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1 Introduction

Cross-section correlation poses a considerable challenge in econometric work that affects modelling,

estimation, and inference. Correlation across spatial data is typically ubiquitous, arising from mul-

tiple sources such as competition, regulatory practices, spillover and aggregation effects, and the

influence of macroeconomic factors on individual decision making. Spatial correlation can be trans-

mitted in an econometric model via observed variables or unobserved disturbances. Parsimonious

models such as the spatial autoregression (SAR) of Cliff and Ord (1981) have become increasingly

popular in practical work. These models offer a useful and easily implemented framework for de-

scribing irregularly-spaced correlated spatial data, where space can be interpreted in general terms

as a network and correlation may depend on various forms of economic distance, include physical

distance as a special case. A central advantage of SAR models is the fact that exact empirical

knowledge of location is not required. Instead, location effects, wider economic distance effects, and

irregularly-spaced data effects may all be embodied in an n× n weight matrix (where n is the size

of the dataset) that can be constructed by the practitioner using all available relevant information.

Given an n-vector of spatial observations y we consider the following simple (pure) SAR model

y = λ0Wy + ε, (1.1)

where λ0 denotes the spatial parameter, and ε is a vector of independent and identically distributed

(iid) disturbances with mean zero and unknown variance σ2
0 . The weight matrix W carries spatial

correlation effects, is exogenously specified, and satisfies certain restrictions that facilitate asymptotic

analysis. So elements of W typically depend on n and are likely to change as n increases. Thus, the

components W = Wn, y = yn and ε = εn are, in fact, triangular arrays, even though the subscript

n is often omitted for notational simplicity.

Asymptotic properties of various parametric estimators of λ0 in (1.1) and more general SAR

models that include exogenous regressors have been extensively studied in recent years. In particu-

lar, under certain conditions on the behaviour of W as n increases, Lee (2004) derived asymptotic

properties of the Gaussian maximum likelihood (ML) and quasi-maximum likelihood (QML) esti-

mators of λ0. Lee (2002) showed that the OLS estimator of λ0 in (1.1) is inconsistent, while OLS

applied to a more general SAR model with exogenous regressors can be consistent and asymptotically

normal under stronger conditions on W . Estimates of SAR models based on generalized methods of

moments (GMM) have been studied by Lee (2001), Lee (2007) and Liu et al. (2010), and they have

been extended by Lin and Lee (2010) and Kelejian and Prucha (2010) to accommodate unobserved

heterogeneity in the disturbances.

While asymptotic properties are generally favourable, small sample performance of SAR param-

eter estimates can be poor. Poor performance is particularly serious in the pure SAR model (1.1)

since rates of convergence to the true value may be slower than usual
√
n parametric rates depending

on the limit behaviour of W . Correspondingly, statistical tests about the spatial parameter that are
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based on asymptotic theory can also be unreliable. Much Monte Carlo work has been conducted to

study the finite sample performance of SAR estimates and tests (e.g. Anselin and Florax (1995),

Das et al. (2003) and Egger et al. (2009)). But finite sample theory and analytic bias corrections

are at a much earlier stage of development, in comparison to related work in areas such as panel data

modeling. Recently, Bao and Ullah (2007) derived second-order bias and mean squared error formu-

lae for the ML estimator of λ0 in (1.1) using Nagar moment expansions, and Bao (2013) extended

these results to a more general model that includes exogenous regressors and possibly non-normal

disturbances. The literature about finite sample corrections for tests is now developing and includes

both the derivation of finite sample corrections for t-type of tests (Robinson and Rossi (2014b))

and refinements for Moran I/LM statistics (e.g. Cliff and Ord (1981), Robinson (2008), Baltagi and

Yang (2013) and Robinson and Rossi (2014a)).

The present paper uses indirect inference (II) methods to derive a new OLS-based estimation

procedure that shows good performance and involves simpler computations than QML estimation of

λ0 in (1.1). Our use of indirect inference involves a mechanism to deliver an indirect bias correction

that involves simulations or the indirect use of asymptotic approximations, as in Phillips (2012). The

II estimator of λ0 is consistent, asymptotically normal, and enjoys good finite sample behavior. II

methods were originally introduced by Gouriéroux et al. (1993) and Smith (1993) to deal with models

with intractable objective functions. The methods have also achieved success in bias correction under

various time series settings (e.g. Gouriéroux et al. (2000)). Applications of II to obtain improved

finite sample inference have been discussed in Phillips and Yu (2009) in a contingent claims pricing

context, where II estimates display virtually no bias and often smaller variance compared to standard

ML. Also, Gouriéroux et al. (2010) use II to accomplish bias reduction in dynamic panels and Phillips

(2012) shows that II delivers improved estimation, even asymptotically, in a first order autoregression

with potential nonstationarity. But these methods have so far never been applied to spatial data.

Given the novelty of II methodology in the spatial literature, this paper explores its use and

develops the corresponding limit theory within the pure SAR model (1.1) with homogeneous dis-

turbances. Our main result demonstrates the power of indirect inference in achieving corrections,

showing how simple OLS estimation can be transformed to produce a consistent and asymptotically

normal estimate of the spatial parameter. Extensions of our new method presented in this paper to

SAR models with heterogeneous disturbances and/or a set of exogenous regressors is under investiga-

tion in separate work, results appear promising, and some findings are reported here. Furthermore,

extensions of this method to models in which the spatial lag enters nonlinearly are possible due to

the flexibility of II and more generally of simulation-based techniques. By means of a set of Monte

Carlo simulations we also show how the II methodology can be applied to the standard QML esti-

mator of λ0 in order to reduce its small sample bias. Although such QML-based estimation of λ0

performs very well in the case of model (1.1), we stress the importance of the OLS-based method for

its degree of generality. In fact, it is well known that QML is not, in general, robust to the presence

of heteroskedasticity of unknown form and thus the good performance of a simple QML-based II es-
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timator may be lost in practical applications due to heterogeneity. Also, even though the analytical

bias expansions developed in Bao (2013) would provide the groundwork to construct an II estima-

tor based on QML when a set of regressors is included, its practical implementation and the need

to substitute unknown higher order moments with their estimates would pose some computational

challenges. Here the simplicity of the OLS-based procedure is an advantage and the approach can

be extended to neatly accommodate heterogeneity and the presence of exogenous regressors.

The approach is defined and discussed in the next section, together with the main assumptions

used in the asymptotic development. Section 3 provides the main results relating to the asymptotic

distribution of the II estimator, and Section 4 reports simulation findings concerning finite sample

performance for different forms of the spatial weight matrix W . In Section 5 we report some further

examples of weight matrices that are amenable to exact analysis and comparison with the ML

estimate of λ0 in (1.1), while in Section 6 some extensions of our results are presented and discussed.

Section 7 has concluding remarks and some discussion of extensions of the II methodology in spatial

models. Proofs are given in the Appendix and in the Online Supplement to this paper (Kyriacou et

al, 2016), which also provides further simulation findings.

Throughout the paper, λ0 and σ2
0 denote true values of these parameters while λ and σ2 denote

admissible values. We write Sn(x) = S(x) = I − xW , where I denotes the n × n identity matrix,

and Gn(x) = G(x) = WS−1(x). We set G = G(λ0) and use Aij to signify the ij’th element of

the matrix A. We denote by η̄(·) the spectral radius, ||.|| and ||.||∞ the spectral norm and uniform

absolute row sum norm, respectively, and K represents an arbitrary finite, positive constant whose

value may change in each location. The notation f (i)(.) denotes the i′th derivative of the function

f(.).

2 Indirect Inference in the Pure SAR Model

We consider model (1.1) whose reduced form is

y = S−1(λ0)ε, (2.1)

under assumed invertibility of S(λ0). We use the following assumptions:

Assumption 1 For all n, the elements of ε ∼iid
(
0, σ2

0

)
with unknown variance σ2

0 and, for some

δ > 0, E(εi)
4+δ ≤ K.

Assumption 2 λ0 ∈ Λ, where Λ is a closed subset in (−1, 1).

Assumption 3

(i) For all n, Wii = 0.
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(ii) For all n , ||W || ≤ 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K.

(iv) For all sufficiently large n, uniformly in i, j = 1, ..., n, Wij = O(1/h), where h = hn is bounded

away from zero for all n and h/n→ 0 as n→∞.

Assumption 4 For all sufficiently large n, sup
λ∈Λ
||S−1(λ)||∞ + ||S−1(λ)′||∞ ≤ K.

Assumption 5 The limits

lim
n→∞

h

n
tr(G

′iGj) with 1 ≤ i+ j ≤ 3, lim
n→∞

h

n
tr((G′G)2), (2.2)

lim
n→∞

h

n

∑
i

(Gii)
2, lim

n→∞

h

n

∑
i

(G′G)2
ii lim

n→∞

h

n

∑
i

Gii(G
′G)ii (2.3)

all exist and

lim
n→∞

h

n
tr((G+G′)G′G) 6= 0. (2.4)

Assumptions 2 and 3(ii), or some other related conditions are common in the SAR literature to

ensure existence of a reduced form and define the likelihood function (e.g. Lee (2004)). Although

not the only possibility, the set defined in Assumption 2 together with 3(ii) seems natural in most

applications since existence of S−1(λ) is assured and its power series representation (which will be

extensively used in Section 6) holds, so that for all λ ∈ Λ

||S−1(λ)|| = ||
∞∑
s=0

λsW s|| ≤
∞∑
s=0

|λ|s||W ||s ≤ (1− |λ|)−1 ≤ K. (2.5)

Detailed discussion on the choice of the parameter space of λ and further restrictions to guarantee

existence of the reduced form (2.1) are given in Kelejian and Prucha (2010). In fact, QML estimation

relies on the existence of a reduced form and S−1(λ) for λ ∈ Λ under Assumptions 2 and 3(ii), while

OLS estimation does not rely on such restrictions and so Indirect Inference implemented on OLS can

be defined for values of λ beyond the (−1, 1) space. Assumption 3(ii) is not particularly restrictive,

since any W can be rescaled by its spectral norm so that ||W || ≤ 1 is trivially satisfied. Assumption

3(iii) (Kelejian and Prucha (1998)) rules out strong spatial dependence and it is evidently satisfied

when each unit has a finite number of neighbours as n increases. When Wij = O(1/h), which is

common practice when dealing with SAR models (e.g. Lee (2004)), then we impose h/n→ 0 along

with Assumption 4 to establish a central limit theorem for quadratic forms (e.g. Robinson (2008)).

From a practical perspective, Assumptions 3(iii) together with 3(iv) rule out the case in which a

unit is related to all other units as n increases. Assumptions 3(iii) and 4 are satisfied, for instance,

when W is row normalised so that Wl = l, where l indicates an n × 1 column of ones, symmetric

and with positive entries.

5

A
cc

ep
te

d 
A

rti
cl

e

 
This article is protected by copyright. All rights reserved 



By a standard argument, under Assumption 3,

h

n
tr(W pW

′q) = O(1), ∀p, q s.t. p+ q > 1, (2.6)

as n→∞. Also, under Assumptions 3 and 4 as n→∞,

h

n
tr(G(λ)pG(λ)

′q) = O(1), ∀p, q s.t. p+ q ≥ 1, (2.7)

since ||S−1(λ)||∞ + ||S−1(λ)′||∞ ≤ K uniformly in λ. Assumption 5 is required to impose existence

and nonsingularity of limits of certain sequences that figure in the asymptotic development. The

sequences in (2.2) are bounded as n → ∞ according to (2.7) and converge under Assumption 5.

Sequences in (2.3) are O(1/h) and vanish as n increases when h is a divergent sequence and (2.3)

ensures that limits are well defined also in case h = O(1) as n → ∞. Condition (2.4) ensures

nonsingularity of the asymptotic variance in our main theorem, since by the Cauchy inequality

0 <

(
h

n

)2

(tr((G+G′)G′G)2 <

(
h

n

)2

tr((G+G′)2)tr((G′G)2) < 2

(
h

n

)2

tr(G′G)tr((G′G)2). (2.8)

The OLS estimator of λ0 is given by the ratio λ̂ = y′W ′y/y′W ′Wy, and by a standard argument

as n→∞
λ̂− λ0 →p lim

n→∞

htrG/n

htr(G′G)/n
. (2.9)

As n → ∞ limn→∞ htr(G′G)/n 6= 0 under Assumption 5 and (2.8), the limit in (2.9) exists and is

bounded. However, unless W is restricted to very specific choices, it is difficult to calculate the limit

on the right side of (2.9) and give an analytic expression as a function of λ0.

According to the usual indirect inference calculations, for any λ ∈ Λ we can generate B sets of

pseudo-data yb = (yb1, y
b
2, . . . , y

b
n)′, b = 1, 2, . . . , B from the true model (under assumed Gaussianity

of ε) and for each pseudo-data set b the OLS estimator of λ is computed as

λ̂b = λ̂b(λ) =
yb(λ)′W ′yb(λ)

yb(λ)′W ′Wyb(λ)
= λ+

yb(λ)′W ′εb

yb(λ)′W ′Wyb(λ)
, b = 1, . . . , B. (2.10)

The II estimator of λ0, λ̂II , is then defined by the extremum problem

λ̂II = argmin
λ
|λ̂− 1

B

B∑
b=1

λ̂b(λ)|, (2.11)

that produces an estimator that aligns the sample mean of the simulations to the observed λ̂. As

B →∞, (2.11) becomes

λ̂II = argmin
λ
|λ̂− Eb(λ̂b(λ))|, (2.12)
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where the expectation operator Eb is interpreted with respect to the pseudo-variate εb.

We define the binding function as

bn(λ) = Eb(λ̂b(λ)) = λ+ Eb
(

ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

)
, (2.13)

and introduce the following condition.

Assumption 6

(i) For all n, the binding function bn(λ) is continuous and strictly increasing for all λ ∈ Λ .

(ii) lim
n→∞

b
(1)
n (λ0) exists and is positive.

Assumption 6 reveals the key conditions under which II converts an inconsistent estimator, λ̂ here,

into a consistent estimator, which is a central contribution of the paper. Section 5 shows analyti-

cally that for various choices of W Assumption 6 is satisfied; but as the boundary value λ = 1 is

approached, the binding function becomes nearly flat, which indicates that near the bound the II

method is less effective due to reduced information in the approximate binding function, b∗(λ), about

the true value of λ. It would be useful to establish general primitive conditions on W or, possibly, on

the parameter space Λ and W under which Assumption 6 is satisfied. However, derivation of such

conditions is likely possible only in special cases. As is usual practice, therefore, we rely in general

on numerical methods to verify the validity of this assumption.

For each λ ∈ Λ we have the formal moment expansion (Lieberman (1994))

Eb
(

ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

)
=

Eb(ε′bG(λ)′εb)

Eb(ε′bG(λ)′G(λ)εb)
+ θ1n + θ2n + θ3n + . . . , (2.14)

where

θ1n =
Eb(ε′bG(λ)′εb)cum2

(Eb(ε′bG(λ)′G(λ)εb))3
− cum11

(Eb(ε′bG(λ)′G(λ)εb))2
, (2.15)

cump is the p’th cumulant of ε′bG(λ)′G(λ)εb, cum1p is the p’th generalised cumulant of the product

of ε′bG(λ)′εb and ε′bG(λ)′G(λ)εb (e.g. McCullagh (1987)), while θin for i > 1 are functions of cump,

cum1p, and moments of ε′bG(λ)′G(λ)εb and ε′bG(λ)′εb. As n → ∞, under Assumptions 3, 4, 6 and

by (2.7) the leading term in (2.14) is O(1), and θ1n = O(h/n).

By observing that higher-order terms in (2.14) are of increasingly smaller order (the computation

is tedious and is not reported here), we may have the formal expansion for the binding function

bn(λ) = λ+
tr(G(λ))

tr(G(λ)′G(λ))
+O

(
h

n

)
. (2.16)

An advantage of Lieberman’s result is the fact that (2.14) and (2.16) do not rely on the normality

of εb, so that procedures based on them should have some invariance properties with respect to the

underlying data distribution.
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Since we restrict our analysis to the class of W matrices such that Assumption 6 holds, we have

the simple inverse function formulation

λ̂II = b−1
n (λ̂). (2.17)

In practice we can construct λ̂II by generating a large number B of pseudo-data to approximate the

binding function by

1

B

B∑
b=1

λ̂b(λ). (2.18)

However, distributional assumptions are required to generate the pseudo-data and since the asymp-

totic variance of λ̂ depends on the fourth cumulant of the εi, as we will show, this mechanism is

not fully robust to distributional misspecification. Instead, we construct λ̂II using the approximate

analytic form of the binding function

b∗n(λ) = λ+
tr(G(λ))

tr(G(λ)′G(λ))
, (2.19)

which holds more generally under Assumption 1. We will show that λ̂II obtained by (2.19) is

consistent and asymptotically normal without any additional distributional assumption, unlike the

estimator λ̂ which is biased in finite samples and also inconsistent (Lee (2002)). The generality offered

by an implementation based on (2.19) offsets the potential gain of an estimator with possibly smaller

finite sample bias, which might be achieved by using the binding function (2.18) based on simulations

for sufficiently large B. Derivation of higher order bias adjustment also seems unnecessary not

only because b∗n(λ) is close to bn(λ), but also because bn(λ) is found to be stable across different

distributions, a feature which conforms to already well-known results, such as those in Andrews

(1993). The binding function plots shown in Figures 1 and 4 verify that the approximate binding

functions b∗n(λ) across different specifications of W offer very good approximations to the “exact”

binding functions based on (2.18) from either Gaussian or standard Cauchy innovations.

Whereas the term “indirect inference”, as originally developed in econometrics, refers to meth-

ods where the parameters are estimated indirectly via a mechanism that involves simulations from

another related model, the terminology may also be sensibly used in bias correction problems where

simulations are employed to compute the binding function either within the procedure itself or sep-

arately in extensive simulation exercises or even via analytics. In such cases, simulations or analytic

expansion formulae such as (2.16) enable indirect or implicit correction of the estimator, which cap-

tures the main idea of indirect inference, the key notion being indirect rather than explicit direct

correction of the bias. Importantly in the present case, the implicit bias correction leads also to

correction of inconsistency.
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3 Limit Distribution of λ̂II

In the notation that follows some quantities are given an affix (subscript) n to emphasize their

n-dependence. Let gij = htr(GiGj
′
)/n, and g = htr((G′G)2)/n. Define the centering quantity

λ̄n = λ0 + g10
g11
. By a standard delta argument,

λ̂− λ̄n =

(
h

n

)1/2

f ′n

(
h

n

)1/2

Un + op

((
h

n

)1/2
)
, (3.1)

where

Un =
(
y′Wε− tr(G)σ2

0 ; y′W ′Wy − tr(G′G)σ2
0

)′
(3.2)

and

fn =

((
h

n
y′W ′Wy

)−1

, −
(
h

n
y′W ′Wy

)−2(
h

n
y′Wε

))′
. (3.3)

Theorem 1

(a) Under (1.1) and Assumptions 1-5

(n
h

)1/2

(λ̂− λ̄n)→
d
N (0, ω), (3.4)

where

ω = lim
n→∞

(
g20 + g11

g2
11

− 4g10g21

g3
11

+
2g2

10g

g4
11

+
h

n

κ4

σ4
0g

2
11

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
(3.5)

and κ4 = E(ε4i )− 3σ4
0 .

(b) Under (1.1) and Assumptions 1-6

(n
h

)1/2

(λ̂II − λ0)→d N(0, ω∗), (3.6)

where

ω∗ = lim
n→∞

(g11 + g20)
−1

(
1− 2g10g21

g11(g20 + g11)

)−2(
1− 4g21g10

g11(g11 + g20)
+

2gg2
10

g2
11(g11 + g20)

+
h

n

κ4

σ4
0(g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
. (3.7)

The proof is sketched in the Appendix and full details are reported in the Online Supplement. The

limits on the right sides of (3.5) and (3.7) exist and are strictly positive under Assumptions 5 and 6.
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Theorem 1 enables a comparison between λ̂II and the Gaussian maximum likelihood estimator

λ̂ML. When εi ∼iid N (0, σ2), we have κ4 = 0 and then, from Lee (2004),

(n
h

)1/2

(λ̂ML − λ0)→
d
N(0, VML), (3.8)

where

VML = lim
n→∞

(
g20 + g11 −

2

h
g2

10

)−1

. (3.9)

For λ0 = 0, a case that is especially relevant in testing, tr(G) = 0 and ω∗ = VML, so that indirect

inference and maximum likelihood have equivalent limit distributions. On the other hand, from

Robinson and Rossi (2014b), when λ0 = 0

(n
h

)1/2

λ̂→
d
N(0, VOLS), (3.10)

where VOLS = (g2
11/(g11 + g20))−1. Furthermore, since λ̂ is inconsistent when λ0 6= 0, a Wald

test based on λ̂ may not be reliable for all values of λ0. By contrast, a Wald test based on λ̂II is

equivalent to one based on the MLE and is consistent against any alternative value for λ0.

4 Simulations

Simulations were conducted to assess the finite sample performance of λ̂II in (2.17) in relation to

λ̂ and the QML estimator of λ0, λ̂QML. We consider two different specifications of the weight

matrix W : a circulant matrix and an asymmetric toeplitz matrix. Bias and mean square error

(MSE) were computed for values of λ0 ∈ {−0.8,−0.5, 0, 0.5, 0.8} and the sample size range is n ∈
{30, 50, 100, 200}. In the reported results, the disturbances εi are generated from a t− distribution

with 5 degrees of freedom with 104 replications. Results based on Gaussian errors appear to follow

a very similar pattern and are available from the authors upon request. We implement OLS-based

indirect inference using the approximate binding function b∗n(.) in (2.19) to obtain λ̂II . Simulation

results suggest that b∗n(.) closely approximates the true value E(λ̂), a feature which is also verified

analytically for some simple choices of W shown in Section 5.

Although the main idea explored in this paper is the application of the II methodology to λ̂

to restore its consistency, an II estimator based on QML (rather than OLS), λ̂II,QML, can also be

constructed based on λ̂QML following the same principles discussed in previous sections. Although

consistent, λ̂QML does suffer from finite-sample bias, as evidenced in the findings of Bao and Ullah

(2007) and Bao (2013). We construct λ̂II,QML using the analytical bias expansion of Bao (2013),

expression (2.15), p. 78, to obtain an approximate QML binding function, b∗n,QML(λ). The explicit

form of b∗n,QML(λ) is omitted here to avoid introducing further notation. Provided monotonicity
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requirements similar to Assumption 6 are satisfied, then

λ̂II,QML = b∗−1
n,QML(λ̂QML). (4.1)

Both the QML binding function and estimator λ̂II,QML itself depend on the unknown excess kurtosis

parameter γ2, which satisfies E(ε4i ) = (γ2 + 3)σ4
0 . We use the QML residuals êi, i = 1, . . . , n to

estimate γ2 with γ̂2 = µ̂4

µ̂2
− 3, where µ̂4 =

(∑n
i=1 ê

4
i

)
/n and µ̂2 =

(∑n
i=1 ê

2
i

)
/n. Although γ̂2 is

a consistent estimator of γ2, using it for calculating the QML binding function may result in an

increase of the variance of the II-QML estimator and may affect its asymptotic theory. For each

choice of W the entries in Tables 1-3 display the bias and mean squared error (MSE) of λ̂, λ̂II , λ̂QML

and λ̂II,QML, labelled as OLS, II-OLS, QML and II-QML respectively. For comparison purposes,

the last rows of Tables 1 and 2 report bias and MSE of the bias-corrected QML estimator using the

analytical bias expression of Bao (2013), λ̂BC,QML (denoted by BC-QML in Tables). This estimator

is calculated by bias-correcting λ̂QML using the analytical expression for the leading bias term as in

expression (2.15) in Bao (2013) and by estimating the excess kurtosis parameter term γ2 as discussed

above. Additional simulation results based on a different weight matrix structure can be found in

the Supplementary Material.

Case (i): Circulant weights

Our first example is a row-normalised weight matrix with a circulant structure, WC , similar to

the one used by Kelejian and Prucha (1999) defined as

WC =
1

||AC ||
AC , (4.2)

where AC is a circulant matrix with leading row (0, 1, 1, 0, . . . , 0, 1, 1), WC in (4.2) is normalised

with respect to its spectral norm so that ||WC || = 1. Assumptions 3 − 5 are readily verified with

h = ||AC ||, which in this case remains fixed as n→∞.

Figure 1 depicts the “exact” and “approximate” OLS binding functions b∗n as well as the QML

approximate binding function b∗n,QML all with n = 100. For the latter, we employ the true value

of the excess kurtosis parameter γ2 under the t distribution with 5 degrees of freedom.1 Some key

features of the binding functions are immediately apparent from the plots in Figure 1. The simu-

lated binding functions following (2.18) (denoted as “exact” henceforth) are based on B = 50000

pseudo-datasets drawn from either Gaussian or standard Cauchy innovations, while the “approxi-

mate” binding OLS binding function, b∗n(λ) is based on (2.19). The exact and approximate binding

functions are indistinguishable which confirms that b∗n(λ) serves as a valuable approximation at

very little computational cost without relying on a restrictive distributional assumption on ε. The

(approximate) QML binding function b∗n,QML is noticeably monotonic and increasing over the full

1This could be replaced with γ̂2 since λ̂QML is consistent.
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domain −1 < λ < 1, whereas the OLS binding functions bn(.) and b∗n(.) are monotonic and de-

creasing with a slope that becomes steeper as λ → 12, so that the inverse binding function is also

monotonic but becomes flatter as λ→ 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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(exact) b
n
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n
(λ

QML
)

45
o
 Line

Figure 1: Exact OLS binding functions bn(.) based on Gaussian and standard Cauchy innovations
(B = 50000), approximate OLS binding functions, b∗n(.) and approximate QML binding functions,
bn,QML(.), for λ ∈ (−1, 1) when W is (4.2) at n = 100.

Table 1 summarises the bias and MSE of OLS, II-OLS, QML, II-QML and BC-QML when W is

chosen to have a circulant structure as in (4.2). The entries in the top panel of Table 1 reveal that

the OLS estimator λ̂ suffers from substantial bias for all values of λ0. In accordance with asymptotic

theory (Lee (2002)), the bias does not vanish as n increases. In fact, for a given λ0 6= 0, the bias

seems to increase with n and becomes particularly severe when λ0 is negative. The entries in the

last four panels of Table 1 reveal that the II-OLS, QML, II-QML and BC-QML provide substantial

reductions in the OLS bias and MSE. In moderately large sample sizes (n = 100, 200) II-OLS often

outperforms QML in bias reduction without much compromise in the MSE. The MSE of λ̂II is

comparable to the MSE of λ̂QML in most cases other than when λ0 is close to unity, as might be

expected from the shape of the OLS binding function b∗n(.) which becomes flat as λ approaches unity.

The entries in the last panel of Table 1 indicate that Indirect Inference applied to λ̂QML achieves

the best results both in terms of bias and MSE reduction. In most cases II-QML outperforms BC-

QML, although their respective performance is in general very satisfactory. Importantly, the MSE

of λ̂II,QML does not suffer any deterioration as λ approaches unity, consonant with the form of the

binding function b∗n,QML over the full domain of λ.

To shed light on their distributional characteristics, Figure 2 plots the simulated density functions

of λ̂, λ̂II , λ̂QML, λ̂II,QML and λ̂BC,QML for n = 100 when λ0 = 0.5. The distribution of λ̂ is seen

to be severely upward biased (centred around 0.85 rather than its true value of 0.5), whereas the

II-OLS, QML, II-QML and BC-QML estimators appear to be almost unbiased on the scale of this

2Extended binding plots for values of λ beyond unity are shown in the Supplementary Material.
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figure. All five estimators seem to have similar dispersion in this case.
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Figure 2: Empirical densities of λ̂, λ̂II , λ̂QML, λ̂II,QML and λ̂BC,QML for λ0 = 0.5 when W is
chosen as in (4.2) at n = 100.

Direct analytic comparison of the variances of λ̂II and λ̂QML is difficult since (3.7) and the

asymptotic variance of the QML estimator (Lee (2004)) are highly complicated non-linear functions

of the weight matrix. Figure 3 shows how the finite sample variances of λ̂II and λ̂QML vary with

λ0 at n = 100. The variances are close for small to moderate spatial autocorrelation, but as |λ0|
increases ω∗ in (3.7) increases rapidly as λ0 tends to unity. This variance increase can be attributed

to flatness in the binding function bn(λ)∗ as λ approaches the boundaries of the support in this case.

Case (ii): Asymmetric Toeplitz weights

We next consider an asymmetric toeplitz weight matrix WAT . Using the circulant matrix AC as

a starting point, we introduce asymmetry in the weight matrix structure by removing the neigh-

bourhood effect of the (n − 1)’th unit on the first unit in (4.2). This produces a three-element

neighbourhood effect in each row rather than four. Specifically, we define

WAT =
1

‖AAT ‖
AAT (4.3)

where the leading row of AAT is (0, 1, 1, 0, . . . , 0, 0, 0, 1).

The weight matrix is again row-normalised, in accordance with Assumption 3. Figure 4 depicts

the approximate binding function for n = 100, verifying that both b∗n(.) and b∗n,QML(.) are monotonic

over a large subset of (−1, 1). For λ > 0.8 the OLS binding function flattens out although not as

markedly as in the symmetric case examined previously.
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Figure 3: Finite sample variances of λ̂II and λ̂QML for λ ∈ (−1, 1) when W is chosen as in (4.2) at
n = 100.

The simulation results reported in Table 2 confirm that QML, II-OLS, BC-QML and II-QML

estimators provide substantial reductions to both the bias and MSE of OLS. Interestingly, for most

configurations, QML and II-OLS display similar performance: II-OLS generally has smaller bias

than QML when λ0 > 0, without any evident increase in MSE and for n = 200 largely reproduces

the performance characteristics of QML. These results along with the entries of Table 1 indicate

that once symmetry is removed from the weight matrix structure, the QML performance starts to

weaken. Similarly to the circulant W case, II-QML outperforms both II-OLS and QML in terms of

bias and often outperforms QML in MSE reduction when λ0 is positive. The entries of the last block

of rows displayed in Table 2 show that in this case BC-QML is very effective in reducing the bias of

λ̂QML and its performance is comparable to that of II-QML. Indeed, this is expected as the bias of

λ̂BC,QMLE (and also λ̂II,QMLE) is o(h/n), while the bias of λ̂II,OLS is O(h/n). The bias reduction

of II-OLS, QML, II-QML and BC-QML compared to OLS is clearly confirmed by the plots of the

empirical densities reported in Figure 5 for the parameter setting n = 100 and λ0 = 0.5 .

Figure 6 displays comparisons of the finite sample variances of λ̂II and λ̂QML over λ0 ∈ (−1, 1),

revealing that the plots virtually overlap for most admissible values of λ0, with discrepancies emerg-

ing as |λ0| tends to unity.

5 Examples

In this section we consider a few examples for which we may analyze whether the binding function

bn(λ) in (2.16) is invertible, at least as n → ∞, rather than relying on numerical work, as in the
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Figure 4: Exact OLS binding functions bn(.) based on Gaussian and standard Cauchy innovations
(B = 50000), approximate OLS binding functions, b∗n(.) and approximate QML binding functions,
bn,QML(.), for λ ∈ (−1, 1) when W is (4.3) at n = 100.

plots of Figures 1 and 4. In some cases, an analytic comparison between the performance of λ̂II and

λ̂QML is also possible.

Example (i): The Districts Model

The simplest choice of W that is amenable to analysis and facilitates a comparison between (3.7)

and (3.9) is the block diagonal ‘districts model’ weight matrix W (Case (1991)) which is defined as

Wn = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (5.1)

where Is is the s × s identity matrix, lm is an m-vector of 1’s, and ⊗ is the Kronecker product. It

is easy to verify that W in (5.1) satisfies Assumptions 3 and 4 with n = mr and h = m − 1. The

specification (5.1) indicates that within a particular district (block) the spatial dependence has the

same form, whereas it is zero between blocks.

The approximate binding function b∗n(.) shown in Figure 3 of the Online Supplement is invertible

for λ ∈ (−1, 1) and for all sample sizes but it flattens considerably as λ approaches unity.

Theorem 2 Let W defined as in (5.1).

(a) As n→∞ the binding function bn in (2.16) is strictly increasing for all λ ∈ Λ.

(b) If 1/m+ 1/r → 0 λ̂II is asymptotically equivalent to λ̂QML.

A sketch of the proof of Theorem 2 is given in the Appendix and a full development is in the Online

Supplement. The condition in part (b) of Theorem 2 corresponds to a case of divergent h.
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Figure 5: Empirical densities of λ̂, λ̂II , λ̂QML, λ̂II,QML and λ̂BC,QML for λ0 = 0.5 when W is
chosen as in (4.3) at n = 100.

Example (ii): Circulant Weight Matrix Model

As another example we consider the simple circulant matrix C with leading row (0, 1, 0, . . . , 0, 1).

and

W =
1

2
C, (5.2)

so that ||W || = 1 and h = 2 for all n.

From Figure S4 in the Online Supplement where n = 100, the approximate binding function b∗n(λ)

in this case is strictly monotonic for λ ∈ (−0.7, 0.7) but becomes almost flat (and even decreases

slightly) as λ→ 1, with related behavior as λ→ −1. Similar behavior was found in simulations for

the case where W was chosen as in (4.2). We have the following analytic result.

Theorem 3 Define W as in (5.2). As n→∞, bn(λ) in (2.16) is strictly increasing for all λ ∈ Λ,

where Λ is any closed subset of (−
√

3/2,
√

3/2).

A sketch of the proof of Theorem 3 is given in the Appendix and details are in the Online Supplement.

In principle we can extend the argument below to any choice of W with a toeplitz structure, and

thus to circulants with more than “one behind and one ahead” neighbors. However, this would

require numerical solutions of integrals and is beyond the scope of the present example.

From (3.7) and the results reported in the Supplement (viz., (S.39), (S.42) and (S.45)) we also

conclude that ω∗ →∞ as λ0 → ±
√

3
2 , since

1− 2g10g21

g11(g20 + g11)
→ 0 as λ→ ±

√
3

2
. (5.3)
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Figure 6: Finite sample variances of λ̂II and λ̂QML for λ in (−1, 1) when W is chosen as in (4.3) at
n = 100.

This result, even though it is derived under the simpler circulant weight matrix (5.2), is consistent

with the Monte Carlo results based on the weight matrix W defined in (4.2). Hence both analytic

and simulation findings reveal that for circulant weight matrices W the indirect inference estimator

λ̂II can be obtained by inversion of the binding function for small through moderate values of λ0

and performs well as an estimator over this domain.

6 Extensions

The simplest generalisation of results derived in Section 3 involves the inclusion of an unknown

intercept µ0 in the SAR model, so that

y = µ0l + λ0Wy + ε, (6.1)

where l is an n-vector of ones, W is row normalized, so that Wl = l, y is the n-dimensional

observation vector and ε is a vector of iid disturbances.

The OLS estimator of λ0 in (6.1) is

λ̃ =
y′W ′Py

y′W ′PWy
, (6.2)

where P = I− ll′/n. When W is row normalized, it is easy to verify by a series expansion of S−1(λ0)
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that the reduced form of (6.1) is

y = S−1(λ0)(µ0l + ε) =
µ0

1− λ0
l + S−1(λ0)ε. (6.3)

Thus, by standard algebra and observing that l′Gl/n = O(1) under Assumptions 3 and 4, we

conclude that (2.9) holds with λ̂ replaced by λ̃ and the formal expansion for bn in (2.16) is still

appropriate so that we can define the II estimator of λ0 in (6.1) as λ̃II = b−1
n (λ̃). Thus, Theorem 1

holds with λ̂ replaced by λ̃ and λ̂II replaced by λ̃II . When W is not row normalized, the asymptotic

theory for the OLS of λ0 in (6.1) would be different, as λ̃ may be consistent and asymptotically

normal with a standard
√
n rate under some additional conditions on the behaviour of W in the

limit (see Lee (2002)). Since the focus of the present work is on using II to convert an inconsistent

OLS estimator into a consistent estimator, we do not further pursue the case of model (6.1) with

non-row normalized W .

Theorem 1 is also robust to mild forms of unobserved heterogeneity, such as the following.

Assumption 1′ For all n, the elements of ε are independent with mean zero and

E(εε′) = D > 0, with D = σ2
0I + C,

where C = (Cii) is an n × n diagonal matrix with rank c = cn, where cn is a positive sequence

satisfying cn = o(n), and uniformly in i and n |Cii| ≤ K. For some δ > 0

sup
1≤i≤n,n≥1

E(εi)
4+δ ≤ K.

If either 1/h + c/h → 0 or h = O(1) and c = O(1) as n → ∞ the probability limit in (2.9), the

formal expansion for bn(λ) in (2.16) and the asymptotic distribution in Theorem 1 still holds.

Although our theoretical results have been derived under Assumption 1, i.e. for error terms with

finite moments up to order 4 + δ, δ > 0, the Supplementary Material reports Monte Carlo results

for SAR estimation under heavy tailed errors. Specifically, Tables S1-S3 in Section S.3 illustrate

the behaviour of II-based estimators compared to OLS, QML and BC-QML when the errors are

generated from a Student t distribution with 3 degrees of freedom across different W specifications.

These results confirm that II estimators continue to enjoy good robustness properties in all cases

with heavy tailed errors.

Cases of general heteroskedasticity and the extension of our method to a SAR models with ex-

ogenous regressors (SARX) is under investigation in ongoing work. Dealing with error heterogeneity

involves new theory and technical challenges, so we do not report details on the implementation of

our methodology to SARX under unknown heteroskedasticity here. But to illustrate the potential

of the methods some Monte Carlo results are tabulated in Section S.3 of the Online Supplement.
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These findings are promising and reveal, in particular, that II estimation in its extended version that

accommodates error heterogeneity dominates both standard QML, as might be expected in view of

its inconsistency, and the robust GMM estimator which is known to be consistent (Lin and Lee,

2010).

7 Conclusions

Indirect inference methodology can be used in pure spatial autoregession to convert the inconsistent

OLS estimator of the spatial parameter into a consistent and asymptotically normal estimator.

The method is simple to implement and its performance characteristics are broadly comparable

to the QML and can be superior in terms of bias reduction, although variance typically increases

when the binding function flattens out towards the boundary of the domain of definition of λ. In

addition, the II methodology can be straightforwardly applied to other estimation techniques. In

particular, Monte Carlo simulations show that II adaptations of QML successfully remove much of

the finite sample bias of QML. In fact, II-QML estimation enjoys the best finite sample behaviour in

many cases, especially those where there is some random organization of the elements of the weight

matrix. In this latter case, simulations confirm that standard QML has finite sample performance

characteristics that are sensitive to the weight matrix structure.

The present approach complements earlier work on analytic bias corrections of ML or QML

estimators (Bao and Ullah, 2007; Bao, 2013) and offers an alternative mechanism of improving finite

sample performance. The results of the present paper, although novel for spatial regressions, are

limited by the restrictive assumptions implied by the pure SAR model (1.1), viz. a single spatial lag

(and thus a single weight matrix W ), a linear functional form for the spatial lag, and homoskedastic

disturbances. Subject to this limitation, the II methodology enjoys the advantages of the flexibility

of simulation based methods, in comparison to analytic expansions for bias functions and densities.

Allowance for heterogeneity is of particular importance in practical work. It is well known (Lin

and Lee (2010)) that ML or QML fail to be consistent when the disturbances are heterogeneously

distributed. Extensions of the indirect inference methodology based on OLS to SAR models with

unknown heteroskedasticity and a set of exogenous regressors seems promising. As indicated above,

some preliminary results of this extended methodology are given in S.3 of the Supplementary Ma-

terial. A full development of this extension will be reported in subsequent work.

Appendix

Proof of Theorem 1

The proof of part (a) is carried out in a similar way to Robinson (2008) and a detailed derivation

is given in the Online Supplement. To prove part (b), let q = b−1
n (x) and, for any function v(x)
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dvr(x)/dxr = v(r)(x). By standard algebra

b(1)
n (x) = 1 +

tr(G(x)2)tr(G′(x)G(x))− 2trG(x)tr(G′(x)G(x)2)

(tr(G′(x)G(x)))2
+O

(
h

n

)
, (A.1)

which is non-zero under Assumption 6 and O(1) under Assumptions 3 and 4. Also,

b−1(1)
n (x)|x=bn(λ0) = (b(1)

n (q))−1|q=b−1
n (bn(λ0))=λ0

. (A.2)

Since λ̄n = bn(λ0) +O(h/n), by Taylor expansion,

b−1
n (λ̄n) = b−1

n

(
bn(λ0) +O

(
h

n

))
= b−1

n (bn(λ0)) + (b(1)
n (x))−1|x=λ0

O

(
h

n

)
+ .... = λ0 +O

(
h

n

)
(A.3)

and thus (n
h

)1/2

(λ̂II − λ0) =
(n
h

)1/2

(b−1
n (λ̂)− b−1

n (λ̄n)) + o(1). (A.4)

We can derive the asymptotic distribution of the latter by means of the extended Delta method

(Phillips, 2012) if the derivative sequence {b−1(1)
n (x)} is asymptotically locally relatively equicontin-

uous, which in this case is equivalent to showing∣∣∣∣∣b(1)
n (λ0)− b(1)

n (r)

b
(1)
n (r)

∣∣∣∣∣→ 0 (A.5)

as n → ∞, uniformly in Nδ = {r ∈ < : |s(r − λ0)| < δ, δ > 0}, s = sn → ∞ and s(h/n)1/2 → 0.

Under Assumptions 3, 4 and 6,∣∣∣∣∣b(1)
n (λ0)− b(1)

n (r)

b
(1)
n (r)

∣∣∣∣∣ ≤ K|b(1)
n (λ0)− b(1)

n (r)|

≤ K
(∣∣∣∣g20

g11
− htr(G(r)2)/n

htr(G′(r)G(r))/n

∣∣∣∣+

∣∣∣∣g10g21

g2
11

− h2tr(G(r))tr(G(r)2G′(r))/n2

(htr(G′(r)G(r))/n)2

∣∣∣∣) .
(A.6)

The first term of the latter expression is bounded by

K

(∣∣∣∣g20 −
h

n
tr(G(r)2)

∣∣∣∣+

∣∣∣∣g11 −
h

n
tr(G(r)′G(r))

∣∣∣∣)
= K

(∣∣∣∣hn tr(G(λ∗)2)(λ0 − r)
∣∣∣∣+

∣∣∣∣hn tr(G(λ∗)′G(λ∗))(λ0 − r)
∣∣∣∣)

≤ K|λ0 − r| ≤ s−1δ (A.7)
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as n→∞, where the first equality follows by the mean value theorem, λ∗ indicating an intermediate

point between λ0 and r. The second term in (A.6) can be dealt with in a similar fashion.

Therefore, since b
−1(1)
n (λ̄n) = (b

(1)
n (λ0))−1 +O(h/n),

(n
h

)1/2

(λ̂II − λ0)→d N(0, ω∗), (A.8)

where

ω∗ = lim
n→∞

(g11 + g20)
−1

(
1− 2g10g21

g11(g20 + g11)

)−2(
1− 4g21g10

g11(g11 + g20)
+

2gg2
10

g2
11(g11 + g20)

+
h

n

κ4

σ4
0(g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
, (A.9)

giving the required result.

Proof of Theorem 2

From the block diagonal structure, we have

tr(G) = tr

( ∞∑
i=0

λi0W
i+1

)
= r

∞∑
i=0

λi0tr(Bi+1
m ), (A.10)

where Bm has one eigenvalue equal to 1 and the other (m− 1) eigenvalues equal to −1/(m− 1), so

that

tr(Bi+1
m ) = 1 + (m− 1)

(
−1

m− 1

)i+1

. (A.11)

Thus
h

n
tr(G) =

λ0

1− λ0

(m− 1)

m− 1 + λ0
, (A.12)

and, for s ≥ 2,
h

n
tr(Gs) =

m− 1

m

1

(1− λ0)s
+ (−1)s

(m− 1)2

m(m− 1 + λ0)s
. (A.13)

Proofs of (a) and (b) involve now only routine calculations and are reported in the Supplementary

Material. In particular, as m→∞, we find that b′n (λ)→ 2 (1− λ) > 0.

Proof of Theorem 3

The proof is based on the following results involving well-known asymptotic formulae for traces of
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toeplitz matrices, as n→∞,

1

n
tr(G(λ)) =

1

n

∞∑
s=0

λstr(W s+1)→
∞∑
s=0

λs
1

2s+1

1

2π

∫ 2π

0

(2cosx)s+1dx

=
1

λ

∞∑
s=1

λs
1

2π

∫ 2π

0

(cosx)sdx. (A.14)

1

n
tr(G(λ)2) =

1

n

∞∑
s,t=0

λs+ttr(W s+t+2)→ 1

2π

∞∑
s,t=0

λs+t
∫ 2π

0

(cosx)s+t+2dx, (A.15)

1

n
tr(G(λ)3)→ 1

2π

∑
s,t,q=0

λs+t+q
∫ 2π

0

(cosx)s+t+q+3dx. (A.16)

These results may then be used to establish the theorem. Complete proofs are given in the Supple-

ment.
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n 30 50 100 200

OLS λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 0.2278 0.1462 0.2690 0.1102 0.2897 0.0990 0.2988 0.0958
−0.5 0.4869 0.4582 −0.4923 0.3783 −0.4867 0.3083 −0.4924 0.2780
0.0 −0.0964 0.2627 −0.0575 0.1606 −0.0286 0.0803 −0.0148 0.0393
0.5 −0.2250 0.1323 0.2665 0.1086 0.2918 0.1006 0.3021 0.0981
0.8 0.2084 0.0525 0.2164 0.0501 0.2211 0.0500 0.2218 0.0497

II-OLS λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0225 0.0562 −0.0113 0.0269 −0.0084 0.0116 −0.0074 0.0051
−0.5 −0.0345 0.0902 −0.0399 −0.0399 −0.0075 0.0209 −0.0044 0.0133
0.0 −0.0491 0.0804 −0.0234 0.0417 −0.0157 0.0204 −0.0073 0.0098
0.5 −0.0240 0.0498 −0.0264 0.0297 −0.0115 0.0116 −0.0047 0.0054
0.8 −0.0185 0.0251 −0.0084 0.0131 0.0054 0.0078 0.0100 0.0045

QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0496 0.0447 −0.0283 0.0214 −0.0156 0.0097 −0.0105 0.0045
−0.5 −0.0048 0.0668 −0.0118 0.0687 −0.004 0.0190 0.088 0.0119
0.0 −0.0452 0.0682 −0.0227 0.0389 −0.0154 0.0196 −0.0072 0.0096
0.5 −0.0508 0.0383 −0.0430 0.0247 −0.0182 0.0102 −0.0087 0.0047
0.8 −0.0400 0.0151 −0.0224 0.0070 −0.0080 0.0028 −0.0055 0.0013

II-QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0031 0.0426 0.0003 0.0205 −0.0011 0.0095 −0.0032 0.0044
−0.5 −0.005 0.0775 −0.0130 0.0798 −0.0029 0.0203 −0.0065 0.0124
0.0 −0.0119 0.0743 −0.0015 0.0410 0.0046 0.0201 −0.0017 0.0097
0.5 −0.0038 0.0359 −0.0143 0.0231 −0.0037 0.0099 −0.0014 0.0046
0.8 −0.0038 0.0120 0.0023 0.0070 0.0016 0.0028 0.0022 0.0013

BC-QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 0.0079 0.0623 0.0087 0.0387 0.0066 0.0191 0.0062 0.0098
−0.5 0.0035 0.0751 0.0035 0.0450 0.0020 0.0213 0.0048 0.0104
0.0 −0.0055 0.0715 −0.0048 0.0421 0.0046 0.0204 0.0045 0.0107
0.5 −0.0032 0.0372 −0.0026 0.0214 -0.0049 0.0093 0.0046 0.0045
0.8 −0.0017 0.0130 −0.0006 0.0063 0.0079 0.0027 −0.0023 0.0013

Table 1: Bias and Mean Square Error (MSE) of λ̂, λ̂II , λ̂QML, λ̂II,QML and λ̂QML,BC at n =
30, 50, 100, 200 for λ0 = −0.8,−0.5, 0, 0.5, 0.8 when W is given by (4.2) (104 repl. and ε is generated
from a t-distribution with 5 degrees of freedom).
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n 30 50 100 200

OLS λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.3088 0.1843 −0.3296 0.1609 −0.3336 0.1363 −0.3417 0.1287
−0.5 −0.2837 0.2122 −0.2921 0.1666 −0.2848 0.1231 −0.2858 0.1031
0.0 −0.0681 0.1598 −0.0377 0.0979 −0.0182 0.0489 −0.0121 0.0246
0.5 0.1503 0.0810 0.1829 0.0628 0.2046 0.0547 0.2158 0.0523
0.8 0.1302 0.0254 0.1439 0.0241 0.1524 0.0244 0.1564 0.0249

II-OLS λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0209 0.0966 −0.0232 0.0585 −0.0104 0.0266 −0.0104 0.0127
−0.5 −0.0292 0.0800 −0.0298 0.0506 −0.0135 0.0223 −0.0041 0.0129
0.0 −0.0392 0.0646 −0.0194 0.0356 −0.0173 0.0193 −0.0025 .0086
0.5 −0.0320 0.0375 −0.0151 0.0203 −0.0092 0.0096 −0.0047 0.0048
0.8 −0.0114 0.0277 −0.0085 0.0135 0.0002 0.0054 −0.0032 0.0022

QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0156 0.0930 −0.0187 0.0557 −0.0075 0.0256 −0.0088 0.0122
−0.5 −0.0241 0.0766 −0.0256 0.0484 −0.0111 0.0215 −0.0032 0.0127
0.0 −0.0390 0.0620 −0.0194 0.0350 −0.0172 0.0190 −0.0025 0.0085
0.5 −0.0425 0.0334 −0.0203 0.0192 −0.0124 0.0092 −0.0063 0.0045
0.8 −0.0453 0.0190 −0.0296 0.0087 −0.0105 0.0035 −0.0072 0.0018

II-QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 −0.0031 0.0930 −0.0076 0.0566 −0.0029 0.0256 −0.0071 0.0123
−0.5 0.0092 0.0788 −0.0114 0.0488 −0.0047 0.0217 −0.0023 0.0128
0.0 −0.0033 0.0634 0.0021 0.0356 −0.0065 0.0190 0.0029 0.0086
0.5 0.0016 0.0323 0.0064 0.0191 0.0093 0.0092 0.0037 0.0045
0.8 −0.0011 0.0167 −0.0032 0.0078 0.0027 0.0034 −0.0059 0.0018

BC-QML λ0 BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.8 0.0108 0.0983 −0.0030 0.0561 0.0033 0.0254 0.0042 0.0142
−0.5 0.0095 0.0787 −0.0097 0.0466 −0.0093 0.0252 −0.0052 0.0113
0.0 −0.0064 0.0661 0.0021 0.0373 0.0014 0.0177 −0.0011 -0.0090
0.5 −0.0023 0.0366 −0.0029 0.0190 0.0022 0.0091 −0.0012 0.0044
0.8 −0.0020 0.0083 0.0019 0.0078 0.0017 0.0032 0.0013 0.0046

Table 2: Bias and Mean Square Error (MSE) of λ̂, λ̂II , λ̂QML, λ̂II,QML and λ̂QML,BC at n =
30, 50, 100, 200 for λ0 = −0.8,−0.5, 0, 0.5, 0.8 when W is given by AT (104 repl. and ε is generated
from a t-distribution with 5 degrees of freedom).

27

A
cc

ep
te

d 
A

rti
cl

e

 
This article is protected by copyright. All rights reserved 




