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Abstract—Despite transverse flux machines (TFMs) being in-
trinsically three-dimensional, it is still possible to analyse them
using relatively simple analytical models. This paper aims to
provide an insight into the behaviour of TFMs using a compact
equation, which relates torque to the electric and magnetic
loadings of the machine and a flux factor. The flux factor is
also used to estimate the flux linkage and therefore the power
factor of this kind of machines. It is shown that the low power
factor of TFMs is not only due to leakage but also due to the
nature of the electromagnetic interaction that takes place. The
TFM developed at the University of Southampton is used as the
basis of a case study to illustrate the trade-off between torque
density and power factor, and to provide some design guidelines.
The analytical results are verified using finite elements analysis
and experimental data.

Index Terms—Analytical models, permanent magnet machines,
power factor, torque, transverse-flux machines.

I. INTRODUCTION

HE massive development of renewable energy sources,
such as wind and tidal, has generated a great interest
in high torque density electric generators. For example, the
typical rotational speed of wind turbines is between 5 and
25 rpm, which necessitate the installation of a gearbox when
traditional generators are used, making the system less efficient
and reliable [1]-[3]. Direct drive high torque density electric
generators, such as transverse flux machines (TFMs), have
therefore been of interest as potential alternatives. But these
machines tend to have an inherently low power factor [4],
which has hindered their acceptance. But as will be shown
later in this paper, the power factor and torque density are
interlinked and increasing one reduces the other. This can be
the key to unlocking the potential of these machines through a
happy compromise between torque density and power factor.
TFMs are inherently three-dimensional devices that require
3D FEA, which has been the main tool used for the analysis
and design of many machines reported in the literature [3],
[5]-[9]. By contrast there are significantly fewer papers on
analytical methods [10], [11]. In comparison, analytical meth-
ods are less accurate than FEA but they are much faster and
provide a greater insight.

In this paper we develop the analytical theory described in
[10], [12] further to derive expressions for torque and power
factor of the TFM described in [10], [11] and shown in Fig.
1, which is also referred as variable-reluctance permanent-
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magnet (VRPM) machine. The methodology can be extended
to other TFM topologies.

It is known that TFMs have an inherently low power factor
[4]. However, there are not many systematic studies about this
topic. Therefore, in this paper we study this issue in depth
by developing intuitive analytical expressions for the torque
and power factor. The insight gained from the torque and
power factor expressions, which are validated using FEA and
experimental data, is used to develop design guidelines for the
selection of the key parameters of these machines.

Section II describes the single-sided TFM that was de-
veloped at the University of Southampton [10], [11]. Next,
in section III we describe the background theory of torque
production and discuss the insights that can be obtained from
it. Section IV studies the calculation of the power factor, the
reasons for the low values in TFMs and its relationship with
the torque equation. In section V, the equation for torque
and power factor is applied to the machine under study and
the results are validated by FEA and experimental results.
The strong relationship between the power factor and torque
density is also illustrated. The insight gained from the case
study is used to develop design guidelines. Conclusions are
presented in section VI.
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Fig. 1. Front view and cut of a single-sided TFM under study.

II. THE SINGLE-SIDED TFM UNDER STUDY

Fig. 1 shows the front view and the cross-section of the
machine under study, which is an inverted surface-magnet
configuration with an outer rotor. The stator is two-phase, each
phase has a circular coil that links and magnetizes 20 C-cores
producing a homopolar magnetic field distribution. The radial



flux interacts with an array of 40 permanent magnets with
alternating polarity. The dimensions of the machine studied
are shown in table I.

TABLE 1

PARAMETERS OF THE TFM
Quantity Symbol Value
Stator radius Rs 73 mm
Rotor radius R, 78.5 mm
Air-gap length g 5.5 mm
Magnet thickness dm 4.51 mm
Pole pitch O 18°
Tooth pitch 0 7.02°
Slot pitch 0s 10.98°
Number of C-cores N 20
Number of turns Ny 230
Number of phases q 2

The C-cores are made of laminated steel and they are
aligned in radial planes as shown in Fig. 1. The rotor is a
solid drum, which forms a magnetic yoke for the flux of the
neodymium PMs. Each phase has two arrays of alternating
polarity PMs, which are placed in such a way that in the
aligned position with the C-cores they tend to produce a flux in
the same direction. Fig. 2 shows a quarter of a 3D FEA model
of the TFM under study; the arrows represent the flux-density
due to the PMs in the aligned position.
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Fig. 2. Flux through the C-core due to the PMs.
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III. THEORY OF TORQUE PRODUCTION

The methodology presented here is based on the work
done by Harris et al. [10]-[12]. If the PMs are replaced with
equivalent current sheets we can apply the BiL principle to
calculate torque, but now ¢ is the equivalent current of the
magnets and B is the magnetic field produced by the stator
windings. Fig. 3 shows the developed model of the air-gap
of the TFM with the equivalent currents shown as dots and
crosses (shown only for one PM).

Let us assume a square-wave current for the following
deduction of the torque equation. In half a period the positive

core-back

Vg zpgln

(a) Maximum torque position with a positive current.
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(b) Maximum torque position with a negative current.

Fig. 3. Developed model of the TFM. The positive force is shown in red
and the negative one in green in two rotor positions.

equivalent current sheets of the PMs move through the top of
the teeth where the flux density is strong (from 6 = —m/2
to = w/2) and the negative equivalent current sheet moves
through the slot region where the flux density is weak (from
0 = 7/2 to § = 37/2)'. Fig. 3 shows the maximum torque
position for a positive current (flux going up in subfigure a)
and the maximum torque position for a negative current (flux
going down in subfigure b). The net force that is effectively
helping to produce torque is the force on the positive current
sheets minus the force on the negative current sheets. Fig. 4
shows a simplified drawing of the air-gap of the TFM with
the positive and negative currents at a distance ¢ of the core-
back. In reality the force is distributed all along the magnet’s
equivalent current sheets. However, for the following analysis
the equivalent current sheets are represented as current points
that take into account the average force along the edges of the
PMs without losing any generality.

Based on this, we can simply calculate the average positive
torque per phase as

T= 2NCKBBSImagLeqR7 (1)

where Kp is the flux factor [10], [11], I;,44 the equivalent
current of the PMs, L., the axial length, R the effective radius
and B; is the radial flux-density produced by the stator’s MMF
as defined by Harris ef al. [10]:

@)

! At this instant of time the current changes from positive to negative and
the same process repeats with the PMs of the inverse polarity.
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Fig. 4. Forces applied to the equivalent current loop at a distance 4.

where F' is the stators MMF from one C-core head to the
core-back calculated as

F= %wa. 3)

The value of the equivalent current of the PMs is obtained
as follows:

Iiag = 2M - dy, = 2F,,, G))

where M is the magnetisation and d,,, the magnet thickness.

The flux factor Kp accounts for the fact that part of the
flux is not producing torque; in fact it is doing the opposite;
it is reducing the net force and therefore reducing the total
torque. Let us proceed to deduce the expression for Kp.

The radial component of the stators magnetic field distri-
bution in the air-gap, which is the component that effectively
produces torque, can be expressed as a Fourier cosine series
[13]-[15]. For our case this is

B,(6) = B, \, {1 + i i OS(1 0)] , )
n=1

where A, and 7y are coefficients that need to be determined
considering that they represent the average value along the
magnet thickness. Fig. 5 shows the waveform of the radial
component of the magnetic field in blue. The area under the
curve is the total magnetic flux; the red represents the useful
flux associated with the positive force and the green one the
useless magnetic flux associated with the negative force.

Let us call ®4 the positive flux, red in Fig. 5, and ®p
the negative flux, green in Fig. 5. Then, the net force is
proportional to the difference ® 4 — ® 5. Accordingly, the flux
factor accounts for the average value of the force normalised,
in this case as

1 &4 —Dp
Kp = B, a (6)

Operating with the expression of the magnetic field distri-

bution (5) it can be shown that
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Fig. 5. Waveform of the radial component of the stator’s magnetic field
distribution and the corresponding useful/useless flux.

This expression of the flux factor is consistent with refer-
ences [10], [11], [15]. The TFM described in section II has a
flux factor

Kp =~ 0.3125, ®)

which is consistent with the torque obtained using FEA shown
in [11], [15].

The previous deduction was implicitly based on the assump-
tion of a square wave current. This machine is meant to operate
with a sinusoidal waveform. In this condition the value of B
is not constant during an electrical cycle because the current
is changing. Therefore,

_ oF(0) _ poF cos(f)

B,(0 ,
(®) 7 p

&)

where F' is

.1
F= 5\/§NwIRMS. (10)

It can be shown that the expression of flux factor calculated
analogously as in the previous case but considering sinusoidal
current is

Kp=X\m. (11

It is important to point out the significance of Fig. 5. The
torque is proportional to red area minus the green area, which
means that all the magnetic flux ®p is producing a negative
torque. The flux factor captures this effect that is inherent to
the homopolar field distribution of this TFM.

IV. RELATIONSHIP WITH THE POWER FACTOR

The reasons for the low power factor of TFMs are analysed
in detail in [4]. The conclusions are that besides the leakage,
which is high in these machines, the main cause is the
ineffective use of magnetic flux (Pp is producing a negative
torque). However, still many publications state that the low
power factor is due to leakage in the classical way [1], [16]—
[19]. Some authors use the term leakage to describe the flux
produced by the PMs that are not aligned with the C-cores,



which diminishes the total flux. Still, this flux is not leakage
in the classical way because it is crossing the air-gap but in
the opposite direction [20]-[22]. The aim of this section is to
show the relationship between the flux factor (and therefore
the torque) and the power factor.

The power factor depends on the amplitude of the current,
the phase inductance and the amplitude of the back EMF. In
the following paragraphs, we will show how to calculate these
parameters for a TFM to show the relationship between the
flux factor and the back EMF and therefore power factor.

To operate in maximum torque condition the current, I, has
to be in phase with the back EMF, FE; this means that current
only has a g-axis component I,. Considering that there is not
saliency in this machine X3 = X, = X. The phasor diagram
is shown in Fig. 6.

The reactance is due to the self-inductance of the coils, it
can be separated into two different terms one due to the flux
that crosses the air-gap, L4, and one due to the leakage in the
axial direction, L;.

The value of L, can be estimated using the expression of
the magnetic field distribution in the air-gap to obtain the flux.
For a given current ¢ the inductance is calculated as follows

Nw(bcore
. )

L,=N. (12)

where ... is the total flux passing through one C-core
calculated as follows

- 2R
Doore = B/\rLechv (13)
with
R N i
B =ttt (14)
29
therefore the final expression of the inductance is
R\,
Ly = poN2 Leg——", (15)
g

The leakage flux in the axial direction can be estimated using
the expression for the slot leakage according to Say [20]:
hy ha

Ll = /JONcNigcore(i + 7)7

1
3ws  ws (16)

where hp is the coil depth, ho is the difference between the
slot depth and the coil depth, wy the slot width and £.,,.. the
C-core thickness. In this case the slot is the C-core looked
from the radial direction. The total reactance X is calculated
as follows:

X = w(Ly + L), (17)

where w = 27 f is the electrical angular frequency and f is
the electrical frequency.

Normally the value of X is much greater than the value of
the resistance of the windings R,,. Therefore, the angle ¢ in
Fig. 6 can be approximated as

¢~ tan"! (%)

To estimate the value of the back EMF, E, the principle
of conservation of energy can be used. When operating in

(18)
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Fig. 6. Phasor diagram with current only in the quadrature axis.

steady state conditions, at constant mechanical speed €2, the
electromagnetic power in the shaft has to be the same as the
electrical power if losses in the energy conversion process are
ignored. The average power in the shaft can be easily obtained
with the torque equation as follows

P=q-T-Q=2¢N.KpBylnagLegR - Ni (19)

On the other hand, if Ir,ss is the value of the fundamental
harmonic of the current and F is the rms value of the funda-
mental harmonic of the voltage. Then, the average electrical
power is simply

P=q-Irys- E. (20

Ignoring the power losses in the electro-mechanical energy
conversion process, the electromagnetic power in the shaft is
equal to the electrical power. Therefore, we can have a rough
estimation of the rms value of the fundamental harmonic of
the back EMF as follows

P 2KpBslyagLegR-w
I rus Irms
since By depends on Ir)ss, considering a sinusoidal current,
as follows

F =~

. 21

_ #oF _ V2 poNulrus

B, (22)
g 2 g
Accordingly, the value of the back EMF is
L.
off (23)

E =~ 2\f2,u0KBmeNw .
g
To better understand the expression let us define the value of
the magnetic field in the air-gap produced by the PMs as

Fn
Bpa = Ho2m
g

(24)

The expected flux linkage with the winding, considering
that only half of the magnets are producing flux (homopolar
nature) is

Pprr = TRLegBpyNu, (25)

Combining the previous expressions, the RMS value of the
back EMF is

e

E~ —Kp®Ppuuw, (26)
77



which can be rewritten as

E =~ kEw, (27)

where kg is the back EMF constant [23]. This expression
has the same shape as the well-known formula that uses the
EMF constant kg [23]. However, in this case the flux factor
is multiplying the total flux because of the ineffective use of
the MMF as discussed previously. Equation (26) illustrates
very clearly the relationship of the EMF and torque since in
this case both are proportional to the flux factor K. Since
the back EMF constant is multiplied by the flux factor, a low
flux factor will produce a low power factor; which intuitively
means that not all the flux of the PMs is actually contributing
to the production of the back EMF.

According to the phasor diagram shown in Fig. 6, when
the resistance of the windings is low the power factor can be
calculated as follows:

cos(¢) ~ \/(LZXL)EJW7 (28)
and according to (26) we have:
F x Kp. (29)
On the other hand, according to (1):
T x N.Kgpl,. (30)

If I, and N, remain constant but Kp reduces, then the
power factor and the torque will reduce. Therefore, the torque
and the power factor are closely related through the flux factor,
K. In the following section this is further illustrated with a
case study.

V. CASE STUDY

This section shows how to choose the optimum number
of C-cores for the topology of the TFM under study. If the
objective is to maximise torque then we have to use (1)
with Kp calculated using (7). The magnetic field distribution
in the air-gap was calculated using the complex permeance
function [24], [25], therefore we are assuming that there is no
saturation. The effect of slotting was taken into account using
the Schwarz-Christoffel Toolbox for Matlab [26].

Fig. 7 shows the average torque per phase versus the current
obtained with the torque equation described in section III, the
value measured in the lab and the results from 3D FEA. The
static torque was measured directly for several rotor positions
with a step of half of a mechanical degree for various levels of
DC current ranging from 0 to 20 A. It can be appreciated that
the methodology presented is accurate for unsaturated load
conditions.

For this example let us assume that the magnet thickness
d, the air-gap length g and the tooth-pitch ratio ¢/7 remain
constant [11]; 7 is the pole-pitch

2R
T= .
Ne
Under these conditions we can vary the number of C-cores,
N, to study the performance. The magnet thickness has an

effect on the design but the dominant effect in this case is
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Fig. 7. Average torque per phase, machine’s data from table I. The rated
current is 10 A.

the number of C-cores, therefore for this example the magnet
thickness is assumed to be constant [15]. In this case the
torque is calculated using (1). Also, since we deduced an
approximated expression to estimate the power factor it can
be also calculated as a function of the number of C-cores.
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Fig. 8. Average torque per phase and power factor as a function of the
number of C-cores.

Fig. 8 shows the average torque per phase (scale on the left
hand side) together with the power factor and the flux factor
(scale on the right hand side). Starting from N. = 1 C-core as
N, increases the average torque also increases until it reaches
a maximum, which corresponds to N, = 24 C-cores. However,
the flux factor and the power factor are strictly decreasing. In
fact the maximum torque is reached when the improvement
of torque produced by an additional C-core is compensated
by the penalty of a lower flux factor. Therefore, the optimum
number of C-cores does not correspond to the maximum value
of the flux factor. This result was expected and is consistent
with the work presented in [10], [11].



Now focusing on the power factor, we see very clearly
the reasons of the poor power factor of machines that were
designed to maximize torque. Near N. = 20 C-cores the
increase of torque per extra additional C-core is small but the
decrease of the power factor is significant. For example, if we
compare N, = 15 and N, = 24 C-cores the latter produces
2.27 Nm more torque. However, the power factor drops from
0.448 to 0.296 at full load. This lower power factor means
that the power electronic converter has a higher power rating.

The decrease in the power factor can be caused by three
reasons, based on (18): an increase of the rated current,
an increase of the phase inductance and/or a decrease in
the back EMFE. In this case study the rated current remains
constant. It was proved in section IV that the back EMF is
affected directly by the flux factor; therefore, it is necessary
to study if this is the dominant effect. Fig. 9 shows the air-gap
inductance, L, and the leakage inductance, L;, as functions
of the number of C-cores. The flux factor, Kp, is shown
with the axis on the right hand side of the graph. It can
appreciated that the air-gap inductance increases gradually but
the leakage inductance remains constant. This means that there
is more flux crossing the air-gap; however, not all of this
flux is effectively producing torque because the flux factor
is decreasing rapidly. Therefore, the low power factor is not
due to an increase of the leakage flux but due to the ineffective
use of the flux that actually crosses the air-gap.
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Fig. 9. Air-gap inductance, L, and leakage inductance, L;, as functions of
the number of C-cores using the axis on the left hand side of the graph. Flux
factor, Kp, with the axis on the right hand side of the graph.

When designing a machine to produce a specific torque (in
this case let us say it is 32 Nm). Then, it is reasonable to
ask: is it better to choose the number of C-cores to maximise
torque and operate at partial load or is it better to choose the
number of C-cores so that the torque required is the torque at
full load? These two cases are shown in table II.

TABLE II
DESIGN OPTIONS
Case N, Torque (Nm) cos(¢)
A 24 32 0.314
B 15 32 0.448

Case A in table II is the machine designed only to maximise
torque (N, = 24 C-cores) and operates at partial load to
produce 32 Nm. Case B is the machine designed for 32 Nm
torque at full load (N, = 15 C-cores). The results show that
designing to maximise torque and operate at partial load (case
A) has a significantly lower power factor than case B.

The basic idea behind this effect is that near the point of
maximum torque the curve of torque curve has a very flat
slope. On the other hand, the slope of the power factor curve
is steep. These two effects imply that a small increase of torque
produces a strong penalty in terms of power factor. Therefore,
when designing a TFM it is important to consider both the
torque and the power factor.

VI. CONCLUSION

This paper shows that even though TFMs are intrinsically
three-dimensional it is possible to study them with intuitive
analytical methods achieving a reasonable accuracy.

The case study clearly illustrates that if the design of the
TFM is done to maximise torque, then the power factor will
tend to be low. Therefore, it is important to have a trade-off
between torque and power factor particularly because small
improvements of torque can produce strong penalties in terms
of the power factor. Furthermore, it is shown that the low
power factor is not due to leakage in the classical way but
due to the nature of the electromagnetic interaction that takes
place.

Understanding the relationship between torque and power
factor is a key step to unlocking the full potential of TFMs.
This paper analyses a particular single-sided TFM but the
concepts are general and can be applied to other topologies of
TFM.
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