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Abstract

Panning techniques, such as vector base amplitude panning (VBAP) are a widely-used
practical approach for spatial sound reproduction using multiple loudspeakers. Although
limited to a relatively small listening area, they are very efficient and offer good localisation
accuracy, timbral quality as well as a graceful degradation of quality outside the sweet spot.
The aim of this paper is to investigate optimal sound reproduction techniques that adopt
some of the advantageous properties of VBAP, such as the sparsity and the locality of the
active loudspeakers for the reproduction of a single audio object. To this end, we state
the task of multi-loudspeaker panning as an `1 optimization problem. We demonstrate
and prove that the resulting solutions are exactly sparse. Moreover, we show the effect of
adding a nonnegativity constraint on the loudspeaker gains in order to preserve the locality
of the panning solution. Adding this constraint, `1-optimal panning can be formulated
as a linear program. Using this representation, we prove that unique `1-optimal panning
solutions incorporating a nonnegativity constraint are identical to VBAP using a Delaunay
triangulation for the loudspeaker setup. Using results from linear programming and duality
theory, we describe properties and special cases, such as solution ambiguity, of the VBAP
solution.

1. Introduction

Sound reproduction over multiple loudspeakers aims at recreating plausible spatial sound scenes,
often consisting of multiple audio objects, for either a single listener or over extended listening
areas. As summarized in the review paper [1], this is an area with a long history but also of very
active research. Spatial sound reproduction approaches can be broadly classified into physically
and perceptually motivated techniques. The methods that attempt to physically recreate an
acoustic field are referred to as sound field synthesis in [1]. Examples of sound field synthesis
techniques include wave field synthesis (WFS), e.g., [2, 3, 4, 5, 6], Higher Order Ambisonics
(HOA) [7, 5, 8] , and sound field control techniques [9, 10, 11, 12, 13, 14]. For a more thorough
review, the reader is referred to [1] and the references therein.
While the former approaches are based on analytic descriptions of the acoustic field, sound

field control generally employs an optimization approach to minimize the difference between the
desired and the synthesized field, most often using an `2 (least-squares) error norm.
In contrast to physical reproduction techniques, perceptually motivated techniques attempt

to achieve a plausible spatial perception by providing the relevant psychoacoustic cues at the
listener’s ears. Panning laws, which apply amplitude changes or time delays to the audio object’s
signal [15, 16], form important classes of perceptually motivated reproduction techniques. Vector-
base amplitude panning (VBAP) [17] is likely the most widely used perceptually motivated
method for two- and three-dimensional multi-loudspeaker reproduction. It is an extension
of amplitude panning for stereophonic reproduction, and its subjective properties have been
evaluated extensively [18, 19, 20]. Although localization is accurate only in a small listening
area, the sweet spot, VBAP has advantageous properties for practical application, including
a low computational complexity, absence of destructive interference in the sweet spot, high
timbral quality, e.g., [21], and a gradual degradation of sound quality outside the sweet spot.
For these reasons, VBAP is used in numerous current transmission standards and reproduction
systems for object-based audio, including reference rendering in the ISO/IEC GMPEG-H 3D
Audio standard [22, 23].

An objective comparison between optimization-based physical and perceptually motivated
reproduction techniques is hindered by the conceptual gap between these approaches. The design
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of the VBAP algorithm, which consists of a geometric criterion to select a set of loudspeakers
and a panning law to calculate their amplitude weights, further impedes a comparison to
physical approaches. An objective of this paper is to establish a link between VBAP and
optimization-based physical reproduction techniques.
Most of the advantageous properties of VBAP can be directly linked to properties of the

loudspeaker driving signals, specifically the small number (i.e., one to three) of nonzero amplitude
gains for each audio object. This corresponds to a sparse solution. Recent years have seen major
advances in sparsity-promoting optimization and signal processing techniques, including the
Lasso method [24], matching pursuit [25], orthogonal matching pursuit [26], basis pursuit [27],
sparse reconstruction using the focal underdetermined system solver (FOCUSS) [28], sparse
Bayesian learning [29], and compressed sensing [30, 31]. In particular, the use of the `1 norm to
achieve sparse approximate or exact solutions has led to very efficient algorithms and significant
improvements in several signal processing fields.

This paper considers the application of `1 optimization techniques to amplitude panning for
two specific reasons. Firstly, `1-optimal amplitude panning problems can be efficiently solved
using convex optimization methods because the underlying objective function is convex for static
loudspeaker configurations. Secondly, in amplitude panning a minimal `1 norm corresponds to
a maximally localized or “sharp” reproduction of an audio object, as described in Sec. 2.4.

Several research publications investigate the application of `1 minimization and/or compressive
sensing to the analysis and reconstruction of spatial sound fields. Epain et al. [32] consider the
use of an `1 minimization for the loudspeaker gains subject to a least-squares constraint on
the reproduction gain, where the Lasso method [24] is used to analyze and reproduce sound
fields consisting of a small number of plane wave sources. In [33], this technique is extended to
time-domain sound field reconstruction. Lilis et al. [34] propose the use of the Lasso operator
to sound field control over multiple, spatially distributed sampling points. This technique
generates optimized complex-valued loudspeaker gains over a grid of frequencies and enables
superior reproduction quality for undersampled sound fields as well as a judicious selection of
loudspeaker positions. Koyama et. al. [35] consider sparse decomposition of a sound field within
a recording area to achieve wave field reconstruction with reduced aliasing artifacts. Radmanesh
et al. [36] propose a two-stage Lasso least-squares method to optimize loudspeaker locations
and weightings for multizone reproduction. A method for joint optimization of loudspeaker
placement and weights using a constrained matching pursuit approach is described in [37].

In [38], authors of the present paper consider the application of convex optimization techniques
to listener-centric sound field control, and demonstrate the similarity between `1-optimal and
amplitude panning methods by means of numerical examples. However, these approaches
generally involve a numerical optimization step to calculate the sparse loudspeaker driving
functions, hence they are significantly more complex than established techniques such as VBAP.
In contrast, the main contribution of the present paper is to express multi-loudspeaker

amplitude panning in the framework of `1 optimization. More specifically, we use this framework
to characterize `1-optimal solutions of the amplitude panning problem, for instance their exact
sparsity and conditions for solution uniqueness. Here we use “exact” to denote sparse solutions
that have only a few nonzero values and are exactly zero otherwise [31]. Based on these
properties, we show that VBAP is identical to the `1-optimal solution if three basic requirements
are fulfilled: a) the `1 approach incorporates a nonnegativity constraint on the panning gains,
b) the loudspeaker selection of the VBAP algorithm is based on a Delaunay triangulation, and
c) this Delaunay triangulation is unique. Most practical VBAP implementations meet these
conditions. The results are then generalized to `1-optimal solutions without the nonnegativity
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constraint. In this way we demonstrate that `1-optimal amplitude panning, with and without
nonnegativity constraints for the panning gains, can be computed with basically the same effort
as VBAP.
The second main resultof this paper is that the interpretation of amplitude panning as

an `1 optimization problem enables new insight into real-world problems of current VBAP
algorithms. For example, it is shown later that asymmetries or ambiguities reported in [39, 40, 22]
correspond to nonunique solutions of the `1 optimization problem. This reveals that they are
not implementation problems, but are inherent to the design objective underlying amplitude
panning. Although resolving this ambiguity remains an open research question, the present
paper provides a full characterization of the set of optimal solutions, which is a valuable starting
point to further improve panning algorithms.
The remainder of this paper is outlined as follows. Section 2 reviews amplitude panning

techniques for multi-loudspeaker reproduction, in particular VBAP. The proposed idea of
expressing amplitude panning as a global `1 optimization problem is presented in Sec. 3. An
additional nonnegativity constraint is introduced in Sec. 4, and conditions for equivalence
between this formulation and VBAP are established. Based on this result, Sec. 5 characterizes
the `1 optimal panning solution without this nonnegativity constraint.Different panning methods
are evaluated and compared in Sec. 6 using objective and psychoacoustic performance measures,
and Sec. 7 summarizes the main outcomes of this paper.

2. Multichannel Amplitude Panning Techniques

This section reviews amplitude panning techniques, their objectives and properties. In particular,
it describes VBAP [17], the predominantly used technique for panning virtual sources in three-
dimensional loudspeaker setups. This description also establishes the nomenclature used to
derive the novel sparse, optimal panning techniques in the subsequent sections.

2.1. Amplitude Panning

Panning is one of the principal and most widely used techniques for spatial sound reproduction.
It creates phantom images in the direction of the virtual source by providing auditory cues to a
listener within a confined sweet spot [18, 21]. The main auditory cues used in panning are the
interaural level difference (ILD) and the interaural time difference (ITD). To this end, the source
signal is reproduced over multiple loudspeakers, whereby level differences and/or different time
delays are applied to the loudspeaker signals. These techniques are referred to as amplitude,
level, or intensity panning and delay/time-delay panning, respectively. The computation of the
amplitude or delay values is governed by panning laws such as the law of sines or the tangent
law [15, 16, 20]. While in amplitude panning level differences translate to reliable ITD cues in
the frequency range relevant for ITD localization [18, 1], the localization performance of time
delay panning is more frequency-dependent [41, 20].

2.2. Spherical Geometry Preliminaries

Throughout this paper, we make extensive use of geometric relations on sphere surfaces to
describe 3D amplitude panning techniques as well as `1-optimal panning approaches. Therefore,
here we briefly outline the necessary concepts of spherical geometry and the notation used
within this paper. For more detail, the reader is referred to textbooks such as [42].
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Figure 1: Basic elements of spherical geometry.

Spherical geometry describes geometric relations on the two-dimensional surface of a three-
dimensional sphere. Without loss of generality, the radius of the sphere is assumed to be 1.
Thus, any 3D unit vector, denoted

v =
[
xv yv zv

]T with ‖v‖2 = 1 ,

corresponds to a point on the sphere. In Fig. 1, they are represented as a,b, . . .. An arc _
ab

is a segment of a great circle connecting the points a and b. On a unit sphere the arc length,
denoted here as ^ (a,b), equals the angle between the vectors a and b and is related to their
dot product 〈a,b〉 by

^(a,b) = cos−1 〈a,b〉 . (1)

A spherical polygon is a connected, closed chain of arcs formed of three or more points. Fig. 1
shows a spherical triangle abc and a polygon abdef consisting of five points. A circle on the
sphere surface that passes through all points of a spherical polygon is denoted as its circumcircle,
and polygons that have a circumcircle are termed cyclic polygons. While all spherical triangles
are cyclic, this does not generally hold for polygons consisting of four or more points. The
circumcircle of a cyclic polygon is determined by its circumcenter pk, a unit vector, and its
radius rk such that the arc length between pk and each polygon point equals rk. Note that
there are two points on the opposite sides of the sphere fulfilling this property. Unless stated
otherwise, we refer to pk corresponding to the smaller radius rk. Fig. 1 depicts the circumcircles
of the cyclic polygons abc and abdef .
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Given a set of points on a surface, a triangulation is a subdivision of that surface into triangles
formed by edges between these points such that the triangles are not intersecting, e.g., [43].
While often defined for straight-line edges, it is straightforwardly extended to sphere surfaces
and spherical triangles. Triangulations form a subset of tessellations, i.e., subdivisions of a
surface into a set of nonoverlapping geometric shapes. Among the various existing triangulation
strategies, the Delaunay triangulation is of particular importance for the panning methods
considered here. Delaunay triangulations maximize the minimum angle over all triangles. The
defining condition for the Delaunay triangulation is the circumcircle condition, e.g., [44]:

Definition 1 (Circumcircle condition for Delaunay triangulations) A triangulation T
is a Delaunay triangulation if and only if no triangle of T contains any other point within its
circumcircle.

This implies that the Delaunay triangulation is nonunique if there is a circumcircle passing
through more than three points with no other points in the interior of the circumcircle. In this
paper, we consider triangulations on the unit sphere, i.e., spherical triangles and circumcircles
on the sphere surface.

2.3. Vector Base Amplitude Panning (VBAP)

VBAP [17] expresses the tangent law for amplitude panning in a vector formulation and extends
it to three-dimensional source directions and 3D loudspeaker setups. In the classification of
[1], VBAP is considered as a local panning technique, because it only drives a small number
of loudspeakers (at most three) close to the source direction, as opposed to global panning
techniques such as Ambisonics amplitude pannning, e.g., [45], which activates loudspeakers all
over the setup.

A 3D VBAP configuration is shown in Fig. 2. In VBAP, audio objects are modeled as plane
waves. They are represented by the source direction vector p which is a unit vector pointing
to the intended location of the audio object. The loudspeaker locations, represented by unit
vectors

ll =
[
xl yl zl

]T with ‖ll‖2 = 1 for l = 1, 2, . . . , L , (2)

are assumed to lie on the unit sphere. In case of non-spherical configurations, the vectors ll
are determined by projecting the actual positions onto the unit sphere, and appropriate gain
and delay compensations are applied to the loudspeaker signals. The direction vectors of all L
loudspeakers of a setup are compactly represented by the loudspeaker direction matrix

L =
[
l1 l2 · · · lL

]
∈ Rd×L , (3)

where d denotes the dimension of the panning configuration, i.e., d = 3 for 3D VBAP.

2.3.1. Panning Gain Calculation

The VBAP method comprises two distinct stages: Firstly, three active loudspeakers, denoted
by indices i, j, and k, are selected. To this end, the unit sphere is partitioned into a set
of nonoverlapping spherical triangles whose vertices are formed by the loudspeaker direction
vectors. Then the active loudspeakers are chosen such that the corresponding spherical triangle
contains the source p. These steps are described in more detail in Sec. 2.3.2 and 2.3.3. In the
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Figure 2: Exemplary 3D amplitude panning configuration. The active loudspeaker triangle
selected by VBAP is marked in red.

second stage, the panning gain vector gijk =
[
gi gj gk

]T for the three active loudspeakers li,
lj , and lk is obtained as

gijk = L−1ijkp with Lijk =
[
li lj lk

]
, (4)

where the matrix Lijk is formed of the loudspeaker direction matrix L defined in (3) by selecting
the columns corresponding to the loudspeaker indices i, j, and k. The global gain vector
g ∈ RL×1 for the complete loudspeaker setup contains the weights gi, gj , gk at the indices i, j,
and k, respectively, and zeros otherwise.
Eq. (4) implies that the panning weights are determined such that the weighted sum of the

active loudspeaker’s direction vector matches the source direction vector

p =
∑

l∈{ijk}
glll . (5)

2.3.2. Triangulation

As described above, the selection of the active loudspeakers is based on a triangulation of the
unit sphere into spherical triangles formed by the direction vectors ll. In the original description
of VBAP [17], triangulation is performed manually based on empirical criteria: a) the triangles
should not intersect and b) they should be selected such that the localization accuracy in every
direction is maximized. The latter objective can be interpreted as minimizing the size of the
individual triangles. An automated algorithm to generate such triangulations is proposed in
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[46]. As described in [20], this algorithm aims at minimizing the length of the triangle edges,
although it does not specify whether this refers to the length of individual edges or the sum of
edge lengths. It also states that this algorithm is similar to a greedy triangulation, e.g., [47],
which is an approximation of a minimum-weight triangulation that minimizes the sum of the
lengths of the triangle edges [43]. Current VBAP implementations, for instance [45, 40, 22]
typically use a Delaunay triangulation, e.g., [43], owing to its properties (see Sec. 2.2) and the
availability of efficient algorithms and implementations such as Quickhull [48]. The Delaunay
triangulation is another approximation of the minimum-weight triangulation. Its property of
maximizing the minimum angle over all triangles effectively prevents triangles with long sides
and acute angles.

If the Delaunay triangulation is nonunique, i.e., if it contains a cyclic polygon with more than
three loudspeakers, standard VBAP implementations select an arbitrary valid triangulation.
As reported in [39, 40, 22], this may lead to artifacts as reproduction asymmetries or uneven
virtual source movements.

2.3.3. Loudspeaker Selection

The active loudspeaker triangle {i, j, k} is selected such that the source position p lies within
the spherical triangle spanned by li, lj , and lk. This corresponds to the triangle for which p in
(5) can be formed as a conical combination of the active loudspeakers ll

p =
∑

l∈{ijk}
glll with gl ≥ 0 , (6)

that is, a linear combination with nonnegative gains gl. In practical implementations, the
selection of the active triangle is performed by evaluating the unnormalized panning gains
according to (4) for all triangles of the triangulation, and selecting the triangle that fulfills the
nonnegativity condition (6), e.g., [17, 46]. That is, the computational effort is determined by
a solution of a 3× 3 linear system for each triangle of the setup. Thus the complexity of the
VBAP gain calculation is linear with respect to the number of triangles, which is proportional
to the number of loudspeakers, i.e., O(L).
Fig. 2 depicts the active loudspeaker triangle {l1, l2, l4} for an exemplary source position p.

For audio object positions strictly in the interior of a triangle, this criterion is unambiguous if
the triangles of the triangulation are not overlapping. Special cases occur if an object p lies
on a triangle edge or coincides with a loudspeaker location. In these cases, only two or one
loudspeakers are active, respectively. This also means that either the two triangles sharing this
edge or all triangles containing the given loudspeaker meet the selection criterion (6). However,
this ambiguity is not critical, because the gains calculated for all triangles fulfilling (6) are
identical.

2.3.4. Gain Normalization

To maintain a constant loudness at the listener position independent of the source direction,
the panning gains g are normalized [17, 49]

g′ =
1

‖g‖p
g (7)

to obtain the final panning weights g′. Here ‖·‖p represents the `p norm ‖x‖p =
p
√∑

|xi|p. The
present paper uses the `2 norm, i.e., power normalization in accordance with [17]. Because
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normalization is applied uniformly to the complete gain vector g, it does not change the
properties of the panning solution apart from the total sound pressure.

2.4. Properties of VBAP

As the psychoacoustic attributes of VBAP are extensively described, e.g., in [17, 19, 20], we
focus on the objective properties and their links to perceptive features.

2.4.1. Preservation of Velocity Direction

The source direction p and the loudspeaker direction vectors ll are proportional to the particle
velocity vectors of the source object and the loudspeaker wave fronts, respectively. Thus, (5)
implies that VBAP synthesizes the correct particle velocity direction by a weighted superposition
of the particle velocity vectors of the active loudspeakers. This provides a good localization at
low frequencies (up to ≈ 700Hz), e.g., [16, 50, 51].

2.4.2. Locality

By construction, the loudspeaker triangulation ensures that only loudspeakers close to the
source direction p are active. This ensures a graceful degradation of directional quality for
listener outside the reference position [20].

2.4.3. Sparsity

By construction, VBAP uses the minimal number of nonzero panning gains to correctly synthesize
the velocity direction of the virtual source p, that is, at most three for a general position in a 3D
setup, and two or one loudspeakers if p coincides with a triangle edge of loudspeaker direction,
respectively. Combined with locality, this implies that a sound source is reproduced as “sharp”,
i.e., with minimal directional spread, as possible with the given loudspeaker configuration, as
discussed in [17]. For low frequencies, this spread is quantified by the velocity vector magnitude,
also termed velocity magnitude [16, 50] or velocity factor [51]

rv =
1∑L
l=1 gl

(8)

if (6) is met. For nonnegative panning gains, rv is also the reciprocal of ‖g‖1, thus establishing
a relation between the properties of g and the source spread. Large values of rv correspond to
sharp image localization, whereas low values of rv yield less localized, spatially spread sound
images. Thus, the spread of a virtual sound source depends on its position relative to the
loudspeakers, leading to a nonuniform spread distribution [52, 45].

2.4.4. Nonnegativity

Because VBAP synthesizes the desired source direction as a conical representation of loudspeaker
direction vectors (6), all loudspeaker gains are nonnegative. As described in Sec. 2.3.3, most
VBAP implementations utilize this nonnegativity property to select the active triangle. The
nonnegativity constraint has also a positive impact on the perceived quality, as it avoids anti-
phase signals resulting in destructive interference at the listener position, which degrades spatial
fidelity. For the same reasons, nonnegative panning gains are enforced by in-phase Ambisonic
decoders [51, 7].
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3. `1-Optimal Amplitude Panning

In the preceding section we characterized VBAP as a practical approach to multichannel sound
reproduction. In particular, VBAP is a combination of a geometric approach to determine
the triangle of active loudspeakers and an algebraic solution to compute the panning gains
such that the velocity vector of the synthesized sound field matches the direction of the virtual
source. In the following we consider amplitude panning as a global optimization problem to
generate panning gain vectors g without resorting to an intermediate loudspeaker selection step.
Nonetheless, we aim to retain the advantages of amplitude panning techniques as VBAP, such
as a correct particle velocity direction at the listener position, minimal spread of the source
image, and a small number of active loudspeakers close to the source direction.

3.1. The `1 Optimization Problem

Because of the sparsity-promoting nature of the `1 norm, see e.g., [31], we formulate the
multi-loudspeaker amplitude panning problem as an `1 optimization problem

argmin
g

‖g‖1 (9a)

subject to Lg = p , (9b)

which is an equality-constrained convex optimization problem (e.g., [53]). Here, the equality
constraint (9b) ensures the desired particle velocity direction analogous to (4) but applied to
the complete loudspeaker direction matrix L, while (9a) ensures sparsity of the panning gain
vector. Alternatively, the objective (9a) can be considered as to maximize the velocity vector
magnitude (8), which can be interpreted as creating the sharpest possible sound image at low
frequencies.
Problem (9) follows from the Basis Pursuit optimization principle proposed in [27]. It can

also be considered as a limiting case of the Lasso method [24, 31]

argmin
g
‖g‖1 subject to ‖Lg − p‖2 ≤ ε (10)

for lim ε→ 0, which can always be met in case of an under-determined problem such as amplitude
panning.

3.2. Characterization of the `1-Optimal Solution

The framework of `1 minimization and compressive sampling enables us to describe the solution
of the optimization problem (9), in particular its uniqueness and sparsity properties, e.g,
[54, 55, 56, 30, 57]. Here we focus on a recent result that establishes necessary and sufficient
conditions for the solution uniqueness of `1 minimization problems:

Theorem 1 (`1 uniqueness [58]) Let g∗ denote a solution to (9). Also, let I denote the index
set of the nonzero elements of g∗, and s = sgn (g∗I) the signs of the nonzero elements of g∗.
Then g∗ is the unique solution if and only if the following conditions hold:

• The submatrix LI containing the columns corresponding to the index set I has full column
rank.
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• There exists a vector y ∈ Rd such that LTI y = s and∥∥LTIcy∥∥∞ < 1 , (11)

where LIc denotes the submatrix containing the columns of L corresponding to the zero
entries of g.

Several properties of `1-optimal amplitude panning solutions follow directly from Theorem 1.
The column rank of the matrix LI, corresponding to the number of active, linearly independent
loudspeakers, cannot exceed the maximum row rank d of this matrix because L ∈ Rd×L. That
is, if a unique solution exists, it contains at most d nonzero weights, i.e., at most three active
loudspeakers for a 3D setup. Therefore, the global `1-optimal panning solution preserves
the sparsity properties of VBAP. While it is possible to completely characterize the solution
of (9), including the selection of active loudspeakers, in terms of Theorem 1 and the proofs
in [58], we choose a different, more intuitive approach here that is based on the features of
amplitude panning. To this end, the following section considers problem (9) with an additional
nonnegativity constraint on the panning gains. After describing the optimal solution of this
restricted problem, a generalization to unconstrained panning gains is established in Sec. 5.

4. `+1 : `1-Optimal Panning with Nonnegative Gains

As discussed in Sec. 2.4.4, the limitation to nonnegative panning gains is an important feature of
VBAP, but also other sound reproduction techniques. Adding this constraint to the `1-optimal
panning problem (9) leads to the following convex optimization problem

argmin
g

‖g‖1 (12a)

subject to Lg = p (12b)
g ≥ 0 . (12c)

This is referred to as `+1 -optimal amplitude panning in the following. In this section, we use the
framework of linear programming (LP) to study the solution of this problem, first in terms of
the original (primal) LP and later, in Sec. 4.2, using the corresponding dual LP. Based on these
results, the equivalence between VBAP and the `+1 problem is proven in Sec. 4.3.

4.1. Representation as a Linear Program

LP is a widely used framework for modeling and solving optimization problems with a linear
objective function subject to linear equality and inequality constraints, see, e.g., [59, 60, 61].
With this framework, problem (12) can be expressed as an LP in the so-called standard form as
follows

argmin
g

cTg (13a)

subject to Lg = p (13b)
g ≥ 0 , (13c)

where c = [1, · · · , 1]T = 1L×1 is a column vector of ones. In this way, the objective function
reduces to the sum of the elements of g, which is equivalent to the `1 norm due to the
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nonnegativity condition. Because
∑L

l=1 gl represents the sound pressure at the listener position,
(13) can be interpreted as minimizing the sound pressure while synthesizing a desired particle
velocity vector p. It is worth noting that the representation of (12) as (13) differs from the
standard transformation of an `1 optimization problem into an LP, e.g., [27, 58]. While the
latter essentially doubles the number of variables and constraints, (13) has the same dimensions
as (12).

In the following, we use basic concepts of the LP framework to interpret the solutions of the
nonnegative panning problem.

4.1.1. Existence of the Solution

A vector g is a feasible, i.e., valid, solution of problem (13) if all equality constraints (13b) and
inequality constraints (13c) are satisfied. A problem is feasible if at least one feasible solution
exists. The optimal value is the minimum value of the objective function (13a) over all feasible
solutions. The set of feasible solutions for which the objective function attains the optimal value
forms the set of optimal solutions of (13), whose elements are denoted as g∗. If the minimum
and maximum objective values over the set of feasible solutions are finite, the problem is bounded
below or bounded above, respectively. Obviously, the nonnegativity constraint (13c) establishes a
trivial minimum lower bound cTg ≥ 0 for the panning problem (13).
For general LP problems, the decision whether it is feasible and bounded has a complexity

comparable to the solution of the LP itself (e.g., [61]). Thus, no general rules for solution
existence can be deduced from (13). However, as shown in Sec. 4.2.3, feasibility conditions for
the panning problem can be established by using the dual linear program.

4.1.2. Vertex Solutions and Number of Nonzero Panning Gains

The number of active loudspeakers of the optimal panning solution can be directly linked to
the property of the LP. Vertex solutions (e.g., [61]), also termed vertices, basic solutions [59],
or basic feasible solutions [60] are a basic concept in the LP framework. A vertex solution is a
feasible solution g for which at least L linearly independent constraints are active. Each row
of the vector-valued inequality constraint (13c) for which the “≥ ” relation holds with equality
“=” forms an active constraint. For problem (13), this number is identical to the number of
zero-valued gains gl. In case of equality constraints, each row of the matrix (13b) represents an
active constraint, resulting in d active equality constraints in case of problem (13). Therefore, a
vertex solution of (13) contains at least L− d zeros, i.e., g has at most d active loudspeakers,
for instance d = 3 for a 3D setup.
A vertex solution is termed nondegenerate if there are exactly L active constraints, and

degenerate if more than L constraints are active, that is, less than three active speakers. This
distinction bears a close resemblance to 3D VBAP, where a solution contains either d = 3 or
fewer active loudspeakers (see Sec. 2.4.3).

4.1.3. Optimal Solution Set

The fundamental theorem of linear programming, e.g., [60], establishes a relation between
vertices and optimal solutions:
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Theorem 2 (Fundamental theorem of linear programming) If a LP is bounded and fea-
sible, it has an optimal solution. In this case, it has at least one vertex solution. Furthermore,
the optimal value is attained at at least one vertex solution.

Such a vertex is termed an optimal vertex. That is, a feasible LP has either one or multiple optimal
vertices. In the former case, the optimal panning problem is unique, and the corresponding gain
vector g∗ has at most d nonzero entries. In the latter case, there are multiple optimal vertices
{g∗1, . . . ,g∗S}, and the set of optimal panning gain vectors consists of all convex combinations of
these vectors, which is a corollary of Theorem 2, e.g., [61]

g∗ =
S∑
s=1

αsg
∗
s with

S∑
s=1

αs = 1 and αs ≥ 0 . (14)

In this case, an optimal solution can have more than d nonzero gains. Applied to 3D amplitude
panning, this implies that if a valid solution exists, there is an optimal solution with at most
three active loudspeakers. Optimal solutions with more than three active loudspeakers exist
only if the LP is nonunique.

4.2. Solution Properties Based on the Dual LP Problem

Further insight into the `1 optimal panning problem can be gained by considering the dual LP
of (13) [59, 60, 61, 53]. For the LP (13), termed the primal problem, the dual program is

argmax
π

pTπ (15a)

subject to LTπ ≤ c , (15b)

where π ∈ Rd is the dual solution. The optimal (maximum) value of the objective function
(15a) is identical to the optimal value of the primal problem, i.e.,

pTπ∗ = cTg∗ = ‖g∗‖1 , (16)

where π∗ and g∗ denote optimal solutions of the dual and primal problem, respectively. The
elements of the dual solution π relate to the Lagrange multipliers of the inequality constraint
(13c) of the primal problem [61].

There are numerous connections between the primal and the corresponding dual problem,
see, e.g, [60, 61]. Here we introduce two relations that are used throughout this paper.

Theorem 3 (Dual Degeneracy and Primal Nonuniqueness) If the optimal solution of
the dual is degenerate, then the solution of the primal problem is nonunique, provided that the
primal is nondegenerate.

Theorem 4 (Primal Feasibility and Dual Boundedness) If the primal problem is feasi-
ble, the dual is feasible if and only if the primal is bounded.

LP duality is a symmetric relation, that is, the dual of a dual problem is the primal. In this
way, the same properties can be inferred from the dual to the primal.
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4.2.1. Geometric Interpretation of the Dual Solution π

Without loss of generality, the dual solution vector π can be separated into a unit vector pπ
and a nonnegative factor cπ provided that π 6= 0, namely

π = cπpπ with ‖pπ‖2 = 1 , cπ > 0 . (17)

Dividing (15) by cπ, the dual problem can be expressed as

argmax
pπ

pTpπ (18a)

subject to LTpπ ≤
1

cπ
c . (18b)

Each row i of the inequality constraint (18b) is a dot product (1) of the unit vectors li and pπ

lTi pπ = 〈li,pπ〉 = cos^ (li,pπ) ≤
1

cπ
, (19)

which can be interpreted as a minimum angle constraint

^ (li,pπ) ≥rπ with rπ = cos−1
1

cπ
. (20)

Thus, condition (20) corresponds to a circle on the unit sphere with center (or axis [42]) pπ and
radius rπ, such that there are no loudspeakers within the surface area enclosed by the circle,
but potentially on its boundary.

Here we use “radius” to denote the angular distance from pπ to a point on the circle, which is
identical to the angle between the corresponding direction vectors in case of a unit sphere.

4.2.2. Vertex Solutions

According to Theorem 2, the optimal value of an LP is attained at at least one vertex. As
the solution vector π of the dual problem has d components, i.e., d = 3 for 3D setups, the
active constraint matrix LTI must have d linearly independent rows for an optimal solution. It
is readily verified that the active constraint matrix LTI attains the maximum column rank d for
every possible combination of loudspeaker vectors li, i ∈ I. Matrix LTI can be rank-deficient
only if at least d = 3 loudspeaker vectors lie on a common plane. As all vectors li, i ∈ I lie on a
common circle, these vectors span a space with a dimension lower than d only if at least two
direction vectors coincide. Consequently, a vertex solution of the dual LP defines a circle with
center pπ and radius rπ = cos−1(1/cπ) such that there are no loudspeakers inside the circle and
at least three loudspeakers on the boundary.

Only loudspeakers li on the circumcircle correspond to nonzero gains gi in the primal problem.
This follows from the condition of complementary slackness, e.g., [61], which states that a
solution variable can be nonzero only if the Lagrange multiplier corresponding to the respective
element of the dual solution is zero, i.e., if the corresponding inequality is active.

4.2.3. Solution Existence

The dual problem enables a direct geometric interpretation of the existence of a panning solution
in form of an angle limit

rπ <
π
2 . (21)
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Figure 3: Construction of the objective of the dual LP for a source direction p on an arc between
two loudspeaker directions.

Assume a loudspeaker setup such that rπ ≥ π/2 for some center pπ and a source position p
such that ^ (p,pπ) < π/2. In this case, all dot products 〈ll,π〉 of the inequality constraint
(15b) are negative, and therefore these constraints are never active. This means that the dual
solution π and thus the objective value pTπ can be made arbitrarily large without violating
these constraints. Thus, the dual problem is unbounded, and Theorem 4 implies that the
corresponding primal problem is infeasible. This means that if the 3D setup contains a zone
such that the minimum loudspeaker distance from a central point is greater or equal to π/2,
then there is no nonnegative `1 panning solution for virtual sources in this zone. In a way, this
provides a quantitive interpretation to the qualitative statement for VBAP [45] which states
that the loudspeaker aperture should not exceed roughly 90◦.

4.3. Equivalence to VBAP

In the previous section we described the optimal dual solution and related it to geometrical
conditions on the unit sphere. In the following we extend this to a full geometrical characterization
of the `+1 -optimal solution and derive conditions under which this solution is equivalent to
VBAP.

4.3.1. Delaunay Tessellation Imposed by Dual Vertex Solutions

In a first step we demonstrate that the dual vertex solutions correspond to a Delaunay tri-
angulation, or, more general, a tessellation of the sphere surface. As shown in Sec. 4.2.2, a
vertex π can be interpreted as a circle on the unit sphere surface with center pπ and radius
rπ such that there are no loudspeaker vectors within in the interior of the circle and at least
d loudspeakers on the boundary. This condition is equivalent with the circumcircle condition
of the Delaunay triangulation (Definition 1), with the exception that it allows general cyclic
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polygons instead of only triangles. Thus, this construction can be regarded as the tessellation
conforming to the Delaunay circumcircle condition. If all cyclic polygons have exactly d = 3
points, this tessellation is identical to the unique Delaunay triangulation for this setup. In case
of cyclic polygons consisting of more than three loudspeakers, a Delaunay triangulation can be
constructed by adding nonintersecting arcs between loudspeaker vectors on the circumcircle. As
remarked in Sec. 2.2, this renders the Delaunay triangulation nonunique. In this way, the dual
vertex solutions partition the unit sphere surface into a finite number of cyclic polygons, each
associated with a center pπ. This partitioning depends only on the loudspeaker configuration
L, but not on the source position p.

4.3.2. Optimal Dual Vertex Solution

In a second step we show that the optimal vertex solution of the dual problem is attained when
the source position p is located within the cyclic polygon corresponding to this vertex. The
objective function of the dual LP (15a), which is to be maximized, can be expressed using (17)
and (20) as

pTπ =
cos^ (p,pπ)

cos rπ
. (22)

In order to find the global maximum of this function we consider two vertex solutions, represented
by center vectors pmπ and pnπ such that corresponding cyclic polygons share a common arc _lilj .
This configuration is depicted in Fig. 3. For a source position p on the spherical arc _

lilj the
value of the objective function for a vertex πk, k ∈ {m,n} is

pTπk = cos^ (li,p)−
sin^ (li,p)

sin^ (li, lj)
[cos^ (li, lj)− 1] , (23)

as derived in Appendix A. It is apparent that the objective function is independent of the chosen
vertex πk. Consequently, the vertex solutions have identical objective values for sources on the
arc _

lilj .
Next we consider a source position p not on _

lilj . For a given vertex πk, the dual objective
value (22) decreases monotonically with increasing distance between p and the circumcenter pkπ.
Combined with (23), this implies that the objective value for a source position p is larger for a
vertex πk that lies on the same side of the arc _lilj as p. Applying this argument to all arcs of
the cyclic polygon enclosing p, it follows that the objective function reaches its optimum for the
vertex π∗ if p lies inside the cyclic polygon defined by circumcenter pπ∗ and radius rπ∗ . Thus,
the selection of active loudspeakers is identical to VBAP except that the `+1 method facilitates
not only triangles, but also cyclic polygons with more than three loudspeakers. This case is
discussed in Sec. 4.3.5 below.

As described in Sec. 2, VBAP solutions can be distinguished into three cases. In the following
we characterize these cases in terms of the corresponding dual LP to show their equivalence to
`+1 -optimal panning.

4.3.3. Unique Panning Solutions With Three Active Loudspeakers

The VBAP panning weights are unique if the Delaunay triangulation around the source direction
p is unambiguous, i.e., no circumcircle contains more than three loudspeakers. Applied to
the dual LP, this means that there are exactly d = 3 active constraints corresponding to the
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same active loudspeakers as for VBAP. That is, the dual LP is nondegenerate. Consequently,
Theorem 3 implies that the primal LP has a unique solution. Thus, the equality constraint
(12b) reduces to the same uniquely solvable linear system (4) as for VBAP. This confirms the
equivalence of both methods for this case.

4.3.4. Panning Solutions with Less Than Three Active Loudspeakers

As shown in Sec. 2.3.3, VBAP uses only one or two active loudspeakers if the source direction
p coincides with a loudspeaker position or lies on an arc of the triangulation, respectively.
Sec. 4.1.2 explained that such cases correspond to degenerate vertices of the primal LP. Theorem
(3) implies, by interchanging the role of primal and dual LP, that the corresponding dual LP is
nonunique. This case is depicted in Fig. 3, where the source position p lies on the spherical
arc between the two loudspeakers li and lj . Thus, both πm and πn, corresponding to the
loudspeaker-free triangles {li, lj , lm} and {li, lj , ln} with cirumcenters pmπ and pmπ , respectively,
are vertex solutions of the dual LP. According to (23), in this case the objective value of a
vertex solution depends neither on pkπ nor on rkπ, and thus the objective values of the two vertex
solutions πm and πn are identical. Theorem 2 confirms that these vertices are the optimal
vertex solutions of the dual LP. It also implies that the set of optimal solutions of the dual LP
consists of all convex combinations of πm and πn.
This characterization is straightforwardly extended to cases where the source direction p

coincides with a loudspeaker direction vector li. In this case, all cyclic polygons that contain
the loudspeaker li on its boundary are vertex solutions of the dual LP. As the distance between
the circumcenter pkπ of this polygon to li equals the radius rkπ of this polygon, (22) implies that
all these dual vertex solutions have the same objective value 1. Thus they are identical and
therefore all vertices of this set are optimal vertex solutions of the dual LP. The vertex solutions
of the dual LP correspond to the multiple valid VBAP triangle selections if the source direction
lies on a loudspeaker or an arc connecting loudspeakers, i.e., they completely contain the VBAP
solution. Furthermore, this implies that all these solutions have the same objective value.

4.3.5. Nonunique Panning Solutions

As described in Sec. 2.3.2, the VBAP panning gains are nonunique if the underlying triangulation
is ambiguous. In case of the Delaunay triangulation, this corresponds to configurations with
more than three loudspeakers on a common circumcircle. In the LP framework, this implies
that more than three inequality constraints (15b) are active for the optimal solution π∗ of the
dual LP (15). Thus, the optimal solution of the dual is degenerate. As reasoned above, this
implies that the `+1 panning problem, i.e., the corresponding primal LP, is nonunique provided
that the primal is nondegenerate. The latter condition holds because a degenerate optimal
vertex solution of the primal would mean that less than d = 3 loudspeakers were active, i.e.,
that the source direction is a linear combination of two or less loudspeaker directions. This case
has already been handled in the preceding section.
Theorem 2 ensures that there is at least one optimal vertex solution. As reasoned above,

these vertex solutions are nondegenerate. At the same time, the nonuniqueness property implies
that there are multiple optimal vertex solutions. These are denoted as g∗1, g∗2,. . .g∗S , and each of
these S solutions g∗s has exactly d = 3 nonzero elements. All optimal vertex solutions g∗s of the
primal have the same (degenerate) dual solution π∗. Consequently, the optimal vertex solutions
are formed by all subsets of d = 3 loudspeakers on the circumcircle that attain the optimal
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Figure 4: Nonunique `1 panning with five loudspeakers l1, . . . , l5 on a common circumcircle.
The loudspeaker triangles corresponding to optimal vertex solutions for the source
direction p are marked by patterns.

objective value. As shown in Sec. 4.3, the optimal solution of the dual is attained if the polygon
spanned by the active loudspeakers includes the source direction p. Thus, the set of optimal
vertex solutions consists of all three-element sets of active loudspeakers on the circumcircle
such that the spherical triangle formed by these loudspeakers contains the source p. This is
illustrated in Fig. 4 for a cyclic polygon formed by five loudspeakers l1, . . . , l5. In this case each
optimal vertex g∗s corresponds to the selected triangle of a valid Delaunay triangulation of this
polygon.
Moreover, as expressed by (14), the set of optimal solutions is formed by all convex com-

binations of the optimal vertices g∗1, g∗2,. . . ,g∗S . Thus the VBAP solutions are a strict subset
of the valid `+1 solutions for nonunique cases. It is worth noting that some practical panning
algorithms apply convex combinations of the vertex solutions. For instance, [39] averages the
VBAP gains of all valid triangulations to improve the smoothness of the panning for ambiguous
loudspeaker setups.

5. Optimal `1 Panning Without Nonnegativity

As shown in the previous section, a nonnegativity constraint imposed on the panning gains
enables the `1 panning problem to be expressed as a linear program which yields identical
solutions to VBAP, thus preserving the beneficial sparsity and locality properties of amplitude
panning techniques. In this section, we demonstrate how the same LP framework can be used
to solve the `1 problem without the nonnegativity constraint, and characterize the resulting
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Figure 5: Augmented loudspeaker setup for `1 optimal panning without nonnegativity constraints.
Virtual loudspeakers l−i are dashed, and the active loudspeaker triangle in red.

panning solutions.
The `1 optimization problem (9) can be translated into an LP in standard form [27, 58] as

follows

argmin
g±

cTg± subject to L±g± = p and g± ≥ 0 (24a)

where

g± =
[
g+ g−

]
∈ R2L×1 (24b)

L± =
[
L −L

]
∈ Rd×2L (24c)

cT =
[
1 1 · · · 1

]
∈ R1×2L , (24d)

which doubles the sizes of the optimization variable g± and the constraint matrix L±. This can
be interpreted as augmenting the loudspeaker setup represented by the direction matrix L by
a set of mirror loudspeakers l−i = −li, 1 ≤ i ≤ L pointing in the opposite directions to form
the complete loudspeaker direction matrix L± and the corresponding gain vector g± ∈ R2L×1,
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g± ≥ 0. The final panning gains for the physical loudspeaker configuration, that is, problem
(9), are obtained from g± through

g = g+ − g− . (25)

Fig. 5 shows an augmented tetrahedral loudspeaker setup containing real and mirror loudspeakers.
Using this construction, we can apply the results for `+1 -optimal panning derived in the

preceding section to the `1 panning problem without a nonnegativity constraint. Firstly, the `1
solutions preserve the same sparsity properties as in `+1 panning, i.e., there always exists an
optimal solution with at most d nonzero gains. Secondly, the optimal solution can be found
using the same geometric construction based on the dual LP described in Sec. 4.2.1. That is, the
active loudspeakers are selected based on a Delaunay triangulation of the complete augmented
direction matrix L± containing both real and mirror loudspeakers. This is exemplified in Fig. 5.
For the source direction p, the `1-optimal solution corresponds to the loudspeaker triangle
{l1, l3, l−4 }, including the mirror loudspeaker l−4 . Using (25) to translate this solution into the
gain vector of the real setup, this means that loudspeaker l4 is activated with a negative gain.
This construction demonstrates that without a nonnegativity constraint, `1 optimal panning
does not maintain the locality property of VBAP. Instead, loudspeakers close to the opposite of
the source direction might become active with negative panning gains, creating antiphase sound
field components from these directions. As argued in Secs. 2.4.2 and 2.4.4, such contributions
typically degrade the quality of panning-based reproduction methods. Thirdly, augmentation
by a set of mirror loudspeakers may lead to special cases caused by nonunique or degenerate
VBAP solutions as described above. For instance, the optimization problem becomes ambiguous
if the real setup contains diametrical loudspeakers, because in this case a mirror loudspeaker
coincides with the opposite real loudspeaker.
Notwithstanding these potential drawbacks of omitting the nonnegativity constraint, this

construction also represents an efficient algorithm to compute the globally optimal `1 panning
solution. That is, the VBAP algorithm is applied to the augmented loudspeaker matrix (24c),
and (25) is used to obtain the panning gains g. That is, the algorithm does not require an explicit
optimization step and its complexity is comparable to the very efficient VBAP algorithm.

6. Evaluation

In this section, we evaluate the properties of the `1 and `+1 amplitude panning techniques and their
equivalence to VBAP, and compare it to VBAP extensions to resolve nonunique traingulations,
specifically an averaging technique proposed in [39] and a strategy using additional virtual
loudspeakers that are downmixed to neighboring speakers specified in MPEG-H [23, 22]. These
methods aim at a more symmetric reproduction and smoother source movements. Objective
performance metrics are presented in Sec. 6.1 while ITD and ILD localization cues are used to
estimate the subjective localization performance in Sec. 6.2.
To this end, we choose a practical 3D loudspeaker layout defined as Layout 15 in [23] and

shown in Fig. 6. It consists of a total of ten loudspeakers in a spherical configuration, seven in
the horizontal plane and three at an elevation angle of θ = 35◦. The loudspeaker labels have
the form “CH_{M,U}_{R,L}NNN”, where “M” and “U” denote a position in the horizontal (middle)
and upper layer, respectively, “L” and “R” represent angles to the left and right, and “NNN” is
the azimuth angle in degree. In the following, the panning solutions of the different algorithms
are shown for three source positions that highlight different cases of 3D multichannel amplitude
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Figure 6: Example 3D loudspeaker setup according to Layout 15 in MPEG-H 3D audio [23], also
showing the loudspeaker labels and the Delaunay triangulation for use with VBAP
and source positions p1, p2, and p3.

panning. The CVX modeling framework [62, 63] is used for the proposed `1 and `+1 panning
methods.

6.1. Objective Performance Measures

For the objective evaluation, we evaluate the loudspeaker gain distribution and measures such
as the `1 norm, the deviation of the velocity vector direction ^ (p,p′), the velocity vector
magnitude rv, and the number of nonzero gains, i.e., the `0 norm ‖g‖0. These results are
summarized in Table 1.

6.1.1. Unique Panning Solutions

As a first example, a source with direction p1 = (φ1, θ1) = (0◦, 12.5◦) is chosen, where φi
and θi denote source azimuth and elevation, respectively. VBAP reproduces this direction
with the active loudspeaker triangle {CH_M_000, CH_U_L045, CH_U_R045}. The corresponding
panning gains are shown in Fig. 7(a). This figure also shows that the gains obtained by
the `1-optimal panning technique are identical to the VBAP case, both with respect to the
active loudspeaker selection and gains. In fact, the maximum differences are in the order of
< 1 · 10−15, which is within the accuracy of the numerical optimization algorithm (precision
setting cvx_precision best). Thus, the `1-optimal solution retains the advantageous sparsity
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(a) p1 = (0◦, 12.5◦)
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(b) p2 = (155◦, 12.5◦)
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(c) p3 = (100◦, 12.5◦)
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Figure 7: Panning weights for the loudspeaker configuration of Fig. 6 for source directions (φ, θ).
: VBAP, : `1-optimal, : `+1 -optimal, : Averaging [39], : Virtual loudspeaker [23].

and locality properties of VBAP. Because the `1 panning gains are nonnegative in this case, it
is clear that the results of the `+1 method are identical to the `1 and VBAP cases. Likewise,
the methods based on averaging and virtual loudspeakers are identical to all these solutions,
since they differ from these methods only for nonunique panning cases. Table 1 summarizes the
performance measures for the different methods. For p1, the velocity direction of the panned
source matches the desired direction, i.e., ^ (p,p′) = 0◦ for all methods. Likewise, since the
panning gains are identical, the `1 norms ‖g‖1 and the velocity factors rv are equal.

6.1.2. Nonnegativity Constraints

The panning weights for a second source direction p2 = (155◦, 12.5◦) are displayed in Fig. 7(b).
In this case, the `1 solution differs from the VBAP panning weights in that it contains a
negative weight, namely from loudspeaker CH_M_R090. As reasoned in Sec. 5, the corresponding
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mirror loudspeaker vector CH_M_R030− is included in the triangle {CH_M_L135, CH_M_R030−,
CH_U_L180} which fulfills the Delaunay circumcircle condition (Definition 1). For this reason,
this triangle is chosen over the VBAP solution {CH_M_L135, CH_M_R135, CH_U_180}. As in the
previous example, the averaging and virtual loudspeaker downmix solutions are identical to
VBAP, because the panning is unique. The performance measures for this case are summarized
in the second column block of Table 1. With the exception of the `1 solution, all measures
are identical. The latter method achieves a smaller `1 norm , which is due to the selection
of the mirror loudspeaker CH_M_R135−. At the same time, the velocity vector magnitude is
increased significantly because of the effect of negative gains on the denominator of (8). While
larger values of rv in theory indicate sharper image locations at low frequencies, this does not
correspond with perception (see Sec. 6.2).

6.1.3. Nonunique Panning Solutions

To demonstrate the behavior of the panning methods for a nonunique configuration, a third
source direction p3 = (100◦, 12.5◦) is chosen. This direction lies within the cyclic loudspeaker-
free spherical polygon {CH_M_L090, CH_M_L135, CH_U_180, CH_U_L045}. In the VBAP case, the
triangle {CH_U_L045, CH_M_L135, CH_U_180} has been selected arbitrarily, resulting in a vertex
solution with three active loudspeakers. For the other methods, all four loudspeakers of this
cyclic quadrilateral are active. In case of the `1 and `+1 methods, the solutions generated by
CVX are displayed, that is, arbitrary elements of the nonunique solution sets. As they are
formed by a linear combination of two distinct vertex solutions, they have four nonzero gains.
In case of the `1 approach, the cyclic polygon also contains the mirror loudspeaker CH_M_R090−,
which results in five nonzero loudspeaker gains. As observed in the third column block of Table
1, the `1 norm of VBAP, `1, `+1 , and the averaging method are identical. This means that the
solutions are contained in the optimal solution set of the panning problem, i.e., they synthesize
the correct velocity direction with the minimum objective value for the `1 norm. In contrast,
the virtual loudspeaker downmix algorithm inserts a loudspeaker at the center of the cyclic
polygon, and distributes the gain assigned to this virtual loudspeaker to the neighboring real
speakers. As observed in Table 1, this results in a lower `1 norm, but also in a deviation from
the target velocity direction of about 4.4◦.

6.2. Psychoacoustic Localization Cues

To assess the subjective performance, we simulate the ITD and ILD as the predominant
localization cues. Fig. 8 shows these measures for a varying azimuth angle, that is, a simulated
circular horizontal movement of a virtual source at an elevation of 12.5◦ around the center of
the setup. In this, the generated data also covers the source positions p1–p3 investigated above.
The ITD calculated as the time of the maximum of the interaural cross correlation (IACC) of
the synthesized binaural impulse reponses [64]. As the ITD cue is relevant for low frequencies,
the impulse responses are lowpass filtered with cutoff frequency of 1 kHz. ILDs are computed
by averaging octave-band sound pressure level differences.
Figures 8(a) and 8(b) show the ILD and ITD values for both the ideal virtual source and

the panning methods under freefield conditions. This simulation uses a head related transfer
functions (HRTFs) measured with a Neumann KU 100 dummy head [65]. The ITD and
ILD trajectories of all methods except `1 panning without nonnegativity are very similar to
those of the ideal virtual source. If the panning problem is unique (azimuth range approx. φ ∈
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(c) ITD listening room
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Figure 8: Simulated ITD and ILD values for freefield conditions and ITU-R BS.1116-3 listening
room. : Ideal freefield source, : VBAP, : `1-optimal, : `+1 -optimal,

: Averaging [39], : Virtual loudspeakers [23].

{0◦ · · · 80◦, 140◦ · · · 220◦, 280◦ · · · 360◦}), these methods are equivalent and therefore the ITDs and
ILDs match exactly. For the remaining azimuth range (approx. φ ∈ {90◦ · · · 130◦, 230◦ · · · 270◦},
the panning problem is nonunique and therefore the resulting ITDs and ILDs vary slightly,
either due to the strategies used by the VBAP, the averaging, and the virtual loudspeaker
downmix methods to resolve that ambiguity, or due to the arbitrary choice of one optimal
solution returned by CVX in case of the `+1 method. However, all cues are qualitatively similar
and consistent with the ideal virtual source. Assessing the differences between these choices and
designing perceptually optimal resolution strategies is a topic for future research.
In contrast, the ITD and ILD cues generated by the `1 approach differ significantly from

the ideal values. In cases where the panning gains contain negative values as described
in Sec. 6.1.2 (azimuth range approx. φ ∈ {35◦ · · · 45◦, 150◦ · · · 210◦, 315◦ · · · 325◦}, ITD/ILD
values differ significantly or are reversed compared to the ideal virtual source. For the ILD,
this extends to directions that contain a negative gain contribution due to nonuniqueness
(φ ∈ {50◦ · · · 145◦, 215◦ · · · 315◦}). This is likely because of the sound energy from the opposing
loudspeaker, which is significant at mid and high frequencies due to head shadowing.

To assess the performance of the proposed methods within a real room, the ITD/ILD evaluation
is repeated using binaural room impulse responses (BRIRs). We use the BRIR dataset [66]
of a multichannel reproduction system installed in a listening room (RT60 ≈ 0.22 s) [67] that
complies to the ITU-R BS.1116-3 standard. The resulting ITD and ILD trajectories are shown
in Fig. 8(c) and 8(d). It is observed that the qualitative behavior is very similar to the freefield
case. That is, the ITD/ILD cues of VBAP, `+1 , the averaging and the virtual loudspeaker
method are similar to those of the ideal virtual source, while the `1-optimal solution without a
nonnegativity constraint yields fluctuating or reversed ILD and ITD values. It is noted that
reference ITD/ILD trajectories of the ideal virtual source are obtained from the freefield case,
because the BRIR dataset used does not allow for arbitrary source positions. In contrast, the
synthesized binaural impulse responses of the panning methods contain the reverberant field of
the room. This might explain the lower absolute values of the ITD and ILD cues compared to
the freefield reference.
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The subjective sound localization performance of the different algorithms has been informally
evaluated in an practical reproduction system and was found consistent with the ITD/ILD
measures. While the `1 method without nonnegativity yields a fluctuating source localization,
the other methods deliver a continuous, consistent source movements, and are very similar also
in case of nonuniqueness. Binaural rendering based on both freefield HRTF data and BRIRs of
a real listening room are provided as supplemental multimedia content. 2

7. Conclusion

In this paper we have considered sparse, globally optimal solutions for multi-loudspeaker sound
reproduction based on amplitude panning. To this end, we have proposed to formulate amplitude
panning as an `1 optimization problem in order to retain the advantageous sparsity of amplitude
panning methods as VBAP. We show that if the obtained solutions are unique, then they are
exactly sparse with at most three nonzero loudspeaker gains, similar to the VBAP solution. It
is shown that the `1 approach is in fact equivalent to VBAP if two conditions are fulfilled: 1) a
nonnegativity constraint on the panning weights, and 2) the VBAP algorithm uses a Delaunay
triangulation to determine the active speaker triangle. While the first condition is inherent to
VBAP, the second is very close to the triangulation described in the original VBAP description,
and actually used in the majority of existing implementations. By expressing this panning
problem as a linear program, we utilize optimality conditions for LPs to characterize the optimal
panning solutions. We show that the vertex solutions of the dual LP correspond to a Delaunay
tessellation of the unit sphere surface. In particular, we prove that nonuniqueness of the panning
solution results from degenerate vertex solutions of the dual LP, corresponding to more than
three loudspeakers on a common circumcircle. We describe the shape of the solution set for
these cases.
Utilizing the LP formulation, we show how the relaxation of the nonuniqueness constraint

affects the full `1 solution by applying negative gains to loudspeakers opposite to the source
direction, which contradicts the advantageous locality and constructive interference properties
of amplitude panning methods. While such solutions are not desirable in most applications, we
propose algorithms to solve the unconstrained `1-optimal panning problem by an inexpensive
modification of the VBAP algorithm. In this way, we show that globally `1-optimal amplitude
panning, with or without nonnegativity constraints, can be efficiently performed without run-
time numerical optimization. This enables a linear complexity of O(L) comparable to VBAP as
opposed to O(L3) to O(L3.5) for general-purpose `1 convex optimization methods [53, 68].
On a more conceptual level, this paper reduces the gap between perceptually motivated

panning techniques (cf. [1]) and optimization-based physical sound field synthesis approaches.
From a practical standpoint, we provide insight into the workings of VBAP-type algorithms.
Specifically, we show how the properties of the Delaunay triangulation are linked to the
optimality of the resulting panning solution, and that the ambiguities observed in practical
VBAP implementations originate from the nonuniqueness of the solution of the underlying
design objective. In this way, the present paper facilitates a better understanding of amplitude
panning techniques, and thus paves the way to the development of more sophisticated and
efficient panning algorithms.

2This paper has supplementary downloadable material available at http://ieeexplore.ieee.org and https:
//doi.org/10.15126/surreydata.00813551, provided by the authors. This includes eleven videos in MPEG-
4 H.264 format and Matlab code. Contact a.franck@soton.ac.uk for further questions about this work.
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A. Objective Value of the Dual on a Spherical Arc Between
Loudspeakers

In this appendix we derive the objective value

pTπk = cos^ (li,p)−
sin^ (li,p)

sin^ (li, lj)
[cos^ (li, lj)− 1] (26)

of the dual problem (22) for a source position p on a spherical arc connecting the loudspeakers
li and lj and a vertex πk. The spherical law of cosines. e.g., [42]

cos (a) = cos (b) cos (c)− sin (b) sin (c) cos (A) (27)

relates the arc lengths a, b, and c of a spherical triangle to the angle A opposite to a. Applied
to the geometry of Fig. 3, the cosine of angle γk is determined as

cos γk = cos rkπ
cos^ (li, lj)− 1

sin rkπ sin^ (li, lj)
. (28)

Using this result, cos^
(
pTpkπ

)
can be found by applying the law of cosines a second time

cos^
(
pTpkπ

)
= cos rkπ cos^ (li,p)− sin rkπ sin^ (li,p) cos γk

= cos rkπ

(
cos^ (li,p)−

sin^ (li,p)

sin^ (li, lj)
[cos^ (li, lj)− 1]

)
.

Inserting into (22) yields the final result (26).
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