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Optimal estimation and control for lossy network:
stability, convergence, and performance

Hong Lin, Hongye Su, Senior Member, IEEE, Peng Shi, Fellow, IEEE, Zhan Shu, Member, IEEE,
Renquan Lu, and Zheng-Guang Wu

Abstract—In this paper, we study the problems of optimal
estimation and control, i.e., the linear quadratic Gaussian (LQG)
control, for systems with packet losses but without acknowledg-
ment. Such acknowledgment is a signal sent by the actuator to
inform the estimator of the incidence of control packet losses. For
such system, which is usually called as a User Datagram Protocol
(UDP)-like system, the optimal estimation is nonlinear and its
calculation is time-consuming, making its corresponding optimal
LQG problem complicated. We first propose two conditions: 1)
the sensor has some computation abilities; and 2) the control
command, exerted to the plant, is known to the sensor. For a
UDP-like system satisfying these two conditions, we derive the
optimal estimation. By constructing the finite and infinite product
probability measure spaces for the estimation error covariances
(EEC), we give the stability condition for the expected EEC, and
show the existence of a measurable function to which the EEC
converges in distribution, and propose some practical methods to
evaluate the estimation performance. Finally, the LQG controllers
are derived, and the conditions for the mean square stability of
the closed-loop system are established.

Index Terms—networked control systems, optimal estimation
and control, LQG, packet loss, UDP-like system, smart sensor

I. INTRODUCTION

A. Background and Motivations

In recent years, A great deal of attention has been devoted
to networked control systems (NCSs) in which control loops
are closed over network. The introduction of network does
bring numerous advantages, but in the meantime, it also causes
some network-induced constraints, such as limited bandwidth,
quantization errors, which may result in transmission packet
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losses [1–5]. For NCSs with packet losses, there are two
fundamental protocols in network communication, which are
the transmission control protocol (TCP) and the user data-
gram protocol (UDP). The TCP features the successful data
transmission by retransmitting lost data until the sending node
receives a acknowledgment (ACK) signal from the receiving
node. However, such retransmission mechanism in turn leads
to several drawbacks, e.g., network jitter, transmission delay,
additional consumption of energy and bandwidth [6]. In unre-
liable networks, sometimes, it would be difficult to implement
the TCP by sending the ACK in time [7–9]. Thus, the TCP
is commonly employed in NCSs where high security and
data integrity are required and the communication is relatively
reliable, such as smart grids and smart transportation. For the
UDP, no ACK scheme is used and thus no retransmission of
the lost data is required. Therefore, the UDP, with relatively
less transmission reliability, avoids unnecessary energy con-
sumption, causes lower latency, and allows more consistent
communication, making it a preferable choice for real-time
NCSs, e.g. robot control and remote teleoperations [10]. The
system, in which there is no ACK signal sent from the actuator
to notice the estimator the occurrence of control packet losses,
is commonly called a UDP-like system (see Fig. 1-A or 1-B),
and the one with ACK signals is called a TCP-like system,
and the one with the ACK randomly lost is called a Quasi-
TCP-like system [8, 11].

It is shown in recent work [12, 13] that for a UDP-like
system the optimal estimator is nonlinear and consisted of
exponentially increasing terms, and thus its design is time-
consuming. By replacing the optimal estimator with the linear
minimum-mean-square-error (LMMSE) estimator, the LQG
problem, actually a sub-optimal LQG control, was studied
in [14]. It is reported that for general UDP-like systems, the
separation principle dose not hold, and the LQG controller is
a nonlinear function of the estimated state and its solution in-
volves solving non-convex optimization problems. Various lin-
ear sub-optimal LQG controllers were developed in [7, 15, 16].
Therefore, we may conclude that if the conventional UDP-like
structure (Fig. 1-A) remains unchanged, the optimal estimation
and control are not only technically involved to be obtained,
but also useless in practical use due to unaffordable time-
consuming computations. It motivates us to consider whether
there are some feasible or reasonable conditions or structures
for UDP-like systems under which the optimal estimation and
LQG control can be obtained and useful properties can be
further analyzed.

Based on this motivation, we propose two mild and feasible
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conditions as follows. Condition 1: The sensor has some
computation abilities, enough to run a standard Kalman fil-
ter, namely, a smart sensor; and Condition 2: The control
command actually exerted to the plant (i.e., uak defined later)
is available for the sensor. These two conditions are not
so stringent that can be satisfied in some scenarios. For
Condition 1, smart sensors have a wide rage of applications
in many fields [17–19]. Practical techniques with complex
computations—including speech/handwriting recognition and
discrete Fourier transform—have been implemented in smart
sensors. In particular, the smart sensors being able to perform
Kalman filtering have been wildly used to improve state
estimation [20–22]. Moreover, thanks to the micro-electro-
mechanical technology, these smart sensors can be designed
to be smaller in size and lower in cost [18]. Condition 2 may
be achieved in some scenarios: 1) The sensor and actuator are
implemented in one device, such as the smart sensor node used
in [17], in which the actuator is able to communicate and even
control the sensor; 2) The actuator possesses communication
ability to transfer data, such as the wireless smart actuator
which can share information with the sensor [19].

In the following, we call the UDP-like system satisfying
these two conditions a smart-sensor-based UDP (SS-UDP)
system. Under Conditions 1 and 2 the sensor is able to obtain
the information of control packet losses, that is, the ACKs.
However, the way these ACKs are processed in a SS-UDP
system is different from that in a Quasi-TCP-like system. In
a Quasi-TCP-like system, the raw ACKs sent to the estimator
over an unreliable channel is randomly lost, and thus it is
required to estimate the value of ACK, making the optimal
estimator [23] and the LQG controller [8] nonlinear. In a
SS-UDP system, the ACK is fused into a local estimate at
the sensor side. Although the local estimate is also randomly
lost over the sensor-estimator channel, the resulting optimal
estimator is linear, as shown later in Sec. III-A.

It can be seen from [1, 24] that among the topics on optimal
estimation and control for the system with packet loss, there
are some closely related fundamental issues: the stability of
the estimator [25, 26], the distribution and convergence of the
estimation error covariance [27, 28], the estimation perfor-
mance evaluation [29, 30], and the stability of the closed-loop
system [14, 31]. These four issues have been fully investigated
for TCP-like systems, but they are seldom studied for SS-UDP
systems. Therefore, in this paper, we are concerned with the
optimal estimation and control problems for SS-UDP systems,
especially the aforementioned four fundamental issues.

B. Related work and contributions

To our best knowledge, there is few work on optimal esti-
mation and control for the proposed SS-UDP system. Recent
advancements on UDP-like systems have been summarized
above. In the sequel, we briefly review the state of art of these
four fundamental issues for TCP-like systems.

For a conventional TCP-like system, that is, the system
without a smart sensor, it is well known that its optimal
estimator is the time-varying Kalman filter. Its stability was
studied in the pioneering work [25] where it is pointed out that

there exists a critical value which determines the boundedness
of the expected estimation error covariance (EEC), i.e., E[Pk].
Following [25], various aspects have been further researched,
including the bound for the critical value [32], the distribution
for EEC [27, 28], the Markov packet losses case [26, 33–
35]. In [29, 30], the authors pointed out that P({Pk ≤ M})
is a better evaluation for the estimation performance than the
quantity E[Pk], and then obtained the lower and upper bounds
for P({Pk ≤ M}). The LQG problem for TCP-like systems
has been comprehensively investigated in [14, 31, 36, 37].
However, these results fail to apply to UDP-like or SS-UDP
systems, as the structure of the optimal estimator for TCP-
like systems is different from that for UDP-like or SS-UDP
systems. For TCP-like systems with smart sensor, the EEC
is convergent under some condition [38]. In [39], the authors
proposed a LQG controller by using a smart sensor to design
an encoder/decoder to compensate observation packet losses.

The introduction of smart sensors facilitates the design of
the optimal estimator, however the estimation-related issues
are still challenging. The resulting EEC Pk is a random
quantity. To better formulate its distribution, convergent, and
the limit involves an infinite product probability space. The
constructions of the σ-field and the probability measure on
it are complicated. Moreover, the Pk in the SS-UDP system
contains uk, and thus its properties relies on uk, which is
different from the cases in which there is no control input
[20, 29, 30]. Therefore, the existing results on TCP-like
systems cannot directly apply to SS-UDP systems.

In this paper, we study the optimal estimation and LQG
control issues for SS-UDP systems. The main contributions
are summarized as follows:

1) We construct finite and infinite product probability spaces
for the estimation error covariance Pk, which is the core
in solving these aforementioned estimation issues.

2) We show the condition for the convergence of Pk in
distribution. Moreover, we explicitly describe the limit,
a measurable function on an infinite product probability
space. We establish the stability condition for E[Pk], and
propose some practical methods to evaluate the estima-
tion performance. For TCP-like systems these estimation
issues are respectively addressed by different approaches
in [25, 27, 28, 30]. For SS-UDP systems we solve them in
an unified way by the probability space based method.

3) For SS-UDP systems, we obtain the finite horizon LQG
controller, establish the condition for the existence of the
infinite horizon LQG controller, and then prove that the
corresponding closed-loop system is mean square stable. It
is worth noting that the optimal LQG controller for UDP-
like systems has not yet been obtained; and there is no
solution to the infinite horizon LQG problem for TCP-like
systems as the Kalman gain is not convergent.

The rest of the paper is organized as follows: The system
setup and problems are formulated in Section II. In Section III,
finite and infinite product probability spaces are constructed,
and then the stability, convergence, and performance evalua-
tion of the optimal estimator are studied. The LQG problem is
solved in Section IV. Conditions 1 and 2 are further discussed
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in Section V. Numerical examples are presented in Section
VI to illustrate our main results. The conclusions are given in
Section VII. The proofs of all lemmas and propositions are
given in Appendix.

Notations:
• P(·) denotes the probability measure.
• E[·] denotes the probability expectation.
• Dc denotes the complement of a set D.
• (·)′ denotes the transpose of a matrix or vector.
• Let M be a matrix. [·]2M denotes (·)′M(·).
• λM and λM stand for the maximum and the minimum

singular values of M , respectively.
• || · || denotes the norm. Specifically, for a vector x, ||x|| ,√

x′x; for a matrix M , ||M || , λM .
•

⊎
stands for the union of sets and the symbol + is used

to emphasize that these sets are mutually disjoint.
• R, N, and Z+ denote the set of real numbers, natural

numbers, and nonnegative integers, respectively.
• Z+ is defined as the set of the extend nonnegative

integers, that is, Z+ , Z+

∪
{∞}.

• ψ1 ◦ψ2: Let ψ1 and ψ2 be two functions. ψ1 ◦ψ2(X) is
defined as ψ1(ψ2(X)).

• In a binary sequence, e.g., (0, 1,×, · · · ), the symbol ×
means either 0 or 1.

II. SYSTEM SETUP AND PROBLEM FORMULATION

We propose one of the possible implementations of the SS-
UDP system. That is the one illustrated in Fig. 1-B, in which
the actuator and the smart sensor are located together in one
device, like the smart sensor node used in [17], so that the
actuator can provide the information uak to the smart sensor.

A. System setup

Consider the following discrete-time linear SS-UDP system
with the framework illustrated in Fig. 1-B:

• Plant:

xk+1 = Axk +Buak + ωk (1)

where A ∈ Rn×n and B ∈ Rn×q are constant matrices,
xk ∈ Rn is the system state, uak ∈ Rq is the control input
actually exerted to the plant by the actuator, and ωk is a
zero mean Gaussian noise with covariance Q ≥ 0. In this
paper, we consider the unstable system, i.e., λA > 1.

• Actuator:

uak = νkuk (2)

where uk ∈ Rq is the control command sent from
the controller over the controller-actuator (C/A) channel.
{νk}, a sequence of i.i.d. Bernoulli random variables with
P(νk = 1) = ν, models the control packet loss. That is,
νk = 1 means that the control command uk has been
successfully transmitted to the actuator, otherwise νk = 0.

• Sensor:

yk = Cxk + υk, (3)

where C ∈ Rp×n is a constant matrix, yk ∈ Rp is
the observation, and υk is a zero mean Gaussian noises

Fig. 1. The conventional UDP-like system and the SS-UDP system. The
dash line with � indicates that there is no communication channel from the
actuator to the estimator for sending acknowledgments.

with covariance R > 0. As assumed in Condition 1, the
smart sensor is able to run a Kalman filter to obtain
a local optimal state estimate x̂s

k = E[xk|Yk], where
Yk = {yk, . . . , y1} (The detailed derivations are given
in Section III). Then it sends x̂s

k instead of the raw
observation yk to the estimator over the sensor-estimator
(S/E) channel. {γk}, a sequence of i.i.d. Bernoulli random
variables with P(γk = 1) = γ, describes the observation
packet loss. Namely, γk = 1 means that the local estimate
x̂s
k has been successfully transmitted to the estimator;

otherwise γk = 0.
• Estimator and controller unit: Denote the information set

received at the estimator side by Ik={γkx̂s
k, . . . , γ1x̂

s
1}.

When γk = 0, γkx̂s stands for an empty set. The task of
the estimator/controller unit is to determine the optimal
state estimation x̂k based on Ik, and then provide the
optimal control input uk. The implementation of this unit
is presented in Lemma 1 and Theorem 4, respectively.

For the system described in (1)-(3), some assumptions are
given in the following.

Assumption 1. The initial state x0 is a Gaussian random
variable with mean x̄0 and covariance P0. x0, ωk, υk, νk,
and γk are mutually independent. The pair (A,Q1/2) is
controllable, and the pair (A,C) is observable.

B. Problems formulation

All the problems listed below are assumed to be proposed
for SS-UDP systems. The aforementioned four fundamental
issues are formulated in the following five problems.

1) Estimation problems:

Definition 1. An estimation of xk, denoted by x̂k, is said to
be optimal in the minimum mean square error (MMSE) sense,
if x̂k minimizes E

[
||xk − x̂k|Ik||2

]
.
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Denote by Pk the estimation error covariance of x̂k. It is
shown later that Pk is a random variable. Although there are
many convergence criteria for a random variable, a suitable
one to describe Pk is the convergence in distribution. Since
the probability space of Pk changes with k, most of the
convergence criteria are not fit for this case.

Definition 2 (Convergence in distribution [40]). Let Xn and X
be random variables with distributions Pn and P, respectively.
Xn is said to converge in distribution to X , denoted by Xn

d−→
X , if limn→∞ Pn({Xn < x}) = P({X < x}) for every x
such that P({X = x}) = 0.

Problem 1. Determine the condition under which Pk con-
verges in distribution, and find out the limit.

As Pk is a random quantity, the stability of the estimator
is usually examined by the boundedness of E[Pk], as in [22,
25, 26].

Definition 3 (Stability). The estimation error covariance Pk

is said to be stable in the mean sense, i.e., E[Pk] is stable, if
E[Pk] is bounded, that is, supk E[Pk] < +∞.

Problem 2. Determine the stability condition for E[Pk].

As pointed out in [29, 30], Pk({Pk ≤ αI}) is a better eval-
uation of the estimation performance than E[Pk], as it gives
a complete characterization of the estimation performance.

Problem 3. Analyze the estimation performance in term of
Pk({Pk ≤ αI}).

2) LQG problems: Given an integer N , and let W , Λ, WN ,
{Wk} and {Λk} for 1 ≤ k ≤ N − 1 be positive definite
matrices. Define the finite horizon cost function:

JN (πN−1, x̄0, P0) = E
[
x′NWNxN +

N−1∑
k=0

x′kWkxk

+ νku
′
kΛkuk|πN−1, x̄0, P0

]
and the infinite horizon cost function:

J∞(π∞, x̄0, P0) = lim
N→∞

1

N
E
[N−1∑

k=0

x′kWxk

+ νku
′
kΛuk|πN−1, x̄0, P0

]
,

where πN−1 = {u0, . . . , uN−1} and π∞ = {u0, . . . , uk, . . .}
stand for sequences of control inputs. Each uk is a function
of Ik, i.e., uk = fk(Ik). For the optimal control, some
assumptions are given as follows:

Assumption 2. The pair (A,B) is controllable, and the pair
(A,W 1/2) is observable.

Problem 4. Determine the optimal control sequence, denoted
by π∗

N−1 (or π∗
∞), minimizing the cost function JN (or J∞),

J∗
N , JN (π∗

N−1, x̄0, P0) = min
πN−1

JN (πN−1, x̄0, P0)

J∗
∞ , J∞(π∗

∞, x̄0, P0) = min
π∞

JN (π∞, x̄0, P0).

The closed-loop system, whenever mentioned in the follow-
ing, refers to the SS-UDP system with the feedback control

uk = L∞x̂k, where L∞ is the infinite horizon LQG control
gain. The closed-loop system is consisted of three dynamic
subsystems, whose states are the plant xk, the smart sensor
x̂s
k, and the estimator x̂k, respectively. It has been pointed

out in [31] that even when the infinite LQG control exists,
the controller does not necessarily stabilize the closed-loop
system. Hence, we consider the following problem.

Definition 4 (Mean square stability (MMS)). The closed-loop
system is said to be mean square (m.s.) stable, if E[||xk||2] <
+∞, E[||x̂k||2] < +∞, and E[||x̂s

k||2] < +∞ for all k ∈ N.

Problem 5. Determine the condition under which the closed-
loop system is m.s. stable.

Our objectives are to solve these five problems above. The
following table provides a reference for their answers. The
column of main topics explains in which problem the terms
“stability, convergence, and performance” in the title of this
paper are involved.

Problems Answers Main topics
1 Theorem 1 Convergence
2 Theorem 2 Stability
3 Theorem 3 Estimation Performance
4 Theorems 4 and 5(i) LQG control
5 Theorem 5(ii) Stability

III. OPTIMAL ESTIMATOR AND ITS PROPERTIES

A. Smart sensor based optimal estimator

As assumed in Condition 1, the smart sensor is able to run
standard Kalman filter to obtain the local optimal estimate
x̂s
k and its corresponding estimation error covariance Sk as

follows:

x̄s
k+1 = Ax̂s

k + νkBuk = Ax̂s
k +Buak (4)

S̄k+1 = ASkA
′ +Q (5)

Kk+1 = S̄k+1C
′(CS̄k+1C

′ +R)−1

x̂s
k+1 = x̄s

k+1 +Kk+1(yk+1 − Cx̄s
k+1)

Sk+1 = (I −Kk+1C)S̄k+1, (6)

with x̂s
0 = x̄0 and S0 = P0.

Lemma 1. For the SS-UDP system, the optimal estimator is
the following.

x̂k = γkx̂
s
k + (1− γk)(Ax̂k−1 + νBuk−1) (7)

Pk = γkSk + (1− γk)(APk−1A
′ +Q+ Uk−1), (8)

with x̂0 = x̄0 and P0 = P0, where Uk−1 , ν̄νBuk−1u
′
k−1B

′

and ν̄ = 1− ν.

B. Construction of probability spaces

Problems 1, 2, and 3 in Section II are closely related to
Pk. From (8), it is clear that Pk is a random variable. The
probability space of Pk and its limit play an important role
in solving these problems. Therefore, in this section, we first
construct the finite product probability space (Ωk,Fk,Pk) of
Pk. Then we construct an infinite product probability space
(Ω∞,F∞,P∞)—which characterizes the behavior of the limit
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of Pk—and a measurable function (i.e., a random variable) on
it. Based on them, these problems are solved in Section III-C,
-D, and -E, respectively.

We start with some definitions relevant to the probability
space.

Definition 5 ([41]). Some definitions relevant to field are given
as follows.

• (Field and σ-field) Let F be a collection of subsets of
a set Ω. Then F is called a field if (i) Ω ∈ F ; (ii)
If A ∈ F , then Ac ∈ F ; (iii) If A1, . . . , An ∈ F ,∪n

i=1Ai ∈ F . F is called a σ-field, if (iii) is replaced
by “If A1, A2, . . . ∈ F ,

∪∞
i=1Ai ∈ F .”

• (σ-field generated by sets) Let L be a collection of
subsets of Ω, a σ-field F0 is called the σ-field generated
by L , denoted by σ(L ), if F0 is included in any σ-field
containing L .

Definition 6 ([41]). Some definitions relevant to measure are
given as follows.

• (Finitely and countably additive) Let F be a σ-field of
a set Ω. A set function µ : F → R is called countably
additive on F , if whenever A1, A2, . . . form a finite or
countable collection of disjoint sets in F whose union
also belong to F , we have µ(

∪
nAn) =

∑
n µ(An). If

this equity holds only for finite collections of disjoint sets
in F , then µ is called finitely additive.

• (Measure) A measure on a σ-field (or field) is a non-
negative real value countably additive set function µ. If
µ(Ω) = 1, µ is called a probability measure, usually
denoted by P.

• (Probability space) A probability space is a triple
(Ω,F ,P), where Ω is a set and is usually called the
sample space, F is a σ-field on Ω, and P is probability
measure on F .

• (Measurable function) Let (Ω1,F1) and (Ω2,F2) be
measurable spaces. A function h : Ω1 → Ω2 is said
to be F1 − F2 measurable (or measurable for short) if
h−1(A) ∈ F1 for each A ∈ F2.

• (σ-finite) A nonnegative, finitely additive set function µ
on the field F1 is called σ-finite if Ω can be written as∪∞

i=1Ai where Ai ∈ F1 and µ(Ai) <∞.

1) Probability space (Ωk,Fk,Pk): {γk} is a sequence of
i.i.d. Bernoulli random variables. According to the defini-
tion above, we denote the probability space for each γk by
(Ωγ ,Fγ ,Pγ) where Ωγ = {0, 1}, Fγ is the conventional
σ-field for Ωγ , i.e., Fγ = {ϕ,Ωγ , {0}, {1}}. Pγ is the
probability measure on Fγ with Pγ(γk = 1) = γ, where the
subscript γ is used to distinguish those Pk and P∞ defined
later. In the sequel, we construct the probability space of Pk.
Ωk: It can be seen from (8) that Pk depends on

(γk, . . . , γ1), which may take 2k different values.
The sample space Ωk is the set consisting of all
these 2k points. The point in Ωk is denoted by
θ , (γk, . . . , γ1).

Fk: We take the σ-field Fk to consist of all subsets of
Ωk, i.e., Fk , {A ⊆ Ωk}.

Pk: The probability measure Pk is a set function: Fk →

[0, 1], which can be defined in the following way.
For each single point set {θ} = {(γk, . . . , γ1)} ⊆
Ωk, due to the mutual independence of (γk, . . . , γ1),
Pk({θ}) =

∏k
i=1 Pγ(γi). Then we can assign each

set A ∈ Fk a probability measure in such a way that
Pk(A) ,

∑
θi∈A Pk({θi}). It is easy to check that

Pk is indeed a probability measure.
2) Random variable Pk: As a random variable, Pk is in

fact a measurable function mapping Ωk to Rn×n. To better
describe Pk, we will define some subsets of Ωk. On each
subset, Pk takes a constant value.

Recall that Ωk consists of points of the form θ =

(γk, . . . , γ1). We define F
[k]
k , {(0, . . . , 0)}, and for 0 ≤

i ≤ k − 1,

F
[i]
k ,

{
( 0 . . . 0 1 × . . . × )

}
1 . . . i i+1 i+2 . . . k

where from left to right the first “1” occurs in the i+1th
position. That is, for each θ ∈ F

[j]
k , we have

θ = {γk = 0, . . . , γk−j+1 = 0, γk−j = 1,×, . . . ,×}.

Take k = 3 for example:
F

[0]
3 = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, F

[1]
3 =

{(0, 1, 0), (0, 1, 1)}, F [2]
3 = {(0, 0, 1)}, F [3]

3 = {(0, 0, 0)}.

Proposition 1. For the subsets F [i]
k , the following facts hold.

(i) F
[i]
k ∩ F [j]

k = ∅ for 0 ≤ i ̸= j ≤ k (∅ means an empty
set).

(ii) Ωk =
⊎k

i=0 F
[i]
k .

(iii) Pk(F
[j]
k ) = γγ̄j for 0 ≤ j ≤ k− 1, and Pk(F

[k]
k ) = γ̄k.

Define two functions ψk(P ) and Ψ
[i]
k (P ) as follows:

ψk(P ) = APA′ +Q+ Uk (9)

Ψ
[i]
k (P ) =

{
P, for i = 0
ψk−1 ◦ · · · ◦ ψk−i(P ), for 1 ≤ i ≤ k

(10)

For 0 ≤ i ≤ k, we define

P
[i]
k , Ψ

[i]
k (Sk−i), (11)

where Sk is computed by (5) and (6).

Lemma 2. For ∀k and ∀{Uk}, P [n]
k ≤ P

[n+1]
k , 0 ≤ n ≤ k−1.

Proposition 2. As a function, Pk can be described as follows:

Pk(θ) = P
[j]
k , for θ ∈ F

[j]
k ⊆ Ωk.

3) Probability space (Ω∞,F∞,P∞): As k → ∞, Ωk

becomes an infinite product space Ω∞ , Ωγ × Ωγ × · · · .
To study the behavior of the limit of Pk, we construct the
probability space (Ω∞,F∞,P∞) as follows.

Ω∞ : Since Ω∞ = Ωγ ×Ωγ × · · · , it consists of infinitely
many points and each point θ ∈ Ω∞ takes the form
θ = (θ1, . . . , θi, . . .) with θi = 0 or 1 for i ∈ N.

F∞ : Clearly, Ω∞ is an uncountable set. A well known
result in the measure theory is that if the σ-field
consists of all the subsets of an uncountable set
Ω∞, then there is no measure on the σ-field [40].
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Therefore, we have to equip Ω∞ with a suitable σ-
field and then construct a probability measure on it.
Define some countable subsets of Ω∞ as follows: Let
A = {(0, 0, . . .)}, and let

A[i] =
{
( 0 . . . 0 1 × . . . )

}
.

1 . . . i i+1 i+2 . . .

For the convenience of indexing the sets A and A[i],
we define A[∞] , A. Let A0 be a collection of
sets {∅,Ω∞, A

[0], A[1], . . . , A[∞]}, and let A be a
collection of all the finite and countable unions of
subsets of A0. That is, if B ∈ A , there exists a
finite or countable set

NB = {n1, n2, . . .} ⊆ Z+ (12)

such that B =
⊎

i∈NB
A[i].

Define F∞ = σ(A ), the σ-field generated by A .
P∞ : Generally, it is difficult to explicitly define a mea-

sure P by assigning a value for every set in F∞.
Conventionally, one can define a desired measure P∗

on some subsets of interest, such as A , and then
extend P∗ to a probability measure P on F∞. Such
P is identical to P∗ when acting on A . Following
this idea, we define a set function P∗ : A → [0, 1]
in such a way that

P∗(A[∞]) = 0, and P∗(A[i]) = γγ̄i , pi, (13)

and

P∗(B) ,
∑
i∈NB

pi, for B ∈ A , (14)

where B =
⊎

i∈NB
A[i]. The existence of P on F∞

is formulated later in Proposition 5.
The following proposition lists some properties of the

structure of A .

Proposition 3. The following facts hold.
(i) A[i] ∩A[j] = ∅ for i ̸= j ∈ Z+.
(ii) Ω∞ =

⊎∞
i∈Z+

A[i], i.e., Ω∞ = A
⊎
(
⊎∞

i=0A
[i]).

(iii) Given a set B ∈ A , the set NB mentioned in (12) is
unique. If Bi and Bj are disjoint, so are NBi and NBj .
Moreover, Bi

⊎
Bj =

⊎
k∈NBi

⊎
NBj

A[k].
(iv) Let {Bi} be a sequence of mutually disjoint sets. Then⊎∞

i=1Bi =
⊎

k∈
⊎∞

i=1 NBi
A[k].

To extend P∗ to a probability measure on F∞, we require
the famous measure extension theorem as follows.

Lemma 3 (Carathéodory measure extension theorem [41]).
Let Ω∗ be a nonempty set, and let µ∗ be a measure on the
field F0 of subsets of Ω∗, and assume that µ∗ is σ-finite on
F0, then µ∗ has an unique extension to a measure µ on σ(F0)
such that µ(A) = µ∗(A) for A ∈ F0.

The following proposition shows that A and P∗ meet the
requirements in the preceding measure extension theorem.

Proposition 4. The following facts hold. (i) A is a field; (ii)
P∗ is a measure on the field A ; and (iii) P∗ is σ-finite on A .

Based on Propositions 3, 4 and the measure extension
theorem, the existence of the probability measure P on F∞
is shown as follows.

Proposition 5. There exists a probability measure P∞ on F∞
such that P∞(A) = P∗(A) for ∀A ∈ A0, that is, P∞(∅) = 0,
P∞(Ω∞) = 1, and P∞(A[i]) = P∗(A[i]) for ∀i ∈ Z+.

4) Construction of the random variable P on Ω∞:
In the following, we construct a random variable P on
(Ω∞,F∞,P∞), which will be the limit of Pk. For a probabil-
ity space, a random variable is in fact a measurable function.
Hence, to construct P, we only need to designate its domain
and the values it takes. Define two functions

ψ(P ) = APA′ +Q+ U (15)

Ψ[m](P ) =


P, for m = 0
ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
m times

(P ), for m ≥ 1. (16)

It follows from [42, Theorem 17.53] that under Assumption 1
S̄k and Sk in (5) and (6) converge, and their limits, denoted
by S̄ and S respectively, are positive define. Define

S[m] , Ψ[m](S), for m ≥ 0, (17)

and then define a random variable P : Ω∞ 7→ Rn×n as

P(θ) =

{
0, for θ ∈ A[∞]

S[m], for θ ∈ A[m],m ∈ Z+.
(18)

From the definition above, the range of P is countable. For
any subset M ⊆ Rn×n, the inverse image P−1(M) consists
of finite or countable subsets A[i], i.e., the union of these
subsets A[i] (P−1(M) =

⊎
A[i]). From the construction of

A , it is clear that
⊎
A[i] ∈ A , which indicates that P is a

measurable function, that is, a random variable. To formulate
the distribution of P, we give a lemma as follows.

Denote the maximum singular values of S[m] and P [m]
k by

λ
[m]
S and λ[m]

Pk
, respectively.

Lemma 4. The following facts hold.

(i) {S[n]} for n ∈ Z+ is a strictly increasing sequence.
(ii) λ

[n]
S is an increasing sequence, and limn→∞ λ

[n]
S = ∞.

(iii) For given α ≥ λS and U ≥ 0, there exists an unique
integer nα ∈ N such that λ[nα]

S ≤ α < λ
[nα+1]
S . The

following function is well-defined

nα = n(α,U). (19)

For brevity, denote the subset {θ ∈ Ωk|Pk(θ) ≤ αI} by
{Pk ≤ αI} and {θ ∈ Ω∞|P(θ) ≤ αI} by {P ≤ αI}.

Proposition 6. The distribution of P is the following.

(i) P∞({P = S[m]}) = γγ̄m for m ∈ Z+. (γγ̄∞ , 0)
(ii) P∞({P ≤ αI}) = 1− γ̄nα+1, where nα = n(α,U) and

α ≥ λS .
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C. Convergence of Pk

Based on the probability spaces constructed above, we deal
with Problem 1 in this section, and the result is formulated in
the following theorem.

Theorem 1. If Uk is convergent, then Pk converges to P in
distribution, i.e., Pk

d−→ P, where P is constructed by (15)-
(18).

To prove Theorem 1, some lemmas are given as follows.

Lemma 5. Let X ,Y , and S be matrices where S > 0, and let
α > 0 and ε > 0 be real numbers. The following facts hold.
(i) If ||X − Y || < ε, then −εI < X − Y < εI .
(ii) Let d = α− λS . If d > 0, then αI − S ≥ dI .

Lemma 6. Suppose limk→∞ Sk = S and limk→∞ Uk = U .
Given an integer n > 0 and a real number α > λS , if λ[n]S <

(>)α, there is an integer Nn > 0 such that λ[n]Pk
< (>)α for

k > Nn.

Lemma 7. Suppose that {Uk} is convergent. Let α > λS but
α /∈ {λ[1]S , λ

[2]
S , . . .}, and let nα be the unique integer satisfying

λ
[nα]
S < α < λ

[nα+1]
S . Then there exists an integer N > 0 such

that for ∀k > N ,
(i) λ[nα]

Pk
< α < λ

[nα+1]
Pk

.
(ii) Pk({Pk ≤ αI}) = 1− γ̄nα+1.

Proof of Theorem 1: From Proposition 6 (i), it follows
that: 1) For the multi-variable case, when X = S[m] with m ∈
Z+, P∞({P = X}) ̸= 0; 2) For the scalar case, S[m] = λ

[m]
S ,

and thus when x = λ
[m]
S with m ∈ Z+, P∞({P = x}) ̸=

0. Therefore, according to the definition of convergence in
distribution, to avoid the possibility that P∞({P = αI}) ̸= 0,
we consider α ∈ (λS ,∞) but α /∈ {λ[1]S , λ

[2]
S , . . .}.

It follows form Lemma 4(iii) and Proposition 6(ii) that
for a given α > λS , there exists an integer nα such that
λ
[nα]
S < α < λ

[nα+1]
S and P∞({P ≤ αI}) = 1− γ̄nα+1. From

Lemma 7, it follows that there exists an integer N such that
for k > N , Pk({Pk ≤ αI}) = 1− γ̄nα+1 = P∞({P ≤ αI}),
which implies Pk({Pk ≤ αI}) converges to P∞({P ≤ αI}).
Therefore, according to Definition 2, we have Pk

d−→ P.

D. Stability of E[Pk]

In this section, we deal with Problem 2. Before formulating
the result, we give a lemma as follows.

Lemma 8. E[Pk] = P
[k]
k γ̄k +

∑k−1
n=0 P

[n]
k γγ̄n.

Theorem 2. For the SS-UDP system in (1) with bounded
inputs, under Assumption 1, if γ̄ < λ−2

A , E[Pk] is stable for
∀P0 ≥ 0; if γ̄ > λ−2

A , there exists a P0 such that E[Pk] → ∞.

Proof: Under Assumption 1, Sk is convergent. Then it is
bounded. Denote its bound by Sb. Let Ū be the bound for Uk.
Ū exists by hypothesis. From (37), we have that for 0 ≤ n ≤ k

P
[n]
k ≤ (λ2A)

nSb + (Ū +Q)
n∑

i=1

(λ2A)
n−i

≤ (λ2A)
n
(
Sb + (Ū +Q)/(λ2A − 1)

)
= (λ2A)

nS∗,

where S∗ , Sb + (Ū +Q)/(λ2A − 1). By Lemma 8,

E[Pk] =
k−1∑
n=0

P
[n]
k γγ̄n + P

[k]
k γ̄k (20)

≤ γS∗
k−1∑
n=0

(γ̄λ2A)
n + S∗(γ̄λ2A)

k

≤ S∗
k∑

n=0

(γ̄λ2A)
n ≤ S∗/(1− γ̄λ2A).

Therefore, for ∀P0 ≥ 0, E[Pk] is bounded.
From (37), we have P [n]

k ≥ AnSk−n(A
n)′ for 0 ≤ n ≤ k.

Then P [k]
k > AkS0(A

k)′. From (20), it follows that E[Pk] >

γ̄kP
[k]
k > γ̄kAkP0(A

k)′ where S0 = P0. When λA > 1,
there is an eigenvalue λ of A such that λA = |λ|. Denote the
corresponding eigenvector of λ by p ̸= 0. By letting P0 = pp′,
E[Pk] ≥ γ̄kAkpp′(A′)k = γ̄kλkp(λkp)′ = (γ̄λ2A)

kP0. Hence,
E[Pk] → ∞ as k → ∞. The proof is completed.

Remark 1. For the SS-UDP system, the stability of E[Pk]
depends on γ but is independent of ν. Similar phenomenon
for the UDP-like system has been proved in [13].

E. Estimation Performance Evaluation

In this section, we focus on the estimation performance
evaluation, but does not consider the design of controller. We
adopt the metric Pk({Pk ≤ αI}) to evaluate the performance,
as it gives a more complete characterization of the estimation
performance [29, 30].

As previously shown, Pk depends on {uk}, so does the
computation of Pk({Pk ≤ αI}). However, in some cases,
all the values of {uk} are not always known. For example,
at the stage of the system design or before the running of
system, designers sometimes do not know all the values of
{uk} in advance, especially when uk is computed on-line, and
only some partial information of the control sequence maybe
available, such as its bound or limit. Therefore, we consider
the following cases, in which {uk} is assumed to be bounded.

• Case 1: All the values of {uk} are known;
• Case 2: Only the upper bound ū of {uk} is known;
• Case 3: {uk} is convergent and its limit u∞ is known.

Clearly, for case 2 Uk is bounded by Ū = νν̄ū2BB′, and for
case 3 Uk converges to U∞ = νν̄Bu∞u

′
∞B

′.
Let Γk(α) , Pk({Pk ≤ αI}).
When {uk} is convergent, Lemma 7 (ii) provides a way to

compute Γk(α). However, it applies to the case that α /∈MS ,
where MS , {λ[1]S , λ

[2]
S , . . .}. When α ∈ MS , we can use

Γk(α + ϵ) to approximately calculate Γk(α), where we can
choose ϵ to be a sufficiently small quantity, e.g., 10−5. In the
following theorem, when Lemma 7 (ii) is used to compute
Γk(α) and α ∈MS , we assume that Γk(α) = Γk(α+ ϵ).

Theorem 3. Given α > 0, for different cases, we have the
following results for Γk(α):

• For case 1, Γk(α) can be computed by Algorithm 1.
• For case 2, there is an integer N such that Γk(α) ≥

1− γ̄nb+1 , pbd, for k > N ,
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• For case 3, there is an integer N such that Γk(α) =
1− γ̄nc+1 , pconv, for k > N ,

where nb = n(α, Ū) and nc = n(α,U∞).

Algorithm 1 Computation of the distribution of Pk

Initialization: compute P [0]
k , . . . , P

[k]
k by (9-11). Γk(α) = 0.

if P
[k]
k ≤ αI then

Γk(α) = 1
else
i = 0
while P [i]

k ≤ αI do
Γk(α) = Γk(α) + γγ̄i; i = i+ 1

end while
end if

Proof: For case 1: If 0 < αI < P
[0]
k , then αI < P

[i]
k

for 0 ≤ i ≤ k due to the monotonicity of P [i]
k . Consequently,

Γk(α) = 0, which is equal to the result Algorithm 1 yields.
In the following, we consider the case P [0]

k ≤ αI .
If P [k]

k ≤ αI , then Pk(θ) ≤ αI with θ ∈ F
[i]
k for 0 ≤ i ≤ k.

From Proposition 1 (ii), we have {Pk < αI} = Ωk. Then
Γk(α) = Pk({Pk < αI}) = Pk(Ωk) = 1.

Then we consider the case that P [0]
k ≤ αI < P

[k]
k . Due to

the monotonicity of P [i]
k , it is clear that there exists an integer

0 ≤ nα < k such that P [nα]
k ≤ αI and P

[nα+1]
k � αI .

This integer nα in fact is the largest integer n such that
P

[n]
k ≤ αI holds. From Proposition 2, Pk(θ) = P

[i]
k for

θ ∈ F
[i]
k . Therefore, Pk(θ) ≤ αI if and only if θ ∈

⊎nα

i=0 F
[i]
k ,

which implies {Pk ≤ αI} =
⊎nα

i=0 F
[i]
k . Γk(α) = Pk({Pk ≤

αI}) = Pk(
⊎nα

i=0 F
[i]
k ) =

∑nα

i=0 Pk(F
[i]
k ) =

∑nα

i=0 γγ̄
i.

Clearly, the routine in the while loop is to find out the nα
and then sum up γγ̄i to obtain

∑nα

i=0 γγ̄
i.

For case 2: Define a random variable Pk on Ωk by letting
Uk in ψk be a constant quantity, i.e., Uk = Ū . Then define
ψ(P ) = APA′ +Q+ Ū , and

Ψ
[m]

(P ) =


P, for m = 0

ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
m

(P ), for 1 ≤ m ≤ k.

Define P
[i]

k , Ψ
[i]
(Sk−i) and Pk(θ) = P

[i]

k for θ ∈ F
[i]
k .

Note that ψ
[m]

(P ) ≥ ψ
[m]
k (P ) for ∀P ≥ 0. By com-

paring the definitions of Ψ
[m]

(P ) and Ψ
[m]
k (P ), it is easy

to obtain that Ψ
[m]

(P ) ≥ Ψ
[m]
k (P ) for ∀P ≥ 0. Thus,

P
[i]

k = Ψ
[i]
(Sk−i) ≥ Ψ

[i]
k (Sk−i) = P

[i]
k . Then we have

Pk(θ) ≥ Pk(θ) for ∀θ ∈ Ωk.
Let uk ≡ ū. Obviously, {uk} is a convergent sequence. It

follows from Lemma 7 (ii) that there is an integer N such
that for k > N , Pk({Pk ≤ αI}) = 1 − γ̄nb+1 = pbd where
nb = n(α, Ū). Since Pk(θ) ≥ Pk(θ), we have {Pk ≤ αI} ⊂
{Pk ≤ αI}. Then Pk({Pk ≤ αI}) ≥ Pk({Pk ≤ αI}) = pbd.

For case 3: The case 3 is the result of Lemma 7 (ii).
Estimation performance evaluation: For different cases,

the results on the computation of Γk(α) are formulated in
Theorem 3. For cases 2 and 3, without full knowledge of {uk},

Algorithm 1 does not work and the exact value of cannot be
obtained. When k is sufficiently large, pbd is a lower bound
for Γk(α) and pconv is identical to Γk(α). They can be viewed
as long term evaluations for estimation performance.

Remark 2. In Algorithm 1, at the time k, it requires to
compute k + 1 quantities, i.e., P [0]

k , . . . , P
[k]
k . The amounts

of computation and PC memory increase linearly with time,
which is not suitable for the system running over a long time.
Hence, even when the full knowledge of {uk} is known, to
avoid the time-consuming computation, one can use the results
in cases 2 and 3 to obtain an approximation.

IV. OPTIMAL CONTROL

In this section, we start with some useful lemmas, and then
give answers to Problems 4 and 5 in Theorems 4 and 5.

A. Finite Horizon LQG control

From (8), we have

E[Pk+1|Ik] = γ̄(APkA
′+Q+ν̄νBuku

′
kB

′)+γSk+1. (21)

Define the optimal value function

VN (xN ) = E[x′NWNxN |IN ] (22)
Vk(xk) = min

uk

E[x′kWkxk + νku
′
kΛkuk + Vk+1(xk+1)|Ik].

(23)

Lemma 9. Vk(xk) can be calculated as follows.

Vk(xk) = E[x′kMkxk|Ik] + tr(∆k) + tr(HkPk) (24)

where Hk = Tk −Mk,

Mk = A′Mk+1A+Wk − νA′Mk+1B

× (Λk+B
′(αMk+1+ᾱTk+1)B)−1B′Mk+1A (25a)

Tk = γA′Mk+1A+ γ̄A′Tk+1A+Wk (25b)
∆k = ∆k+1 + (γ̄Tk+1 + γMk+1)Q+ γHk+1Sk+1, (25c)

with MN = TN =WN and ∆N = 0.

Theorem 4. For the SS-UDP system, the optimal control
minimizing JN is uk = Lkx̂k, where

Lk = −(Λk +B′(αMk+1 + ᾱTk+1)B)−1B′Mk+1A (26)

and the corresponding cost function

J∗
N = E[x′0M0x0] + tr(T0 −M0)P0

+
N∑
j=1

tr((γ̄Tj + γMj)Q+ γ(Tj −Mj)Sj)
(27)

where Mk and Tk are computed by (25).

Proof: From the derivation of Vk(xk) in Lemma 9, it is
clear that uk = Lkx̂k is the optimal control law minimizing
the cost function. It follows from the dynamic programming
theory that J∗

N = V0(x0). Then (27) can be easily obtained
by computing V0(x0) via (24)(25c). The proof is completed.

Remark 3. It is known that the separation principle holds for
the TCP-like system but fails for the UDP-like one [14]. For
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the SS-UDP system, the feedback gain Lk can be computed off-
line by (25a)(25b)(26), but x̂k and Pk in (7) and (8) depend
on uk−1. Thus, the separation principle still does not hold.

B. Infinite Horizon LQG control

Let WN =Wk =W and Λk = Λ. Define two functions

ϕM (M,T ) = A′MA+W

− νA′MB(Λ +B′(αM + ᾱT )B)−1B′MA

ϕT (M,T ) = γ̄A′TA+ γA′MA+W

where ᾱ = γ̄ν̄ and α = 1− ᾱ.
If limN→∞

1
N J

∗
N exists, so does the optimal control for

the infinite horizon case. The existence of this limit depends
on the convergences of Mk+1 = ϕM (Mk, Tk) and Tk+1 =
ϕT (Mk, Tk), which has been studied in Lemmas 8.2 and 8.3
of [14]. The result is formulated as follows.

Lemma 10 ([14]). There are M∞ > 0 and T∞ > 0 such that

M∞ = ϕM (M∞, T∞) and T∞ = ϕT (M∞, T∞), (28)

if and only if Mk+1 = ϕM (Mk, Tk) and Tk+1 = ϕT (Mk, Tk)
converge to M∞ and T∞, respectively.

Theorem 5. For the SS-UDP system, if there exist solutions
M∞ > 0 and T∞ > 0 for (28), then
(i) the LQG control for infinite horizon case exists, i.e., uk =
L∞x̂k,

L∞ = (Λ +B′(αM∞ + ᾱT∞)B)−1B′M∞A,

and

J∞ = γtr(T∞ −M∞)S + tr(γ̄T∞ + γM∞)Q. (29)

(ii) The closed-loop system is mean square stable.

Proof of part (i): It follows from Lemma 10 that Mk

and Tk converge, which implies the existence of the optimal
control. L∞ and J∞ can be obtained by taking the limits of
Lk in (26) and 1

N J
∗
N in (27).

Proof of part (ii): Let esk = xk − x̂s
k. Note that under

Assumption 1, E[||esk||2] = E[(esk)′esk] = tr(Sk) is convergent
and then is bounded. Thus, if E[||xk||2] is bounded, so is
E[||x̂s

k||2]. Similarly, due to xk = x̂k + ek, if E[||x̂k||2] and
E[||ek||2] are bounded, then E[||xk||2] is bounded. Therefore,
the MSS of the closed-loop system is studied by examining
the boundedness of E[||x̂k||2] and E[||ek||2] instead of E[||xk||2],
E[||x̂k||2], and E[||x̂s

k||2].
From (1) and (2), xk+1 = Axk + νkBuk + ωk. Then,

x̂k+1 = γ̄k+1(Ax̂k + νBuk) + γk+1x̂
s
k+1

= (A+ (γ̄k+1ν + γk+1νk)BL)x̂k

+ γk+1Aek + γk+1ωk − γk+1e
s
k+1. (30)

From (7) and (30), by some algebraic derivations, we have

ek+1 = γ̄k+1

(
Aek + (νk − ν)BLx̂k

)
+ γ̄k+1ωk + γk+1e

s
k+1. (31)

Since E[||esk+1||2] and E[||ωk||2] are bounded, it is pointed out
in [31] that x̂k+1 and ek+1 in (30) and (31) are m.s. stable if

and only if they are m.s. stable in the homogeneous part of
(30) and (31) as follows.

x̂k+1 = (A+ (γ̄k+1ν + γk+1νk)BL)x̂k + γk+1Aek (32)
ek+1 = γ̄k+1(νk − ν)BLx̂k + γ̄k+1Aek. (33)

For brevity, the subscripts ∞ of M∞ and T∞ are re-
moved. Denote the optimal control by u∗k. Let Wk = W
and Λk = Λ in (23). It follows from (23) that Vk(xk) =
E[x′kWxk + νk(u

∗
k)

′Λu∗k + Vk+1(xk+1)|Ik]. By using the
established property in [14] that

E[x′kMxk|Ik] = x̂′
kM x̂k + tr(MPk), (34)

Eq. (24) can be rewritten as Vk(xk) = x̂′
kMkx̂k + tr(∆k) +

E[e′kTkek|Ik]. By taking mathematical expectation over infor-
mation Ik, we have

E[Vk+1(xk+1)− Vk(xk)] = −E[x′kWxk + ν(u∗k)
′Λu∗k]

Vk , E[x̂′
kMkx̂k + e′kTkek] = E[Vk(xk)]− E[tr(∆k)].

From (25c), we have

Vk+1 − Vk = − E[x′kWxk + ν(u∗k)
′Λu∗k]

+ (γ̄Tk+1 + γMk+1)Q+ γHk+1Sk+1.

Observe that in Lemma 9, xk and ek are determined by (30)
and (31). Here, what we consider is their homogeneous parts
(32) and (33). Clearly, in the homogeneous parts there is no
process noise ωk and the estimation error esk is set to be
zero as well, which is equivalent to setting their covariances
to be zeros, that is, Q = Sk = 0. Consequently, for the
homogeneous parts,

Vk+1 − Vk = − E[x′kWxk + ν(u∗k)
′Λu∗k]

= − E[x′kWxk + νx̂′
kL

′ΛLx̂k]

= − E[x̂′
k(W + νL′ΛL)x̂k + e′kWek].

By repeatedly using the preceding equation, we have Vk+1−
V0 = −

∑k
i=0 E[x̂′

i(W+νL′ΛL)x̂i+e
′
iWei]. Since Vk+1 ≥ 0,

V0 ≥
k∑

i=0

E[x̂′
i(W + νL′ΛL)x̂i + e′iWei]. (35)

Note that V0 = E[x̂′
0M0x̂0 + e′0T0e0] is bounded and that

W+νL′ΛL and W are positive definite. The series in the right
hand side of (35) is monotonically increasing and bounded
so that it is convergent, which implies that E[||x̂i||2] → 0
and E[||ei||2] → 0 as i → ∞. Then E[||x̂k||2] and E[||ek||2]
are bounded. Thus, x̂k+1 and ek+1 are m.s. stable in the
homogeneous part of (30) and (31), which implies the MMS
of the closed-loop system.

V. FURTHER DISCUSSIONS ON CONDITIONS 1 AND 2

As mentioned in Section I, for UDP-like systems, the
theoretical analysis and practical use of the optimal estimation
and control encounter intractable difficulties. In this section,
we show that these difficulties remain if one of the Conditions
1 and 2 is not satisfied. Consider the following two cases.

Case I: Condition 1 holds, but Condition 2 is not satisfied.
Even when the sensor has computational abilities, x̂s

k cannot
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be computed by the smart sensor, since its computation
requires uak, which can be seen from (4). What the smart sensor
can send to the estimator is the raw measurement yk. Hence,
in this case, the system works like the conventional UDP-like
system.

Case II: Condition 2 holds, but Condition 1 fails. Without
computational abilities, the useful information the smart sensor
can provide the estimator via the S/E channel is uak and yk.
Then the estimator can recover the νk from uak. However, {νk}
is partially and stochastically recovered due to the losses of uak
in the S/E channel. Therefore, this case can be viewed as the
systems with ACK signals randomly lost. It is revealed in [11,
23] that it is computationally prohibitive to obtain the optimal
estimator and LQG controller if ACK signals are randomly
lost.

It can be concluded that if Conditions 1 and 2 are not
satisfied simultaneously, solving the optimal estimation and
control problems will confront with intractable difficulties.

VI. NUMERICAL EXAMPLES

In this section, the main results we obtained are verified
by some numerical examples. Consider the double inverted
pendulum model in [43] with following parameters:

A =
1 −0.0004 0 0.0093 0 0
0 1.0034 −0.0010 0.0016 0.0090 0.0003
0 −0.0038 1.0032 −0.0004 0.0008 0.0094
0 −0.0786 0.0063 0.8730 0.0083 −0.0048
0 0.6544 −0.2380 0.3101 0.9034 0.0664
0 −0.7149 0.6137 −0.0751 0.1579 0.8770


B = [0.0001;−0.0003; 0.0001; 0.0274;−0.0668; 0.0162]′

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

. Let Q = 0.01I6 and R =

0.01I3, where I3 and I6 are identity matrices with dimensions
3 and 6, respectively. W = I6 and Λ = 2.

1) Convergence of Pk: Let γ = ν = 0.5. Here, we do not
draw the graphs of all Γk(α) to show Γk(α) → Γ∞(α), as
their trajectories seriously overlap. Hence, we draw Γk(α) for
some specific values k = 20, 40, 60, 80, and 100. As shown in
Fig. 2 (a semi-log graph), Γk(α) converges to Γ∞(α), which
implies the convergence of Pk to P in distribution.

2) Stability of E[Pk]: The relationship between E[Pk] and
γ is shown in Fig. 3. It can be seen that under different control
inputs and packet arrival rate ν, the stability condition for
E[Pk] is the same and is determined by the observation packet
arrival rates. As claimed in Theorem 2, for E[Pk] to be stable,
it requires γ̄ < λ−2

A , i.e., γ > 0.0763.
3) Estimation Performance Evaluation: Let γ = ν = 0.5.

The exact values of Γk(1) and Γk(1.5) are calculated by
Algorithm 1. Fig. 4(a) shows that if {uk} is bounded but
not convergent, so is Γk(1.5). When its bound ū = 15 is
known, by Theorem 3, the lower bound pbd for Γk(1.5) can
be obtained. It can be viewed as a lower bound for estimation
performance. It can also be seen in Fig. 4(b) that if {uk}
is convergent, so is Γk(1), as claimed in Theorem 1. Based

α
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Γ
k
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)

0.5
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Γ40(α)
Γ60(α)
Γ80(α)
Γ100(α)

35 40 45

0.99

0.995

1
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1.01

Fig. 2. Convergence of Γk(α) = Pk({Pk ≤ α})
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Fig. 3. Relationship between E[Pk] and γ

on the limit of {uk}, the quantity pconv can be computed by
Theorem 3. When k is sufficiently large, the exact value of
Γk(1) = pconv is obtainable even when full knowledge of
{uk} is unknown.

4) LQG control and MSS of the closed-loop system: Let
γ = ν = 0.8. As shown in Fig. 5, it is easy to check the
convergences of Mk and Tk by simulation. Then, it follows
from Lemma 10 that there exist solutions M∞ > 0 and
T∞ > 0 for (28), which guarantees the existence of the infinite
LQG control. For the closed-loop SS-UDP system, we carry
out 1000 times Monte Carlo simulations and then compute the
mean values E[||x̂k||] and E[||ek||]. As shown in Fig. 5, E[||x̂k||]
and E[||ek||] are bounded, which also implies the boundedness
of E[||x̂k||2] and E[||ek||2]. Note that E[||esk||2] = tr(Sk) is
bounded under Assumption 1. Thus, the closed-loop SS-UDP
system is mean square stable, as claimed in Theorem 5.
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(a) The bounded but not convergent input case.
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(b) The convergent input case.

Fig. 4. Pk({Pk < I}) and Pk({Pk < 1.5I}). The rand(k) stands for a
sequence of i.i.d. Bernoulli random variables taking value in 0 or 1.
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Fig. 5. Mean square stability of the closed-loop SS-UDP system

VII. CONCLUSION

In this paper, we have shown that for conventional UDP-
like systems there are some intrinsic difficulties to design
the optimal estimation and LQG control. To overcome these
difficulties, we have proposed two feasible conditions for
the system structure. For UDP-like systems satisfying these
two conditions, the optimal estimation has been derived. By
constructing the probability spaces of the estimation error
covariances, the stability condition for E[Pk], the convergence
of Pk in distribution, and some practical ways to evaluate
the estimation performance have been established. The LQG
controllers for both finite and infinite horizon cases have been
developed. Examples are given to demonstrate the potential
and effectiveness of the proposed new design techniques.

There are two possible extensions. One is to design event-
triggering conditions on the smart sensor side and then develop
the corresponding event-based remote estimator, whose advan-
tages [44] may help extend the results in this paper to UDP-
like networks suffering from the limitation of communication
and the restriction on the actuator/sensor power consumption.
The other is to extend the obtained results for the single
smart sensor node to the multiple-nodes case, and consider the
distributed estimation and control problems [45] over UDP-
like networks.

APPENDIX

Proof of Lemma 1: For the estimator, if γk = 1, then the
estimator receives x̂s

k. Thus, x̂k = x̂s
k and Pk = Sk.

If γk = 0, without x̂s
k, the optimal estimate is in fact the

prediction x̂k = Ax̂k−1+νBuk−1. Then, the prediction error
covariance

Pk = E[(xk − x̂k)(xk − x̂k)
′|Ik−1]

= E[A(xk−1 − x̂k−1)(xk−1 − x̂k−1)
′A′|Ik−1]

+ E[ωk−1ω
′
k−1] + E[(νk − ν)2]Buk−1u

′
k−1B

′

= APk−1A
′ +Q+ Uk−1.

Proof of Proposition 1: Proof of part (i): Without loss
of generality, we assume that i < j. By definition, for each
θa ∈ F

[i]
k , the element in the i + 1th position of θa is 1.

According to the definition of F [j]
k , for each θb ∈ F

[j]
k , from

left to right, the first 1 occurs in the j+1th position. It means
that the element in the i + 1th position of θb must be 0 due
to i + 1 < j + 1. Therefore, θa /∈ F

[j]
k , vice versa. Part (i) is

proved.
Proof of part (ii): It is clear that F [i]

k ⊆ Ωk. Thus, we have⊎k
i=0 F

[i]
k ⊆ Ωk. In the following, we show that

⊎k
i=0 F

[i]
k ⊇

Ωk. For each θ ∈ Ωk, if all the elements in θ are 0, then by
definition θ ∈ F

[k]
k . If not, there must be at least one 1 in θ.

From left to right, denote the position where the first 1 occurs
by i + 1. According to the definition of F [i]

k , θ ∈ F
[i]
k . Thus,

we have θ ∈ F
[i]
k for ∀θ ∈ Ωk, which means

⊎k
i=0 F

[i]
k ⊇ Ωk.

Part (ii) is proved.
Proof of part (iii): By definition, F [j]

k consists of points
of the form θ = (0, . . . , 0, γk−j = 1,×, . . . ,×). For each
θ ∈ F

[j]
k , Pk({θ}) = γ̄jγPγ(γk−j−1) · · ·Pγ(γ1).

According to the definition of Pk(A),

Pk(F
[j]
k ) =

∑
θ∈F

[j]
k

Pk({θ}) =
1∑

γk−j−1=0

· · ·
1∑

γ1=0

Pk({θ})

=
1∑

γk−j−1=0

· · ·
1∑

γ1=0

γγ̄jPγ(γk−j−1) · · ·Pγ(γ1)

= γγ̄j
( 1∑
γk−j−1=0

Pγ(γk−j−1)
)
· · ·

( 1∑
γ1=0

Pγ(γ1)
)
= γγ̄j

where the last line is obtained by noting that
∑1

γi=0 Pγ(γi) =

1, for 1 ≤ i ≤ k. For F [k]
k , Pk(F

[k]
k ) = Pk({(0, . . . , 0)}) =

γ̄k, which completes the proof.
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Proof of Lemma 2: By (5) and (6),

Sk−n = S̄k−n −Kk−nC
′S̄k−n

≤ S̄k−n = ASk−n−1A
′ +Q

≤ ASk−n−1A
′ +Q+ Uk−n−1

= ψk−n−1(Sk−n−1).

From the definition of Φ
[n]
k , it is clear that if P1 ≤ P2,

then Φ
[n]
k (P1) ≤ Φ

[n]
k (P2). P

[n+1]
k = Φ

[n+1]
k (Sk−n−1) =

Φ
[n]
k (ψk−n−1(Sk−n−1)) ≥ Φ

[n]
k (Sk−n) = P

[n]
k .

Proof of Proposition 2: For each θ ∈ F
[j]
k , it takes

the form that θ = {γk = 0, . . . , γk−j+1 = 0, γk−j =
1,×, . . . ,×}. From (8), it follows that if γk−j = 1, then
Pk−j = Sk−j no matter what values {γk−j−1, . . . , γ1} take.
Due to {γk = 0, . . . , γk−j+1 = 0}, it follows from (8) that
Pk = ψk−1 ◦ · · · ◦ ψk−j(Sk−j) = Ψ

[j]
k (Sk−j) = P

[j]
k .

Proof of Proposition 3: Parts (i) and (ii) can be easily
proved by following the similar line of argument in the proofs
of parts (i) and (ii) of Proposition 1. Thus, the proofs of (i)
and (ii) is not presented here for saving space.

We prove part (iii) by contradiction. It is no loss of general-
ity to consider B is a union of countable sets. Suppose that the
representation of B is not unique, then B =

⊎
i∈NB1

A[i] =⊎
i∈NB2

A[i], where NB1 = {n1, n2, . . .}
⊎
{na1 , na

2 , . . .},
NB2 = {n1, n2, . . .}

⊎
{nb1, nb2, . . .}, {n1, n2, . . .} is the com-

mon set in NB1 and NB2 , and {na1 , na2 , . . .}∩ {nb1, nb
2, . . .} =

∅. For ∀nai with i ≥ 1, let θ ∈ A[na
i ]. From part (i), it

follows that θ /∈ A[nj ] due to nj ̸= nai for j ≥ 1, and
that θ /∈ A[nb

j ] due to nai ̸= nbj for ∀i and j. There-
fore, θ /∈

(⊎
j∈{n1,n2,...}A

[j]
)⊎ (⊎

j∈{nb
1,n

b
2,...}

A[j]
)

=⊎
i∈NB2

A[i] = B, which is a contradiction to θ ∈ nai ⊆ B.
Thus, the presentation of B is unique.

Let Bi =
⊎

k∈NBi
A[k] and Bj =

⊎
k∈NBj

A[k]. For any

ni ∈ NBi , A
[ni] ⊆ Bi but A[ni] * Bj due to the hypothesis

that Bi and Bj are disjoint, which implies ni /∈ NBj
.

Similarly, we can obtain that for any nj ∈ NBj , nj /∈ NBi ,
which implies NBi ∩ NBj = ∅. Then, it is straightfor-
ward to have Bi

⊎
Bj = (

⊎
k∈NBi

A[k])
⊎
(
⊎

k∈NBj
A[k]) =⊎

k∈NBi

⊎
NBj

A[k].

Proof of part (iv): For ∀θ ∈
⊎∞

i=1Bi, there exists an
unique integer i such that θ ∈ Bi, and then there exists
an unique integer j ∈ NBi such that θ ∈ A[j]. Thus,
θ ∈ A[j] ⊆

⊎
k∈

⊎∞
i=1 NBi

A[k], due to j ∈
⊎∞

i=1 NBi . Then
we have

⊎∞
i=1Bi ⊆

⊎
k∈

⊎∞
i=1 NBi

A[k]. It is clear that for any
A[j] in

⊎
k∈

⊎∞
i=1 NBi

A[k], it must come from some Bi. Thus,⊎
k∈

⊎∞
i=1 NBi

A[k] ⊆
⊎∞

i=1Bi, which proves part (iv).
Proof of Proposition 4: Proof of part (i): The three

conditions (i-iii) in Definition 5 for a collection of subsets to
be a field are checked for A . (i) By definition of A , Ω∞ ∈ A .
(ii) If B ∈ A , then there exists a finite or countable subset
NB ⊆ Z+ such that B =

⊎
i∈NB

A[i]. Note NB
c ⊆ Z+ is a

finite or countable subset as well. It follows from Proposition
3(ii) that Bc =

⊎
i∈NB

c A[i] ∈ A . (iii) Let B1, . . . , Bn ∈ A .
Then

∪n
i=1Bi =

∪n
i=1

⊎
j∈NBi

A[j] =
⊎

j∈NB
A[j], where

NB =
∪n

i=1 NBi . NB ⊆ Z+ is a finite or countable set.
Thus,

∪n
i=1Bi ∈ A . Therefore, A is a field.

Proof of part (ii): Let {Bi} be a countable collection
of mutually disjoint subsets of A . Denote B =

⊎∞
i=1Bi.

From Proposition 3(iv), B =
⊎

k∈
⊎∞

i=1 NBi
A[k]. Let NB =⊎∞

i=1 NBi . By (14),

P∗(B) =
∑

k∈NB

pk =
∑

k∈
⊎∞

i=1 NBi

pk

=
∑

k∈{NB1
,NB2

,...}

pk

=

∞∑
i=1

(
∑

k∈NBi

pk) =

∞∑
i=1

P∗(Bi).

By definition, P∗ is a nonnegative countably additive set
function on the field A , and thus it is a measure on the field
A , which proves part (ii).

Proof of part (iii): As P∗ is countably additive, it naturally is
finitely additive. According to the definition of σ-finite, part
(iii) can be readily proved by noting the facts that Ω∞ =⊎∞

i∈Z+
A[i] (Proposition 3), and that P∗(A[i]) < 1, i ∈ Z+.

Proof of Proposition 5: It has been proved that P∗ and
A satisfy the conditions required in Lemma 3. From Lemma
3, it follows that there exists a probability measure P∞ on
F∞ such that P∞(A) = P∗(A) for ∀A ∈ A . By noting that
A0 ⊆ A , Proposition 5 is proved.

Proof of Lemma 4: Proof of part (i): From (15), (16),
and (17), by some algebraic computations, we have

S[n] = AnS(An)′ +
n∑

i=1

An−i(U +Q)(An−i)′. (36)

From the definitions of ψ and ψk, it follows that 1) if P1 > P2,
then ψ(P1) > ψ(P2) and ψk(P1) > ψk(P2); 2) S[k+1] =
Ψ[k+1](S) = ψ(Ψ[k](S)) = ψ(S[k]). Note that S[0] = S =
S̄ − S̄C ′(CS̄C ′ + R)−1CS̄ ≤ S̄ = ASA′ + Q ≤ ASA′ +

Q + U = ψ(S) = S[1]. Then λ
[0]
S ≤ λ

[1]
S . Part (i) holds for

n = 0. Suppose that part (i) holds for n = 1, . . . , k. We check
the case n = k + 1. S[k+1] = ψ(S[k]) ≥ ψ(S[k−1]) = S[k].
Hence, {S[n]} is an increasing sequence.

To prove that {S[n]} strictly increases, we show that
S[n+1] ̸= S[n] for ∀n ∈ Z+. We have S[n] > 0 for ∀n ∈ Z+

due to S > 0. If there is an integer k ∈ Z+ such that
S[k+1] = S[k], then from (15)-(17) we have S[k] = S[k+1] =
AS[k]A′ +Q+U . However, it is well known that for λA > 1
there is no positive define solution P for P = APA′+Q+U .
Hence, S[k+1] ̸= S[k] for ∀n ∈ Z+. Part (i) is proved.

Proof of part (ii): λ[k]S ≤ λ
[k+1]
S is an immediate result of

part (i). From (36), S[n] ≥ AnS(An)′ ≥ λS(AA
′)n. Thus,

λ
[n]
S ≥ λS(λA)

2n. Due to the assumption that λA > 1, we
have limn→∞ λ

[n]
S = ∞.

Proof of part (iii): The existence and uniqueness of such nα
are evident, due to the monotonicity of λ[n]S and the property
that λ[n]S → ∞ as n→ ∞.

When A and Q is fixed, nα only depends on α and the U
in ψ(·), and is also uniquely determined by α and U . Thus,
the function nα = n(α,U) is well-defined.
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Proof of Proposition 6: Proof of part (i):From (18), it fol-
lows that P(θ) = 0 only when θ ∈ A[∞]. Thus, {P(θ) = 0} =
A[∞]. By Proposition 5 and (13), P∞(A[∞]) = P∗(A[∞]) = 0.
By Lemma 4(i) and the definition of P(θ) in (18), it is clear
that P(θ) = S[m] only when θ ∈ A[m]. Thus, {P(θ) =
S[m]} = A[m]. Then it follows from Proposition 5 and (13)
that P∞({P(θ) = S[m]}) = P∞(A[m]) = P∗(A[m]) = γγ̄m.

Proof of part (ii): According to the definition of P, it
may take the values {0, S, S[1], . . .}. Note that λ[n]S ≤ α
is equivalent to S[n] ≤ αI . It follows from Lemma 4(i)
and (iii) that for a given α, S[i] ≤ αI for 0 ≤ i ≤ nα,
where nα = n(α,U). By the definition of P, {P ≤
αI} consists of {A[∞], A[0], . . . , A[nα]}. That is, {P ≤
αI} = A[∞]

⊎
(
⊎nα

i=0A
[i]). Then P∞(A[∞]

⊎
(
⊎nα

i=0A
[i])) =

P∞(A[∞]) +
∑nα

i=0 P∞(A[i]) =
∑nα

i=0 γγ̄
i = 1− γ̄nα+1.

Proof of Lemma 5: Part (i) can be proved by noting the
fact if ||M || < ε then −ε < M < ε, and part (ii) is proved by
noting that (α− d)I = λSI ≥ S.

Proof of Lemma 6: From (9), (10), and (11), we have

P
[n]
k = Ψ

[n]
k (Sk−n)

= AnSk−n(A
n)′ +An−1(Uk−1 +Q)(An−1)′

+An−2(Uk−2 +Q)(An−2)′ + . . .+ (Uk−n +Q)

= AnSk−n(A
n)′+

n∑
i=1

An−i(Uk−i+Q)(An−i)′. (37)

Due to the convergence of {Sk} and {Uk}, for ∀εS > 0 and
∀εU > 0, there exists an integer Nn ∈ N such that ||Sk−n −
S|| < εS and ||Uk−n − U || < εU , for k > Nn. By (36),

||P [n]
k − S[n]||

≤ ||An(Sk−n − S)(An)′ +
n∑

i=1

An−i(Uk−i − U)(An−i)′||

≤ εS ||An(An)′||+ εU

n−1∑
i=0

||Ai(Ai)′||.

Let d = |α−λ[n]S |. For a given ε with 0 < ε < d, we can obtain
||P [n]

k − S[n]|| < ε for k > Nn by choosing sufficiently small
εS and εU . By Lemma 5 (i), we have −εI < S[n]−P [n]

k < εI ,
∀k > Nn.

Proof of (λ[n]S < α) ⇒ (λ
[n]
Pk
< α): By using Lemma 5 (ii),

αI − P
[n]
k = (αI − S[n]) + (S[n] − P

[n]
k ) > dI − εI > 0.

Hence, P [n]
k < αI , which implies λ[n]Pk

< α.
Proof of (λ

[n]
S > α) ⇒ (λ

[n]
Pk

> α): S[n] − P
[n]
k < εI ⇒

S[n] < εI+P
[n]
k ⇒ λ

[n]
S < ε+λ

[n]
Pk

⇒ λ
[n]
Pk

−λ[n]S > −ε. Then
λ
[n]
Pk

−α = (λ
[n]
Pk

−λ[n]S )+(λ
[n]
S −α) > −ε+ d > 0.

Proof of Lemma 7: Proof of part (i): From Lemma 6, we
have λ[nα]

Pk
< α for k > Nnα and α < λ

[nα+1]
Pk

for k > Nnα+1.
By letting N = max(Nnα

, Nnα+1), part (i) is proved.
Proof of part (ii). From part (i) and the monotonicity of

P
[n]
k (Lemma 2), it follows that for k > N , Pk ≤ αI if

and only if Pk takes the value within {P [0]
k , . . . , P

[nα]
k }. It

is shown in Proposition 2 that Pk(θ) = P
[i]
k for θ ∈ F

[i]
k .

Therefore, {Pk ≤ αI} consists of {F [0]
k , . . . , F

[nα]
k }. Hence,

{Pk ≤ αI} =
⊎nα

i=0 F
[i]
k . It follows from Proposition 1

that Pk({Pk ≤ αI}) = Pk(
⊎nα

i=0 F
[i]
k ) =

∑nα

i=0 Pk(F
[i]
k ) =∑nα

i=0 γγ̄
i = 1− γ̄nα+1.

Proof of Lemma 8: Taking mathematical expectation of
(8) yields

E[Pk+1] = γ̄(AE[Pk]A
′ +Q+ Uk) + γSk+1. (38)

From (9), (10), and (11),

P
[i+1]
k+1 = Ψ

[i+1]
k+1 (Sk−i)

= ψ(k+1)−1 ◦ ψ(k+1)−2 ◦ · · · ◦ ψ(k+1)−(i+1)(Sk−i)

= ψk(Ψ
[i]
k (Sk−i))

= ψk(P
[i]
k ) = AP

[i]
k A′ +Q+ Uk. (39)

In the following, we prove Lemma 8 by mathematical induc-
tion. For k = 1, from (8), P1 = γ1S1 + (1 − γ1)(AP0A

′ +

Q+U0). P1 takes the value S1 = Ψ
[0]
1 (S1) = P

[0]
1 at γ1 = 1,

and AP0A
′+Q+U0 = ψ0(S0) = Ψ

[1]
1 (S0) = P

[1]
1 at γ1 = 0.

Thus, E[P1] = P
[0]
1 Pγ({γ1 = 1}) + P

[1]
1 Pγ({γ1 = 0}) =

P
[0]
1 γ + P

[1]
1 γ̄. Clearly, Lemma 8 holds at k = 1.

Suppose that Lemma 8 is true for 1, . . . , k. From (38),

E[Pk+1] = γ̄(AE[Pk]A
′ +Q+ Uk) + γSk+1

(a)
= γ̄

(
A(

k−1∑
n=0

P
[n]
k γγ̄n + P

[k]
k γ̄k)A′

+ (

k−1∑
n=0

γγ̄n + γ̄k)(Q+ Uk)
)
+ γSk+1

(b)
=

k−1∑
n=0

γγ̄n+1P
[n+1]
k+1 + P

[k+1]
k+1 γ̄k+1 + γP

[0]
k+1

=
k∑

n=0

γγ̄nP
[n]
k+1 + P

[k+1]
k+1 γ̄k+1,

where (a) is obtained by using the hypothesis and noting that∑k−1
n=0 γγ̄

n + γ̄k = 1, and (b) is obtained by using (39) and
noting that P [0]

k+1 = Ψ
[0]
k+1(Sk+1) = Sk+1.

Hence, (38) is true for k + 1, which completes the proof.

Proof of Lemma 9: This lemma is proved by mathemat-
ical induction. Clearly, (24) is true for k = N . Suppose that
(24) is true for k + 1. Then we check Vk as follows.

Vk(xk)

= min
uk

E[x′kWkxk + νku
′
kΛkuk + Vk+1(xk+1)|Ik]

(a)
= min

uk

E
[
x′k(Wk +A′Mk+1A)xk|Ik

]
+ γ̄tr(Hk+1(APkA

′ +Q+ ν̄νBuku
′
kB

′))

+ νu′k(Λk +B′Mk+1B)uk + 2νu′kB
′Mk+1Ax̂k

+ tr(∆k+1 +Mk+1Q+ γHk+1Sk+1)

= min
uk

E
[
x′k(Wk +A′Mk+1A)xk|Ik

]
+ 2νu′kB

′Mk+1Ax̂k

+ νu′k
(
Λk +B′(Mk+1 + γ̄ν̄Hk+1)B

)
uk + tr(∆k+1

+Mk+1Q+ γ̄Hk+1(APkA
′ +Q) + γHk+1Sk+1) (40)

where (a) is obtained by using (21), (24), and some algebraic
manipulations. Differentiating Vk(xk) with respect to uk and
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solving ∂Vk

∂uk
= 0 yield the minimizer u∗k = Lkx̂k where Lk =

−(Λk+B
′(αMk+1+ᾱTk+1)B)−1B′Mk+1A. By substituting

u∗k back to (40) and then using (34), we have

Vk(xk)
(a)
= E

[
x′kMkxk|Ik

]
+ tr((A′Mk+1A+Wk −Mk)Pk)

+ γ̄tr(A′Hk+1APk) + tr(γHk+1Sk+1)

+ tr(∆k+1) + tr(Mk+1Q) + γ̄tr(Hk+1Q)

(b)
= E

[
x′kMkxk|Ik

]
+ tr(HkPk) + tr(∆k)

where (a) is obtained by (25a)(25b), and (b) is obtained by
(25c). Thus, (24) holds for Vk. The proof is completed.

REFERENCES
[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
p. 138, 2007.

[2] J. Zhang, Y. Lin, and P. Shi, “Output tracking control of networked con-
trol systems via delay compensation controllers,” Automatica, vol. 57,
pp. 85–92, 2015.

[3] P. Shi, H. Wang, and C.-C. Lim, “Network-based event-triggered control
for singular systems with quantizations,” Industrial Electronics, IEEE
Transactions on, doi:10.1109/TIE.2015.2475515.

[4] P. Shi, X. Luan, and F. Liu, “Filtering for discrete-time systems
with stochastic incomplete measurement and mixed delays,” Industrial
Electronics, IEEE Transactions on, vol. 59, no. 6, pp. 2732–2739, 2012.

[5] H. Yan, F. Qian, F. Yang, and H. Shi, “h∞ filtering for nonlinear
networked systems with randomly occurring distributed delays, missing
measurements and sensor saturation,” Information Sciences, vol. 370–
371, pp. 772–782, 2016.

[6] I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia
sensor networks: A survey,” Wireless Communications, IEEE, vol. 14,
no. 6, pp. 32–39, 2007.

[7] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry,
“Optimal linear LQG control over lossy networks without packet ac-
knowledgment,” Asian Journal of Control, vol. 10, no. 1, pp. 3–13,
2008.

[8] E. Garone, B. Sinopoli, and A. Casavola, “LQG control over lossy TCP-
like networks with probabilistic packet acknowledgements,” Internation-
al Journal of Systems, Control and Communications, vol. 2, no. 1, pp.
55–81, 2010.
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