Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced LIGO’s first observing run
Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced LIGO’s first observing run
We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses $\in [1,3]\,{M}_{\odot }$ and component dimensionless spins <0.05. We also searched for neutron star–black hole systems with the same neutron star parameters, black hole mass $\in [2,99]\,{M}_{\odot }$, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary–neutron star systems with component mass distributions of 1.35 ± 0.13 M ? at a volume-weighted average distance of ~70 Mpc, and for neutron star–black hole systems with neutron star masses of 1.4 M ? and black hole masses of at least 5 M ?, a volume-weighted average distance of at least ~110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc?3 yr?1 for binary–neutron star systems and less than 3600 Gpc?3 yr?1 for neutron star–black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star–binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of ${10}_{-7}^{+20}$ Gpc?3 yr?1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary–neutron star (neutron star–black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than $2\buildrel{\circ}\over{.} {3}_{-1.1}^{+1.7}$ ($4\buildrel{\circ}\over{.} {3}_{-1.9}^{+3.1}$).
1-15
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Abbott, T.D.
40955bf8-1011-46ab-a787-34050875d7fe
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
Ashton, G.
805bcbfd-ae8a-46b2-8297-f3142c3d0e7e
LIGO Scientific Collaboration and Virgo Collaboration
1 December 2016
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Abbott, T.D.
40955bf8-1011-46ab-a787-34050875d7fe
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
Ashton, G.
805bcbfd-ae8a-46b2-8297-f3142c3d0e7e
Abbott, B.P., Abbott, R. and Abbott, T.D.
,
LIGO Scientific Collaboration and Virgo Collaboration
(2016)
Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced LIGO’s first observing run.
The Astrophysical Journal Letters, 832 (2), .
(doi:10.3847/2041-8205/832/2/L21).
Abstract
We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses $\in [1,3]\,{M}_{\odot }$ and component dimensionless spins <0.05. We also searched for neutron star–black hole systems with the same neutron star parameters, black hole mass $\in [2,99]\,{M}_{\odot }$, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary–neutron star systems with component mass distributions of 1.35 ± 0.13 M ? at a volume-weighted average distance of ~70 Mpc, and for neutron star–black hole systems with neutron star masses of 1.4 M ? and black hole masses of at least 5 M ?, a volume-weighted average distance of at least ~110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc?3 yr?1 for binary–neutron star systems and less than 3600 Gpc?3 yr?1 for neutron star–black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star–binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of ${10}_{-7}^{+20}$ Gpc?3 yr?1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary–neutron star (neutron star–black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than $2\buildrel{\circ}\over{.} {3}_{-1.1}^{+1.7}$ ($4\buildrel{\circ}\over{.} {3}_{-1.9}^{+3.1}$).
Text
1607.07456.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 8 October 2016
e-pub ahead of print date: 23 November 2016
Published date: 1 December 2016
Organisations:
Applied Mathematics
Identifiers
Local EPrints ID: 405694
URI: http://eprints.soton.ac.uk/id/eprint/405694
ISSN: 2041-8205
PURE UUID: 0524e649-45ff-4531-ad1e-c2a3619b9fe6
Catalogue record
Date deposited: 10 Feb 2017 16:19
Last modified: 16 Mar 2024 03:06
Export record
Altmetrics
Contributors
Author:
B.P. Abbott
Author:
R. Abbott
Author:
T.D. Abbott
Corporate Author: LIGO Scientific Collaboration and Virgo Collaboration
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics