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Abstract 21 

Based on a series of new radiocarbon dates we examine the vertical mobility of cattle in the Alps by 22 

means of strontium isotope analysis on samples from the prehistoric settlement of Ramosch-Mottata 23 

(Canton of Grisons, Switzerland). By identifying variations in the strontium isotope ratios of high-24 

crowned cattle molars, we investigate the seasonal use of alpine pastures (vertical transhumance) and 25 

changes in cattle husbandry practices between the early and later stages of the site’s occupation. 26 

Combined with the evidence of multiple high-altitude sites, indications of dairying and ethno-27 

archeological observations, we see an economic shift and a reorganization of domestic animal 28 

exploitation from the early to the late Bronze/early Iron Age in the Alps.  29 

 30 

1. Introduction 31 

Nothing seems more natural in the Central European Alps than using the widespread high meadows 32 

for pasturing sheep, goats, cattle and horses in the summer months. Lush grassland, grazing animals, 33 

aromatic mountain cheese – many elements of the local alpine culture originated a long time ago and 34 

still characterize Switzerland`s identity today, although implying a distorted picture of the social 35 

reality (Weiss, 1992). The question of the beginnings of alpine summer farming has long been 36 

discussed (Frödin, 1940; Gleirscher, 1985; Gleirscher, 2010) and the debate has gained new 37 



momentum particularly in the past 25 years, fueled by the discovery of the Tyrolean Iceman Ötzi. This 38 

icon of alpine archeology and best manifestation of early vertical mobility (Egg and Spindler, 2009; 39 

Kutschera and Müller, 2003; Lippert et al., 2007; Oeggl et al., 2007; Oeggl et al., 2009), has 40 

repeatedly been associated with “vertical transhumance” (Spindler, 2005). However, despite extensive 41 

surveys over the past 25 years, no tangible archeological evidence has been found to support this 42 

theory (Gleirscher, 1997; Festi et al., 2014; Putzer and Festi, 2014; Putzer et al., 2016). Nevertheless, 43 

archeobiological surveys (Moe and van der Knaap, 1990), single finds at high altitudes and field name 44 

research have substantially contributed to the indexing of prehistoric alpine pastoralism in 45 

Switzerland. These works have provided a more detailed record of the various incentives that have 46 

driven humans up into the mountains for millennia, i.e. the sourcing of raw materials, transalpine trade 47 

and transport, hunting and gathering, conflicts, religion and pastoralism (Curdy et al., 2003; Curdy, 48 

2007; Moe et al., 2007; Hess et al., 2010; Reitmaier, 2012; Patzelt, 2013; Alther, 2014; Walsh et al., 49 

2014; Fedele, 2015; Giguet-Covex et al., 2015; Hafner, 2015; Schwörer et al., 2015).  50 

Pastoralism is a distinct form of human subsistence in which domestic animals play a predominant 51 

role in the shaping of the economic and cultural lives of the people who depend on them. It is both a 52 

land use strategy and a system of animal production. There is a (world-)wide spectrum of different 53 

forms of pastoralism, due to a range of factors that can include the quantitative and qualitative 54 

characteristics of herds, the extent and range of mobility, the type of agricultural products, 55 

environmental and ecological aspects of the region and the extent of ties with an external market 56 

(Arnold and Greenfield, 2004; Arnold et al., 2013). The seasonal vertical movement of livestock 57 

between pastures at different altitudes is a highly specialized economic system and its adoption has 58 

important implications for a community’s social-political structure, practices and cultural ideology in 59 

marginal highlands (Greenfield, 2010).  60 

 61 

Few regions in Europe are as strongly associated with pastoralism and alpine animal husbandry as the 62 

Swiss-Austrian mountains. The question as to whether cattle were already being pastured in alpine 63 

meadows in the Engadine region, Switzerland, in the 2
nd

 and 1
st
 millennia BC was first asked more 64 

than 30 years ago. In her pioneering study on prehistoric sites in the Lower Engadine, Stauffer-65 

Isenring (1983, 128) called for systematic research of prehistoric herding. Over the past 10 years 66 

various researchers have responded to this call by launching an interdisciplinary study on the 67 

development of alpine animal husbandry in the Silvretta Alps (Switzerland/Austria; Reitmaier et al., 68 

2013). The Silvretta mountain range is located in the central eastern Alps and stretches across an area 69 

of c. 770 km
2
. This region remained completely devoid of any archeological evidence until 2007, 70 

when systematic surveys started to reveal more than 200 archeological sites covering a period of 11 71 

millennia. Amongst them a large number of high-alpine features (above 2000 m a.s.l.) were 72 

discovered. Besides the Mesolithic and Neolithic sites (Cornelissen and Reitmaier, 2016), a 73 

considerable number of Bronze Age structures are of particular interest with regard to the question of 74 



livestock and pastoral economy. They suggest that alpine pastures were used from the late 3
rd

 75 

millennium BC onwards (Reitmaier, 2012). Palynological and paleoethnobotanical analyses highlight 76 

a distinct increase in human and domestic animal impact, with a fundamental transformation of the 77 

landscape at the transition to the 2
nd

 millennium BC (Dietre et al., 2014, 2016; Kothieringer et al., 78 

2015). Apophytes and spores of coprophilous fungi are clear indicators for pasturing on alpine 79 

meadows during the Bronze Age and hint at grazing pressure. Particularly important in relation to 80 

alpine pastoralism are the first permanent buildings to emerge in the Silvretta Alps, from the early 1
st
 81 

millennium BC onwards. Three dry-stone structures were identified as the remains of cattle/sheep pens 82 

(Fimba Valley/Val Fenga, Las Gondas, 2360 m a.s.l.; Tasna Valley/Val Tasna, 2060 m a.s.l.) and an 83 

alpine hut (Fimba Valley/Val Fenga, 2283 m a.s.l.). They were dated by radiocarbon measurements on 84 

charcoals from pits (Tab. 1, site no. 6, 8 and 10) and by typological assessment of ceramic finds, 85 

indicating that they were used during the late Bronze/early Iron Age (Reitmaier, 2012, fig. 10). The 86 

pottery suggested both a chronological and a functional connection between the high-altitude 87 

structures and settlements in the valley (e.g. Ramosch-Mottata, 1517 m a.s.l.; Ardez-Suotchastè, 1521 88 

m a.s.l.; Guarda-Muot Pednal, 1696 m a.s.l.), which implies repeated long-term stays in the alpine 89 

pasture areas, with food supply and food production. This is supported by biochemical analyses of late 90 

Bronze and early Iron Age pottery attesting to local processing of milk and indicating a fundamental 91 

change in alpine animal husbandry (Carrer et al., 2016). All these lines of evidence suggest an 92 

established seasonal valley-alp system, as known from historical sources (Weiss, 1992).  93 

 94 

An important part of such a system is the vertical movement of livestock to high-altitude meadows in 95 

summer and lowland pastures in winter. Isotopic analysis offers a systematic approach to investigating 96 

animal management and herding systems in general (e.g. Pearson et al., 2007; Knipper, 2011; Henton, 97 

2012; Makarewicz and Tuross, 2012) and to tracing faunal mobility in mountain regions in particular 98 

(Valenzuela et al., 2016). A useful and well-established method is strontium isotope analysis, in 99 

particular when measured by high-resolution laser ablation multi-collector inductively coupled plasma 100 

mass spectrometry (LA-MC-ICP-MS). Strontium isotope analysis is based on the fact that strontium 101 

isotopes, i.e. the ratio of 
87

Sr to 
86

Sr, vary according to geology, i.e. to differences in the age and 102 

composition of the bedrock (Faure and Powell, 1972; Ericson, 1985). Due to processes of erosion, the 103 

characteristic 
87

Sr/
86

Sr signature of the local geology is passed on to soil and plants and then via the 104 

food chain to animals and humans (Bentley, 2006). It is incorporated into hard tissues such as tooth 105 

enamel, where it substitutes calcium in the hydroxyapatite mineral. This happens at the time when 106 

tooth enamel is formed in growing animals and does not substantially change later (Julien et al., 2012). 107 

Enamel is relatively resistant to physical and chemical contamination due to its composition (Zazzo et 108 

al., 2005; Burton, 2008), although the degree of enamel diagenesis is unclear and has lately been under 109 

discussion (e.g. Zazzo, 2014). Nevertheless, cattle tooth enamel is a good proxy for the locally distinct 110 

strontium signal of the underlying geology where the animal was grazing at the time of tooth 111 



formation and tooth enamel mineralization. Cattle have high-crowned (hypsodont) teeth, which form 112 

sequentially from the cusp of the crown to the cervix (Hillson, 2005). Second permanent molars (M2) 113 

in cattle mineralize between the ages of approximately 1 month and 12/13 months, while third 114 

permanent molars (M3) mineralize from the age of 9/10 months to 23/24 months (Brown et al., 1960; 115 

Beasley et al., 1992). Hence, sampling of the second and third permanent molars of cattle provides 116 

isotopic insight into the first two years of the animals’ lives. However, the growth rate of tooth enamel 117 

is probably non-uniform and there may be alternating periods of faster and slower enamel growth 118 

(Bendrey et al., 2015). Moreover, the isotope information available may cover a shorter period than 119 

two years, depending on the degree of tooth abrasion, which is subject amongst other things to the 120 

environmental conditions, the age of the animal at death and its fodder (Grant, 1978).  121 

This paper examines mobility patterns of Bronze Age cattle in the Alps by applying strontium isotope 122 

analysis to samples from the prehistoric settlement of Ramosch-Mottata (Canton of Grisons, 123 

Switzerland). Our research focuses on i) the identification of variations in the strontium isotope ratios 124 

of high-crowned molars suggesting seasonal changes of pastures and ii) the  identification of 125 

chronological changes in cattle husbandry practices between the early and later stages of the site’s 126 

occupation.  127 

 128 

2. Environmental and archeological setting  129 

Ramosch-Mottata is located in the Lower Engadine Valley in the Canton of Grisons, Switzerland (Fig. 130 

1). The altitude of the valley bottom varies between 1015 m a.s.l. at Martina in the east and 1475 m 131 

a.s.l. at Zernez in the west. The valley is shaped by the River Inn and surrounded by mountains 132 

reaching altitudes of 3400 m a.s.l. but easily accessible from different directions. A number of 133 

prehistoric settlements in the Lower Engadine have been excavated, albeit by amateurs and at a rather 134 

early date. The oldest sites dated from the early and middle Bronze Age (c. 2200-1350 BC) and were 135 

more or less continuously occupied until the late Iron Age (c. 400-15 BC). An interesting phenomenon 136 

in this area is the "Laugen-Melaun" group (Stauffer-Isenring, 1983; Gleirscher, 1992) which began to 137 

emerge in the early phase of the late Bronze Age (Bz D/Ha A1; c. 1350-1130 BC) and is interpreted as 138 

representing immigration from Northern Italy. 139 

 140 

The hilltop settlement of Ramosch-Mottata (1517 m a.s.l.) has a very distinct position in the 141 

prehistoric cultural landscape of the Lower Engadine. Discovered in the 1950s and partially excavated 142 

in several campaigns (Frei, 1959), the site was the starting point for the systematic search for seasonal 143 

economic activities in the upland’s prehistory. The permanent settlement is characterized by its 144 

location near terraced fields, highly suitable for farming (Raba, 1996), its favorable climate and, in 145 

particular, its outstanding position on an important inner- and transalpine trade route (Planta, 1987). 146 

The main objective of the excavations carried out some 60 years ago was to establish a relative-147 

chronological framework for the inner alpine Bronze and Iron Ages based on pottery typology 148 



(Stauffer-Isenring, 1983), although radiocarbon dating, in its infancy, had yielded rough absolute dates 149 

for each of the stratigraphic layers (Gfeller et al., 1961). The excavators recovered a considerable 150 

quantity of animal bones (> 10,000 fragments) from five layers (Bronze Age, Melaun III, Melaun II, 151 

Melaun I, Fritzens-Sanzeno). Despite a brief report (Würgler, 1962), no detailed archeozoological 152 

investigation (i.e. with regard to harvest profiles or slaughter ages) has been carried out to date. It is 153 

clear, however, that the keeping of livestock, mainly sheep, goats and cattle, played an important role 154 

in the Bronze and Iron Age economic system at Ramosch-Mottata. 155 

 156 

The geology around the site is highly varied (SBL, 2008, 2014). The area surrounding the settlement 157 

and the Sinestra Valley/Val Sinestra which runs towards the north (Fig. 1) are geologically comprised 158 

of Quaternary moraine, flysch (Tertiary/Cretaceous) and chalk (Jurassic/Cretaceous). Facing the Inn 159 

Valley, granites of the Tasna nappe (Cambrian) also crop out at the site along a stretch c. 2 km in 160 

length and 400 m in width. Paleozoic rocks (granite, gneiss, amphibolite) are widespread on the 161 

opposite side of the River Inn. The Fimba Valley/Val Fenga, north of Ramosch-Mottata, is 162 

characterized by flysch, partly covered by moraine. Further north, towards the Paznaun Valley there is 163 

again Paleozoic geology. Given the different ages and compositions of the rocks, one would expect 164 

highly varied 
87

Sr/
86

Sr ranges for the different geological units (Faure and Powell, 1972). Although 165 

compositions of granites and gneisses are quite variable, they have strontium isotope signatures > 166 

0.7100 (Dickin, 1997, 490; Kutschera and Müller, 2003). Soil leachates from regions predominantly 167 

composed of gneisses and phyllites in the Austrian and Italian Alps, analyzed as part of the Tyrolean 168 

Iceman project, yielded 
87

Sr/
86

Sr values > 0.7200 (Kutschera and Müller, 2003; Müller et al., 2003). 169 

The basement rock in the Black Forest in south-western Germany consists of granites and gneisses 170 

from the Paleozoic. Samples from these geological formations have yielded 
87

Sr/
86

Sr values > 0.7100 171 

and very often even significantly higher, including the samples that reflect the biologically available 172 

strontium (Bentley and Knipper, 2005). In the same region, Oelze and her colleagues found average 173 

87
Sr/

86
Sr values of 0.7153 ± 0.0029 (1σ, n=9) for modern reference samples in regions where gneiss 174 

predominates and of 0.7145 ± 0.0031 (1σ, n=8) for samples from granite (Oelze et al., 2012). 175 

Significantly lower 
87

Sr/
86

Sr ratios can be expected for the areas with Jurassic and Cretaceous geology. 176 

Ranges of between c. 0.7070 and 0.7086 have been suggested for Jurassic limestone (Veizer et al., 177 

1999). Modern reference samples from limestone regions in south-western Germany average 0.7077 ± 178 

0.0005 (1σ, n=13) (Oelze et al., 2012), and those from Cretaceous chalk on the British Isles average 179 

0.7082 ± 0.0004 (1σ, n=9, plants) and 0.7079 ± 0.0001 (1σ, n=5, water) (Evans et al., 2010). Areas 180 

where Quaternary glacial deposits predominate are expected to have somewhat higher strontium 181 

isotope ratios. Oelze found that samples from several locations in regions where glacial moraine 182 

predominates in south-western Germany averaged 
87

Sr/
86

Sr values of between 0.7086 ± 0.0006 (1σ, 183 

n=4), 0.7089 ± 0.0002 (1σ, n=4) and 0.7105 ± 0.0011 (1σ, n=4) (Oelze et al., 2012). This matched the 184 

values measured in pigs’ teeth (0.7097 ± 0.0008 (1σ, n=8)) from the pre-alpine lowlands of prehistoric 185 



southern Germany, where marine sediments are overlaid by glacial moraine, freshwater sediments and 186 

loess deposits, as analyzed by Bentley and Knipper (2005). However, strontium isotope ratios vary 187 

significantly, even in samples from the same types of rock or of the same date, indicating that 188 

comparable results from other regions may only be treated as rough indications. We may, however, 189 

conclude that the area around Ramosch-Mottata exhibits distinct differences with regard to expected 190 

87
Sr/

86
Sr signatures, which allows us to distinguish between pasture grounds overlying diverse 191 

geologies.  192 

 193 

3. Material and Methods 194 

Teeth and bone of 15 cattle from different stratigraphic layers were selected for radiocarbon AMS 195 

measurements at the Laboratory for Ion Beam Physics, Swiss Federal Institute of Technology Zurich 196 

(ETH), Switzerland (Tab. 2) and for strontium isotope analysis at the National Oceanography Centre 197 

Southampton (NOCS), UK (Tab. 3).  198 

Teeth and bone were sampled at the Institute of Prehistory and Archaeological Science (IPAS), 199 

University of Basel, Switzerland. Age at death was determined following an established and modified 200 

method based on Habermehl (1975). In-depth archeozoological investigation guaranteed that each 201 

animal was only sampled once. Based on availability and preservation, we sampled the enamel of one 202 

second permanent molar (M2) and 14 third permanent molars (M3). The surface of each tooth was 203 

carefully cleaned using a dental burr and hand drill. A longitudinal enamel section of c. 2 mm 204 

thickness representing the complete available growth axis of the tooth was cut using a diamond-205 

impregnated dental disk. The enamel section was fixed laterally on a round PTFE mount and 206 

embedded in epoxy resin (Biodur® E12 + Biodur® E1 hardener 100:28). After 12 hours in a vacuum, 207 

the resin was hardened in an oven at 35°C for 48 hours. The surface of the resin was ground to reveal 208 

the surface of the enamel section and polished manually using successive grades of SiC paper down to 209 

P1200 grit. The sample mounts were then transferred to NOCS for Sr isotope analysis. The analysis 210 

was performed on a Thermo Fisher Neptune multi collector ICP-MS with a New Wave 193 nm ArF 211 

homogenized excimer laser, using the oxide reduction technique developed by De Jong (De Jong et 212 

al., 2010; De Jong, 2013, Lewis et al., 2014) which manipulates the plasma conditions to reduce the 213 

molecular interference on 
87

Sr of 
40

Ca
31

P
16

O
+
, which is a primary constituent of the enamel matrix. 214 

Other potential problems come from double-charged rare earth elements which give mass to charge 215 

ratios of between 84 and 88, calcium-calcium and calcium-argide dimers which can interfere with 
84

Sr, 216 

86
Sr and 

88
Sr, as well as potential 

87
Rb and 

86
Kr interferences. In addition to oxide reduction in the 217 

plasma (monitored as 
254

(UO)
+
/
238

U
+
), teeth which have significant rare earth concentrations are 218 

considered diagenetically altered and are thus rejected. We correct for the 
86

Kr using an on-peak gas 219 

blank and for rubidium interference using the natural 
87

Rb/
85

Rb ratio of 0.385617. A small positive 220 

offset from known 
87

Sr/
86

Sr values is usually observed, because the oxide interference is not 221 

completely eliminated, but is normally well within the precision of a typical measurement. Time series 222 



of strontium isotope ratios are obtained as continuous data by moving the tooth along its growth axis 223 

(at 20 or 25 ms
-1 

depending on the size of the tooth) as the laser pulses with a repetition rate of 15 Hz 224 

and spot size of 150 m, giving a fluence of c. 8.6 Jcm
-2

. The laser track was positions to be in the 225 

centre of the enamel thickness to avoid areas close to the edges (i.e. the outer surface and dentine-226 

enamel junction) which would be affected most by diagenesis (Wilmes et al. 2016). Before analysis, 227 

the laser track was cleaned using an identical repetition rate and spot size but a speed of 100 ms
-1

. A 228 

mean offset of laser ablation analysis results against TIMS values of +44±33 ppm (1σ) was determined 229 

from 279 analyses of an in-house ashed bovine pellet standard (BP), carried out over 18 months, with 230 

three repeats after every third sample. This is about the same order as the smallest within-tooth 231 

variation, but well within the variation between the majority of the teeth, and is therefore considered 232 

insignificant to our interpretation of the isotopes.  In the absence of suitable references for the 233 

biologically available strontium from the site, we used dentin as a proxy for the on-site signature. The 234 

dentin samples were analyzed for 
87

Sr/
86

Sr using LA-MC-ICP-MS spot measurements. Measurements 235 

were performed with a spot size of 150 m and a laser pulse rate of 10 Hz for 60 seconds. Before these 236 

measurements each spot was cleaned for 5 seconds using an identical spot size but a repetition rate of 237 

15 Hz.  238 

 239 

4. Results and Discussion 240 

The enamel (n=15) shows 
87

Sr/
86

Sr values ranging from 0.70608 to 0.72070 with an average of 241 

0.70933 ± 0.00302 (1σ) (Figs. 2 and 3; Tab. 3). Ignoring the highly radiogenic values of RMO 19, 242 

87
Sr/

86
Sr measurements average 0.70843 ± 0.00053 (1σ) and range from 0.70608 to 0.71138. Ten 243 

dentin samples average 0.70847 ± 0.00117 (2σ) (Tab. 3). Ignoring the distinct outlier RMO 19, the 244 

dentin has an average 
87

Sr/
86

Sr value of 0.70829 ± 0.00021 (2σ).  A Corelation between 
87

Sr/
88

Sr and 245 

1/Sr(concentration)  is taken by some authors to indicate the presence of diagenetic Sr. This would be true if 246 

diagenetic incorporation of strontium were additive rather than by exchange with biogenic Sr, and if 247 

there were no variation in bioavailable Sr concentrations within different Sr isotope catchments. 248 

Diagenetic exchange with biogenic Sr would alter
 87

Sr/
88

Sr vaues without generating a trend of these 249 

values with 1/Sr(concentration) and co-variation in bioavailable Sr concentrations with 
87

Sr/
88

Sr has the 250 

potential to generate these trends without any diagenetic Sr being present (e.g. see Montgomery 2010). 251 

Nevertheless, Fig. *** shows our Sr isotope values plotted against 1/Sr using 
88

Sr beam size (V) as a 252 

proxy for Sr concentration.  There is no significant correlation between 1/Sr and 
87

Sr/
86

Sr in either the 253 

enamel or the dentine (r
2
0.01) though it is clear that Sr isotopic values in dentine are different from 254 

and less variable than in the enamel and, in all but one case, have higher Sr concentrations. This is 255 

strongly suggestive of Sr diagenesis in the dentine. For the enamel, the more radiogenic enamel values 256 

are associated with lower Sr isotope concentrations, which may be suggestive of diagenesis, though 257 

we cannot rule out that the radiogenic Sr catchments have lower bioavailable Sr concentrations than 258 

the more radiogenic ones. Nevertheless, we take a cautious approach.  259 



 260 

Although it has been shown that enamel is not entirely resistant to post-mortal influences (e.g. Zazzo, 261 

2014 Fig *** shows, as expected, that dentin is  far more sensitive to diagenetic alteration. It  is 262 

expected to give
87

Sr/
86

Sr values between the enamel values and those of Sr in the groundwater of the 263 

burial environment  (e.g. Budd et al., 2000;; Hoppe et al., 2003; Nehlich et al., 2009), though is not 264 

uncommon for dentine to have fully equilibrated with the burial groundwater i.e. for the biogenic Sr 265 

signal to be completely overprinted (e.g. Chiaradia et al, 2003, Haak et al. 2008). Where this is not the 266 

case, patterns in the paired enamel-dentine values can give an indication of the diagenetic endmember 267 

(i.e. the Sr in the burial environment). Fig. **** shows that, with the exception of sample RMO 13, 268 

the dentine values tend towards a 
87

Sr/
88

Sr of c.0.7083 which we take to be the Sr in the burial 269 

groundwater. From this, use the method of Budd et al. (2000) to calculate the degree of Sr uptake or 270 

replacement required to account for the difference between the enamel and dentine, and which ranges 271 

from 25 to 83% with a mean of 58%. While the method of Budd et al. assumes the enamel retains 272 

biogenic Sr value, Hoope et al. (2003)  observed a c. 25% diagenetic strontium in enamel samples 273 

from environments where bones had incorporated c. 80% diagenetic strontium.  Assuming the relative 274 

effects of diagenesis are similar between bone and dentine, and noting that our estimates of the degree 275 

of diagenesis in dentine is lower than those observed in bones by Hoppe et al., and our use of laser 276 

ablation that ensured only the centre of the enamel is sampled, we model the effects of 25% diageneic 277 

overprinting of Sr in the enamel as the worst case scenario (see below).   278 

. 279 

The 15 radiocarbon dates on bone collagen range from 1744 cal BC to 801 cal BC (2σ), covering a 280 

time span between the early and very late Bronze/early Iron Age. 281 

 282 

Chronological classification of the cattle remains 283 

Würgler (1962) based his analysis and interpretation of the animal bones on a stratigraphy, which had 284 

been divided into five layers (Bronze Age; Melaun III; Melaun II, Melaun I; Fritzens-Sanzeno). This 285 

local, inner-alpine and relative-chronological sequence was later correlated by Stauffer-Isenring 286 

(1983) with the chronologies commonly used north and south of the Alps. Following her correlation, 287 

the (inner-alpine) early Bronze Age (Bz A) dates from 2200 to c. 1550 BC, the middle Bronze Age 288 

(Bz B, C1, C2) from 1550 to 1350 BC, the late Bronze Age with Laugen-Melaun A (Bz D, Ha A1/A2, 289 

B1) from c. 1350 to 1050/1000 BC and with Laugen Melaun B (Ha B1/B2, B3) up to around 800 BC. 290 

The phase Laugen-Melaun C is roughly equivalent to the early Iron Age (Hallstatt; Ha C1-D2/D3, 800 291 

BC to c. 500 BC), whilst Fritzens-Sanzeno can be equated with the late Iron Age (La Tène). The 292 

radiocarbon dates obtained represent the early Bronze Age (RMO 19, 18), the late Bronze Age (RMO 293 

15, 14, 11, 6, 2, 1, 7, 5, 10, 13) and possibly the early Iron Age (RMO 9, 16, 7) (Fig. 5). The 294 

chronological correlation serves as a framework for the interpretation of the strontium isotope ratios. 295 

The comparison between the absolute-chronological order of our samples and the sequence of the 296 



animal bones as based on the stratigraphy according to Würgler (Tab. 2) results in discrepancies, 297 

which suggest that the original relative-chronological order of the material from Ramosch-Mottata 298 

must be viewed with circumspection. 299 

 300 

Land use and cattle mobility at Ramosch-Mottata 301 

Without a detailed study of bioavailable Sr locally and from more distant potential pastures, it is 302 

difficult to construct a detailed pattern of the movements of cattle, but we nevertheless observe  a 303 

difference between the mobility patterns of cattle from the early vs. the late stage of the site’s 304 

occupation. The most common pattern, represented by all samples that dated from later periods (12
th
-305 

9
th
 centuries BC) with the exception of RMO 7, showed Sr values that centre on the value we 306 

estimated for the Sr value of the burial environment (0.7083) and with very little within tooth 307 

variation. This is in contrast to the  chronologically oldest animals (RMO 19, 18), dated to the 18
th
-16

th
 308 

centuries BC, which yielded 
87

Sr/
86

Sr patterns which lay completely or at least largely outside the on-309 

site 
87

Sr/
86

Sr (Fig. 2), and showed higher degrees of within tooth variability. RMO 15 and RMO 14, 310 

which may date from as early as the 13
th
 century BC, yielded values that clearly lay outside of the on-311 

site strontium isotope range (RMO 14) or only partially coincided with it (RMO 15). The grouping of 312 

cattle according to this scheme is not affected by an assumption of 25% diagenesis (Fig. ***) . 313 

 314 

Both old geologies which are expected to result in high 
87

Sr/
86

Sr, and younger geological units where 315 

less radiogenic 
87

Sr/
86

Sr is expected can be found in the immediate surroundings of the settlement. It is 316 

therefore tempting to interpret both the more radiogenic values with more dynamic 
87

Sr/
86

Sr curves of 317 

the early phase and the less radiogenic, more static patterns of the later phase as year-round grazing in 318 

the vicinity of the site. However, the topographical situation of the site suggests that good pastureland 319 

was limited and that the animals could be kept near the settlement for a short period of the year at 320 

most. Furthermore, it was certainly necessary to move cattle to lower altitudes during winter 321 

(Niederstätter, 1999), when snowfall was intense at 1500 m a.s.l., all the more since we do not have 322 

evidence for stabling in Ramosch-Mottata. It is therefore much more likely that all cattle were 323 

pastured, at least for part if not all of the year, at a distance from the settlement.   Topographically 324 

favorable pasture grounds with potentially very high 
87

Sr/
86

Sr ratios (due to early geological 325 

formations) can be found just a few kilometers from Ramosch, to the south on the other side of the 326 

River Inn, to the east around Lake Reschen, which can be reached via the Schlinig or Reschen Passes, 327 

or to the north in the Paznaun Valley, which can be reached via the Fimba Valley/Val Fenga or by 328 

following the River Inn downstream (SBL, 2008; Fig. 1). Keeping cattle on distant pastures may be 329 

linked to transhumance but also to an exchange of animals between different sites. Social links and 330 

networks between settlements can be important, for instance in ensuring access to pastureland, 331 

minimizing the effort that has to be put into animal husbandry, keeping herd sizes stable and 332 

maintaining a good supply of working animals (Ebersbach, 2002). The chronological differences in 333 



87
Sr/

86
Sr patterns observed in the cattle samples suggest that a change in herding management occurred 334 

during the late Bronze Age (Fig. 2). From the 12
th
 century BC onwards, the 

87
Sr/

86
Sr values are 335 

consistent  with the estimated burial groundwater  value . If this value is representative of the local 336 

bioavailable Sr, this would point to year-round pasture near the settlement or in regions with similar 337 

geology within a landscape that was characterized by more open areas, as evidenced by 338 

paleoenvironmental studies (Dietre et al., 2014; Kothieringer et al., 2015). Interestingly, the Fimba 339 

Valley/Val Fenga is characterized by a similar geology as the surroundings of Ramosch-Mottata and 340 

can be expected to show similar on-site 
87

Sr/
86

Sr values. This valley, only a 4 to 6 hours walk away, is 341 

particularly well suited for summer pasturing due to its location above the alpine tree line, with vast 342 

open areas that provide sufficient amounts of fodder even for large herds. How much pastureland 343 

would effectively have been required to feed the livestock at the time when Ramosch was settled 344 

remains unclear. This would have been a crucial factor in mobile animal husbandry (Ebersbach, 2002), 345 

however, for instance as part of a system that utilized pastureland at different altitudes and different 346 

times of the year (Reitmaier, 2010; Alther, 2014). Because (seasonal) mobility between similar 347 

geological units cannot be identified by means of strontium isotope analysis, we may not ascertain 348 

whether the 
87

Sr/
86

Sr patterns that coincide with the on-site isotopic signature of Ramosch-Mottata 349 

could also be explained by pasture grounds in the Fimba Valley/Val Fenga. Future analysis of oxygen 350 

isotope ratios, which primarily depend on climatic conditions, precipitation, geographic location and 351 

altitude (Dansgaard, 1964; Gat, 1980), will help to answer questions regarding, for instance, 352 

distinguishing between summer and winter pastures at varying altitudes. However, changes in the 353 

fodder or in pasture grounds, potentially linked to short-term mobility, are suggested by variations in 354 

the 
87

Sr/
86

Sr patterns of some of the individuals (RMO 7, 5, 13). Vertical mobility is further supported 355 

by the available archeological evidence, e.g. the first appearance of permanent stone-built structures 356 

(huts, pens), e.g. in the Fimba Valley/Val Fenga, as well as of dairy products in the Silvretta 357 

Mountains and in other parts of the Alps after 1000 BC (Curdy, 2007; Marzatico, 2007; Gleirscher, 358 

2010; Hess et al., 2010; Patzelt, 2013; Putzer, 2009, 2013). It seems that claims to the available 359 

pastureland were more clearly asserted, resulting in the construction of permanent infrastructural 360 

buildings (Fig. 6B). We may assume that the livestock were now regularly being brought to pasture 361 

grounds which were in permanent ownership.  362 

 363 

Implications for the inner alpine economy in the Bronze Age 364 

This new and different strategy and hierarchy with regard to the perception and principle of 365 

territoriality (Kossack, 1992; Steiner, 2010; Walsh and Mocci, 2011) suggests a fundamental change 366 

in animal husbandry at the end of the 2
nd

 millennium BC, as has also been proposed for other areas in 367 

the Alps, e.g. based on archeozoological data (Riedel and Tecchiati, 2001; Plüss, 2011; Bopp-Ito, 368 

2012; Stopp, 2015). We link this shift to an immigration of people with a different cultural background 369 

(evidenced by pottery of the Laugen-Melaun group) from the late Bronze Age (Bz D/Ha A1) onwards. 370 



At a more advanced stage of the new influence, specifically at the transition from Laugen-Melaun A to 371 

Laugen-Melaun B (Ha B1 to Ha B2, around 1050/1000 BC), we identify the observed shift in cattle 372 

husbandry and land use. This shift was very probably linked to a change in animal product 373 

exploitation. The (ethno)archeological differentiation between the exploitation of primary and 374 

secondary animal products and their archeological (in)visibility in the Alps was recently discussed by 375 

Carrer (2015, 2016a, b). Basically, two pastoral strategies can be distinguished in the Alps: the 376 

exploitation of primary and secondary animal products. Besides dairying, the latter implies the use of 377 

wool, while meat, hide and bone were important primary products (Greenfield, 2010). The 378 

characterization of alpine pastoralism and transhumant shepherd sites, as described by Carrer, allows 379 

us to infer a differentiation between these two categories (Fig. 6). Non-dairy animals are allowed to 380 

move freely throughout the pasture grounds and search for available grazing areas (Fig. 6A). 381 

Shepherds do not enclose the animals and a single herdsman can manage a flock of more than 1000 382 

non-dairy sheep. As herders do not need to bring their animals back to a permanent seasonal site to 383 

milk them or produce any dairy products, their only focus is on grazing. There is therefore no need to 384 

select a location that suits their requirements and the herders usually spend their nights under rock 385 

shelters or even under trees. Higher mobility means much less archeological visibility, but greater 386 

variability in the mobility patterns. Dairying, on the other hand, requires hard work and a specialized 387 

working group. In order to maximize milk production and quality, herders are required to find the best 388 

and most accessible pastures. A herd of at most 150-200 sheep is kept in pens and permanent seasonal 389 

buildings are required for milk processing and storing the dairy products (Fig. 6B). These sites are 390 

usually placed in the middle of an appropriate grazing area to enable the herder to pasture his animals 391 

in the immediate surroundings. The choice of location is important and based on the evaluation of 392 

specific environmental features. As a result, seasonal mobility is much more uniform (Carrer, 2016a, 393 

b). 394 

Assuming that Carrer’s model can be transferred to large herbivores, we may use it to explain the 395 

different mobility patterns seen in the cattle from Ramosch-Mottata. The 
87

Sr/
86

Sr ratios in the samples 396 

from the early Bronze and an early stage of the late Bronze Age (RMO 19, 18, 15, 14) reveal that the 397 

cattle herds were more mobile (regarding the geology of grazing grounds) or herding management was 398 

more variable at that stage than in subsequent centuries. The geographical distribution of 399 

contemporary alpine sites throughout the Silvretta region (Fig. 6A) supports this hypothesis. These are 400 

modest camps under large boulders or open-air sites without any elaborate structures and with a 401 

complete absence of fragile ceramic vessels. We therefore assume that they were intended for 402 

occasional and short-term stays until the 12
th
 century BC, when the situation started changing.  403 

Paleoenvironmental data in our study region attested to a fundamental transformation in the alpine 404 

landscape starting in the Bronze Age (Zoller and Erny-Rodman, 1994; Dietre et al., 2014, 2016; 405 

Kothieringer et al., 2015). Intensified human and animal impact on the natural environment has also 406 

been identified in many other alpine areas for the same period (Gobet et al., 2003; Tinner et al., 2005; 407 



Moe et al., 2007; Röpke et al., 2011; Röpke and Krause, 2013; Festi et al., 2014). The large-scale 408 

development is generally and consistently seen in conjunction with an intensive settling of the alpine 409 

valleys and an associated utilization of the treeless high pasture grounds (Nicolussi, 2012; Tinner and 410 

Theurillat, 2003). The exploitation of large raw material deposits (copper/salt) and an increased 411 

mobility in the 2
nd

 millennium BC may have made a significant contribution towards the expansion 412 

into marginal zones and a change in cattle management (Donat et al., 2006; Primas, 2009; Schibler et 413 

al., 2011; Walsh and Mocci 2011; Della Casa et al., 2015; Carrer et al., 2016). The Bronze and Iron 414 

Age sites in the Silvretta region support this notion of a sudden and intense human presence at high 415 

altitudes (Tab. 1), very probably linked to animal husbandry. The importance of pastoral activities is 416 

clearly emphasized by the secondary role of hunting (Würgler, 1962; Riedel and Tecchiati, 2001; 417 

Plüss, 2011; Stopp, 2015).  418 

 419 

5. Conclusion 420 

Based on new radiocarbon dates and high-resolution strontium isotope analysis (LA-MC-ICP-MS) we 421 

see a chronological shift in the vertical mobility patterns of prehistoric cattle from Ramosch-Mottata, 422 

Switzerland. We suggest a change in alpine animal management during the late Bronze Age, around 423 

the second half of the 12
th
 century BC. In combination with archeological structures at high altitudes 424 

(huts/pens), results from lipid analysis on potsherds (dairying) and evidence from paleoenvironmental 425 

proxy data (land use) in the Silvretta Alps, we consider our strontium isotope results to reflect the 426 

transition from primary to secondary product exploitation. This is consistent with the large-scale 427 

developments in the entire (Circum-)alpine region during the end of the 2
nd

 and the beginning of the 1
st
 428 

millennium BC (Primas, 2009; Rageth, 2010; Migliavacca, 2015). 429 
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Figure Captions 853 



 854 

Figure 1: 855 

Aerial image and geological map of the study area. Source of aerial imagery and digital terrain model: 856 

Orthoimagery and DHM25 with shaded relief © swisstopo – Bundesamt für Landestopografie. The 857 

geological map is modified after SBL (2008, 2014). 858 

 859 

Figure 2: 860 

Tooth enamel 
87

Sr/
86

Sr for cattle (Bos taurus) from Ramosch-Mottata (RMO), measured by LA-MC-861 

ICP-MS. All samples are taken from M3, except for sample RMO 1.2.1 (M2). Black lines represent 862 

the means of 10 measurements including 2σ error bars marked in grey. The shaded bar indicates the 863 

“on-site” 
87

Sr/
86

Sr ranging from 0.70809 to 0.70850. Given dates are based on calibrated radiocarbon 864 

measurements (2σ) and organized by chronology according to table 2. 865 

 866 

Figure 3: 867 

Boxplot diagram based on individual 
87

Sr/
86

Sr measurements for cattle (Bos taurus) from Ramosch-868 

Mottata, GR (Switzerland), organized by chronology according to table 2 (box: interquartile range, 869 

central line: mean, cross: median, whisker: ±1.5 IQR (inter quartile range), circle: outlier, star: extreme 870 

outlier). 871 

 872 

Figure 4: 87Sr/86Sr vs 1/Sr for dentine and enamel samples. We use the mean 
88

Sr beam (V) as a 873 

proxy for Sr concentration. While this reflects the relative concentrations, without a matrix 874 

matched sample, we cannot reliably convert this to absolute concentrations. 875 
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 877 

 878 

Figure 5:  
87

Sr/
86

Sr  for dentine-enamel pairs. In theory, as diagenesis progresses, dentine values 879 

should tend towards the diagenetic end member which is the case for all but sample 13. (Sample 880 

19 is off scale and not shown but fits the general pattern). From this, the 
87

Sr/
86

Sr of the 881 

diagenetic end member can be calculated as c.0.7083.      882 

 883 

Figure 6: 884 

A: The mobility of alpine herders with non-dairying animals (modified from Carrer 2016a) and spatial 885 

distribution of archeological sites in the Silvretta Alps (above 2000 m a.s.l.) during the Bronze Age 886 

2200-800 cal. BC, red dots), based on radiocarbon measurements. 887 

B: The mobility of alpine herders with dairying animals (modified from Carrer 2016a) and spatial 888 

distribution of archeological sites in the Silvretta mountain range (above 2000 m a.s.l.) during the Iron 889 

Age (800-15 cal. BC, red squares), based on radiocarbon measurements. 890 

Source of Digital Terrain Model: ASTER GDEM (ASTER GDEM is a product of METI and NASA). 891 

Source of country borders: http://diva-gis.org/gdata. 892 

 893 

Table 1: 894 

Radiocarbon dates of known archeological sites in the Silvretta Alps (above 2000 m a.s.l.). The site 895 

numbers correspond to the numbers shown in Fig. 6. Analyses were performed on charcoal at the 896 

Laboratory for Ion Beam Physics, ETH Zürich. Calibration: OxCal v4.2 Bronk Ramsey (2016); IntCal 897 

13 atmospheric curve (Reimer et al., 2013). 898 
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Table 2: 900 

Radiocarbon dates of cattle remains (Bos taurus) from Ramosch-Mottata (RMO). Analyses were 901 

performed at the Laboratory for Ion Beam Physics, ETH Zürich. Calibration: OxCal v4.2 Bronk 902 

Ramsey (2013); IntCal 13 atmospheric curve (Reimer et al. 2013). The attribution to one of the five 903 

stratigraphic units derives from the inventory number (Inv. no) after Würgler (1962). 904 

 905 

Table 3: 906 

Archeozoological and 
87

Sr/
86

Sr data (mean, minimum, maximum, range of tooth enamel and mean of 907 

dentin) for cattle (Bos taurus) from Ramosch-Mottata (RMO). The approximate age at death (Age) is 908 

indicated in years. 909 
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