The University of Southampton
University of Southampton Institutional Repository

Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy

Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy
Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy
It has been reported previously that in the regime appropriate for amplifying femtosecond pulses using the chirped pulse amplification technique in Yb-fiber sources that sub-micro-second pulsed tandem pumping not only provides the thermal benefits of c.w. tandem pumping but also enables strong suppression of ASE. In that case, the pump pulse preceded the signal pulse train. Here we propose a tandem pumping scheme in rare-earth-doped fiber amplifiers, where a train of signal pulses is amplified by a pump pulse which is almost exactly temporally overlapped. Simulations demonstrate that this can be used to create uniform gain across the signal pulse train, even at very high total pulse energies where there would be significant gain shaping in the previous case. In addition the pump is absorbed in a much shorter length, which increases the threshold for nonlinear effects and gain of greater than 26 dB is shown to be readily achievable in an amplifier as short as 1.5 m. This results in increased extractable energy before reaching the threshold for limiting nonlinear effects such as stimulated Raman scattering. These attributes should be attractive for high energy, high average power, ultrashort pulse, coherently combined fiber laser systems.
0018-9197
Malinowski, Andrew
54fd31d4-b510-4726-a8cd-33b6b2ad0427
Price, Jonathan
fddcce17-291b-4d01-bd38-8fb0453abdc8
Zervas, Michael
1840a474-dd50-4a55-ab74-6f086aa3f701
Malinowski, Andrew
54fd31d4-b510-4726-a8cd-33b6b2ad0427
Price, Jonathan
fddcce17-291b-4d01-bd38-8fb0453abdc8
Zervas, Michael
1840a474-dd50-4a55-ab74-6f086aa3f701

Malinowski, Andrew, Price, Jonathan and Zervas, Michael (2017) Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy. IEEE Journal of Quantum Electronics, 53 (2), [1600108]. (doi:10.1109/JQE.2017.2657334).

Record type: Article

Abstract

It has been reported previously that in the regime appropriate for amplifying femtosecond pulses using the chirped pulse amplification technique in Yb-fiber sources that sub-micro-second pulsed tandem pumping not only provides the thermal benefits of c.w. tandem pumping but also enables strong suppression of ASE. In that case, the pump pulse preceded the signal pulse train. Here we propose a tandem pumping scheme in rare-earth-doped fiber amplifiers, where a train of signal pulses is amplified by a pump pulse which is almost exactly temporally overlapped. Simulations demonstrate that this can be used to create uniform gain across the signal pulse train, even at very high total pulse energies where there would be significant gain shaping in the previous case. In addition the pump is absorbed in a much shorter length, which increases the threshold for nonlinear effects and gain of greater than 26 dB is shown to be readily achievable in an amplifier as short as 1.5 m. This results in increased extractable energy before reaching the threshold for limiting nonlinear effects such as stimulated Raman scattering. These attributes should be attractive for high energy, high average power, ultrashort pulse, coherently combined fiber laser systems.

Text
tandem_overlapped_JQE_accepted_eprints - Accepted Manuscript
Download (273kB)
Text
tandem_overlapped_JQE_accepted_eprints
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 16 December 2016
e-pub ahead of print date: 25 January 2017
Published date: 25 January 2017
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 406182
URI: http://eprints.soton.ac.uk/id/eprint/406182
ISSN: 0018-9197
PURE UUID: 25e85db7-af4a-406f-863f-812271ca5bac
ORCID for Jonathan Price: ORCID iD orcid.org/0000-0003-0256-9172
ORCID for Michael Zervas: ORCID iD orcid.org/0000-0002-0651-4059

Catalogue record

Date deposited: 10 Mar 2017 10:41
Last modified: 28 Apr 2022 01:35

Export record

Altmetrics

Contributors

Author: Andrew Malinowski
Author: Jonathan Price ORCID iD
Author: Michael Zervas ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×