacrificing the generality of the geometry

considered. This is a particular problem in systems that are not truly periodic where

additional work has be undertaken to account for variations over the macroscopic scale.

To conclude, approaches based on homogenisation theory provide a set of microscopic

cell problems and a set of macroscopic equations or equivalently a macroscopic free energy

density. In general these governing equations must be solved simultaneously to determine

the system behaviour. The parameters introduced into the macroscopic equations, such as

the elasticity tensor, are defined by the cell problems. Each cell problem captures one or

more physical affects of the dopants on the nematic and explicitly includes the geometry

of the dopants. Thanks to this direct link to the microscopic geometry, different inclusions

geometries can be treated in a straight forward manner. Conversely the effective medium

theories of Burylov et al. [23, 24] produce a single free energy density containing new

variables representing the configuration of the dopants. The microscopic details such as

the size and shape of the dopants are confined to phenomenological parameters. Treating

differently shaped dopants would require additional work on a case by case basis under such

an approach. The trade off when employing homogenisation is an increase in mathematical

complexity in return for increased geometric generality and a self consistent method of

computing phenomenological terms.
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Figure 3.1: Domains used in defining scale separation. The macroscopic domain consists
of an open region D, with external boundary ∂D, constructed from unit cells Ω with outer
boundaries B and impermeable boundary Γi.

3.2 The method of homogenisation

In this section we provide an overview of the method of asymptotic homogenisation.

3.2.1 An example problem: The diffusion equation

Next we look at a simple example problem in homogenisation. The standard textbook

examples are, see for example [79, 47], diffusion in spatially varying media and homogeni-

sation of a uniformly elliptic PDE. We illustrate the method of homogenisation through

the problem of diffusion in a punctured domain, similar examples can be found in [79, 47].

The governing equations for such a process, after appropriate non-dimensionalisation are,

∇2u =
∂u

∂t
x ∈ D, (3.2a)

ν̂ ·∇u = 0 x ∈ Γi, (3.2b)

u (x) = ub x ∈ ∂D. (3.2c)

Here u is the concentration of diffusing particles, ν̂ is the unit normal on the obstruction

surface, the obstructions Γi represent impermeable regions in the domain of the problem

3.1 and we have assumed that the diffusion time-scale is O(1). The aim of performing a

homogenisation of (3.2) is to remove the complex microscopic details of the geometry and

obtain a system of governing equations in which the geometric details have been confined
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to effective material parameters. To accomplish this a small parameter is defined, η = Ly

Lx

where Ly is the size of a unit cell and Lx is the macroscopic size of the system. Next we

define a second spatial coordinate y = x
η
. The y coordinate can be thought of as tracking

position within each cell. We assume that all fields are functions of x and y. We expand

all fields and operators in the small parameter η,

u = u0 + ηu1 + η2u2 +O(η3), (3.3a)

∇ = ∇x +
1

η
∇y, (3.3b)

∇2 = ∇2
x +

1

η
(∇x ·∇y + ∇y ·∇x) +

1

η2
∇2

y. (3.3c)

To constrain the additional degrees of freedom we require all functions to be periodic

in y. Next we substitute (3.3) into (3.2) and equate coefficients of powers of η. At each

order we extract information about the behaviour of u0. The order η−2 terms give,

∇2
yu0 = 0 y ∈ Ω, (3.4a)

ν̂ ·∇yu0 = 0 y ∈ Γi. (3.4b)

Here we have used the decomposition of the macroscopic domain D into a repetition

of unit cells Ω. The resulting problem for the order η−2 terms (3.4) is solved within a

single cell subject to periodic boundary conditions. The solution to (3.4a) subject to

periodic boundary conditions is any function independent of the micro-scale, in other

words u0 = u0(x). Proceeding to order O(η−1) we find,

∇2
yu1 = 0 y ∈ Ω, (3.5a)

ν̂ ·∇xu0 + ν̂ ·∇yu1 = 0 y ∈ Γi. (3.5b)

First we ensure that the solvability condition for u1 is satisfied. The solvability con-

dition is found by projecting (3.5a) onto the kernel of the adjoint of the operator defined

by L = ∇2
y and equiped with periodic boundary conditions. The kernel is spanned by

functions of x only, without loss of generality we write the solvability condition as∫
Ω

∇2
yu1dV = 0 (3.6)
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Next we apply the divergence theorem and boundary condition (3.5b)

∫
Ω

∇2
yu1dV =

∫
Γ

ν̂ ·∇yu1dS,

= −
∫

Γ

ν̂ ·∇xu0dS,

= −
∫

Ω

∇y ·∇xu0dV,

= 0. (3.7)

We see that the solvability condition is automatically satisfied provided u0 is indepen-

dent of y.

To uncouple the problem for u1 in (3.5) we make the ansatz u1(x,y) = χk(y) ∂u0
∂xk

(x),

where all of the macroscopic dependence is absorbed into the derivative of u0. Substituting

for u1 we find the cell problem

∇2
yχk = 0 y ∈ Ω, (3.8a)

ν̂ ·∇yχk = −ν̂ · êk y ∈ Γi. (3.8b)

The cell problem (3.8) is solved inside a unit cell subject to periodic boundary condi-

tions. The solution to (3.8) is defined up to a constant, the value of this constant does

not influence the final solution. Finally at order O(η0) we find

∇2
xu0 + ∇x ·∇yu1 + ∇y ·∇xu1 +∇2

yu2 =
∂u0

∂t
y ∈ Ω, (3.9a)

ν̂ ·∇xu1 + ν̂ ·∇yu2 = 0 y ∈ Γi. (3.9b)

The solvability condition for (3.9a) is given by∫
Ω

∇2
xu0 + ∇x ·∇yu1 + ∇y ·∇xu1 +∇2

yu2dV =

∫
Ω

∂u0

∂t
dV, (3.10)

as before we apply the divergence theorem and use the boundary conditions (3.9b).∫
Ω

∇2
xu0 + ∇x ·∇yu1dV =

∫
Ω

∂u0

∂t
dV, (3.11)

Next we substitute for u1 from the cell problem. The homogenised equation for the
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diffusion problem is

∇x · (D∇xu0) =
∂u0

∂t
, (3.12)

where the effective diffusion tensor is given by

Dij =
1

‖Ω‖

∫
Ω

δij +
∂χj
∂yi

dV. (3.13)

Equation (3.12) gives the large scale dependence of the concentration of the diffusing

species. The original problem (3.2) required that we solve the isotropic diffusion equation

in a complex geometry containing multiple inclusions. Instead the homogenised equation

is solved in the same domain in the absence of any inclusions.

The presence of inclusions is captured entirely by the diffusion tensor (3.13). As would

be expected from symmetry considerations the diffusion tensor is isotropic for a regular

cubic array of spheres. For ellipsoids with major axis aligned with any coordinate Dij
is diagonal, off axis alignment or arbitrarily shaped inclusions produce large off-diagonal

terms. Dij captures the effect excluded volume has on the diffusion of the particle species.

Other typical problems that can easily be treated using homogenisation include: de-

termining the response of composite materials, fluid flow through porous media and

advection-diffusion problems [79, 47].

We now apply the method illustrated in this section to the more complicated problem

of a liquid crystal hosting metallic inclusions.

3.3 Homogenisation of liquid crystal colloids

In this section we use homogenisation theory to develop a model for a nematic liquid

crystal hosting metallic inclusions. This section is heavily based on a published paper

produced in conjunction with Dr. G. D’Alesandro and Dr. K. R Daly [11]. The main

difference between this section and [11] is that here we have altered the derivation. We

first derive the homogenised equations before extracting the slow manifold dynamics rather

than undertaking both of these problems simultaneously as in [11]. In subsection 3.3.1 we

outline the microscopic model of the system, in subsection 3.3.2 we estimate the parameter

region of validity for our model, we derive the homogenised equations in subsection 3.3.3.
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3.3.1 Modelling a liquid crystal with inclusions

We model the evolution of the nematic alignment using the Q-tensor formalism discussed

in 1.3. In constructing our model we make several assumptions about our system. In

order to apply homogenization we assume periodicity, i.e. the inclusions form a periodic

array of unit cells as shown in figure 3.2 with period Ly. Each cell consists of a volume Ω,

the hashed region shown in figure 3.2, containing liquid crystal and a metallic inclusion

of volume Ωnp with boundary Γi, where the subscript i labels the inclusions. We label

the external boundary of a cell B. The macroscopic domain D consists of an array of

unit cells, with macroscopic boundary ∂D. The system has a separation of scales which

we quantify by the smallness parameter η = Ly

Lx
, where Lx is the size of the macroscopic

system. The homogenization process involves studying the limiting behaviour of a system

as η tends to zero while the total size of the system remains constant. We consider a

system of constant size Lx as the size of the periodic microstructure Ly tends to zero and

the number of inclusions diverges. The inclusions are assumed to remain in fixed positions

and orientations, but, we pose no restrictions on their geometry.

We are interested in the case where neither the surface energy nor the bulk energy

dominates the behaviour of the system. We expect that in this regime there will be a

richer interplay between the two constituents, particles and liquid crystal, that will show

the potential of homogenization theory to obtain realistic macroscopic equations. To this

end we require that the ratio of bulk to surface energy remains constant as η tends to zero.

This imposes constraints on the strength of the surface anchoring in the system because

the total surface area of the inclusions tends to infinity as η tends to zero. To determine

the scaling of the anchoring energy we estimate the total bulk elastic and surface energy

in the system. For the system pictured in figure 3.2 the dimensional bulk elastic energy

F̃B and surface energy F̃S are given by,

F̃B =

∫
D

L̃

2
‖∇̃Q̃‖2dV ∼ Vlc

L̃

2
, (3.14a)

F̃S =
∑
i

∫
Γi

µ̃

2

(
Q̃ − Q̃S

)2

dS ∼ AΓ
µ̃

2
, (3.14b)

with Vlc the total volume of liquid crystal, AΓ the total contact area with the inclusions,

Q̃S is the preferred surface alignment, L̃ is an elastic constant and µ̃ is the anchoring

energy density. For spherical inclusions of radius r = ηr0 the total surface area of the

inclusions is AΓ = 4πr2
0η

2N where N is the total number of inclusions. The total number

of inclusions in the system is N = 1
η3

, hence the surface energy F̃S scales as µ̃η−1. The

total bulk elastic energy is independent of η, hence, for a system with a constant ratio of

96 Chapter 3 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

D

Ly

Lx

Ω

Γi
B

Ω
np

Figure 3.2: Domains used in defining scale separation. The macroscopic domain consists
of an open region D, with external boundary ∂D, constructed from unit cells Ω with outer
boundaries B and inclusions of volume Ωnp and boundary Γi.

surface to bulk free energy the anchoring energy density µ̃, must scale as η. In addition

to this global constraint on the total surface interaction energy we also require that the

anchoring on each inclusions is weak enough as to not induce defects. Taking the results

of Kuksenok [54] as a guide, no defects form if µ̃r/L̃ � 4. As both µ̃ and r scale with η

this relation is always satisfied in the homogenization limit, η → 0.

3.3.2 Microscopic governing equations and a priori estimates

We describe the alignment of the nematic by the Q-tensor [35] introduced in equation

(1.1) and discussed in 1.3. We define the electrostatic tensor

Ẽ =

√
3

2

[
∇̃φ̃⊗ ∇̃φ̃− (∇̃φ̃ · ∇̃φ̃)

I
3

]
, (3.15)

where φ̃ is the electrostatic potential. We follow the approach outlined by Sonnet et

al. [105] and express the scaled Q-tensor, preferred surface alignment tensor QS and elec-

trostatic tensor Ẽ on the basis of traceless symmetric tensors. The components on this

basis are

ãm = Tr
[
T (m)Q̃

]
, (3.16a)

ẽm = Tr
[
T (m)Ẽ

]
, (3.16b)

ãSm = Tr
[
T (m)Q̃S

]
, (3.16c)
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which form the m-th components of the vectors ã, ẽ and ãS, where T (m), m = 1, ..., 5

are a basis of traceless symmetric tensors defined by equations (3.17).

T (1) =
1√
6

(−ê1 ⊗ ê1 − ê2 ⊗ ê2 + 2ê3 ⊗ ê3) , (3.17a)

T (2) =
1√
2

(ê1 ⊗ ê1 − ê2 ⊗ ê2) , (3.17b)

T (3) =
1√
2

(ê1 ⊗ ê2 + ê2 ⊗ ê1) , (3.17c)

T (4) =
1√
2

(ê1 ⊗ ê3 + ê3 ⊗ ê1) , (3.17d)

T (5) =
1√
2

(ê2 ⊗ ê3 + ê3 ⊗ ê2) , (3.17e)

The governing equations for the alignment of the nematic can be derived from the dissi-

pation principle discussed in 1.3. Here we neglect fluid flow and set all viscosities in (1.31)

to zero except for ζ1. In non-dimensional form the governing equations are

ξ2
0∇2a+ χae+M(a)a =

∂a

∂t
x ∈ D, (3.18a)

ν̂ ·∇a = W (aS − a) x ∈ Γi, (3.18b)

a = b (x) x ∈ ∂D, (3.18c)

where b(x) is the prescribed value of a(x) on the macroscopic boundary ∂D, ν̂ is the unit

normal on Γi. The non-dimensional elastic constant is given by ξ2
0 = 9CL̃

2B2L2
x
, χa = 9ε0∆εC2Ṽ

2L2
xB

3

is the dimensionless dielectric anisotropy, W = µ̃Lx

2L̃
is the dimensionless anchoring strength

and Ṽ is a characteristic potential. The non-dimensional time t and spatial position x are

t = 2B2

9Cζ1
t̃ and x̃ = Lxx, with x̃ the dimensional spatial position. The components of the

Q-tensor and electrostatic potential are scaled according to ã = 2B
3C
a, ãS = 2B

3C
aS, φ̃ = Ṽ φ

and ẽ = 2B
3C
e. The non-linear thermotropic contribution to the evolution equations are
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confined to the thermotropic term M(a) given by (3.19).

M(a) = TI +



3a1 −3a2 −3a3
3
2
a4

3
2
a5

−3a2 −3a1 0 3
2

√
3a4 −3

2

√
3a5

−3a3 0 3a1
3
2

√
3a5

3
2

√
3a4

3
2
a4

3
2

√
3a4

3
2

√
3a5

3
2
a1 + 3

2

√
3a2

3
2

√
3a3

3
2
a5 −3

2

√
3a5

3
2

√
3a4

3
2

√
3a3

3
2
a1 − 3

2

√
3a2


, (3.19)

and

T = −T0 − 2
5∑

k=1

a2
k. (3.20)

The electric field is governed by Maxwell’s equation ∇ ·D = 0. We model the gold inclu-

sions as macroscopic ideal conductors, ignoring finite size effects. The electric potential is

hence subject to a floating potential on the metallic inclusions. Expressed in terms of the

non-dimensional electrostatic potential φ this reads

∇ · [(I + αQ)∇φ] = 0 x ∈ D, (3.21a)

φ = V0(x) x ∈ ∂D, (3.21b)

φ = Ci x ∈ Γi, (3.21c)∫
Γi

ν̂ · (I + αQ)∇φdS = 0 x ∈ Γi, (3.21d)

where α =
√

2
3

∆ε
εu

2B
3C

with εu the isotropic dielectric coefficient. Ci is the constant potential

attained on the surface Γi of the i-th inclusion. The value of this constant is determined by

the macroscopic boundary conditions (3.21b). V0(x) is the prescribed value of the potential

on the macroscopic boundary ∂D. The non-dimensional elastic constant ξ2
0 and dielectric

anisotropy χa are very small. For a typical liquid crystal mixture with parameters given by

table 3.1 ξ2
0 = 4.39 ·10−7 and χa = 5.13 ·10−6. Conversely the thermotropic term M(a)a is

O(1) indicating that the liquid crystal dynamics, equation (3.18a) has at least two different

time scales [34]. Evolution on the fast time scale is determined by the thermotropic term

M(a)a which drives the Q-tensor into the uniaxial state [34]. We are interested in the

reorientation of the liquid crystal due to the elastic and electrostatic energies. The re-

orientational dynamics occurs on a far slower time-scale as they are driven by the weaker

elastic and electrostatic terms.

Given the natural time-scale separation present in (3.18a) we split the derivation into
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K = 15 pN S = 3+
√

9−8T0
4

A = 0.13 · 106 JK−1m−3 ε⊥ = 4.1
B = 1.6 · 106 JK−1m−3 ε‖ = 9.1
C = 3.9 · 106 JK−1m−3 Lx = 32 · 10−6 m

T0 = −10 γ1 = 0.081 Pa s

µ̃ = 3.23 · 10−8W Jm−2 ξ̃2
0 = 4.631 · 10−8

χa = 7.221 · 10−7

Table 3.1: Parameters used in numerical simulations, values represent a typical liquid
crystal.

two steps. Firstly, we apply the methods of homogenisation to confine the details of the

microscopic geometry to effective material parameters. Secondly we utilise the method of

multiple scales to simplify the dynamics of our system [34].

As discussed earlier, in this chapter we consider the case where the ratio of surface to

bulk energy remains constant as η → 0. As η → 0 the total surface area tends to infinity.

We have shown, using equations (3.14) that in order for the total surface energy to remain

finite the surface anchoring energy density must scale linearly with η, in other words W

is O(η). We therefore define a scaled anchoring energy W1 as W = ηW1. Although under

this scaling the surface anchoring energy density tends to zero as η → 0 it should be noted

that the total surface energy remains finite, and in general, non-zero.

Before we proceed to apply homogenisation theory to our system we identify the physi-

cally relevant range of anchoring energies that our model applies to. We assume inclusions

are fixed and do not nucleate defects. As noted previously the weak anchoring condi-

tion [54] always holds in the homogenisation limit. Assuming fixed inclusions is likely to

be valid provided inclusions do not aggregate on the experimental time scale. In a real

system η 6= 0, hence, we now estimate values of W1 that do not induce defects.

Using the parameters in table 3.1 we find that the anchoring energy density scales as

µ̃ = 3.28·10−8ηW1 Jm−2. For a typical liquid crystal cell used in our numerical simulations

Lx = 32 µm, Ly = 1 µm and a particle of radius 50 nm, weak anchoring corresponds to

W1 � 40000.

Ruhwandl and Terentjer [94] identify the aggregation time using a director based model

by considering the elastic interaction between separated colloidal particles. The aggrega-

tion time is given by [94]

τag =
0.5Lν

µ̃2

(
1

c7/3
− 1

c
7/3
m

)
(3.22)

where ν is a characteristic viscosity taken to be ν = 0.1Pa s and cm = 0.74 is the maximum

colloidal packing fraction. Using table 3.1 and the above parameters, the volume fraction
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of particles is c = 5·10−4 giving an aggregation of τag ≈ 25 weeks for W1 = 100. We expect

the theory developed here to apply to low volume concentrations, i.e. c ≤ 0.01. However

for the purpose of numerical verification it is easier to simulate systems containing larger

inclusions, and hence larger volume fractions. To summarise our model is tailored towards

systems in which the anchoring to an individual inclusion is weak enough to not induce

defects and in which the overall effect of the anchoring on the nematic alignment does not

dominate the system.

3.3.3 Static inclusions Homogenisation

To homogenize equations (3.18) and (3.21) we use a perturbation expansion in the small

parameter η. We define a microscopic scale y by the relation y = x
η

and assume that all

fields are, a priori functions of x and y. We use the chain rule and expand φ, a, Q, e, the

floating potentials Ci and the spatial derivatives as a series in η:

∇ =
1

η
∇y + ∇x, (3.23a)

a = a0 + ηa1 + η2a2 +O(η3), (3.23b)

φ = φ0 + ηφ1 + η2φ2 +O(η3), (3.23c)

Q = Q0 + ηQ1 + η2Q2 +O(η3), (3.23d)

e =
e0

η2
+
e1

η
+ e2 +O(η), (3.23e)

Ci = C0i + ηC1i + η2C2i +O(η3). (3.23f)

where e0, e1 and e2 have components given by (3.24).

e0i = Tr

(√
3

2
[∇yφ0 ⊗∇yφ0] T (i)

)
, (3.24a)

e1i = Tr

(√
3

2
[∇xφ0 ⊗∇yφ0 + ∇yφ0 ⊗∇xφ0 + ∇yφ0 ⊗∇yφ1 + ∇yφ1 ⊗∇yφ0] T (i)

)
,

(3.24b)
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e2i = Tr

(√
3

2
[∇yφ0 ⊗ (∇yφ2 + ∇xφ1) + (∇xφ0 + ∇yφ1)⊗ (∇xφ0 + ∇yφ1)

+ (∇yφ2 + ∇xφ1)⊗∇yφ0] T (i)
)
, (3.24c)

for i = 1, ..., 5.

As discussed in section 3.3.2 we set W = ηW1 to ensure that our model captures the

weak anchoring limit. The method of homogenisation is as follows: we substitute equations

(3.23) into (3.18) and (3.21) and solve the resulting equations in ascending powers of η. In

doing so we impose appropriate solvability conditions at each order in η, requiring that all

equations have a solution. This requirement imposes constraints on the terms in (3.23).

Once we have proceeded to O (η2) we will have sufficient constraints to determine the

leading order behaviour of the system.

The O (1) equations

Substituting equations (3.23) into (3.18) and (3.21) and retaining terms of order O(1) we

obtain

ξ2
0∇2

ya0 + χae0 = 0 y ∈ Ω, (3.25a)

ν̂ ·∇ya0 = 0 y ∈ Γi. (3.25b)

The leading order electric potential is governed by,

∇y · [(I + αQ0)∇yφ0] = 0 y ∈ Ω, (3.26a)

φ0 = C0i y ∈ Γi, (3.26b)∫
Γi

[(I + αQ0)∇yφ0] · dS = 0 y ∈ Γi. (3.26c)

Notice that φ0 = φ0(x) and a0 = a0(x) solve (3.25) and (3.26) provided that the

condition,

φ0 = C0i y ∈ Γi, (3.27)

are satisfied. Condition (3.27) constrains the potential to a constant unknown value on

the surface of the i-th inclusions. If φ0 varies only on the macroscopic scale x there will be
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a small change in its value, of O(η) across a unit cell: as a result condition (3.27) cannot

be satisfied and needs to be modified slightly. We Taylor expand φ0 about a point xi on

Γi

φ0(x) =φ0(xi) + (x− xi) ·∇xφ0(xi) + (x− xi)T H (φ0) (xi) (x− xi)

+O
(
(x− xi)3) , (3.28)

where [Hφ]nm =
[

∂2φ0
∂xn∂xm

]
x=xi

. By using the relation x = ηy we obtain,

φ0(x) =φ0(xi) + η (y − yi) ·∇xφ0(xi) + η2 (y − yi)
T H (φ0) (xi) (y − yi)

+O
(
η3
)
.

(3.29)

Hence we modify the boundary condition (3.27) to,

φ0(xi) = C0i y ∈ Γi. (3.30)

Substituting equation (3.29) and (3.23c) into equation (3.21d) and using (3.23f) we obtain

an appropriate boundary condition for φ1,

φ1 = −(y − yi) ·∇xφ0 + C1i y ∈ Γi (3.31)

The value of the constant C0i will be fixed at higher order using the macroscopic boundary

conditions.

The O(η) equations

At O(η) using a0 = a0(x) and φ0 = φ0(x) we find,

∇2
ya1 = 0 y ∈ Ω, (3.32a)

ν̂ ·∇ya1 + ν̂ ·∇xa0 = 0 y ∈ Γi, (3.32b)

and

∇y · [(I + αQ0)∇yφ1] = 0 y ∈ Ω, (3.33a)

φ1 = −(y − yi) ·∇xφ0 + C1i y ∈ Γi, (3.33b)∫
Γi

[I + αQ0] (∇yφ1 + ∇xφ0) · dS = 0 y ∈ Γi, (3.33c)
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where summation over repeated indices is implied. We have simplified equations (3.32)-

(3.33) using the constraints on a0 and φ0 found at O(1). We note that the electric field

contribution, e1, which would appear in equation (3.32a), is zero as φ0 is independent of

y. To ensure solvability for a1 we integrate equation (3.32a) over the volume of a cell

and use the divergence theorem along with boundary conditions (3.32b). The solvability

condition is found by integrating (3.32a)∫
Ω

∇2
ya1dV = 0 (3.34)

using the divergence theorem and boundary conditions (3.32b) we find∫
Ω

∇2
ya1dV =

∫
Γ

ν̂ ·∇ya1dS

= −
∫

Γ

ν̂ ·∇xa0dS

= 0 (3.35)

which is automatically satisfied. We now proceed to find the solution of equation (3.32a)

subject to (3.32b). We use the ansatz

a1(x,y) = χk(y)
∂a0

∂xk
(x), (3.36)

where we have absorbed the long scale spatial dependence of a1 into the derivative of a0.

Substituting equation (3.36) into (3.32a) and (3.32b) we obtain the standard cell problem

for elliptic homogenisation,

∇2
yχk = 0 y ∈ Ω, (3.37a)

ν̂ ·∇yχk = −ν̂ · ek y ∈ Γi, (3.37b)

The cell problem (3.37) is solved numerically inside a unit cube with periodic boundary

conditions on the outer sides, denoted B in figure 3.2.

Turning to equation (3.33) the solvability condition is obtained by integrating (3.33a)

over a unit cell and applying the divergence theorem,∫
Γi

(I + αQ0)∇yφ1 · dS = 0. (3.38)

Substituting equation (3.33b) into (3.38) we find that the solvability condition is satisfied.
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To obtain the cell problem for φ1 we make the ansatz,

φ1 =
3∑

k=1

Rk (x,y)
∂φ0

∂xk
+ φ̄1 (x) . (3.39)

Substituting equation (3.39) into (3.33) we find the cell problem

[δij + αQ0ij]
∂2Rk

∂yi∂yj
= 0 y ∈ Ω, (3.40a)

Rk = −(yk − y0k), y ∈ Γi (3.40b)∫
Γi

(I + αQ0)∇yRk(y) · dS = 0, y ∈ Γi (3.40c)

where k = 1, 2, 3 and we have set φ̄1 = C1i. The final cell problem (3.40) can be solved

numerically subject to periodic boundary conditions on B (see figure 3.2) once the leading

order alignment tensor Q0 is known. Unlike for equations (3.32) a separation of scales

is impossible and we cannot obtain a cell problem that is completely independent of the

macroscopic variable x. While this may appear to be a problem it suffices to solve (3.40)

for a discrete set of Q0 and interpolate.

The O(η2) equations

As a final step we collect terms of O(η2),

ξ2
0

(
∇2

ya2 + ∇x ·∇ya1 + ∇y ·∇xa1 +∇2
xa0

)
+M0a0 + χae2 =

∂a0

∂t
y ∈ Ω,

(3.41a)

ν̂ ·∇ya2 + ν̂ ·∇xa1 = W1 (aS − a0) y ∈ Γi, (3.41b)

∇y · [(I + αQ0) (∇yφ2 + ∇xφ1) + αQ1∇yφ1 + αQ1∇xφ0]

+ ∇y · [αQ2∇yφ0] + ∇x · [(I + αQ0) (∇xφ0 + ∇yφ1)]

+ ∇x · [αQ1∇yφ0] = 0 y ∈ Ω,

(3.42a)

∫
Γi

[(I + αQ0)(∇yφ2 + ∇xφ1) + αQ1(∇xφ0 + ∇yφ1)] · dS = 0 y ∈ Γi. (3.42b)
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Here

M0 = M(a0), (3.43)

and the matrix valued non-linear function M is defined by equation (3.19). As before we

require that equations (3.41a) and (3.42a) have solutions. We start by projecting (3.41a)

onto the kernel of the operator ∇2
y (equipped with periodic boundary conditions) which

is spanned by constants. The equation governing the alignment of the nematic is,∫
Ω

[
ξ2

0(∇2
ya2 + ∇x ·∇ya1 + ∇y ·∇xa1 +∇2

xa0) +M0a0 + ξ2
0χe2

]
dV =

∫
Ω

∂a0

∂t
dV

(3.44)

Next using the definition of e2 we have,∫
Ω

e2idV = Tr

[
∇xφ0 ⊗∇xφ0 (|Ω|+ 2|Ωnp|) T (i) +

∫
Ω

∇yφ1 ⊗∇yφ1dV T (i)

]
, (3.45)

where |Ω| is the volume of liquid crystal contained in a unit cell and |Ωnp| is the volume

of an inclusion and we have used∫
Ω

∇yφ1d
3y =

3∑
k=1

êk ·∇xφ0(x)

∫
Ω

∇yRk(y)d3y, (3.46)

and using the divergence theorem and boundary conditions (3.40b) it can be shown that∫
Ω

∇yRk (y) d3y =

∫
Γi

Rk (y) ν̂dS = |Ωnp|êk (3.47)

Using boundary condition (3.41b) to remove a2 and (3.45) we find the homogenised equa-

tion is

ξ2
0∇x · (K∇xa0) +M0a0 + χa

(
eM

(
1 + 2

‖Ωnp‖
‖Ω‖

)
+ p

)
+
ξ2

0W1

‖Ω‖

∫
Γ

(aS − a0) dS =
∂a0

∂t
.

(3.48)

Here

Kij =
1

|Ω|

∫
Ω

(
δij +

∂χj
∂yi

)
d3y, (3.49)

and the components of the macroscopic electric field eM and induced polarisation field p

are,

eMi = Tr
[
∇xφ0 ⊗∇xφ0T (i)

]
, (3.50)

106 Chapter 3 Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

pi =
1

|Ω|

∫
Ω

Tr
[
∇yφ1 ⊗∇yφ1T (i)

]
dV , (3.51)

The solvability condition for the electric potential is

|Ω|∇x · [(I + αQ0)∇xφ0] + ∇x ·
[
(I + αQ0)

∫
Ω

∇yφ1d
3y

]
= 0. (3.52)

Using (3.47) we find that the homogenised equation for the electric potential is

∇x · [(|Ω|+ |Ωnp|) (I + αQ0)∇xφ0] = 0. (3.53)

Reduced manifold dynamics

As mention previously the liquid crystal dynamics occur across two separate time-scales.

We now apply multiple scale analysis to extract the slow dynamics from equation (3.48).

Firstly using ξ2
0 as the small parameter equation (3.48) can be rewritten as,

ξ2
0∇x · (K∇xa0) +M0a0 + ξ2

0χ

(
eM

(
1 + 2

‖Ωnp‖
‖Ω‖

)
+ p

)
+
ξ2

0W1

‖Ω‖

∫
Γ

(aS − a0) dS =
∂a0

∂t
,

(3.54)

where χa = χξ2
0 . Now we expand a0 in a series in ξ2

0

a0 = a00 + ξ2
0a01 +O(ξ4

0), (3.55)

and replace the time derivative in (3.54) using the chain rule

∂

∂t
= ξ2

0

∂

∂t1
, (3.56)

where we have discarded the fast time-scale of the thermotropic free energy and track

only the dynamics occuring on the slow elastic time-scale t1. The leading order dynamics

produce

M00a00 = 0, (3.57)

where recalling that M0 is a matrix valued function of M00 = M0(a00). It follows from

(3.57) that the leading order scalar and biaxial order parameters are |a00| = S0 and

β0 = 1− 6Tr2(Q3
0)

Tr3(Q2
0)

= 0 [34]. S0 is determined by the temperature, S0 = 3+
√

9−8T0
4

. Condition

(3.57) fixes a00 onto the solution manifold consisting of uniaxial tensors of order parameter

S0. The remaining degrees of freedom will be determined at higher order in ξ2
0 . At order
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ξ2
0 we find

∇x · (K∇xa00) +M00a01 +

(
∂M00

∂a00k

a01k

)
a00

+ χ

(
eM

(
1 + 2

‖Ωnp‖
‖Ω‖

)
+ p

)
+

W1

‖Ω‖

∫
Γ

(aS − a00) dS =
∂a00

∂t
,

(3.58)

where
∂M00

∂a00k

=
∂M

∂ak

∣∣∣∣∣
a=a00

. (3.59)

To ensure solvability for a01 we project (3.58) onto the vectors V (k),

V (1) =
[

0 −2a003 2a002 −a005 a004

]
,

V (2) =
[
−
√

3a004 a004 a005

√
3a001 − a002 −a003

]
,

V (3) =
[ √

3a005 a005 −a004 a003 −
√

3a001 − a002

]
, (3.60)

where a00k, k = 1, ..., 5 are the components of a00. The vectors defined in (3.60) which

span the kernel of the operator M00. In the case of the nematic liquid crystal these vectors

have the additional properties of spanning the kernel of the Hessian of the thermotropic

part of the free energy density and being tangent to the solution manifold defined by

(3.57) [34]. First we recognise from (3.58) that the i-th component of the thermotropic

contribution can be written as

(M00a01 +

(
∂M00

∂a00k

a01k

)
a00)i =

(
(M00)ij +

(
∂M00

∂a00j

)
iq

a00q

)
a01j (3.61)

We recognise the bracketed terms Hij =

(
(M00)ij +

(
∂M00

∂a00j

)
iq
a00q

)
as the Hessian of the

thermotropic free energy. The vectors V (k) span kernel of Hij and are orthogonal to a0.

Projecting we find the final form of our governing equation is

V (k) · ∂a00

∂t
= V (k) ·

[
ξ2

0∇x · (K∇xa00) + χa

(
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

)
+W1ξ

2
0q

]
,

(3.62)

for k = 1, 2, 3, with the constraint that |a00|2 = S2
0 , that the leading order biaxiality is
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zero and where

q =
1

|Ω|

∫
Γ

aSdS. (3.63)

3.3.4 Validation

In order to validate equations (3.53) and (3.62) we compare their predictions with numer-

ical simulations of the full system, for two cases of inclusions in a twisted cell. In a twisted

cell the director is parametrised by

n̂ = (sin(θH) cos(φH), sin(θH) sin(φH), cos(θH)) , (3.64)

(see [110] page 101) with the x3-axis measuring distance into the cell. The tilt angle θH

is measured down from the x3-axis and the twist angle φH counter-clockwise from the

x1-axis. The first case consists of spherical particles with an applied electric field and the

second case ellipsoidal particles in the absence of an applied field, see figure 3.3. The cells

are of thickness Lx = 32µm, the particles are assumed evenly distributed with separation

Ly = 1µm, and the material parameters used are given in table 3.1. In the first case (a)

the spherical particles are of radius 0.3µm; in the second case (b) the semi major axis

of the ellipsoids is 0.3µm and the two minor axes are 0.1µm, the ellipsoids orientation is

given by (θp, φp) = (45o, 30o). With θp is measured down from the x3-axis and the twist

angle φp counter-clockwise from the x1-axis.

We apply a potential difference across the LC cell and compare the director profile

obtained by solving the full system of equations (3.18) and (3.21) using Comsol multi-

physics, a finite element package, to that obtained from the approximate system (3.53)

and (3.62). The full Q-tensor equations were implemented as a general form PDE in

Comsol while Maxwell’s equation for the electric displacement were implemented using the

electrostatics package. The metallic inclusions were modelled using the floating potential

condition to ensure that the electrostatic potential was constant across each inclusion. The

weak anchoring condition was implemented by specifying the flux of a on each inclusion.

The geometry consists of an array of unit cells along the x3-axis each containing a single

inclusion. We imposed periodic boundary conditions on the exterior sides parallel to the

x3-axis and strong anchoring conditions with zero pretilt and pre-twist on the sides parallel

to the x1-x2 plane. A free tetrahedral mesh of custom mesh size was used in the bulk of

the domain and a free triangular mesh was applied on the boundaries. We used the time

dependent solver with relative and absolute tolerances of 10−4, the default MUMPS linear

system solver and the solution to the homogenised equations as initial conditions.

To solve the homogenised equations we used a pseudo spectral code as described in
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[34] and we solved the cell problems (3.37) and (3.40) using Comsol. To compute (3.51)

the cell problem (3.40) must be solved as Q0 varies throughout the cell. We did this

by solving (3.40) for a range of values of Q0 and interpolating. We also computed the

response of an undoped cell for comparison using a spectral method. Figure 3.3 shows

a comparison between the homogenisation predictions, the full finite element simulation

and an undoped solution corresponding to the case where no particles are present. We

see that there is very good agreement between the homogenised equations and numerical

simulations for both spherical and ellipsoidal particles as shown in figure 3.3. In the case

of ellipsoidal inclusions (b) the alignment of the inclusions acts to break the symmetry of

the twisted nematic. This is visible as an asymmetry in plot (b) of figure 3.3.

3.3.5 Doped liquid crystals in a splay geometry

Having validated the homogenised equations, we now use them to study the effect of

dopants on two characteristic features of liquid crystal cells in a splay geometry, namely

the Fredericks transition, and the switch-on and switch-off times. In the splay geometry the

director is confined to the x1-x3 plane and varies only in the x3 direction with x3 ∈ [0, 1].

The director is parametrised by the angle θH (x3, t) measured from the x3-axis, n̂ =

(sin(θH), 0, cos(θH)); with this parametrisation the constraints on the order parameters

are automatically met. The governing equations (3.62) reduces to a zero twist constraint

and a governing PDE for the director angle θH . The director angle satisfies

∂θH
∂t

= ξ2
0K33

∂2θH
∂x2

3

+
χa
2S0

(√
3

3
F2(θH)− F1(θH)

)
sin(2θH)

(
∂φ0

∂x3

)2

+
χa
√

3

3S0

cos(2θH)F4(θH)

(
∂φ0

∂x3

)2

+
ξ2

0W

3S0

sin(2θH)

(√
3

2
q2 −

3

2
q1

)

+

√
3ξ2

0W

3S0

cos(2θH)q4,

(3.65a)

[
ξ2

0Wq3 + χaF3(θH)

(
∂φ0

∂x3

)2
] (

cos2(θH)− 1
)

−sin(2θH)

2

[
ξ2

0Wq5 + χaF5(θH)

(
∂φ0

∂x3

)2
]

= 0

(3.65b)

χa (sin(θH)F3(θH) + cos(θH)F5(θH))

(
∂φ0

∂x3

)2

+ ξ2
0W (q3 sin(θH) + q5 cos(θH)) = 0

(3.65c)
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Figure 3.3: Comparison of numerical simulation of the full and homogenised equations for
spherical and ellipsoidal particles inside a twisted geometry, zero pretilt at boundaries and
homeotropic anchoring on dopants. (a) Spherical particles of radius r = 0.3µm at applied
voltages of 1.5 V and 3 V (lower and upper curves respectively). (b) Ellipsoidal dopants
V = 0 with anchoring energy W1 = 50 (bottom) and W1 = 100 (top) orientation given by
(θp, φp) = (45o, 30o). The semi major axis of the ellipsoids is 0.3µm the two minor axes are
0.1µm. (a) & (b) Red points are from homogenisation, broken black line is undoped and
blue line from Comsol numerical simulations. (c) Absolute error Error = |θH − θN | where
θH is the tilt angle from the homogenised equations and θN is extracted from numerical
simulations of the full system. (d) Schematic diagram of the system studied: planar cell
of size Lx with spherical/ellipsoidal dopants with spacing Ly.
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θH(0, t2) = θH(1, t2) =
π

2
, (3.65d)

where K33 is defined in (3.49). Both K33 and qi (3.63), i = 1, ..., 5 may be computed once

the cell problem (3.37) is solved using Comsol. The functions Fi(θH), i = 1, ..., 5 can be

expressed in-terms of Rk, k = 1, ..., 5 the solutions to equations (3.40) (the electrostatic

cell problem). The relations are

F1(θH) = 1 +
1

|Ω|

∫
Ω

−1

2

(
∂R3

∂y1

)2

− 1

2

(
∂R3

∂y2

)2

+

(
∂R3

∂y3

)2

+ 2

(
∂R3

∂y3

)
dV, (3.66a)

F2(θH) =
1

|Ω|

∫
Ω

√
3

2

[(
∂R3

∂y1

)2

−
(
∂R3

∂y2

)2
]
dV, (3.66b)

F3(θH) =
1

|Ω|

∫
Ω

√
3

(
∂R3

∂y1

)(
∂R3

∂y2

)
dV, (3.66c)

F4(θH) =
1

|Ω|

∫
Ω

√
3

(
∂R3

∂y1

)(
∂R3

∂y3

+ 1

)
dV. (3.66d)

F5(θH) =
1

|Ω|

∫
Ω

√
3

(
∂R3

∂y2

)(
∂R3

∂y3

+ 1

)
dV, (3.66e)

We compute (3.66) over a uniformly spaced grid of θH values in the interval [0, π/2] and

interpolate. We use a spectral collocation method to solve (3.65) [113].

We consider two microscopic geometries: a regular array of spheres of radius R and an

array of ellipsoids of semi axes r1, r2, r3 of various orientations. Figure 3.4 shows how the

Fredericks transition depends on the particle radius for spherical dopants and on the aspect

ratio at constant surface area for ellipsoidal dopants. Figure 3.5 shows how the source

term and elasticity tensor vary with particle size/orientation for the systems in figure 3.4.

Spherical inclusions always reduce the Fredericks transition: the excluded volume effect

reduces the elasticity and the presence of metallic particles forces the potential to drop

across a smaller region of liquid crystal giving a larger field. Moreover for spherical dopants

there is no source term q present to stabilise the zero voltage configuration. Ellipsoidal

particles break the symmetry of the Fredericks bifurcation unless their major axis is aligned

parallel or orthogonal to the initial director configuration. The Fredericks transition may
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be lowered or raised depending on the competition between the excluded volume effects in

Kij, the source term q and the enhanced electric fields eM and p. By linearising (3.65a)

about the zero voltage solution, θH = π/2, we can obtain an algebraic expression for the

Fredericks transition,

VFT =

√√√√√ ξ2
0

(
3K33π2S0 +

√
3Wq2 − 3Wq1

)
χa

(
−F2

√
3 +
√

3 ∂F4

∂θH
+ 3F1

)
θH=π/2

. (3.67)

This formula is valid only if neither the electric field nor the inclusion alignment field

q induce a twist and θH = π/2 remains a solution. These constraints follow from the

governing equations (3.65). Substituting θH = π/2 into (3.65a) we must have

q4 = F4 = 0. (3.68)

The zero twist condition is given by equations (3.65b) and (3.65c), these are satisfied

for arbitrary θH provided

q3 = q5 = F3 = F5 = 0. (3.69)

For ellipsoidal particles (3.69) restricts the major axis of the ellipsoids to the plane

containing the director. If the major axis of the ellipsoids were to leave the plane the pre-

ferred anchoring on the inclusions and fringe fields would force the director out of plane

and the chosen parametrisation would no longer describe the system. The second con-

straint, (3.68), guarantees that there is a perfect bifurcation and is satisfied by ellipsoids

with homeotropic anchoring provided they are aligned with the initial director or perpen-

dicular to it. If (3.68) is not satisfied the Fredericks transition is softened as if there were

pretilt at the boundaries.

To obtain expressions for the switch-on and switch-off times from the uniform state

we linearise (3.65a) about θH = π/2 and consider the evolution of a small perturbation

satisfying (3.65d). For the case of zero applied voltage we obtain the non-dimensional

switch-off time while for an applied voltage exceeding the Fredericks threshold we obtain

the switch-on time (see [110] pages 220− 222)

τon =
3S0

χa

(
3F1 −

√
3F2 +

√
3 ∂F4

∂θH

)
θH=π/2

(V 2 − V 2
FT )

, (3.70)

τoff =
3S0

3S0π2ξ2
0K33 − ξ2

0W
(
3q1 −

√
3q2

) . (3.71)
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Figure 3.4: Bifurcation diagrams for spherical and ellipsoidal inclusions. Top spheres of
radius from 0.05µm in steps of 0.05µm to 0.45µm. Bottom: ellipsoids with major axis
r1 = 0.3µm and minor axis’ r2 = r3 = 0.1µm, oriented in the plane of the director at an
angle of 0o, 30o, 60o and 90o to the initial director alignment. Circles indicate the position
of the Fredericks transition computed using equation (3.67).
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Figure 3.5: Diagonal component of the elasticity tensor for spherical inclusions and com-
ponents of the source term q for ellipsoidal particles confined to the x1-x3 plane. The angle
θp is measured from the ellipsoids major axis to the x3 axis, q3 = q5 = 0 (not shown). The
approximate linear relation between K33 and r3 indicates that the excluded volume effect
is dominant.
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It should be noted that even though we have neglected fluid flow in these formulae

the correction to the switch-on times due to induced fluid flow within a planar cell is

minimal for most liquid crystals (see [110] page 228), likewise the correction to the switch-

off time from a slightly distorted state is small. Figure 3.6 shows how the switching times

vary with aspect ratio for a range of ellipsoidal particles with homeotropic anchoring.

Particles are either aligned with the initial director or orthogonal to it. In the case of

alignment with the initial director the homeotropic anchoring destabilises the zero voltage

solution and we see a decrease in the switch-on time and an increase in the switch-off

time. This situation is not completely reversed for particles aligned parallel to the initial

director. In this case the effective field acts as a restoring force and decreases the switch-off

time. However the enhanced electric field dominates and the switch-on time decreases as

well, despite the reduced elastic constant and unfavourable source term. This example

illustrates how doping with particles may be used to tailor the properties of the LC to

specific applications. The simplicity and computational efficiency of the homogenisation

method makes optimising these properties a realistic prospect.

Equation (3.67) suggests that by carefully choosing both the inclusions geometry and

anchoring strength it may be possible to obtain an extremely low value for the Fred-

eriks transition. In general the value of VFT is lower for larger inclusions, because of

reduced elasticity and increased effective susceptibility, and for inclusions whose anchor-

ing q reduces the stability of the zero voltage ground state. Similar considerations can

be applied to the switching times given by equations (3.70) and (3.71). The switch-on

time is shorter, leading to faster devices, if the effective susceptibility is increased or the

Frederiks transition is decreased. To summarise VFT and τon are smaller for larger volume

fraction inclusions, stronger anchoring with inclusions aligned so that q1 is large and q2

is small. As in a pure nematic these requirements are nearly reversed when we try to

minimise the switch-off time. The switch-off time is shortest for: stiffer systems, favouring

smaller inclusions, and inclusions aligned so that q2 is large and q1 is small.

In the limit of vanishing inclusions all of the results obtained reduce to the classical

results. The anchoring term q vanishes, K reduces to the identity, the particle volume

fraction tends to zero and the induced dipole field p vanishes.

3.3.6 Conclusions

In this section we have studied the alignment of a nematic liquid crystal which is confined

by a set of periodic metal inclusions. Using the method of homogenisation we have derived

a set of approximate equations which describe the alignment of the liquid crystal subject

to an applied external electric field and weak anchoring on the surface of the inclusions.
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Figure 3.6: Switch-off (left) and on (right) time at V = 2V for colloidal nematic with
ellipsoidal particles as a fraction of undoped on/off times in the splay geometry. Ellipsoids
oriented orthogonal (top) or parallel (bottom) to initial director with homeotropic anchor-
ing on inclusions and anchoring strength W1 = 10. Vertical dopants reinforce stability of
the θH = 0 state while horizontal dopants reduce it.
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The inclusions we consider are of arbitrary shape but are assumed to vary on a scale much

smaller than the macroscopic length scale of interest. Hence, these inclusions may be iden-

tified as either a periodic micro structure or a set of dopant particles. The key advantage

of this method is that we are able to link the macroscopic properties to the micro-scale

structure through a representative cell problem rather than explicitly considering the full

geometry.

The derivation of these equations is based on several assumptions regarding the physical

and geometric properties of the system. Specifically we consider only metal particles which

we consider to be uniformly distributed across the device. The choice of material is not

a limitation of the theory developed here and this method could be extended to include

dielectric, ferroelectric or ferromagnetic particles. The result of this would be that the

cell problem for the electrostatic field would be different and there would potentially be

a coupling between the cell problems for the liquid crystal and electric field. It is also

possible to improve upon our existing model for gold. We have assumed that the gold

inclusions can be modelled as ideal conductors, this could be relaxed to include a finite

skin depth under DC conditions. Additionally the optical response of gold nano particles

of 5 nm-100 nm in diameter can be modelled macroscopically [44]. This is achieved by

including scattering contributions to the complex dielectric permittivity. The assumption

that the particles are uniformly distributed allows us to simplify the cell problem using

the assumption of periodicity. Similarly assuming that the particles are of fixed position

and orientation reduces the interactions that we have to consider.

These approximations are appropriate for the case of a periodically patterned micro

structure. However, for the case in which the inclusions take the form of particles these

assumptions may break down and random distributions of particles and particle movement

will need to be considered. Random inclusions can be dealt with for low volume fraction

materials simply by assuming that any deviation from periodicity will simply induce an

error of O(η). However, a more accurate approximation could be obtained using methods

for general random media as used, for example, in [47]. The particle rotation and motion,

due to fluid flow or elastic and electrostatic forces, is a more complicated issue. Rigid

body rotation of porous structures has been considered in the context of elasticity [48], in

which case a non-linear elasticity theory is derived. A general approach to non-uniform

but nearly periodic microstructures has been developed by Richardson, Chapman and

Bruna [21, 92, 93] which we employ in chapter 4 to the problem of a rotating microstructure

with limited fluid flow. The drift of particles could also be included assuming that the

motion is sufficiently slow compared to the reorientation. However, we expect that in this

case the correction to our existing results will be small. Dropping the weak anchoring
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approximation is another possible extension of this project. Doing so would not be trivial,

but may ultimately lead to a detailed comparison to the periodic systems discussed by

Musevic [71].

The final homogenised equations (3.53) and (3.62) capture the effects of the underlying

geometry in terms of an effective elastic tensor and a forcing term which acts to align

the liquid crystal to the average preferred direction on the surface of the inclusions. We

have found excellent agreement between large scale numerical simulations in which the full

geometry is included and the predictions of our model. The homogenised equations require

significantly less computation time than the full geometry. The elasticity cell problem for

the liquid crystal only needs to be solved once to parametrise the equations and takes less

than 10 seconds on a desktop PC for a spherical particle. The cell problem for the electric

field (3.40) must be solved for a range of Q0 to parametrise the equations. However, the

solution for each configuration takes under 10 seconds to compute and need only be done

once for any particular dopant. The corresponding simulation of the full geometry takes

approximately 15 hours on a single 16 core node of the Iridis 4 supercomputing cluster at

the University of Southampton.

By computing the effective material parameters of the nematic as a function of inclusion

geometry we can quantify the effect of these inclusions on the Fredericks transition and

the switch-on and switch-off times for the liquid crystal. We have shown that using simple

ellipsoidal inclusions with a preferred homeotropic anchoring the switch-on and switch-off

times can be either increased or decreased. The link which this method provides between

the macroscopic behaviour of the liquid crystal and the underlying geometry will be of

fundamental importance in the design of composite liquid crystal materials with optimal

material parameters.
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Chapter 4

Homogenisation of systems with

moving micro-structure

This chapter concerns the modelling of moving metallic particles within a nematic liquid

crystal. We extend the model developed in chapter 3 by incorporating rotating particles

and limited fluid dynamics within a homogenisation framework. We obtain a macroscopic

model of the suspension. The microscopic interaction between the nematic and dopant

is captured by cell problems which are solved on the micro-scale. These provide a self

consistent way of computing material parameters. In section 4.1 we briefly discuss the

relevant literature that addresses non-periodic system. We provide a simple example of

applying this non-periodic homogenisation to a diffusion problem in section 4.1.1. In

section 4.2 we derive a model of a nematic suspension, this section is based heavily on a

paper written in conjunction with Dr. G. D’Alessandro and Dr. K. R. Daly that has been

submitted to the SIAM journal on applied mathematics.

4.1 Homogenisation of material with deformable mi-

crostructures

There have been various attempts to extend the method of multiple scales to non-periodic

systems. In this section we outline some of these methods.

The methods in the literature can be roughly categorised according to how they modify

the periodicity requirement as follows: deviations from an ideal lattice [92] and microstruc-

ture variation between cells [93, 21].

Deviations from an ideal lattice can be handled by using curvilinear coordinates.

Richardson and Chapman [92] used this method to model the electrical activity of cardiac
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tissue. The non-uniformity of the tissue was accounted for by transforming the config-

uration according to x′′ = B(x, t) where x is the Eulerian position of a point within

the hear tissue, the deformed configuration, and x′′ is the corresponding position in the

non-deformed reference configuration. The reference configuration is periodic. Hence, by

expressing the micro-scale variable y in terms of position within the reference configuration

y′′ = B(x, t) the non-periodic problem can be mapped into a periodic one. This approach

was used to derive the bidomain equations [92]. The disadvantage of this method is that

the cell problems now depend on macroscopic position within the system. As a result they

must be solved for each configuration [92].

To model changes in the microscopic structure from cell to cell the relation between

the local microscopic configuration the macroscopic coordinate can be defined implicitly

by a level set function. This method has been applied by Bruna and Chapman [21] and

Richardson et al. [93]. By defining the location of the inclusion surface by a level set,

χLS(x,y) = 0, it is possible to treat the varying microstructure as a slow function of the

macroscopic variable. This is the method that we illustrate in the next section and use to

model of nematic suspension in section 4.2.

4.1.1 Diffusion beyond the periodic setting

Recall the example model discussed in the previous chapter of diffusion in a perforated

domain. In this section we illustrate how to extend this model to account for variations in

orientation of the inclusions. This is accomplished using the methods outlined in [21, 93].

The problem is defined by,

∇2u =
∂u

∂t
x ∈ D, (4.1a)

ν̂ ·∇u = 0 x ∈ Γ(x), (4.1b)

u (x) = ub x ∈ ∂D. (4.1c)

Here u is again the concentration and the impermeable barriers Γ(x) have orientation

which depends on the macroscopic position x. This is captured by the level set function

χLS(x,y) = yTR(x)ART (x)y − 1, (4.2)

where the rotation is given by R : R3 → SO(3) the position of the boundaries is given by

Γ(x) = {y | χLS(x(j),y) = 0}. (4.3)
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We proceed as normal expanding the field u and the gradient and Laplacian operator.

u = u0 + ηu1 + η2u2 +O(η3), (4.4a)

∇ = ∇x +
1

η
∇y, (4.4b)

∇2 = ∇2
x +

2

η
∇x ·∇y +

1

η2
∇2

y. (4.4c)

In addition we expand the unit normal ν̂. Using the level set we can define the unit

normal as,

ν̂ =
(∇x + 1

η
∇y)χLS

|(∇x + 1
η
∇y)χLS|

,

= ν̂0 + η

(
∇xχLS
|∇yχLS|

− ν̂0
ν̂0 ·∇xχLS
|∇yχLS|

)
+O(η2),

(4.5)

where the leading order unit normal is ν̂0 = ∇yχLS

|∇yχLS |
. Substituting equations (4.4) and (4.5)

into (4.1) and collecting powers of η we find at order O(η−2). The order O(η−2) terms

from equation (4.1a) are,

∇2
yu0 = 0, y ∈ Ω(x) (4.6a)

ν̂0 ·∇yu0 = 0, (4.6b)

as in the previous example we find that u0 = u0(x). Continuing to order O(η−1) next

order we find,

∇2
yu0 = 0, y ∈ Ω(x) (4.7a)

ν̂0 ·∇yu1 + ν̂0 ·∇xu0 + ν1 ·∇yu0 = 0. (4.7b)

As u0 = u0(x) the solvabillity condition is identical to that found in 3.2.1 and is auto-

matically satisfied. Making the ansatz u1 = χk(x,y)u0,k + u1(x) we find the cell problem,

∇2
yχk = 0, y ∈ Ω(x) (4.8a)

ν̂0 ·∇yχk = −ν̂0 · êk. (4.8b)

Here êk, k = 1, 2, 3 form the standard set of Cartesian basis vectors. The solution to this

cell problem depends on the macroscopic variable y through the domain Ω(x). Continuing

to the next order the O(η0) terms from equation (4.1a) are

∇2
xu0 + ∇x ·∇yu1 + ∇y ·∇xu1 +∇2

yu2 =
∂u0

∂t
, (4.9a)
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ν̂0 ·∇yu2 + (ν̂0 ·∇x + ν1 ·∇y)u1 + (ν1 ·∇x + ν2 ·∇y)u0 = 0. (4.9b)

Integrating equation (4.9a) over a generic cell Ω(x), using the divergence theorem and

boundary condition (4.9b) we find∫
Ω(x)

∇2
xu0 + ∇x ·∇yu1dV −

∫
Γ(x)

ν1 · (∇yu1 + ∇xu0) dS = |Ω|∂u0

∂t
, (4.10)

next we apply Reynolds transport theorem to move the differential operator ∇x outside

of the integral,

∇x ·
∫

Ω(x)

(∇xu0 + ∇yu1)dV +

∫
Γ(x)

(∇xu0 + ∇yu1) · (∇xr · ν̂0)dS

−
∫

Γ(x)

ν1 · (∇yu1 + ∇xu0) dS = |Ω|∂u0

∂t
,

. (4.11)

Here r is the position vector on Γ(x). Next using the level set function and the implicit

function theorem we can write

(∇xr · ν̂0)i =
∂ri
∂xj

ν̂0i,

= −∂χLS
∂xj

1

|∇yχLS|
,

(4.12)

where we have used the fact that r is the restriction of the microscopic y-coordinate to

the the boundary Γ(x). Next using

ν1 =

(
∇xχLS
|∇yχLS|

− ν̂0
ν̂0 ·∇xχLS
|∇yχLS|

)
, (4.13)

and boundary condition (4.7b) we find that the terms generated by the transport theorem

and the level set expansion of the unit normal due to the non-uniform nature of the

microstructure cancel. The homogenised equation is given by

∇x · (D(x)∇xu0) =
∂u0

∂t
, (4.14)

where the effective diffusion tensor now depends on x and is given by

Dij(x) =
1

‖Ω‖

∫
Ω(x)

δij +
∂χj
∂yi

dV. (4.15)
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In this simple case we have shown that including a slow variation in the microstructure

does not alter the form of the homogenised equation. Instead the effective diffusion tensor

depends on the macroscopic variable x. The terms generated by using Reynolds transport

theorem exactly cancel those that arise from the expansion of the unit normal. In the

following sections we explore applying this method to a nematic suspension.

4.2 Nematic liquid crystal suspension with rotating

metallic particles.

We study the behaviour of nematic liquid crystal doped with ideally conductive metallic

particles. The particles are distributed across a regular lattice however we allow their

orientation to change throughout space. In 4.3 we derive the microscopic equations that

describe the liquid crystal-dopant interaction, in 4.4 we obtain homogenised equations, we

validate the model in 4.5, discuss the model and present conclusions in 4.6.

4.3 Microscopic model

In this section we derive the microscopic equations governing the liquid crystal suspension

that we are going to study in the following sections. We consider a nematic liquid crystal

in a two-dimensional planar geometry incorporating perfectly conductive particles that

have rotational but not translational freedom.

4.3.1 Representing the system

Metallic dopant particles added to a nematic liquid crystal act to alter the elastic and

dielectric properties of the nematic. To determine the governing equations for the nematic

and dopant particles we use a free energy and dissipation principle. We consider a nematic

liquid crystal doped with small particles. We assume that the particles are sufficiently

dispersed that we may approximate them as lying on a periodic lattice. The system we

consider, illustrated in figure 4.1, is made of a periodic array of freely rotating particles

contained within a volume of liquid crystal. The system, particles and nematic liquid

crystal, is infinitely extended in the x3 direction. The kinetic energy of a uniform flat disc

of radius r̃ rotating at angular velocity ω̃ is

T =
1

2

ρ̃πr̃4

2
ω̃2 (4.16)
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Figure 4.1: Schematic of the system, the macroscopic domain D consists of several unit
cells Ω with boundary Γ. The angle ψ(j) measures the orientation of the j − th particle
within the system.

where ρ̃ is the mass density. The moment of inertia depends on the fourth power of the

pillar radius. Conversely the viscous drag depends on the perimeter of the inclusions and

is hence linear in the radius. For this reason we neglect the kinetic energy throughout

this chapter. The total free energy of the system per unit length is (neglecting the kinetic

energy of the pillars)

F̃tot =

∫
D

(
F̃B + F̃E

)
dS̃ +

∫
∪jΓj

F̃Sdl̃, (4.17)

with F̃S, F̃E F̃B the surface, electrostatic and volume free energy densities respectively.

The macroscopic domain D is an open subset of R2 and is a tessellation of unit cells

Ωj ⊂ R2, j ∈ N. The boundary of the unit cells is split into two parts, ∂Ωj = Γj ∪ ∂Ω̂j,

where Γj is the boundary of the j-th inclusion and ∂Ω̂j is the boundary shared with the

neighbouring unit cells. We represent the orientation of the nematic using the Q-tensor

[36]. We assume that the nematic is uni-axial and that the principal axis of the nematic

is oriented within the x1-x2 plane. Hence we can describe the nematic liquid crystal using

a two dimensional Q-tensor theory. For a nematic locally aligned with a director n̂, the

Q̃-tensor is given by

Q̃ =
√

2S̃

(
n̂⊗ n̂− 1

2
I
)

(4.18)
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where S̃ the scalar order parameter and I is the 2× 2 identity matrix. The normalization

in equation (4.18) is chosen so that Tr(Q̃2) = S̃2. The space of traceless symmetric 2× 2

tensors forms a two-dimensional vector space. Following Sonnet et al.[105], we expand the

Q-tensor as Q̃ =
∑2

i=1 ãiT (i) where T (i) form the basis of the matrix space an are given

by

T (1) =
1√
2

[
0 1

1 0

]
,

T (2) =
1√
2

[
−1 0

0 1

]
, (4.19)

and ãi = Tr(Q̃T (i)) are the components of Q̃ on this basis. The dimensional bulk free

energy density in the single elastic constant approximation is

F̃B =
L̃

2
‖∇̃ã‖2 +

1

2
A (T − T ∗) |ã|2 +

1

2
C|ã|4, (4.20)

where L̃ ≡ K
4S̃2 , K is the single elastic constant chosen to coincide with Ericksen-Leslie

theory [110], ã = [ã1 ã2]T is a vector formed from the components of the Q̃ tensor on the

basis of traceless symmetric tensors T (i), i = 1, 2, A and C are thermotropic coefficients, T

is the absolute temperature with T ∗ the pseudo critical temperature at which the isotropic

phase becomes unstable. The dielectric energy density written in terms of the electric field

Ẽ and relative dielectric tensor ε is given by

F̃E = −1

2
Ẽ · (ε0εẼ) with ε =

(
εuI +

∆ε

S̃

1√
2
Q̃
)
, (4.21)

Here εu is the uniform dielectric constant, ∆ε is the dielectric anisotropy in the fully

nematic phase (S̃ = 1) and ε0 is the permittivity of free space. We adopt this notation to

make it easier to compare the predictions of our model with an equivalent Ericksen-Leslie

model with dielectric anisotropy ∆ε. The surface energy density is given by

F̃S =
µ̃

2
|ã− ãS|2. (4.22)

Here µ̃ is the anchoring energy density and ãS the preferred alignment on the particle

surface. The dynamics are given by the dissipation function R̃, the energy lost per unit
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volume and unit time due to viscous dissipation,

R̃ =
1

2
ζ1

∣∣∣∣∂ã∂t̃
∣∣∣∣2 +

ζ3

2
D̃ : D̃. (4.23)

Here D̃ij = 1
2

(ṽi,j + ṽj,i) is the symmetric part of the velocity gradient, ṽi,j = ∂ṽi
∂x̃j

, ζ3 (up

to a factor of 1/2) is the isotropic part of the nematic viscosities and ζ1 ≡ γ1
2S̃2 with γ1 is

the rotational viscosity. We use a simplified version of the dissipation function proposed

by Sonnet and Virga [106] and include only two terms in the dissipation: the rotational

viscosity of the nematic, which sets the time scale of Q̃, and the isotropic viscosity, which

sets the time scale of the particles. To simplify the resulting equations we have neglected

the coupling between the nematic alignment and the fluid flow. This is typically valid

when reorientation of the director occurs slowly or when there is uniform reorientation

throughout the nematic.

In addition to neglecting the coupling of the flow to the Q-tensor we also neglect

convection and model the fluid flow using Stokes equation. We can do this, because for

this system requiring that the Reynolds number is small

Re =
2ρ|v|d̃
ζ3

� 1 (4.24)

where ρ is the density of the nematic, v the fluid velocity and d̃ the characteristic size of

the system gives |v| . 102 ms−1, a condition that is easily satisfied in most liquid crystal

devices.

Finally, to obtain the torque on the dopants caused by fluid flow and the electric field

we use the viscous stress tensor,

T̃ (N) = −p̃I + ζ3D̃, (4.25)

and the Maxwell stress tensor

T̃ (M) = Ẽ ⊗ D̃ − 1

2

(
Ẽ · D̃

)
I. (4.26)

where D̃ = ε0εẼ is the electric displacement field.

4.3.2 Nondimensionalisation

We now nondimensionalise equations (4.20), (4.21), (4.22) and (4.23). All the scaling

parameters and some typical values are listed in table 4.1. The bulk and surface non-
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dimensional free energy density and the total free energy are given by

FB =
ξ2

0

2
‖∇a‖2 +

T0

2
|a|2 +

1

2
|a|4, (4.27a)

FE = −χc [E · (ε̂E)] , (4.27b)

FS =
β

2
|aS − a|2, (4.27c)

F =

∫
D
FdS −

∑
∀j

∫
Γj

FSdl, (4.27d)

where

F = FB + FE. (4.28)

We have scaled ã =
(

2B
3C

)
a, Ẽ = Ṽ0

d̃
E and x̃ = d̃x and Ṽ0 is a typical voltage value taken to

be 1 Volt. The non-dimensional elastic constant is ξ2
0 = 9C

4B2
L
d̃2

, the non-dimensional electric

susceptibility is χc =
ε0εuṼ 2

0

Cd̃2

(
3C
2B

)4
, T0 is the reduced temperature and the non-dimensional

anchoring strength is β = µ̃

Cd̃

(
3C
2B

)2
. The non-dimensional dissipation function is given by

R =
1

2

∣∣∣∣∂a∂t
∣∣∣∣2 +

1

2
ζ ′D : D, (4.29)

where the reduced viscosity is ζ ′ = ζ3
ζ1

(
3C
2B

)2
and time has been scaled as t̃ = ζ1

C

(
3C
2B

)2
t.

The Maxwell and viscous stress tensors (4.25) and (4.26) become,

T (M) = χc

[
E ⊗D − 1

2
(E ·D)I

]
, (4.30a)

T (N) = −pI + ζ ′D. (4.30b)

Here the pressure is scaled p̃ = C
(

2B
3C

)2
p, the velocity is scaled ṽ = d̃

τ
v, the electric

displacement field is D̃ = Ṽ0
d̃
D which is related to the non-dimensional electric field by

D = ε̂E where the reduced dielectric tensor is ε̂ = ε
εu

. We now derive the equations

governing the nematic LC, fluid flow, dopants and applied potential.

4.3.3 The nematic equations

The equations governing the nematic liquid crystal dynamics are given by,

∂R

∂ ∂a
∂t

= ∇ · ∂F
∂∇a −

∂F
∂a

(4.31)
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in the bulk and

ν̂ · ∂F
∂∇a = −∂FS

∂a
x ∈ Γi (4.32)

on the i-th particle with ν̂ the outward unit normal from Ωj. Substituting the total non-

dimensional free energy density from (4.27) and the dissipation function from equation

(4.29) into (4.31) and (4.32) we find the nematic is governed by,

∂a

∂t
= ξ2

0∇2a+ χae− aT0 − 2a|a|2 x ∈ Ωj, (4.33a)

ν̂ ·∇a = W (aS − a) x ∈ Γj, (4.33b)

where χa = ε0∆ε
2SC

(
3C
2B

)4
(
Ṽ0
d̃

)2

and W = β
ξ20

.

4.3.4 The particle equations

To determine the governing equations for the particles we balance the torques due to the

fluid flow, nematic liquid crystal and electric fields. These torques can each be determined

using the appropriate stress tensor, free energy or dissipation function. We use the latter

to derive the nematic torques and the former to determine the electrostatic contribution.

The torque on particle j due to elastic distortions and surface orientations is equal to

minus the derivative of the nematic elastic and surface free energy density with respect to

particle orientation,

τ̃
(j)
N =−

∫
Γj

{
ξ2

0

2
‖∇a‖2 +

T0

2
|a|2 +

1

2
|a|4

}(
ν̂ · ∂r

∂ψ(j)

)
dl −

∫
Γj

β (aS − a) · ∂aS
∂ψ(j)

+
β2

ξ2
0

(
ν̂ · ∂r

∂ψ(j)

)
(aS − a)2 +

βκ

2

(
ν̂ · ∂r

∂ψ(j)

)
(aS − a)2dl, (4.34)

where ψ(j) is the alignment of the j-th particle and we have used Reynolds transport

theorem (see appendix A.3). Here κ is the principal curvature of the particles surface

and r is the position vector on the particle surface with respect to a given origin. To

compute the torque due to the electric field we use the Maxwell stress tensor (4.30a). The

x3 component of the torque is

τ
(j)
E = −

∫
Γj

r⊥kν̂mT
(M)
km dl, (4.35)

where we sum over repeated indices with the indices ranging from 1 to 2. Here r⊥ =

[−x2 x1]T and εipk is the Levi-Civita symbol. The torque or drag due to fluid flow acts to

resist the particle motion and, as will be shown in 4.4.2, introduces time dependence into
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the particle dynamics. The time-scale on which the particle reorients is hence determined

by a balance between this drag term and the other torques. In non-dimensional units the

flow velocity v is governed by

ζ ′

2
∇2v = ∇p, ∇ · v = 0, x ∈ Ωj, (4.36a)

v =
∂ψ(j)

∂t
r⊥, x ∈ Γj. (4.36b)

We can now compute the drag on the particle from the dynamic stress tensor. Following

the same method as for the Maxwell stress we find,

(τv)
(j)
i = −

∫
Γj

r⊥kν̂mT
(N)
mk dl k = 1, 2,

= −
∫

Γj

r⊥ · (−pν̂ + ζ ′Dν̂) dl (4.37)

Summarizing, the particle dynamics are governed by∫
Γj

r⊥ · (−pν̂ + ζ ′Dν̂) dl = −
∫

Γj

{
ξ2

0

2
‖∇a‖2 +

T0

2
|a|2 +

1

2
|a|4

}(
ν̂ · ∂r

∂ψ(j)

)
dl

−
∫

Γj

β (aS − a) · ∂aS
∂ψ(j)

+
β2

ξ2
0

(
ν̂ · ∂r

∂ψ(j)

)
(aS − a)2 +

βκ

2

(
ν̂ · ∂r

∂ψ(j)

)
(aS − a)2dl

−
∫

Γj

r⊥kν̂lT
(M)
lk dl. (4.38)

4.3.5 The potential equations

The electric potential is governed by Maxwell’s equation for the electric displacement field.

We assume that there are no free charges in the system and impose a floating potential

condition on the electrostatic potential on the surface of the inclusions. In nondimensional

form the equations governing the electric potential are

∇ · ([I + αQ]∇φ) = 0 x ∈ Ωj, (4.39a)

φ|Γj
= Constant and

∫
Γj

ν̂ · ([I + αQ]∇φ) dl = 0 x ∈ Γj. (4.39b)

Equations (4.33), (4.36), (4.38) and (4.39) govern the nematic, fluid flow, particles and

electric field in our system. We have assumed that the particles are fixed in position but

are allowed to rotate freely, thus neglecting any effect due to concentration gradients. The
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K = 15 pN L = K
4S̃2 ≈ 13.4 pN

S =
√
−T0

2
=
√

5 ≈ 2.236 S̃ = 2B
3C
S ≈ 0.6116

A = 0.13 · 106 JK−1m−3 ζ = 280.8 mPa s

B = 1.6 · 106 JK−1m−3 ζ3 = 224.7 mPa s

C = 3.9 · 106 JK−1m−3 d̃ = 32 · 10−6 m

T0 = −10 τ = ζ
C

(
3C
2B

)2 ≈ 9.625× 10−7 s

µ̃ = 10−7 to 10−5Jm−2 ξ2
0 = 9C

4B2
L
d̃2

ṽc = d̃
τ

β = µ̃

Cd̃

(
3C
2B

)2

W = β
ξ20
≈ 12 to 0.12 η = Ly

d̃

χa = ε0∆ε
2SC

(
3C
2B

)4
(
Ṽ0
d̃

)2

κ0 = 1
2
ζ3
ζ1

(
3C
2B

)2

α = ∆ε√
2Sεu

χc = ε0εu
Cd̃2

(
3C
2B

)4
V 2

0

p̃ = C
(

2B
3C

)2
p ṽ = d̃

τ
v

Table 4.1: Parameters used during nondimensionalisation, values represent a typical
LC.We have used the same nondimensionaliation scheme as was employed in chapter
3.

particles themselves are treated as ideal conductors and we use a continuum model for the

nematic which bounds the minimum particle size that we may consider. Additionally by

decoupling the nematic from the fluid flow we have included only limited dynamics. We

perform a multiple scale analysis of these equations and by using a level set representation

of the particles we derive homogenised equations. Following this we use a second method

of multiple scales to extract the slow dynamics of the nematic.

4.4 Homogenization

In our system we have equations for the particles, the liquid crystal, the applied field

and the fluid flow. As the size of the particles varies linearly with η to avoid the surface

term dominating we postulate that the anchoring energy density scales linearly with η

(µ̃ = O(η)). A rough physical interpretation of this condition is that we have weak

anchoring on the particle surface. More precisely in the limit η → 0 the total boundary

area between nematic and dopant diverges. As a result unless we postulate a decrease in

the anchoring energy density we find that the surface anchoring dominates the particle

dynamics. This is roughly physically equivalent to maintaining a constant volume of

surfactant as the number of particles diverges. This way even though the total interaction

area increases the surface energy density decreases. In any real application of the theory
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developed here η is small but non-zero. The equations derived here are valid for small η

provided that the total surface energy density is of the order of the bulk energy or smaller

and that the anchoring on each individual particle is weak enough to not induce defects.

In order to represent arbitrary particles undergoing rotational motion correctly within

the homogenization scheme we use the level set method first employed by Bruna and

Chapman [21] and Richardson [93] to compute the expansion of the unit normal vector

and the value of the term ν̂ · ∂r
∂ψ(j) . For ease of notation, we drop the particle index j in

the remainder of this subsection. We express the location of the particle surface as a level

set χLS(ψ(x),y) = 0. The expansion of the unit normal is given by

ν̂ =
∇xχLS + 1

η
∇yχLS

|∇xχLS + 1
η
∇yχLS|

= ν̂0 + η

(
∇xχLS
|∇yχLS|

− ν̂0
ν̂0 ·∇xχLS
|∇yχLS|

)
+O(η3),

(4.40)

where the leading order unit normal is

ν̂0 =
∇yχLS
|∇yχLS|

. (4.41)

We now determine the “speed” of the boundary i.e. ∂r
∂ψ

. As mentioned in section 4.3.4,

r is the position vector of a point on the surface of a given particle. In the context of

homogenization, r is a rapidly varying quantity and hence a function of the y coordinates.

We can therefore use the implicit function theorem on the level set definition of the particle

boundary to obtain
∂ri
∂ψ

= −∂χLS
∂ψ

(
∂χLS
∂yi

)−1

. (4.42)

By utilizing the following symmetry of χLS in its two arguments

χLS(0, RT (ψ(x))y) = χLS(ψ(x),y) (4.43)

and using the chain rule we find

∂χLS
∂ψ

= −r⊥ ·∇yχLS. (4.44)

Hence
∂r

∂ψ
· ν̂0 = r⊥ · ν̂0. (4.45)
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4.4.1 Scaling of equations

As the size of the particles decreases so does the magnitude of the torques on the particles.

To make the analysis as transparent as possible we make the η dependence of the terms in

(4.38) explicit. This amounts to mapping the domain of integration from a domain that

scales with η to a fixed domain of size one. The line element and position vector on the

particle both scale linearly with η, surface elements scale with η2 and the curvature scales

as 1
η
. With these postulated scalings the particle governing equation is

η

∫
Γj

r⊥ · (−pν̂ + ζ ′Dν̂) dl = −
∫

Γj

η2

{
ξ2

0

2
‖∇a‖2 +

T0

2
|a|2 + |a|4

}(
ν̂ · ∂r

∂ψ(j)

)
dl

− η2β

∫
Γj

(aS − a) · aS⊥ + η2 β

ξ2
0

(ν̂ · r⊥)(aS − a)2 +
κ

2
(ν̂ · r⊥)(aS − a)2dl

− η2χc

∫
Γj

r⊥ · (ν̂ · TM)dl.

(4.46)

The fluid flow obeys

ζ ′

2
∇2v = ∇p, ∇ · v = 0, x ∈ Ωj, (4.47a)

v = η
∂ψ(j)

∂t
r⊥, x ∈ Γj. (4.47b)

The nematic obeys

∂a

∂t
= ξ2

0∇2a+ χae− aT0 − 2a|a|2 x ∈ Ωj, (4.48a)

ν̂ ·∇a = ηW (aS − a) x ∈ Γj. (4.48b)

The equation governing the electrostatic potential (4.39) is unchanged.

All the ingredients needed for carrying out the homogenization procedure are now in

place. The next step consists in solving the drag equation to eliminate the fluid velocity.

This is possible because we have neglected the back-coupling between the director align-

ment and fluid flow so that the fluid velocity is driven only by the particle orientation.

We will carry out this step in the next subsection and then move onto homogenise the

remaining equations.
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4.4.2 Expanding the drag

First we note that, by assumption, the fluid flow is coupled only to the particle orientation.

Dealing with the fluid flow will then allow us to simplify (4.46) and determine an explicit

set of equations for the particle motion. We make the usual expansions of the gradient,

the Laplacian and fields,

∇ = ∇x +
1

η
∇y, (4.49a)

∇2 = ∇2
x +

2

η
∇x ·∇y +

1

η2
∇2

y, (4.49b)

v = v0 + ηv1 + η2v2, (4.49c)

D =
1

η
D0 +D1 + ηD2, (4.49d)

p = p0 + ηp1 + η2p2. (4.49e)

Substituting equations (4.49) into Stokes’ equation (4.47) we obtain a sequence of prob-

lems at different orders in η. Solving these in ascending powers of η we will derive the cell

problem for the fluid flow and use the result to simplify the drag term which forms the

left-hand side of equation (4.46), namely

F = η

∫
Γj

r⊥ · (−pν̂ + ζ ′Dν̂) dl. (4.50)

Leading order

At leading order the fluid obeys

∇2
yv0 = 0, ∇y · v0 = 0 y ∈ Ωj,

v0 = 0, y ∈ Γj, (4.51)

subject to periodic boundary conditions on ∂Ω̂j, the outer cell walls. This system has

solution v0 = 0. As a results, D0 = 0.

First order

At this order the fluid obeys

ζ ′

2
∇2

yv1 = ∇yp0, ∇y · v1 = 0, y ∈ Ωj,

v1 =
∂ψ

∂t
r⊥, y ∈ Γj,

(4.52)
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subject to periodic boundary conditions on ∂Ω̂j. We make the ansatz v1 = u1
∂ψ
∂t

and

p0 = P0
∂ψ
∂t

where both P0 and u1 depend on y. The system of equations for u1 is

∇2
yu1 = ∇yP0, ∇y · u1 = 0, y ∈ Ωj,

u1 = r⊥, y ∈ Γj.
(4.53)

Equations (4.53) are the cell problem for u1 and can be solved numerically. The order η0

rate of shear tensor is given by

D1 =
1

2

[
∇yv1 + (∇yv1)T

]
. (4.54)

and the drag on the j-th particle can be expanded as∫
Γj

r⊥ · (ζ ′D1ν̂0 − ν̂0p0) dl =
∂ψ(j)

∂t

∫
Γj

r⊥ · (ζ ′D′1ν̂0 − ν̂0P0) dl +O(η). (4.55)

where

D′1 =
1

2

[
∇yu1 + (∇yu1)T

]
. (4.56)

Using equation (4.55) we simplify the particle equation (4.46) to

κ′0
∂ψ(j)

∂t
= −

∫
Γj

{
ξ2

0

2
‖∇a‖2 +

T0

2
|a|2 + |a|4

}(
ν̂ · ∂r

∂ψ

)
dl

− β
∫

Γj

(aS − a) · aS⊥ + η2W (ν̂ · r⊥)(aS − a)2 +
κ

2
(ν̂ · r⊥)(aS − a)2dl

− χc
∫

Γj

r⊥ · (ν̂ · TM)dl,

(4.57)

where

κ′0 =

∫
Γj

r⊥ · (ζ ′D′1ν̂0 − ν̂0P0) dl. (4.58)

As we are only interested in the leading order time dynamics of ψ we do not consider

higher order terms in the expansion of the drag equations.

4.4.3 Nematic dynamics and the electric field

Having obtain a simplified equation for the particles (4.57), we now proceed to homogenise

equations (4.39) and (4.48). As in the previous section, we expand derivatives, equations
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(4.49), and fields

a =
k=∞∑
k=0

akη
k, e =

k=∞∑
k=0

ekη
k. (4.59)

Leading order

The leading order expansion of the nematic equations (4.48) is

ξ2
0∇2

ya0 + χae0 = 0, y ∈ Ωj, ∀j, (4.60a)

ν̂0 ·∇ya0 = 0, y ∈ Γj, ∀j, (4.60b)

subject to periodic boundary conditions on the outer boundaries of the unit cell. Similarly,

the leading order expansion of Maxwell’s equations for the electric potential is

∇y ·
([
I + αQ(0)

]
∇yφ0

)
= 0, y ∈ Ωj, ∀j, (4.61a)

φ0 = Cj and

∫
Γj

([
I + αQ(0)

]
∇yφ0

)
· ν̂0dl = 0, y ∈ Γj, ∀j. (4.61b)

If φ0 is independent of y then e0 is zero. Hence all of the above equations are satisfied

by a0 = a0(x) and φ0 = φ0(x). However, as noted in chapter 3 for static particles, if

φ0 varies on the macroscopic scale the potential across the metallic inclusions will not be

constant. To overcome this we employ the same method as in chapter 3.3.3. As before we

find appropriate boundary conditions φ0 and φ1 for fixed j,

φ0(xj) = C0j, (4.62a)

φ1 = −
(
y − yj

)
·∇xφ0 + C1j, y ∈ Γj. (4.62b)

Imposing φ0 = φ0(x) and a0 = a0(x) we find that the potential equation is automatically

satisfied at this order.

4.4.4 First order correction

At order O(η) we find

ξ2
0∇2

ya1 = 0, y ∈ Ω, (4.63a)

ν̂0 ·∇ya1 + ν̂0 ·∇xa0 = 0, y ∈ Γ. (4.63b)

This is equivalent to the standard order one problem for diffusion of solutes in porous

media [47], hence solvabillity is guaranteed. By making the ansatz a1 = χk
∂a0

∂xk
and
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substituting into equations (4.63) we obtain the cell problem for χk, k = 1, 2,

∇2
yχk = 0, (4.64a)

ν̂0 ·∇yχk = −ν̂ · êk. (4.64b)

Here êk is the k-th coordinate unit vector. These equations (with periodic boundary

conditions) define χk up to a constant, hence a1 = χk
∂a0

∂xk
+ a1(x). Maxwell’s equation

gives

∇y ·
[
(I + αQ(0))∇yφ1

]
= 0, (4.65a)

φ1 = − (y − yi) ·∇xφ0 + C1i, y ∈ Γi, (4.65b)∫
Γi

[
I + αQ(0)

]
(∇yφ1 + ∇xφ0) · ν̂ dl = 0. (4.65c)

Here Q(0) is the order O(η0) part of the Q-tensor and has component vector a0. The

solvability condition for equation (4.65a), found by integrating (4.65a) over an arbitrary

cell, using the divergence theorem and condition (4.65c), is automatically satisfied. The

cell problem for the electric field is derived by making the ansatz,

φ1 =
3∑

k=1

Rk(x,y)
∂φ0

∂xk
+ φ̄1(x). (4.66)

By substituting this ansatz into equations (4.65) and setting φ̄1 = C1i we find

[
δnm + αQ(0)

nm

] ∂2Rk

∂yn∂ym
= 0, y ∈ Ωj, (4.67a)

Rk = −(yk − y0k), y ∈ Γj, (4.67b)∫
Γi

[
I + αQ(0)

]
∇yRk(y) · ν̂ dl = 0, (4.67c)

which must be solved numerically for varying particle orientations and realizations of

Q(0).

4.4.5 Homogenization

At order O(η0) the nematic equations give

ξ2
0

(
∇2

xa0 + 2∇x ·∇ya1 +∇2
ya2

)
− T0a0 − 2a0|a0|2 + χae2 =

∂a0

∂t
, (4.68a)
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ν̂0 ·∇ya2 + ν̂0 ·∇xa1 + ν1 ·∇xa0 + ν1 ·∇ya1 = W (aS0 − a0) . (4.68b)

The leading order operator is ∇2
y equipped with periodic boundary conditions on ∂Ω̂ and

is self-adjoint. Hence its kernel is spanned by functions that depend only on x. Projecting

equation (4.68a) onto the kernel of the leading order operator we find that the homogenised

equations take the form

ξ2
0

|Ω|

∫
Ω

∇x · (∇xa0 + ∇ya1) dS − T0a0 − 2a0|a0|2 + χa
1

|Ω|

∫
Ω

e2dl

+
β

|Ω|

∫
Γ

(aS0 − a0) dl − ξ2
0

|Ω|

∫
Γ

ν1 ·∇xa0 + ν1 ·∇ya1dl =
∂a0

∂t
.

(4.69)

Here we have dropped the subscript on the domain Ω and the particle boundary Γ and

instead regard the domain of integration as a function of the slow variable x. Next we use

the transport theorem on the first integral (see appendix A.3)

∇x ·
∫

Ω

(∇xa0 + ∇ya1) dS =

∫
Ω

∇x · (∇xa0 + ∇ya1) dS

+

∫
Γ

(∇xa0 + ∇ya1) · (∇xr · ν̂0) dl,

(4.70)

and we use the level set representation to find

∇xr · ν̂0 = − ∇xχLS
‖∇yχLS‖

. (4.71)

Hence, ∫
Ω

∇x · (∇xa0 + ∇ya1) dS =∇x ·
∫

Ω

(∇xa0 + ∇ya1) dS

+

∫
Γ

(∇xa0 + ∇ya1) · ∇xχLS
‖∇yχLS‖

dl
(4.72)

In addition, using boundary condition (4.63b) we see that on Γ

ν1 · (∇xa0 + ∇ya1) =
∇xχLS
‖∇yχLS‖

· (∇xa0 + ∇ya1) . (4.73)
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Substituting equations (4.72), (4.73) into (4.69) we obtain

ξ2
0∇x · K∇xa0 − T0a0 − 2a0|a0|2 + χa

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
+

β

|Ω|

∫
Γ

(aS0 − a0) dl =
∂a0

∂t
.

(4.74)

The new elasticity term is given by

Kij =
1

|Ω|

∫
Ω(x)

δij +
∂χj
∂yi

dS, (4.75a)

the macroscopic electric field is given by

eMi = Tr
(√

2 [∇xφ0 ⊗∇xφ0] T (i)
)
, (4.76)

and the polarization is given by

pi =
1

|Ω|

∫
Ω

Tr
[√

2∇yRk ⊗∇yRlφ0,kφ0,lT (i)
]
dS. (4.77)

Having obtained a macroscopic equation for the alignment of the nematic, we now derive a

macroscopic Maxwell equation for the electric potential. At this order Maxwell’s equation

for the electric potential and its boundary condition are

∇y · [(I + αQ(0))(∇yφ2 + ∇xφ1) + αQ1(∇yφ1 + ∇xφ0) + αQ2∇yφ0],

+ ∇x · [(I + αQ(0))(∇xφ0 + ∇yφ1) + αQ1∇yφ0] = 0,
(4.78a)

∫
Γ

ν̂0 · [(I + αQ(0))(∇yφ2 + ∇xφ1) + αQ1(∇yφ1 + ∇xφ0)]

+ ν1 · [(I + αQ(0))(∇xφ0 + ∇yφ1)]dl = 0.

(4.78b)

Integrating equation (4.78a) using the divergence theorem, equation (4.78b) and the trans-

port theorem A.3 we obtain a macroscopic equation for the potential,

∇x ·
[(
I + αQ(0)

)
∇xφ0

]
= 0. (4.79)

We see from (4.79) that, to first order, the electrostatic potential is not distorted by the

presence of the particles. This is not true for the electric field which to leading order is

given by E = −∇xφ0 −∇yφ1.
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As the last step in deriving a set of macroscopic equations, we simplify the particle

equation. Using a0 = a0(x) and φ0 = φ0(x) we can simplify the equation governing the

particle dynamics considerably. The bulk elastic/screening torque becomes

τB = −ξ2
0

∫
Γ

[
1

2
‖∇ya1‖2 +

1

2
‖∇xa0‖2 + ∇xa0 ·∇ya1

]
(ν̂0 · r⊥) dl +O(η), (4.80)

the surface torque

τS = β

∫
Γ

[κ(ν̂0 · r⊥)I − 2W ]aSdl · a0 +O(η), (4.81)

where aS⊥0 = −2WaS0 with W =

[
0 −1

1 0

]
and the electric torque

τE = −χc
∫

Γ

r⊥ · (ν̂0 · TM2) dl +O(η), (4.82)

where the first non-zero contribution from the Maxwell stress tensor is given by

T̂M2 = E1 ⊗D1 −
1

2
(E1 ·D1)I. (4.83)

Here E1 = ∇xφ0 + ∇yφ1 and D1 = (I + αQ(0))(∇xφ0 + ∇yφ1) are the first non-zero

contributions to the electric potential and displacement. The final form of the particle

equation reads,

κ′0
∂ψ0

∂t
=− ξ2

0B : (∇xa0 ·∇xa0)− βqκ · a0 − χcPimlkε0ilφ0,mφ0,k, (4.84)

where

Bij =

∫
Γ

1

2
(χi,j + χj,i + χi,kχj,k) (r⊥ · ν̂0)dl,

Pimlk =

∫
Γ

(
δkl +

∂Rl

∂yk

)(
δim +

∂Ri

∂ym

)
(r⊥ · ν̂0)dl,

q(κ) =−
∫

Γ

[κ(ν̂0 · r⊥)I − 2W ]aS0dl,

κ′0 =

∫
Γj

r⊥ · (ζ ′D′1ν̂0 − ν̂0P0) dl.

(4.85)

To summarize, equations (4.74), (4.79) and (4.84) capture the macroscopic behaviour of

the system. Normally, the homogenization procedure would stop here. However, in the
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specific case of liquid crystals a further simplification is possible, namely we can apply

a second multiple scale expansion, this time in the time domain, to obtain a final set of

macroscopic equations.

4.4.6 Reduced manifold dynamics

Looking at equations (4.74) and (4.84) we notice that ξ2
0 , χa, χb and β are extremely

small parameters ∼ O(10−7). Away from defects the elastic and particle driving terms

are small in comparison to the thermotropic terms. As a results when equations (4.74)

and (4.84) are integrated to equilibrium, the dynamics in the absence of defects roughly

correspond to a rapid equilibration of the scalar order parameter followed by a slow elastic

reorientation. We now follow the method of [34] and use multiple scale analysis to obtain

equations governing the slow elastic reorientation. The slow reorientation dynamics are

driven by terms of the order ξ2
0 . We simplify equations (4.74) by expanding in terms of

ηM = ξ2
0 and express β = ηM β̂, χa = ηM χ̂a, χb = ηM χ̂b and ∂

∂t
= ηM

∂
∂t̂

. We assume that

all dynamics on a faster time-scale than t̂ have reached equilibrium. Equation (4.84) is

driven solely by terms of order ηM , its dynamics are confined solely to the slow elastic

time-scale t̂. The first order part of equation (4.74) is

− T0a0 − 2a0|a0|2 = 0, (4.86)

which defines an invariant manifold |a0|2 = −T0
2

. At next order we find

∇x · K∇xa0 + χ̂a

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
+

β̂

|Ω|

∫
Γ

(aS0 − a0) dl − ∂a0

∂t̂
= 4a0 (a0 · a1) .

(4.87)

To obtain the time and space dependence of a0 we require that (4.87) posses a solution

for any a1. The solvability condition is that the left hand-side of (4.87) is orthogonal

to a⊥ = Wa0: this ensures that both the left and right hand-side of (4.87) are in the

direction of a0. Applying the solvability condition and re-expressing the result on the
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rapid time-scale we find

a⊥ ·
∂a0

∂t
=ξ2

0∇x · K∇xa0 · a⊥

+ χa

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
· a⊥ +

β

|Ω|

∫
Γ

aS0dl · a⊥,

a0 ·
∂a0

∂t
=0.

(4.88)

The first equation in (4.88) is the solvabillity condition, the second is obtained by differ-

entiating (4.86). Together they define the dynamics of the nematic along the manifold of

uniaxial Q-tensors with scalar order parameter given by (4.86). Equation (4.79), (4.84)

and (4.88) are the final macroscopic equations for a two-dimensional suspension of freely

rotating metallic particles in a nematic liquid crystal in the absence of defects.

The torque the particle experiences due to the elastic free energy is captured by Bij
in equation (4.84) and represents a screening effect. This term tends to align a particle

relative to the gradient in the Q-tensor. This effect is illustrated in figure 4.2: particles

align with their largest side orthogonal to the gradient, thereby screening the opposing

boundary conditions. The surface interaction with the nematic is captured by q(κ) in

equation (4.84) and favours aligning the particle easy axis with the macroscopic director.

The interaction with the electric field is determined by both the local field and the local

alignment of the nematic. The term containing Pimlk in equation (4.84) describes this

coupling.

The terms in (4.88) offer a similar interpretation. In place of the screening effect

we have an excluded volume effect given by K. The surface interaction takes a slightly

different form but still favours aligning the nematic with the local particle easy axis. The

interaction with the electric field is split into two parts, the macroscopic field eM and the

polarization p. The macroscopic field coupling is increased due to the volume occupied

by metallic particles: the field is only non-zero outside the particles and the total change

in potential due to an externally driven field remains constant regardless of the presence

of metallic particles. The polarization captures the additional field due to induced surface

charges on the dopant particles.
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Figure 4.2: Illustration of the screening effect quantified by Bij. The director (black
arrows) obeys hybrid anchoring conditions on the cells top and bottom surfaces and peri-
odicity on the remaining sides. The anchoring energy is µ̃ = 0 and there is no externally
applied field. The colour and contours indicate value of the director tilt angle θ. With the
particle horizontally aligned there is a reduced gradient in its vicinity.

4.5 Numerical validation

To check the accuracy of the macroscopic model derived in the previous section, we have

compared its predictions with numerical simulations of realistic, but numerically manage-

able, colloidal suspensions. This required us to tackle two independent issues: the first was

the integration of the cell problems, equations (4.53), (4.64) and (4.67), that define the pa-

rameters that appear in the macroscopic equations. Once these are known the integration

of the macroscopic equations (4.79), (4.84) and (4.88) is relatively trivial. The second was

the integration of the microscopic equations (4.33), (4.36), (4.38) and (4.39). We discuss

these two issues in turn and then compare the results of the two sets of simulations.

To use the macroscopic equations (4.79), (4.84) and (4.88) we must first solve the set

of cell problems (4.53), (4.64) and (4.67) to obtain the effective material parameters. This

can be accomplished using the finite element package COMSOL multi physics. Figure

4.3 shows the solution of the cell problems for χk (4.64) and Rk (4.67) for an asymmetric

particle both implemented using the general form PDEs package. The solutions have

the form of horizontal and vertically oriented dipole potentials which are by the particle

shape, and, in the case of Rk also distorted by the alignment of the nematic. We solve

cell problems (4.64) and (4.67) for a range of particle orientations parameterized by the

angle ψ. In the case of the cell problem (4.67) we also have to solve for a range of director

orientations that we parameterize by an angle θ ∈ [0, ψ]. Cubic spline interpolation is
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used to compute the effective material parameters and torques for generic ψ ∈ [0, 2π] and

θ ∈ [0, π]. To integrate the macroscopic equations we used a spectral collocation method

[113] to discretize in space and the MATLAB variable order solver ode15s, which uses

implicit numerical differentiation, to integrate in time.

The macroscopic equations (4.79), (4.84) and (4.88) can be integrated with relative ease

numerically in arbitrarily large domains. However, for comparison with the microscopic

equations (4.33), (4.36), (4.38) and (4.39) we have selected a one dimensional domain. The

equivalent microscopic system is a stack of up to 64 unit cells, each containing one particle,

that was solved using a finite element method. The number of particles is large enough

to make the model realistic, but small enough that the integration of the microscopic

equations takes no more than a few hours on a high spec PC (as opposed to a few seconds

for the macroscopic equations).

The microscopic equations (4.33), (4.36), (4.38) and (4.39) were solved in a domain

consisting of a 1×N array of unit cells each containing a single identical particle. Within

each cell the particle is free to rotate and equations (4.33), (4.36), (4.38) and(4.39) are

solved throughout the whole system. The long sides of the array are subject to periodic

boundary conditions while the ends are subject to appropriate Dirichlet conditions. In all

cases we have solved subject to zero pre-tilt and constant potential across the ends of the

stack. Equation (4.33) is implemented as a general form PDE, the electrostatics package

is used to compute the electric field, the particles motion is included as a set of global

ODEs. To accommodate the particle motion the geometry is constructed as an assembly

rather than a union. This allows each of the cell to be meshed independently as shown in

figure 4.3 and removes the need to re-mesh to account for particle motion. The particle

motion itself is implemented by the deformed geometry node.

A comparison between the homogenised equations and the large-scale finite element

simulations is shown in figure 4.4 for a range of voltages V = 2 to V = 5. For each voltage

64 particles were used in the microscopic simulations. There is excellent agreement at all

voltages.

Trends with increasing particle number for different anchoring regimes are shown in

figure 4.5. The figure shows the convergence of the microscopic simulations for N =

8, 16, 32 (black, green and blue) to the solution of the homogenised equations (red). The

broken black line represents the alignment of a pure liquid crystal. The top panels show

the limiting behaviour under the constraint of constant anchoring energy density. In this

case the anchoring energy density µ̃ does not scale with η. In such a system the total

surface free energy tends to infinity as the number of particles increases because the total

surface area diverges. One consequence of this is that the particles are slaved to the
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Figure 4.3: (Left) Example of the meshing scheme used when solving (4.33), (4.38), (4.36)
and(4.39). The particle motion is achieved by the entire circular region rotating as a solid
body motion. This removes the need to re-mesh while solving. (right)Solution of the cell
problems (4.64) and (4.67) for asymmetric particles. Plots show from top right proceeding
clockwise: χ1, χ2, R2 andR1. The solution to these problems is used to compute the
material parameters needed to solve the homogenised equations.

nematic by the anchoring interaction as can be seen in the left-hand plot of figure 4.5. To

obtain this limit from the homogenised equations the value of the dimensionless anchoring

energy β used in numerical simulations was increased by a factor of η to undo the scaling

postulated in section 4.4.1. This limit is distinct to that shown in the bottom panels in

which the anchoring energy density µ̃ = O(η). In this regime as expected we find that

the particle alignment is not dominated by the anchoring interaction and is additionally

influenced by the applied field and screening effects, both of which favour ψ = π/2.

To further probe the validity of the theory we computed the alignment of asymmetric

particles in a planar cell with and without an externally imposed field. The particles used

are shown in figure 4.3. The results for two different applied voltages are shown in figure

4.6, both cases correspond to anchoring energies of µ̃ = 10−6 Jm−2. In this limit there is

a non-uniform ground-state that differs from that predicted by our theory. However, the

deviation from the ground state is small O(10−3) and from figure 4.6 we see that under an

applied field the macroscopic and microscopic results agree well. For both the V = 0 and

V = 3 case the final configuration of the particles exhibits a jump of π radians. This is due

to the incompatible symmetry of the particles and nematic, the location and potentially

the number of jumps, is highly dependent on the initial conditions used. By using the
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Figure 4.4: Solution of the homogenised/macroscopic equations for elliptic particles at
V = 2 to V = 5 Volts in increments of 0.5 Volts for anchoring energy µ̃ = 10−6 Jm−2. Solid
black lines are from the macroscopic equations, colored points and circles are solutions of
the microscopic equations computed using Comsol with N = 64 particles.

same initial conditions for the microscopic and macroscopic systems we have found that

the theory developed here is capable of capturing the apparent metastability shown in

figure 4.6. It should be noted that optical experiments are sensitive to the alignment of

the nematic and as a result the two alignments of θ shown in the bottom half of figure 4.6

would produce the same experimental results. It is anticipated that the deviations are due

to the incompatible symmetry between the particles and the nematic, and, the postulate

that µ̃ scales linearly with η. If this constraint is dropped we obtain an additional set

of cell problems which couples the elastic and surface interactions. This will be explored

further in future work.

4.6 Discussion and conclusions

In this chapter we have studied the alignment of a nematic liquid crystal containing freely

rotating metallic particles using the method of asymptotic homogenization. We have

derived a set of macroscopic equations that include the shape and composition of the

dopant particles directly. The model applies to particles of arbitrary shape. However, for

asymmetric particles there is a small perturbation to the ground state of the nematic shown

in figure 4.6 that will be explored further in future work. We have shown that the model

developed here agrees well with large-scale numerical simulations. The main difference

between the theory developed here and that developed in chapter 3 is the presence of

particle dynamics. We find that the particles are aligned by elastic screening interactions

with the LC, surface anchoring effects and a direct interaction with the electric field. As in
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Figure 4.5: Comparison of the homogenised/macroscopic equation (red) to microscopic
equations for N = 8, 16, 32 elliptic particles (black, green blue) at V = 3. Dimensional
anchoring of µ̃ = 10−6 Jm−2 (top) and µ̃ = 10−6

N
Jm−2 (bottom). The bottom set of plots

shows the sequence of problems corresponding to finite total anchoring strength in the
limit as η → 0.
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Figure 4.6: (Top) Comparison of the homogenised equation (red) to full equations for N =
8, 16, 32, 64 asymmetric particles (purple, green, blue and black) with µ̃ = 10−6 Jm−2 with
an applied voltage of V = 0. (Bottom) As in top figure but for N = 8, 16, 32 asymmetric
particles (purple, green and blue) with V = 3. The solutions to the homogenised equations
are obscured by the solution to the microscopic equations, additionally the purple and
green curves coincide nearly exactly. The uniform ground state is disturbed by the presence
of the particles and this effect does not diminish as the particle number increases. The
jump in ψ shown in both cases is of magnitude π radians.
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chapter 3 the key advantage of using homogenization is the ability to link the macroscopic

quantities such as susceptibilities, to the microstructure of the problem.

The main assumption we have made in deriving our model is that a separation of scales

exists between the inter-particle spacing and the macroscopic size of the system. This is a

valid assumption for low concentration colloids that are typically studied experimentally.

One consequence of this assumption is that the alignment cannot vary significantly within

the neighborhood of a particle. This precludes the study of defects. In addition we have

assumed that the anchoring energy density is scaled with the concentration of particles

in the system. This has some impact on the range of systems that may be modeled.

Our model is valid for anchoring energies up to µ̃ ≈ 10−6 Jm−2 for elliptic particles. We

have observed that particles that do not obey r → −r symmetry show deviation from

predicted values at higher anchoring energies µ̃ & 10−6 Jm−2. These deviations are most

apparent in the absence of an externally applied field. In this case the asymmetric particles

force the nematic out of the uniform ground state with the magnitude of the distortion

varying with anchoring energy. Preliminary work has shown that this results from higher

order (non-linear) terms in the anchoring energy that do not appear in our model of weak

anchoring.

Future work may explore extending this theory to the three dimensional case, incorpo-

rating fluid flow more completely and allowing for more general particle motion. Extending

to three dimensions is expected to mostly increase the computational time needed to solve

the cell problems and verify the model against large-scale numerical simulations. Incorpo-

rating the full dissipation function derived by Sonnet et al. [106] would couple the particle

and nematic dynamics leading to a more complicated model. It may be possible to incor-

porate translating particles using the method employed by Richardson and Chapman [92].

This method involves making a change of coordinates that maps a seemingly non-periodic

problem into a periodic problem in general curvilinear coordinates. Treating moving par-

ticles in this way may allow the particles to move away from the lattice configuration we

are currently confined to.

In conclusions we have demonstrated that a theory of liquid crystal interaction with

rotating colloidal particles can be derived based on a homogenisation formalism. The

model we have obtained is accurate for a range of anchoring energies and particle species.

In addition to the results presented here the model presented can be used to study the

changes to the Frederiks that occur due to the metallic particles. We find a range of

switching behaviours that depends delicately on the strength of the anchoring. Addition-

ally it is possible to write the theory presented here in terms of homogenised free energies

and dissipation functions.
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Chapter 5

Conclusions

In this thesis we have considered two problems: the measurement of liquid crystal material

parameters and deriving an effective medium theory for a liquid crystal colloid. In this

chapter we summarise the results and suggest extensions to the work already pursued.

In chapter 2 we modelled the optical response of a liquid crystal cell to various applied

fields. We found that the rotational viscosity could be obtained by using an amplitude

modulated signal with an envelope oscillating at frequencies between 0.1 Hz to 10 Hz. Ad-

ditional information about the combination of Leslie viscosities α4 + α5 can be extracted

from high frequency high voltage measurements. In addition by combining multiple mea-

surements of the CPI taken at different points on a planar cell we were able to resolve the

variations in cell thickness and pre-tilt angle across a cell. These techniques were primarily

developed to allow further investigation into the properties of existing liquid crystal cells

manufactured in the Southampton physics department. These cells often contain exotic

active polymer alignment layers which alter their behaviour when compared to traditional

PI-PI cells. Alternatively these cells contain nematic liquid crystal doped with metallic,

ferroelectric or dielectric particles. The wide area measurements are obviously applicable

to testing cells with new alignment layers. The time response or viscosity measurements

provide an alternative way to characterise doped systems. In these systems there are at

least two time-scales for reorientation. This is known to have an impact on the transient

response of the system [84]. By tuning the envelope frequency it may be possible to qual-

itative detect the changes to the dynamics. In order to obtain quantitative results from

such an investigation an adequate theoretical description of the colloid would be required.

In chapters 3 and 4 we developed a model of a liquid crystal colloid. The model of

static inclusions developed in chapter 3 was published in Physical Review E [11] and the

model extended to include rotating particles has been submitted to the SIAM Journal

on Applied Mathematics. Although we have not made any comparisons to experimental
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results we have found excellent agreement with large-scale finite element simulations. The

main advantages of these models over existing work is the ability to self consistently

compute effective material parameters for a given dopant. As a by-product of using a Q-

tensor model we were also able to extract the slow time-scale dynamics using the DFQTA

method of Daly et al. [34]. As a result our model can be solved in a fraction of the time

needed to solve a finite element model of an equivalent system.

The project started in chapters 3 and 4 could be continued in a number of directions.

Aside from considering dopants of different compositions, dielectric or ferroelectric for

instance, the full details of the Sonnet and Virga [107] dynamic theory could be incor-

porated. A related problem is that of translating particles. Within a homogenisation

framework one possible way that this could be realised is by allowing the periodic lattice

to distort [93, 92, 21]. Alternatively the influence of elastic anisotropy, increased anchor-

ing strength or the presence of defects could be investigated. The first two are relatively

straightforward to implement. Elastic anisotropy would likely result in a larger number of

cell problems to capture the differing energy costs of splay, twist and bend deformations.

Preliminary results indicate that increasing the anchoring energy produces a model con-

taining non-linear contributions in the anchoring energy, and, that the dynamics of the

particles and nematic become tethered and we obtain a single evolution equation governing

both. We have found that for highly symmetry particles, such as ellipses, these additional

non-linear terms are identically zero.

It is not obvious if systems containing defects can be meaningfully treated using ho-

mogenisation. The main difficulty encountered when attempting to include defects is that

the leading order alignment Q0 is not independent of the microscopic coordinate y. This

makes separating the scales difficult. This problem might be addressed by making a suit-

able ansatz separating the rapid y and slow x contribution to Q0 or else by diving the

domain of the problem separating the rapid variations in the particle vicinity from the

slow large scale variations over the macro-scale.
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Appendix A

A.1 Matched asymptotics

In this section we derive the matched asymptotic expansions that approximate the director

behaviour at high applied fields. The full nondimensional governing equations are

[1 − γ cos(2θ)]
∂2θ

∂ξ2
+ γ

(∂θ
∂ξ

)2

sin(2θ) + δψ2 sin(2θ)cos2(ωτ) − m(θ)
∂v

∂ξ
=

∂θ

∂τ
, (A.1)

∂

∂ξ

[
g(θ)

∂v

∂ξ
+m(θ)

∂θ

∂τ

]
= Nr

∂v

∂τ
, (A.2)

m(θ) = µ3 cos2(θ)− µ2 sin2(θ), (A.3)

g(θ) =
1

2
(µ4 + (µ5 − µ2) sin2(θ) + (µ3 + µ6) cos2(θ)) + µ1 sin2(θ) cos2(θ), (A.4)

ψ(θ) =
1

1− α cos(2θ)

(∫ +1

−1

1

1− α cos(2θ)
dz

)−1

, (A.5)

The scalings used are given in table A.1 with µi = αi/γ1, i = 1, .., 6 the nondimensional

viscosities and ω the nondimensional frequency. As is discussed in [110] Nr
∂v
∂τ
� 1 and

so we set the inertial term in (A.2) to zero. This has the effect of slaving the velocity

ξ t u Re

2z
d
− 1 γ1d2

2(K1+K3)
τ K1+K3

γ1d
v ρU0d

2γ1

γ δ Nr Er
K3−K1

K3+K1

ε0εaV 2

K1+K3

Re
Er

γ1U0d
(K1+K3)

Table A.1: Nondimensionalisation
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field to the liquid crystal director. The matched asymptotic approximation is arrived at

by seeking a fourier series solution to (A.1)-(A.2) of the form,

θ =
∑
∀n∈Z

θnη
|n| exp(int), (A.6)

and

v =
∑
n6=0

η|n|−1vn exp(int), (A.7)

where η = 1/ω is a small parameter. Expanding in powers of η and equating terms of

equal order we can solve for the static part of the director alignment θ0 and the principal

dynamic part (first harmonic) of the director and velocity field θ1 and v1 respectively. At

sufficiently high frequency only the first harmonic is needed to approximate the dynamics

despite the non linear nature of the problem. An expression for the static alignment of

the nematic is derived by Daly et al [32]. With a few changes in notation from [32] the

final expression reads,

θ0 = tan−1(sinh(
√

2(ξ + 1)/
√
ν + sinh−1(tan(φ−1))))

+ tan−1(sinh(
√

2(−ξ + 1)/
√
ν + sinh−1(tan(φ+1))))

− π

2
,

(A.8)

where ν = 4
δ

is a small parameter inversely proportional to the square of the voltage

and φ−1 and φ+1 are the pre-tilt at ξ = −1 and ξ = 1 respectively. Equation (A.8) is

obtained by making a matched asymptotic expansion and is valid at high voltage and

assumes a uniform electric field. At large applied voltages only the nematic towards the

sides of the cell is not aligned with the applied field. Therefore the approximation is

valid throughout the bulk of the cell and yields good agreement with numerical solutions.

Upon substituting equations (A.6) and (A.7) into (A.1) and (A.2), making the single

elastic constant approximation and neglecting the fluid inertia we find the first harmonic

of the director and velocity are governed by,

η
d2θ1

dξ2
− 2iθ1 +

δ

4
ψ(θ0)2 sin(2θ0)−m(θ0)

dv1

dξ
= 0, (A.9)

[
g(θ0)

dv1

dξ
+ 2im(θ0)θ1

]
= C, (A.10)

where C is an integration constant. This system is singular in the limit of η → 0 and

will have boundary layers at the edges of the cell. We now apply the method of matched
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asymptotic expansions. The outer solution is governed by,(
2 i m(θ0)

2 im(θ0) g(θ0)

)[
θ1,out

dv1,out
dξ

]
=

[
δ
4
ψ(θ0)2 sin(2θ0)

C

]
=⇒[

θ1,out

dv1,out
dξ

]
=

1

g(θ0)−m2(θ0)

(
−(1/2)i g(θ0) (1/2)im(θ0)

−m(θ0) 1

)[
δ
4
ψ(θ0)2 sin(2θ0)

C

]
(A.11)

Hence substituting equation (A.8) into (A.11) an expression for θ1,out and v1,out can be

found. The constant C can be found by integrating the expression for dv1/dξ using the

non-slip conditions. Together this gives the outer solution

C =
1

4

∫ +1

−1
[δ0ψ

2(θ0)m(θ0) sin(2θ0)(g(θ0)−m2(θ0))−1] dξ∫ +1

−1
[(g(θ0)−m(θ0)2)−1] dξ

(A.12)

θ1,out =
i

2

[
m(θ0)C − (1/4)δ0g(θ0)ψ2(θ0) sin(2θ0)

g(θ0)−m2(θ0)

]
(A.13)

v1,out =

∫ ξ

−1

C − (1/4)δ0m(θ0)ψ2(θ0) sin(2θ0)

g(θ0)−m2(θ0)
dξ (A.14)

Having found an outer solution we now turn to the boundary layers and seek an inner

solution. Defining an inner variable ξ = ±1 + ηαx, we also expand the harmonics of the

velocity in powers of ηβ.

v1,In = v10,In + ηβv11,In +O(η2β) (A.15)

Substituting we find an equation for the inner part of the first harmonic θ1,In

η

η2α

d2θ1,In

dx2
− 2iθ1,In +

δ

4
ψIn(θ0,in)2 sin(2θ0,In)

− mIn(θ0,In)

ηα
dv10,In

dx
− ηβmIn(θ0,In)

ηα
dv11,In

dx
= 0,

(A.16)

and
g(θ0,In)

ηα
dv10,In

dx
+
ηβgIn(θ0,In)

ηα
dv11,In

dx
+ 2imIn(θ0,In)θ1,In = cIn. (A.17)

Balancing the dominant terms suggests that α = β = 1/2, this way the highest order

derivative balances the driving electric field and also enters at the same order as the first

order correction to the flow. By equating terms of equal order in α from equations (A.16)
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and (A.17) we have,
dv10,In

dx
= 0, (A.18)

d2θ1,In

dx2
− 2i θ1,In +

δ

4
ψIn(θ0,In)2 sin(2θ0,In)−mIn(θ0,In)

dv11,In

dx
= 0, (A.19)

and

g(θ0,In)
dv11,In

dx
+ 2imIn(θ0,In)θ1,In = ci. (A.20)

We see that this choice gives v10,In = 0 as we impose non-slip boundary conditions, giving

no correction to the velocity. There are corrections to the first harmonic of the director.

In order to arrive at a simple analytical result rather than including the full boundary

layer structure of θ0 we approximate θ0,In by its value at the boundary, this will reduce

the accuracy of the approximation. Denoting this as θ0,In(ξ = −1) we have a system of

equations for the inner expansion at ξ = −1.

d2θ1,In

dx2
− 2i θ1,In +

δ

4
ψ2 sin(2θ0(ξ = −1))−mdv11,In

dx
= 0, (A.21)

and

g
dv11,In

dx
+ 2imθ1,In = ci. (A.22)

where ψ = ψ0,In(ξ = −1) is the value of the potential at the boundary and g = g(θ0,In)),m =

(θ0,In).

Eliminating the velocity we obtain an equation for θ1,In only,

d2θ1,In

dx2
− 2i (1−m2/g)θ1,In +

δ0

4
ψ2 sin(2θ0,In(ξ = −1))−mci/g = 0 (A.23)

This has solution,

θ1In = θp(1− exp(−(1 + i)(1− (m2/g))1/2x)) (A.24)

θp =
i

2

(mci − (1/4)δ0ψ
2 sin(2θ0(ξ = −1))g

g −m2

)
(A.25)

The equation satisfied by the velocity is,

g
dv11

dx
+ 2imθp[1− exp(−(1 + i)(1− (m2/g))1/2x)] = ci. (A.26)

In order to match this to the outer solution for the velocity a higher order outer solution

would be required. As there is good agreement between the velocity profile and the first

order outer expansion and we already satisfy the boundary conditions on the velocity we
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will not persue this.

A uniform approximation for θ1 can be obtained in the normal way, the end result is,

θ1 =
1

ω

(
θ1,out − θp exp

(
−(1 + i)(1− (m2/g))1/2 (ξ + 1)√

ω

)
− θp exp

(
(1 + i)(1− (m2/g))1/2 (ξ − 1)√

ω

))
, (A.27)

Where matching with the outer solution has given ci = C.

A.2 Wide area measurements data

In this appendix we present all of the CPI traces used for the wide are measurement

project. The elastic constants for the E7 cell are K1 = 11.8 pN and K3 = 15.7 pN and

for TL205 K1 = 16.6 pN, K3 = 23 pN. The cell thickness and pre-tilt vary between

measurement points, the CPI traces corresponding to each measurement point are shown

in figure figures A.1 to A.6. The changes in the low voltage intensity indicate the variations

in cell thickness and pre-tilt found in figures 2.16 and 2.17.
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Figure A.1: Cross polarised intensity for E7 as a function of applied voltage measured at
different point in the cell, traces 1 to 16.
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Figure A.2: As in A.1 traces 17 to 32.

158 Chapter A Thomas Paul Bennett



Multiscale modelling and experimental estimation of liquid crystals parameters

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

0 20
0

1

Figure A.3: As in A.1 traces 33 to 48.
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Figure A.4: As in A.1 but for TL205, traces 1 to 16.
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Figure A.5: As in A.4 traces 17 to 32.
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Figure A.6: As in A.4 traces 33 to 48.
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A.3 Reynolds Transport theorem

The two versions of the transport theorem that we need are [77]

d

dt

∫
Ω

FdS =

∫
Ω

∂F

∂t
dS +

∫
∂Ω

F (vb · n̂)dl, (A.28)

and
d

dt

∫
∂Ω

Fdl =

∫
∂Ω

∂F

∂t
+ (vb · n̂)n̂ ·∇F − vb · n̂κFdl, (A.29)

where vb is the velocity of the boundary and κ is the principal curvature of the boundary.

From these equations we see that only the normal component of the boundary velocity

contributes to the derivatives.
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