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Of late there has been a surge of interest in localised phonon polariton resonators which allow
for sub-diffraction confinement of light in the mid-infrared spectral region by coupling to optical
phonons at the surface of polar dielectrics. Resonators are generally etched on deep substrates which
support propagative surface phonon polariton resonances. Recent experimental work has shown that
understanding the coupling between localised and propagative surface phonon polaritons in these
systems is vital to correctly describe the system resonances. In this paper we comprehensively
investigate resonators composed of arrays of cylindrical SiC resonators on SiC substrates. Our
bottom-up approach, starting from the resonances of single, free standing cylinders and isolated
substrates, and exploiting both numerical and analytical techniques, allows us to develop a consistent
understanding of the parameter space of those resonators, putting on firmer ground this blossoming
technology.

I. INTRODUCTION

Sub-diffraction confinement of light is a necessity for
miniaturisation of optical devices and can be achieved
by coupling photons to charged particles at interfaces
over which the real part of the dielectric function changes
sign. Predominantly free electrons, well described by a
Drude-like dielectric function, are utilised [1]. As the
Drude dielectric function is negative below the plasma
frequency such materials provide broadband localisation
of light in modes termed surface plasmon polaritons, al-
though this comes at the cost of high loss due to elec-
tron scattering. More recently sub-diffraction confine-
ment by coupling to crystal vibrations, in the form of op-
tical phonons in polar dielectrics has been demonstrated
[2]. These materials have a negative dielectric function
between the longitudinal and transverse optical phonon
frequencies, in a region termed the Reststrahlen band,
and as the anharmonicity driven optical phonon damp-
ing occurs two orders of magnitude slower than electron
damping in metals the resultant modes are comparatively
long lived [3]. These modes are termed surface phonon
polaritons [4] and have morphology-dependent charac-
teristics which allow for tuning of modal frequencies and
field profiles [5]. Their energies lie between the mid- and
far-infrared, dependent on material choice, meaning these
systems can make excellent narrowband thermal sources
[6, 7]. Most recently, fabrication advancements have al-
lowed for the construction of user-defined cylindrical SiC
nano-resonators on SiC substrates, which exhibit qual-
ity factors in excess of the theoretical limit for plasmonic
resonators [8, 9]. Only few months ago the strong cou-
pling between localised modes of user-defined cylindri-
cal resonators and propagative surface phonon polaritons
sustained by the substrate planar interface was demon-
strated [10], highlighting how the resonant coupling be-
tween localised and propagative modes has to be taken
into account to correctly describe the optical response of
such systems. Surface phonon polaritons have also been
utilised for a number of other applications like sensing [2],

superlensing [11], near field optics [12], and enhanced en-
ergy transfer between nanoparticles [13]. Surface phonon
polaritons offer great promise as a testbed for integrated,
mid-infrared quantum photonics as a result of their long
modal lifetimes and relative simplicity of fabrication.
In order to allow for a fast development of this blos-

soming research field, in this paper we develop, using
both analytical and numerical methods, a consistent un-
derstanding of the phonon polariton resonances of pe-
riodic arrays of cylindrical SiC resonators, of the kind
that have been used in recent groundbreaking works [8–
10]. The relative simple geometry of such samples allows
us to methodically explore its parameter space, gaining
both a quantitative understanding of those resonators,
that can directly be experimentally exploited, and also
obtaining precious insights into the underlying physics,
that can serve as lead to extend investigations to novel
and more complex structures.
In a bottom-up approach we start our investigation

in Sec. II by considering resonances of a free standing
cylindrical SiC resonator, analysing how both the reso-
nant frequencies and a number of figures of merit change
with morphology. In Sec. III we consider the effect of a
SiC substrate sitting below the cylinder, analysing how
the presence of phonon polaritons on the substrate sur-
face modify the resonant frequencies. Finally in Sec. IV
we consider an array of cylindrical resonators over a sub-
strate, where both the folding of surface modes due to
the periodic patterning and the dipolar interaction be-
tween different pillars lead to the appearance of strongly
dispersive features.

II. FREE STANDING CYLINDRICAL SIC

RESONATOR

A single cylindrical resonator is characterised by two
geometric parameters, its height h and its diameter d. In
the asymptotic limit h → ∞ the system is exactly de-
scribed by Mie-like theories and the resonator supports
a predictable series of modes characterised by polarisa-
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FIG. 1: a) Real part of the resonant frequency of the longitudinal mode as a function of diameter at h = 0.8µm height (circles)
and as a function of height at d = 0.8µm diameter (squares). b) Quality factor of the longitudinal mode as a function of
diameter at 0.8µm height (circles) and as a function of height at 0.8µm diameter (squares). Inset shows the surface charge
distribution ρ of the longitudinal mode for a cylinder of height h = 0.8µm and diameter d = 1µm. c) Purcell enhancement
of the longitudinal mode as a function of diameter at 0.8µm height (circles) and as a function of height at 0.8µm diameter
(squares). d) Mode volume of the longitudinal mode in units of the free space mode volume λ3

0 as a function of diameter at
0.8µm height (circles) and as a function of height at 0.8µm diameter (squares).

tion and azimuthal phase dependancy [14]. For finite
h Fabry-Pérot modes are supported along the length of
the cylinder [15]. We are here interested in the modes of
cylindrical SiC resonators with deeply subwavelength h
and d which have recently been observed in reflectance
measurements [8, 10] . This system has no closed form
analytical solution so we simulate numerically by finite el-
ement methods, using the RF Module of COMSOL Mul-
tiphysics.
The SiC resonators are non-conservative systems with

complex modal frequencies ω̃m representing loss through
energy leakage from the system. Even if intrinsic mate-
rial losses are neglected, this leads to a non-Hermitian
time-evolution operator for the isolated cylinder [16, 17].
The modes of the system must thus be described in the
formalism of quasi-normal modes [18]. This is especially
important when calculating the mode volume through
the usual definition based on the systems electromagnetic
energy

V =

∫

ǫ (r) |E (r)|
2
d3r

2ǫ0n2 |E (rmax)|
2 , (1)

where ǫ0 is the vacuum permittivity, n the environment
refractive index, ǫ (r) is the permittivity of the resonator

and E (r) is the electric field of the mode with peak
value E (rmax). In systems possessing a complex modal
frequency ω̃m the fields diverge as |r| → ∞ resulting
in divergence of the integral [19, 20]. In addition the
Kramers-Kronig consistency of the dielectric function
means loss necessarily results in a dispersive dielectric
function, which leads to an alteration of the integral to
account for energy in the matter [21]. These problems are
solved by explicit calculation of the system quasi-normal
modes [18, 22] which are normalised rigorously utilising
perfectly matched layers [23]. As described in Appendix
A the quasinormal modes of the system are calculated
utilising the commercial finite element solver COMSOL
multiphysics to find the poles of the system response fol-
lowing the methods of Bai et al [22].
For electric field polarised parallel to the cylinder axis

the lowest lying mode has the surface charge distribu-
tion shown in the inset of Fig. 1b. It corresponds to the
fundamental Fabry-Pérot resonance of the TM0 mode of
the cylinder. This mode was first predicted for long sil-
ver nanowires by Takahara et al. [24] and corresponds
in our case to the fundamental longitudinal dipolar res-
onance of the cylinder. This has been discussed exten-
sively for SiC cylinders on substrate by Caldwell et al.

where it is termed the monopolar mode [8, 9]. We in-
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vestigated the resonant frequency of this mode over the
2-dimensional parameter space, with results shown in
Fig. 1a. The cylinder height is varied at a constant di-
ameter d = 0.8µm, and the diameter is varied at a con-
stant height h = 0.8µm, as schematically shown in the
inset of Fig. 1d. In the small diameter limit the reso-
nant frequency tends to that of an infinite wire given by
ǫ (ω) → −∞ at ωTO = 797/cm. As the cylinder diam-
eter is increased the resonance tends toward an asymp-
tote at ≈ 934/cm, slightly blue shifted from the Fröhlich
resonance at Re [ǫ (ω)] = −2. The quality factor over
this range as shown in Fig. 1b is fairly flat as the length
scale of the mode is unchanged. In the limit of vanishing
height the longitudinal resonance should lie at the longi-
tudinal optical phonon frequency ωLO = 972/cm where
ǫ (ω) = 0. Over the range shown in Fig. 1a a monotonous
shift away from the LO phonon frequency is observed as
expected for a Fabry-Pérot resonance along the cylinder
length being proportional to 1/h. At around h = 5µm
the mode leaves the Reststrahlen band and the character
of the resonance changes from a sub-diffraction localised
phonon polariton to a that of a high-index dielectric res-
onator. This transition is accompanied by the drop off in
quality factor observed in Fig. 1b. The Purcell enhance-
ment is evaluated for an emitter 5nm from the cylinder
edge, results are shown in Fig. 1c, and the procedure used
to calculate it, taking care of the effect of losses, is out-
lined in Appendix A. Mode volumes are given in Fig. 1d.
Smaller resonators allow for tighter confinement of the
field and correspondingly larger Purcell enhancements,
exceeding 105 in the small resonator limit. The dip in
the height scanned data at h = 4µm occurs as the mode
energy crosses the TO phonon energy, being evanescent
in nature for smaller heights and diffraction limited for
larger.
This Section has focussed on the longitudinal mode which
is azimuthally invariant, meaning its azimuthal mode
numberm = 0. Modes with higher azimuthal mode num-
bers are supported with angular dependance eimφ where
φ is the azimuthal angle. In Appendix B we include a
similar study for the lowest lying m = 1 mode which will
be referred to as the transverse dipolar mode in accor-
dance with Caldwell et al. [8] and consists of parallel
dipoles excited at each cylinder end-facet. In this case
Purcell enhancements exceeding 106 are achievable due
to tighter confinement of the mode at the cylinder ver-
tices. For each azimuthal number m higher order modes
are also supported with differing phase changes along the
long axis.

III. CYLINDRICAL SIC RESONATOR ON A

SIC SUBSTRATE

In the previous Section we considered the resonances
of a single SiC cylinders in vacuum. The following step
toward a consistent description of real resonators is to
consider the effect of placing the cylinders on a SiC sub-

strate. A planar, optically thick SiC substrate in vacuum
supports a propagating surface phonon polariton with
dispersion

k‖ =
ω

c

√

ǫ (ω)

ǫ (ω) + 1
, (2)

where k‖ is the in-plane wavevector, ǫ (ω) is the dispersive
dielectric function of the substrate and c is the speed of
light. The dispersion is plotted in Fig. 2a, where is clearly
visible that in the non-retarded regime the majority of
the oscillator strength lies at the asymptotic frequency

ωSPhP = ωTO

√

1+ǫ0
1+ǫ∞

≈ 951/cm. For definiteness in the

remainder of this Section we consider cylinders of diame-
ter d = 1µm and height h = 0.8µm. For these parameters
the bright transverse and longitudinal resonances lie at
lower energies than the asymptote of the surface mode
ωSPhP.
While the cylinder-substrate separation is large

enough, cylinder and substrate modes are good approx-
imations for the modes of the coupled system. This
ceases to be true for sub-micron distances, when the
overlap of the resonator and surface modes can not be
neglected. Their resulting coupling leads to repulsion
between the different modes, that shift as illustrated
schematically in Fig. 2b. To illustrate this process we
carry out finite element simulations of the first four
m = 1 modes of SiC cylinders discussed in Sec. I,
separated from a substrate by a gap of width g. The
relevant surface charge distribution for the different
uncoupled modes of the cylinder are sketched on the left
of Fig. 2c, where M1 is the transverse dipolar mode, and
M2, M3 and M4 are the following higher lying m = 1
modes. We plot the real parts of the resonant frequency
in Fig. 2c. As the resonator-substrate separation g
vanishes, all the modes lying below the asymptotic
frequency ωSPhP are observed to red shift while those
above blue shift. This is as expected for modes which
interact with a delocalised surface mode at ωSPhP [25].

IV. ARRAY OF CYLINDRICAL SIC

RESONATORS ON A SIC SUBSTRATE

When the substrate is periodically patterned a more
in-depth analysis is needed as the normal modes of the
system will now be given by Bloch waves delocalised over
the array. On one hand this can lead to dispersive fea-
tures in the dispersion of the localised phonon polaritons,
due to dipolar coupling between the different cylinders.
Such an effect can be captured by a tight binding model,
that we already described in Ref. 10. This procedure,
whose details can be found in Appendix C, lead to fre-
quencies for the monopolar and transverse dipolar modes
dependent upon the in-plane wavevector. While this ef-
fect is important for the monopolar mode, as shown in
Fig. 3a, it is negligible for the transverse modes. This
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FIG. 2: a) The dispersion of the surface phonon polariton mode supported by a vacuum/SiC interface is indicated by the black
dashed line, the light cone by the red solid line and the asymptotic surface phonon polariton frequency at ωSPhP by a blue
dot-dashed line. The density of states is sketched on the right of the plot, peaking at ωSPhP. b) An illustration of the shift
caused by the coupling on the resonator modes. The uncoupled modes are the surface phonon polariton (SPhP) and the lowest
lying four m = 1 modes of the resonator labelled Mi, i = 1− 4. These interact to form coupled modes labelled Pi. The charge
distributions of the four modes are indicated, the M1 corresponds to the transverse dipole and M2 to a transverse quadropole
resonance. c) An illustration of the transverse mode shifts as a cylindrical resonator of height 0.8µm and diameter 1µm is
lowered onto a substrate.

can be understood noticing that, as shown in Ref. 8,
the charge imbalance of the transverse modes is localised
in the cylinders whereas the monopolar mode induces
a charge imbalance between the cylinders and the the
substrate, thus efficiently coupling the cylinders between
them. In the following we will assume that all transverse
modes are dispersionless for the array periods considered.

On the other hand the periodicity of the array causes
the dispersion of the surface modes bound to the sub-
strate to be folded back into the first Brillouin zone
of the lattice, thus existing at experimentally accessible
wavevectors within the lightcone. This folding as a func-
tion of array periodicity is illustrated in Fig. 3b for square
arrays of varying period. Such a tuneability can bring
the localised and surface modes in resonance, and their
coupling can not be reduced to a simple shift as in the
previous Section, but it becomes necessary to consider
the hybridization of the different bare modes. In order
to do this we use an extension of the Hopfield theory
we used in Ref. 10. Notice that, while we recently also
developed an extension of the Hopfield theory to inhomo-
geneous, lossy media [26], capable to give a description
of the resonances without adjustable parameters, and in-
cluding losses in a more consistent and fundamental way,
here we prefer to rely on numerical simulations to fit the
coupling parameters, and to use real frequencies instead
that complex ones, calculating linewidths only in a sec-
ond step, as this method is more transparent and readily

applicable to the design and optimisation of resonator
samples. Our approximate results will then be compared
with numerical simulations performed using the quasi-
normal mode theory described in Appendix A.

When only a single branch of the folded SPhP lies in
the neighbourhood of the resonator lower laying modes,
the system, neglecting losses, may be described by an
Hamiltonian composed of two terms. The first

H0 = ~

∑

k‖

[

ωm
k‖
â†k‖

âk‖
+ ωt1b̂†k‖

b̂k‖
(3)

+ωt2ĉ†k‖
ĉk‖

+ ωs
k‖
d̂†k‖

d̂k‖

]

,

describes the uncoupled modes, where k‖ is the in-plane
wavevector, ωm

k‖
is the real part of the dispersive fre-

quency of the monopolar mode obtained by the tight-
binding approach described in Appendix C, ωt1 and ωt2

the real parts of the frequencies of the two lowest trans-
verse m = 1 modes, ωs

k‖
the real part of the surface mode

from Eq. (2), and âk‖
,b̂k‖

,ĉk‖
,d̂k‖

are the respective an-
nihilation operators obeying bosonic commutation rules.
The second term describes instead the coupling between
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surface and resonator modes

Hint = ~

∑

k‖

[

f0

(

â†k‖
d̂k‖

+ d̂†k‖
âk‖

)

(4)

+ g0

(

b̂†k‖
d̂k‖

+ d̂†k‖
b̂k‖

)

+ h0

(

ĉ†k‖
d̂k‖

+ d̂†k‖
ĉk‖

)

]

,

where f0, g0 and h0 are the coupling rates of the
monopole and lowest two transverse modes respectively
with the quasi-resonant surface branch. The rotating
wave approximation has been used, as the condition
f0, g0, h0 ≪ ωm

k‖
, ωt1, ωt2, ωs

k‖
is safely satisfied, with

a coupling to frequency ratio of the order of 10−2 [10].
The normal modes of the coupled system H = H0 +Hint

can be expressed in the form of linear superpositions of
the bare modes

Ŷi
k‖

= mi
k‖
âk‖

+ nik‖
b̂k‖

+ oik‖
ĉk‖

+ pik‖
d̂k‖

, (5)

where the Hopfield coefficients mi
k‖
, nik‖

, oik‖
pik‖

can be
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numerical methods employed.
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found solving the eigenproblem

[

Mk‖
− ωi

k‖

]











mi
k‖

nik‖

oik‖

pik‖











= 0, (6)

where Mk‖
is the Hopfield matrix

Mk‖
=









ωm
k‖

0 0 f0
0 ωt1 0 g0
0 0 ωt2 h0
f0 g0 h0 ωs

k‖









, (7)

and the eigenvalue ωi
k‖

is here to be interpreted as the

real part of the ith quasi-normal mode frequency ω̃i
k‖
. Re-

sults for array periods 6µm, 6.5µm and 7µm, are shown
in Fig. 4a, b, and c, where the symbols represent the
real part of the complex quasi-mode frequencies obtained
through the numerical procedure described in Appendix
A, and the solid lines are obtained by solving Eq. (6) and
fitting for ωt1, ωt2, f0, g0, h0, and the α and ζ parameters
described in Appendix C. The plots are truncated before
the edge of the first Brillouin zone to avoid inclusion of
additional SPhP branches.
Excellent agreement is achieved between the two ap-
proaches. The peak Rabi frequency calculated is
15.84/cm, representing ≈ 2% of the bare mode energy.
The calculated frequencies for the highest energy polari-
ton branch are systematically lower in the fitted data;
this is due to coupling of the surface mode to higher
energy, closely-spaced resonances near the asymptotic
SPhP frequency which have been omitted for simplicity
from the Hopfield diagonalization. The Hopfield coeffi-
cients weighting the bare components of the four coupled
modes are shown in Fig. 5a-d for an array period of 6µm,
from which it is clear that a substantial hybridization be-
tween the different modes occurs.

As the polaritonic modes are linear superpositions of
the bare modes, their linewidths are expected to vary
predictably as sums of the linewidths of the bare modes
weighted by the square of the Hopfield coefficients [27].
The linewidth of the ith coupled mode can thus be written
in terms of the linewidths of the bare modes Γm

k‖
,Γt1

k‖
,Γt2

k‖
,

and Γs
k‖

and of the Hopfield coefficients as

Γi
k‖

= |mi
k‖
|2Γm

k‖
+ |nik‖

|2Γt1
k‖

+ |oik‖
|2Γt2

k‖
+ |pik‖

|2Γs
k‖
,

(8)
which can be fitted to the imaginary part of the modal
frequency calculated using the approach detailed in
Appendix A. Numerical results for array periods 6µm,
6.5µm and 7µm are given by the symbols in Fig. 6. The
dispersive surface mode linewidth is taken from Eq. (2)
and the known dielectric function. Fits are carried out
for the two transverse linewidths Γt1

k‖
,Γt2

k‖
and for the
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monopolar linewidth. The monopole linewidth is disper-
sive and fits to a phenomenological a + bk2‖ relationship,

verified by fitting to the dispersive monopole linewidth
in the absence of the substrate. The results are given by
the solid lines in Fig. 6. Surprisingly good agreement
between theory and numerics are achieved despite the
simplicity of the model.

V. CONCLUSION

We have investigated the morphology and substrate
dependant phonon polariton resonances of cylindrical
SiC nano resonators by quasi-normal modal analysis.
Starting from the resonances of a single, free standing
cylinder, and then considering the impact of resonant
coupling with surface phonon polariton modes sustained
by the substrate, we were able to develop a complete
and consistent understadning of those resonators. The
present work will allow for the easy design of novel sam-
ples with bespoke resonances, and it shine light on the
nature of the hybrid localised-surface resonances, that
will permit further investigations to explore different
geometry and sample materials.
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Appendix A: Quasinormal Mode Theory

Under fairly general assumptions [17], the electro-
magnetic fields radiated by an emitter in the resonator
Υ (r, ω) = (E (r, ω) ,H (r, ω)) can be linearly expanded

onto a discrete set of quasi-normal modes Υ̃i (r) =

(Ẽi (r) , H̃i (r))

Υ (r, ω) =
∑

i

αi (ω) Υ̃i (r), (A1)

where αi (ω) is a complex coefficient describing the rela-
tive contribution of the ith mode, and it has a pole at the
complex modal frequency ω̃i. The quasi-normal modes of
the system are found using an iterative procedure to fit to
a Pade approximated pole-like response function in the
complex frequency plane, the iterative procedure is car-
ried out utilising the COMSOL Multiphysics FEM solver
iteratively driven by a MATLAB code adapted from that
distributed by Bai et al [22].
On calculating the complex modal frequencies of the sys-
tem we can immediately calculate the quality factor

Qi =
Re [ω̃i]

2Im [ω̃i]
, (A2)

as well as any other quantity of interest. In the neigh-
bourhood of the complex frequency ω̃i it is an excellent
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FIG. 7: a) Real part of the resonant frequency of the dipolar transverse mode as a function of diameter at h = 0.8µm height
(circles) and as a function of height at d = 0.8µm diameter (squares). b) Quality factor of the dipolar transverse mode as a
function of diameter at 0.8µm height (circles) and as a function of height at 0.8µm diameter (squares). Inset shows the surface
charge distribution ρ of the dipolar transverse mode for a cylinder of height h = 0.8µm and diameter d = 1µm. e) Purcell
enhancement of the dipolar transverse mode as a function of diameter at 0.8µm height (circles) and as a function of height
at 0.8µm diameter (squares). f) Mode volume of the dipolar transverse mode in units of the free space mode volume λ3

0 as a
function of diameter at 0.8µm height (circles) and as a function of height at 0.8µm diameter (squares).

approximation that the field scattered by the resonator
is linearly proportional to the field of the quasinormal
mode. It is therefore possible to calculate the mode vol-
ume through the equation

Vi =

∫

[

Ẽi ·
∂(ωǫ(r,ω))

∂ω
Ẽi − H̃i ·

∂(ωµ(r,ω))
∂ω

H̃i

]

d3r

2ǫ0n (rdip)
2
[

Ẽi (rdip) · u
]2 , (A3)

where the proportionality constants cancel from the nu-
merator and denominator and the fields are evaluated
very close to the complex resonant frequency. The emit-
ter is located at rdip. We truncate the simulation domain
utilising perfectly matched layers (PMLs) which convert
outgoing radiative loss at the simulation boundary to dis-
sipative loss in the PML domain providing a rigorous
normalisation [23].
The dispersive dielectric function of the matter is defined
by the fitting parameters of Pitman [28] for 3C-SiC to the
functional form

ǫ (ω) = ǫ∞ +
ω2
LO (ǫ0 − ǫ∞)

ω2
LO − ǫ0

ǫ∞
ω2 − i ǫ0

ǫ∞
γω

. (A4)

This was used over an interpolated dielectric function to
allow for analytic continuation to the complex frequency

plane. In passing from the standard definition of the
mode volume to Eq. A3 material dispersion is accounted
for by taking the derivatives of the system dielectric func-
tion and the permeability. These derivatives are espe-
cially important in polar dielectric systems where the in-
flection of the dielectric function occurs entirely over the
narrow bandwidth of the Reststrahlen band. The ratio of
the dielectric function ǫ (ω) in Eq. A4 and the derivative
ω∂ǫ (ω) /∂ω exceeds unity throughout the Reststrahlen
band, often lying between 10-100. This means that the
contribution from the electric field energy in the polar
dielectric increases by 1-2 orders of magnitudes resulting
in a substantial decrease in the achievable field confine-
ments compared to the rudimentary Eq. 1, sometimes
falling by up to two orders of magnitude. Physically this
result arises from energy lying in the potential energy of
the oscillating ions rather than in the electric field as il-
lustrated in Fig.1b [3].

Finally the Purcell enhancement for the ith mode may be
calculated from the equation [18]

FP =
Γ

Γ0
=

3

4π2

(

λ0

n

)3

Re

[

Qi

Vi

]

, (A5)
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where Γ (Γ0) are the decay rates of a dipole in the
presence of the resonator (in free space), n is the refrac-
tive index at the dipole location, λ0 is the free space
wavelength, Qi and Vi are as defined in the previous
equations and the real part of the ratio Qi/Vi is taken.

Appendix B: The Transverse Dipolar Mode

The resonant frequency of the dipolar transverse mode
is investigated over the 2D parameter space in Fig. 7a.
Squares correspond to a diameter scan at h = 0.8µm
and circles to a height scan at d = 0.8µm. A red shift
in the resonant frequency with increased diameter is
observed, this occurs due to increased screening between
charges at each cylinder edge. This increased screening
pushes the mode frequency toward the transverse optical
phonon frequency with accompanying drop in quality
factor, shown in Fig. 7b as observed for the monopolar
mode in Fig. 1b. In the large height limit h ≥ 1µm
the resonant frequency reaches an asymptote as the
dipoles at the end facets decouple, scanning the height
weakly affects the quality factor as the mode is strongly
localised at the cylinder end facets.
The surface charge distribution is illustrated on the inset
in Fig. 7a. The Purcell enhancement of the transverse
mode is plotted in Fig. 7c. Strong increases are observed
in smaller geometries, exceeding 106 as d → 0.1µm.
These Purcell enhancements correspond to ultra-small
mode volumes less than 10−4λ3

0 as shown in Fig. 7d.

Appendix C: Periodic Resonator Arrays

To achieve experimentally measurable observables it is
necessary to measure arrays of resonators. In this paper
we restrict to square arrays of resonators. The modes of
the coupled array is taken as a linear combination of the
individual resonators quasi-normal modes Ẽi (r) along a
straight line parallel to the illumination wavevector which
is taken parallel to an array principal axis. The disper-
sion of the mode of the periodic system may be approx-
imated by the solution calculated in Ref. 30 for lossless
systems in the tight binding approximation as

ωi
k‖

= ωi

(

1−
∆γ

2
+ (β1 − γ1) cos

(

k‖R
)

)

, (C1)

where ωi
k‖

is the dispersive frequency, k‖ is the in-plane

wavevector, ωi is the frequency of the isolated resonator
mode, and the ∆γ, β1, γ1 are as defined in Ref. 30.
The strength of inter resonator coupling is investi-

gated for square arrays of cylinders in vacuum and on
a substrate. The cylinders are of height 0.8µm and
diameter 1µm. The inter-resonator gap is varied to
assess the coupling at the k‖ = 0 point. Symbols in

E
n
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m
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Inter-resonator Gap (µm)
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FIG. 8: Symbols represent the real resonant frequencies cal-
culated from the pole fitting algorithm at the k‖ = 0 point
for a square array of cylinders of height 0.8µm and diameter
1µm. Purple squares (green circles) represent the longitudinal
(lowest transverse) mode in free cylinders. Blue triangles (red
inverted triangles) represent the longitudinal (lowest trans-
verse) mode for cylinders in contact with an SiC substrate.
The overlapping lines represent a fit with a simple dipole-
dipole coupling model.

Fig. 8 represent the real frequencies calculated from the
pole fitting algorithm, lines represent fits to the results
assuming a simple 1/r3 dipole-dipole coupling. In each
case the longitudinal mode and lowest lying transverse
mode are studied. The longitudinal mode blue shifts as
the inter-resonator gap is decreased, this is because the
dipoles are orientated in the same direction along the
cylinder long axis, repulsing each other. Conversely the
transverse mode red shifts as the inter-resonator gap is
decreased, because dipoles facing each other on neigh-
bouring cylinders are aligned in opposite directions and
they attract each other. Larger shifts are observed for
the resonators on substrate, this is because the substrate
is highly reflective in the Reststrahlen band and more
radiative emission from each resonator propagates to the
next. From Fig. 8 it is also clear that the monopolar
mode is much more dispersive than the transverse
one. This is a general feature due to the fact that the
monopolar mode generates a flow of charge between
the pillars and the inter-pillar surfaces [8], increasing
the coupling. For this reason, in the fitting procedure
outlined in the text, we only considered the dispersion
of the monopolar mode, leading to the two fitting
parameters α = ωm (1−∆γ/2) and ζ = ωm (β1 − γ1),
with ωm the frequency of the monopolar mode in the
single cylinder.
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