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Abstract

We detect higher order Whitehead products on the homology H of
a differential graded Lie algebra L in terms of higher brackets in the
transferred L∞ structure on H via a given homotopy retraction of L
onto H.

1 Introduction

Topological higher order Whitehead products were introduced in [14]: given
simply connected spheres Sn1, . . . , Snk , denote by W = Sn1 ∨ · · · ∨ Snk and
T = T (Sn1, . . . , Snk) their wedge and fat wedge respectively. Then, there is
an attaching map (in what follows we shall not distinguish a map from the
homotopy class that it represents) ω : SN−1 → T with N = n1 + · · ·+nk, for
which

Sn1 × · · · × Snk = T ∪ω e
N .
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Given homotopy classes xj ∈ πnj
(X), for j = 1, . . . , k, consider the induced

map g = (x1, . . . , xk) : W → X and define the kth order Whitehead product

set [x1, . . . , xk]W ⊂ πN−1(X) as the (possibly empty) set

{f ◦ ω | f : T → X an extension of g}.

W� _

��

g
// X

SN−1 ω // T
f

>>⑥
⑥

⑥
⑥

This homotopy invariant set is not only the Eckmann-Hilton dual of Massey
products but the identification of homotopy classes as higher Whitehead
products has proven recently to be essential in different settings. For in-
stance, they lie in fundamental results used in [4, 8] to explicitely exhibit
the homotopy type of certain polyhedral products. Moreover, in toric topol-
ogy, describing by means of higher and iterated Whitehead products maps
between polyhedral products induced by topological operations is an im-
portant question [5, 9]. On the other hand, the cellular structure of well
studied spaces (other than the fat wedge of spaces, of course) are described
by higher Whitehead attachments. This is the case for the cellular decom-
position ∗ ⊂ Xn ⊂ X2n ⊂ · · · ⊂ Xmn in [16] of the (ordered) configuration
space of m particles on Rn+1, n ≥ 2.

Using the Quillen approach to rational homotopy theory [15] this con-
struction has an explicit translation to the homotopy category of differential
graded Lie algebras (DGL’s henceforth). Accordingly, given L a DGL and
classes x1, . . . , xk ∈ H(L), the higher order Whitehead bracket set [x1, . . . , xk]W
⊂ H(L) is defined in a purely algebraic way [18, §V.2], see next section for
details.

On the other hand, it is well known that, given L any DGL, there is
a structure of minimal L∞-algebra on H = H(L), unique up to L∞ iso-
morphism, for which L and H are quasi-isomorphic, as L∞-algebras. This
structure is inherited from L via the homotopy transfer theorem, see for in-
stance [12]. For it, H has to be presented as a linear homotopy retract of L
and the higher brackets {ℓi}i≥2 on the L∞ structure depend, in general, on
the chosen homotopy retraction.

Detecting whether a kth bracket on the L∞ structure on H produces a
Whitehead bracket of order k becomes a good tool and not only to treat
rationally the above mentioned topological problems. For instance, it is well
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known that a DGL L is formal is there exists a inherited L∞ structure on H
as above for which ℓn = 0, n ≥ 3. Moreover, a necessary condition for L to
be formal is that the zero class be a higher Whitehead bracket of any order.

In this paper, and given L any DGL, our goal will be then to detect
Whitehead brackets of order k as kth brackets on the induced L∞ structure
on H . The most general assertion in this direction that we obtain is based in
[2, Thm. 4.1]: given x ∈ [x1, . . . , xk]W , and up to a sign, ℓk(x1, . . . , xk) = x
modulo brackets (of the L∞ structure) of order less than or equal to k − 1,
see Proposition 3.1 for a precise statement.

To be more accurate, and in high contrast with the Eckmann-Hilton sit-
uation concerning Massey products [11, Theorem 3.1], extra conditions are
needed. We define higher Whitehead brackets adapted to a given homotopy
retract and prove (see Theorem 3.3):

Theorem 1.1. For any homotopy retract of L adapted to a given x ∈
[x1, . . . , xk]W , and up to a sign,

ℓk(x1, . . . , xk) = x.

A similar assertion is obtained for any homotopy retract under the van-
ishing of brackets of length up to k − 2. That is (see Theorem 3.5):

Theorem 1.2. Let ℓi = 0 for i ≤ k − 2 with k ≥ 3. Then, if [x1, . . . , xk]W
is non empty, and also up to a sign,

ℓk(x1, . . . , xk) ∈ [x1, . . . , xk]W .

In particular, if [x1, x2, x3]W 6= ∅, then ℓ3(x1, x2, x3) ∈ [x1, x2, x3]W . Also,
ℓ4(x1, x2, x3, x4) ∈ [x1, x2, x3, x4]W as long as this is not the empty set and
the homology of L is abelian.

We finish with an example which shows that adapted retracts are needed
and that the above are the best possible results in this direction even for
reduced DGL’s.

2 Preliminaries

We assume the reader is familiar with the basics of higher homotopy struc-
tures being [12] an excellent reference. We will also rely on some known
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results from rational homotopy theory for which [3] is now a classic refer-
ence. With the aim of fixing notation we give some definitions and sketch
some results we will need. Throughout this paper we assume that Q is the
base field.

A graded Lie algebra is a Z-graded vector space L = ⊕p∈ZLp with a
bilinear product called the Lie bracket and denoted by [ , ] verifying graded

antisymmetry, [x, y] = −(−1)|x||y|[y, x], and graded Jacobi identity,

(−1)|x||z|
[
x, [y, z]

]
+ (−1)|y||x|

[
y, [z, x]

]
+ (−1)|z||y|

[
z, [x, y]

]
= 0,

where |x| denotes the degree of x.
A differential graded Lie algebra (DGL henceforth) is a graded Lie algebra

L endowed with a linear derivation ∂ of degree −1 such that ∂2 = 0. It is
called free if L is free as a Lie algebra, L = L(V ) for some graded vector
space V . We say that L is a reduced DGL if Lp = 0 for p ≤ 0.

The Quillen chain functor associates to any differential graded Lie algebra
(L, ∂) the differential graded coalgebra, DGC henceforth, C(L) = (ΛsL, δ)
which is the cocommutative cofree coalgebra generated by the suspension on
L and whose differential is given by δ = δ1 + δ2,

δ1(sx1 ∧ ... ∧ sxk) = −
k∑

i=1

(−1)nisx1 ∧ ... ∧ s∂xi ∧ ... ∧ sxk,

δ2(sx1 ∧ ... ∧ sxk) = −
∑

i<j

(−1)nij+|xi|s[xi, xj ] ∧ sx1...ŝxi...ŝxj... ∧ sxk.

Here, ni =
∑

j<i |sxj| and nij is the sign given by the equality sx1∧...∧sxk =
(−1)nijsxi ∧ sxj ∧ sx1...ŝxi...ŝxj... ∧ sxk.

In [15], D. Quillen constructed an equivalence

Simply connected
spaces

λ //

〈−〉
oo

Reduced
DGL’s

between the homotopy category of simply connected rational complexes and
the homotopy category of reduced differential graded Lie algebras. The re-
duced DGL L is a model of the simply connected complex X if there is a
sequence of DGL quasi-isomorphisms

L
≃
→ · · ·

≃
← λX.
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For any model one has H(L) ∼= π∗(ΩX) ⊗ Q. If L = (L(V ), ∂) is free we
say that it is a Quillen model of X . For such a model one has H(V, ∂1) ∼=
sH̃(X ;Q) where ∂1 : V → V denotes the linear part of ∂ and s denotes
the suspension operator which is defined for any graded vector space W by
(sW )p =Wp−1

Next, we briefly recall from [18, §V] how to read the set of higher order
Whitehead products of a simply connected complex X in a given Quillen
model L. On the one hand, following the notation in the introduction, the
map g is modeled by

ϕ : (L(u1, . . . , uk), 0) −→ L

in which |uj| = nj − 1 for each j = 1, . . . , k, and the class ϕ(uj) represents
the element xj ∈ πnj

(X).
On the other hand, arguing cellularly [18, §V.2], the inclusion W →֒ T is

modeled by the DGL inclusion

(L(u1, . . . , uk), 0) →֒ (L(U), ∂)

in which |uj| = nj − 1, j = 1, . . . , k,

U = 〈ui1...is〉, 1 ≤ i1 < · · · < is ≤ k, s < k, |ui1...is | = ni1 + · · ·+nis−1,

and the differential is given by

∂ui1...is =
s−1∑

p=1

∑

σ∈S̃(p,s−p)

ε(σ)
[
uiσ(1)...iσ(p)

, uiσ(p+1)...iσ(s)

]
,

where S̃(p, s−p) denotes the set of shuffle permutations σ such that σ(1) = 1,
and ε(σ) is given by the Koszul convention.

Moreover, a Quillen model for Sn1 × · · · × Snk is obtained by attaching a
single generator to L(U) in the same way. That is:

(L(U ⊕ 〈u1...k〉), ∂)

with |ui...k| = N − 1 and

∂u1...k =
k−1∑

p=1

∑

σ∈S̃(p,k−p)

ε(σ)
[
uiσ(1)...iσ(p)

, uiσ(p+1)...iσ(k)

]
. (2.1)
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We denote ∂ui1...ik = ω henceforth as it encodes the homotopy class SN−1 ω
→

T . It follows that there is a bijective set correspondence of homology classes

[x1, . . . , xk]W ∼= {φ(ω) | φ : (L(U), ∂)→ L an extension of ϕ}.

(L(u1, . . . , uk), 0)� _

��

ϕ
// L

(L(U), ∂)

φ

88♣
♣

♣
♣

♣
♣

♣

(2.2)

At a purely algebraic level, and for any DGL, the above subset of H(L)
defines the kth order Whitehead bracket set [x1, . . . , xk]W of given homology
classes x1, . . . , xk ∈ H(L), see [18, Def. V.3(2)].

From now on, and for simplicity in the notation, we will omit the symbol
⊗ in any element of a tensor algebra.

An L∞-algebra (L, {ℓk}) is a graded vector space L together with linear
maps ℓk : L

⊗k → L of degree k − 2, for k ≥ 1, satisfying the following two
conditions:

(i) For any permutation σ of k elements,

ℓk(xσ(1) . . . xσ(k)) = εσεℓk(x1 . . . xk),

where εσ is the signature of the permutation and ε is the sign given by
the Koszul convention.

(ii) The generalized Jacobi identity holds, that is,
∑

i+j=n+1

∑

σ∈S(i,n−i)

εσε(−1)
i(j−1)ℓn−i(ℓi(xσ(1) . . . xσ(i))xσ(i+1) . . . xσ(n)) = 0,

where S(i, n− i) denotes the set of (i, n− i) shuffles.

Each L∞ structure in L corresponds with a differential δ in the cofree graded
cocommutative coalgebra Λ+sL generated by the suspension of L. Indeed,
every ℓk determines a degree −1 linear map

hk = (−1)
k(k−1)

2 s ◦ ℓk ◦ (s
−1)⊗k : ΛksL→ sL, (2.3)

which extends to a coderivation

δk : Λ
+sL −→ Λ+sL
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decreasing the word length by k − 1, that is, δk(Λ
psL) ⊂ Λp−k+1sL for any

p:

δk(sx1 ∧ ... ∧ sxp) =
∑

i1<···<ik

ε hk(sxi1 ∧ ... ∧ sxik) ∧ sx1 ∧ ...ŝxi1...ŝxik ... ∧ sxp.

(2.4)
Every differential graded Lie algebra (L, ∂) is an L∞-algebra by setting ℓ1 =
∂, ℓ2 = [ , ] and ℓk = 0 for k > 2. The corresponding DGC structure is
precisely C(L).

An L∞-algebra (L, {ℓk}) is called minimal if ℓ1 = 0. An L∞-morphism
between L and L′ is a DGC morphism

f : (Λ+sL, δ) −→ (Λ+sL′, δ′),

often denoted simply by f : L → L′, which is encoded by a system of skew-
symmetric linear maps f (k) : L⊗k → L′ of degree 1 − k, k ≥ 1, satisfying
an infinite sequence of equations involving the brackets ℓk and ℓ′k (see for
instance [10]).

An L∞-morphism is a quasi-isomorphism if f (1) : (L, ℓ1) → (L′, ℓ′1) is a
quasi-isomorphism of complexes.

Given L a DGL, consider the following diagram

K << (L, ∂)
q

//
(H, 0)

i
oo

in which H = H(L), i is a quasi-isomorphism, qi = idH and K is a chain
homotopy between idL and iq, i.e., idL − iq = ∂K + K∂. We encode this
data as (L, i, q,K) and call it a homotopy retract of L. In this setting, the
classical Homotopy Transfer Theorem reads [12]:

Theorem 2.1. There exists an L∞-algebra structure {ℓk} on H, unique up

to isomorphism, and L∞ quasi-isomorphisms

(L, ∂)
Q

//
(H, {ℓk})

I
oo

such that I(1) = i and Q(1) = q. In other words, there are DGC quasi-

isomorphisms extending i and q

C(L)
Q

//
(ΛsH, δ)

I
oo
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which make (ΛsH, δ) a quasi-isomorphic retract of the Quillen chains on L.
The transferred higher brackets are given by

ℓk =
∑

T∈Tk

q ◦ ℓT
|Aut(T )|

. (2.5)

We describe here every item in formula (2.5). Let Tk be the set of isomor-
phism classes of directed planar binary rooted trees with exactly k leaves.
For such a tree T label the leaves by i, each internal edge by K, and each
internal vertex by [ , ]. This produces a linear map

ℓ̃T : H
⊗k −→ H

by moving down from the leaves to the root. For example, for k = 4, the
following tree

i

✾✾
✾✾

✾ i

✆✆
✆✆
✆

i

✾✾
✾✾
✾ i

✆✆
✆✆
✆

[ , ]
K
▲▲▲

▲▲▲

[ , ]
K
sss

sss
[ , ]

produces the map

[ , ] ◦ ((K ◦ [ , ] ◦ (i⊗ i))⊗ (K ◦ [ , ] ◦ (i⊗ i))).

Then,
ℓT = ℓ̃T ◦ Sk

where
Sk : V

⊗k → V ⊗k, Sk(v1 . . . vk) =
∑

σ∈Sk

εσε vσ(1) . . . vσ(n)

is the symmetrization map in which εσ denotes the signature of the permu-
tation and ε is the sign given by the Koszul convention.

Finally, Aut(T ) stands for the automorphism group of the tree T .

Remark 2.2. (i) The uniqueness property is clear. Indeed, different homotopy
retracts of L produce quasi-isomorphic L∞ structures on H . But, since all
of them are minimal, they are also isomorphic (see for instance [10, §4]).

(ii) Another invariant of transferred L∞ structures on H , in fact on iso-
morphism classes of minimal L∞ algebras is the least k for which ℓk is non
trivial, and the bracket ℓk itself.
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3 Higher order Whitehead products and L∞
structures

Let (L, i, q,K) be a homotopy retract of a given differential graded Lie algebra
L. The most general result relating Whitehead brackets on H and brackets
of the transferred L∞ structure depends heavily on a theorem of C. Allday
[2, Thm. 4.1], see also [18, Thm. V.7(7)], and reads as follows.

Proposition 3.1. Let x1, . . . , xk ∈ H and assume that [x1, . . . , xk]W is non

empty. Then, for any homotopy retract of L and for any x ∈ [x1, . . . , xk]W ,

ǫ ℓk(x1, . . . , xk) = x+ Γ, Γ ∈
k−1∑

j=1

Im ℓj,

where ǫ = (−1)
∑k−1

i=1 (k−i)|xi|. In particular, if ℓj = 0 for j ≤ k − 1, then up to

a sign, ℓk(x1, . . . , xk) ∈ [x1, . . . , xk]W .

In the remaining of the paper ǫ will always denote the above sign.

Proof. Recall that the Quillen spectral sequence of L [15] is defined by fil-
tering the chains C(L) by the kernel of the reduced diagonals, Fp = Λ≤psL.
Consider the DGC quasi-isomorphisms of Theorem 2.1

C(L)
Q

//
(ΛsH, δ)

I
oo ,

choose the same filtration on ΛsH , and observe that at the E1 level the
induced morphisms of spectral sequences are both the identity on ΛsH . By
comparison, all the terms in both spectral sequences are also isomorphic.
Now, translating [2, Thm. 4.1] to the spectral sequence on ΛsH we obtain
that if [x1, . . . , xk]W is non empty, then the element sx1 ∧ . . . ∧ sxk survives
to the k − 1 page (Ek−1, δk−1). Moreover, given any x ∈ [x1, . . . , xk]W , one
has

δk−1 sx1 ∧ . . . ∧ sxk
k−1 = sx k−1.

Here (·)
k−1

denotes the class in Ek−1. This is to say that there exists Φ ∈
Λ≤k−1sH such that

δ(sx1 ∧ . . . ∧ sxk + Φ) = sx. (3.1)
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Write δ =
∑

i≥1 δi with each δi as in formula (2.4), and decompose Φ =∑k−1
i=2 Φi with Φi ∈ ΛisH . By a word length argument,

δk(sx1 ∧ . . . ∧ sxk) +
k−1∑

i=2

δi(Φi) = sx.

Note also that δk = hk for elements of word length k, with hk as in (2.3) and
(2.4). Therefore,

hk(sx1 ∧ . . . ∧ sxk) +
k−1∑

i=2

hi(Φi) = sx.

To finish, apply to this equation the identity (2.3) which is equivalent to

ℓi = s−1 ◦ hi ◦ s
⊗i for any i ≥ 1.

In particular, the sign ε appears when writing

ℓk(x1, . . . , xk) = s−1 ◦ hk ◦ s
⊗k(x1, . . . , xk) = ε s−1hk(sx1 ∧ . . . ∧ sxk).

Next we find kth order Whitehead brackets that are detected precisely
and only by kth brackets of the L∞ structure.

Recall that, any x ∈ [x1, . . . , xk]W is produced by a DGL morphism
φ : (L(U), ∂)→ L as in diagram (2.2). Write,

U = 〈u1, . . . , uk〉 ⊕ V, that is, V = 〈ui1...is〉, s ≥ 2.

On the other hand, any homotopy retract can be obtained by decompos-

ing L = A⊕∂A⊕C with ∂ : A
∼=
→ ∂A and C ∼= H a subspace of cycles. For it

define i : H ∼= C →֒ L, q : L։ C ∼= H and K(A) = K(C) = 0, K : ∂A
∼=
→ A.

Definition 3.2. With the notation above, a homotopy retract of L is adapted
to x ∈ [x1, . . . , xk]W if φ(V ) ⊂ A. In particular,

K∂φ(ui1...is) = φ(ui1...is) for any generator ui1...is ∈ V. (3.2)

Theorem 3.3. Let x ∈ [x1, . . . , xk]W . Then, for any homotopy retract of L
adapted to x,

ǫ ℓk(x1, . . . , xk) = x.
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Proof. Let φ : (L(U), ∂) → L with φ(ω) = x and consider in H the L∞

structure induced by a given homotopy retract (L, i, q,K) of L adapted to
x. We prove by induction on p, with 2 ≤ p ≤ k, that

φ(∂ui1...ip) = ǫ
∑

T∈Tp

1

|AutT |
ℓT (xi1 , . . . , xip). (3.3)

The assertion is trivial for p = 2 and assume it is satisfied for p < k.
Write the set Tk of isomorphism classes of directed planar binary rooted

trees and exactly k leaves as

Tk =
∐

1≤p≤⌈k
2
⌉

Tp,k−p,

where Tp,k−p is the set of (classes of) rooted trees T of the form

F

❄❄
❄❄

❄❄
G

⑧⑧
⑧⑧
⑧⑧

with F ∈ Tp and G ∈ Tk−p. Note that, whenever k is even and p = k
2
then,

for any pair F,G ∈ Tk
2
with F 6= G, the trees

F

❄❄
❄❄

❄❄
G

⑧⑧
⑧⑧
⑧⑧

G

❄❄
❄❄

❄❄
F

⑧⑧
⑧⑧
⑧⑧

are in the same class.
If T ∈

∐
1≤p≤⌈k

2
⌉ Tp,k−p, then |AutT | = |AutF ||AutG| except when p =

k
2

and T ∈ Tk
2
, k
2
is such that F = G. In this case, which only occurs whenever

k is even, |AutT | = 2|AutF ||AutG|.
In what follows we omit signs to avoid excessive notation. On the one

hand, splitting the summation for p = 1, 1 < p < ⌈k
2
⌉ and p = k

2
(which only

11



occurs whenever k is even), we have:

∑

T∈Tk

1

|AutT |
ℓT (x1, . . . , , xk) =

∑

T∈Tk

1

|AutT |
ℓ̃T ◦ Sk(x1, . . . , xk) =

=
∑

T∈Tk

∑

σ∈Sk

1

|AutT |
ℓ̃T (xσ(1), . . . , xσ(k))

=
∑

σ∈S(1,k−1)

[
ixσ(1), K

( ∑

T∈Tk−1

1

|AutT |
ℓ̃T (xσ(2), . . . , xσ(k))

)]

+
∑

1<p<⌈k
2
⌉

∑

σ∈S(p,k−p)

[
K
( ∑

F∈Tp

∑

τ∈Sp

1

|AutF |
ℓ̃F (xτσ(1), . . . , xτσ(p))

)
,

, K
( ∑

G∈Tk−p

∑

ν∈Sk−p

1

|AutG|
ℓ̃G(xνσ(p+1), . . . , xνσ(k))

)]

+
1

2

∑

σ∈S(k
2
, k
2
)

[
K
( ∑

F∈T k
2

∑

τ∈S k
2

1

|AutF |
ℓ̃F (xτσ(1), . . . , xτσ(k

2
))
)
,

, K
( ∑

G∈T k
2

∑

ν∈S k
2

1

|AutG|
ℓ̃G(xνσ(k

2
+1), . . . , xνσ(k))

)]
= (†)

Note that the last summand appears only if k is even. The 1
2
coefficient arises

from the observation above.
On the other hand, remark that the formula (2.1) can be written alter-

natively as

∂u1...k =
∑

1≤p<⌈k
2
⌉

∑

σ∈S(p,k−p)

[
uσ(1)...σ(p), uσ(p+1)...σ(k)

]

+
1

2

∑

σ∈S(k
2
, k
2
)

[
uσ(1)...σ(k

2
), uσ(k

2
+1)...σ(k)

]

Thus, in view of equation (3.2) and by induction hypothesis, we have, also
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modulo signs:

φ(∂u1...k) =
∑

1≤p<⌈k
2
⌉

∑

σ∈S(p,k−p)

[
φ(uσ(1)...σ(p)), φ(uσ(p+1)...σ(k))

]

+
1

2

∑

σ∈S(k
2
, k
2
)

[
φ(uσ(1)...σ(k

2
)), φ(uσ(k

2
+1)...σ(k))

]

=
∑

σ∈S(1,k−1)

[
φuσ(1), Kφ∂uσ(2)...σ(k)

]

+
∑

1<p<⌈k
2
⌉

∑

σ∈S(p,k−p)

[
Kφ∂uσ(1)...σ(p), Kφ∂uσ(p+1)...σ(k)

]

+
1

2

∑

σ∈S(k
2
, k
2
)

[
Kφ∂uσ(1)...σ(k

2
), Kφ∂uσ(k

2
+1)...σ(k)

]

=
∑

σ∈S(1,k−1)

[
ixσ(1), K

( ∑

T∈Tk−1

1

|AutT |
ℓ̃T ◦ Sk−1(xσ(2), . . . , xσ(k))

)]

+
∑

1<p<⌈k
2
⌉

∑

σ∈S(p,k−p)

[
K
(∑

F∈Tp

1

|AutF |
ℓ̃F ◦ Sp(xσ(1), . . . , xσ(p))

)
,

, K
( ∑

G∈Tk−p

1

|AutG|
ℓ̃G ◦ Sk−p(xσ(p+1), . . . , xσ(k))

)]

+
1

2

∑

σ∈S(k
2
, k
2
)

[
K
( ∑

F∈T k
2

1

|AutF |
ℓ̃F ◦ Sk

2
(xσ(1), . . . , xσ(k

2
))
)
,

, K
( ∑

G∈T k
2

1

|AutG|
ℓ̃G ◦ Sk

2
(xσ(k

2
+1), . . . , xσ(k))

)]
= (†)

and the assertion is proved. In particular, by the explicit formula for ℓk in
Theorem 2.1,

qφ(ω) = ǫ q
∑

T∈Tk

1

|AutT |
ℓT (x1, . . . , xk) = ǫ ℓk(x1, . . . , xk).

13



That is, ǫ ℓk(x1, . . . , xk) ∈ [x1, . . . , xk]W .

Remark 3.4. The Higher Massey products set [13] 〈a1, . . . , ak〉M ⊂ H∗(A) of
order k of classes a1, . . . , ak ∈ H

∗(A) in the cohomology of a given differential
graded algebra (A, d) (or simply A) can be thought of as the “Eckmann-
Hilton” dual of higher Whitehead brackets of order k. There is also an A∞

version of Theorem 2.1 for a given retract of A,

K << (A, d)
q

//
(H, 0),

i
oo

which produces an A∞ structure {mk} on H and A∞ quasi-isomorphisms
(see for instance [6] or [7]):

(A, d)
Q

//
(H, {mk}).

I
oo

Recall that an A∞-algebra [17] is a graded vector space H endowed with a
sequence of maps mk : H

⊗k → H of degree 2−k, for k ≥ 1, satisfying a series
of “associative” identities. Each of these maps is identified, up to suspensions
and signs, with a degree 1 map δk : (sH)⊗k → sH which produces a differen-
tial δ on the graded colgebra T (sH). Filtering this DGC by Fp = (sH)⊗≤p

we obtain the Eilenberg-Moore spectral sequence from which, following the
argument of Proposition 3.1 now based in [18, Thm. V.7(6)], we obtain:

If 〈a1, . . . , ak〉M is non empty, then, for any a ∈ 〈a1, . . . , ak〉M , and any
homotopy retract of A,

ǫmk(a1 . . . ak) = a+ Γ, Γ ∈
k−1∑

j=1

Immj .

In this setting one can go a step further, see [11, Theorem 3.1], and prove
that for any homotopy retract of A, if 〈a1, . . . , ak〉M is non empty, then
ǫmk(a1, . . . , ak) ∈ 〈a1, . . . , ak〉M .

Except for the case k = 3 in Corollary 3.6 below, this particular behavior
cannot be attained in general in the L∞ setting and additional conditions
are required as the following result shows.

Theorem 3.5. Let L be a DGL such that, on H, ℓi = 0 for i ≤ k − 2 with

k ≥ 3. If [x1, . . . , xk]W 6= ∅, then

ǫ ℓk(x1, . . . , xk) ∈ [x1, . . . , xk]W .

14



Observe that, in view of (ii) of Remark 2.2 the assumption on the van-
ishing of ℓi for i ≤ k− 2 is independent of the chosen retract of L and hence,
the result remains valid for any of them.

Proof. We first observe the following: consider (ΛsH, δ) the DGC equivalent
to the L∞ structure on H given by any homotopy retract of L. The condition
ℓi = 0 for i ≤ k − 2 is clearly equivalent via equations (2.3) and (2.4) to
the vanishing of the coderivations δi of Λ

+sH also for i ≤ k − 2. On the
other hand, as in equation (3.1) in the proof of Proposition 3.1, for any
x ∈ [x1, . . . , xk]W , we have.

δ(sx1 ∧ . . . ∧ sxk + Φ) = sx with Φ ∈ Λ≤k−1sH.

Write again δ =
∑

i≥1 δi with each δi as in formula (2.4). Thus, a word length
argument together with δi = 0, for i ≤ k − 2, readily implies in particular
that

δk−1(sx1 ∧ · · · ∧ sxk) = 0.

But

δk−1(sx1 ∧ . . . ∧ sxk) =
k∑

i=1

ε hk−1(sx1 ∧ ...ŝxi... ∧ sxk) ∧ sxi.

Hence, via identity (2.3),

ℓk−1(xi1 , . . . , xik−1
) = 0 for any 1 ≤ i1 < · · · < ik−1 ≤ k. (3.4)

Next, for each p ≤ k, let Up ⊂ U be the subspace generated by

Us = 〈ui1...is〉, 1 ≤ i1 < · · · < is ≤ k, s < p.

Clearly, (L(Up), ∂) is a sub DGL of (L(U), ∂) and (L(Uk), ∂) = (L(U), ∂).
We also denote,

Vp = 〈ui1...is ∈ Up, s ≥ 2〉.

Again Up = Vp ⊕ 〈u1, . . . , uk〉 and Vk = V . Let L = A⊕ ∂A⊕ C the decom-
position giving rise to the chosen arbitrary homotopy retract. By induction
on p, with 3 ≤ p ≤ k, we will construct a DGL morphism φ : L(Up)→ L for
which φ(Vp) ⊂ A.

For p = 3, as [x1, . . . , xk]W is non empty, let ψ : (L(U), ∂) → (L, ∂) as in
(2.2). We define φ : L(U3)→ L by

φ(ui) = ψ(ui), i = 1, 2, 3. φ(ui1i2) = K∂ψ(ui1i2), 1 ≤ i1 < i2 ≤ k,

15



Obviously φ(V3) ⊂ A and using the trivial identity for any homotopy retract
∂K∂ = ∂ we also see that φ commutes with the differential:

∂φ(ui1i2) = ∂K∂ψ(ui1i2) = ∂ψ(ui1i2) = ψ∂(ui1i2) = φ∂(ui1i2).

Assume the assertion true for k − 1. That is, there exists a DGL morphism

φ : L(Uk−1) −→ L

for which φ(Vk−1) ⊂ A. In particular, we have,

K∂φ(ui1...is) = φ(ui1...is) for any generator ui1...is ∈ Vk−1,

which is equation (3.2) for φ. Then, the same argument as in the proof of
Theorem 3.3 proves the analogous of equation (3.3). In particular,

φ(∂ui1...ik−1
) = ǫ

∑

T∈Tk−1

1

|AutT |
ℓT (xi1 , . . . , xik−1

),

and therefore,

qφ(∂ui1...ik−1
) = ǫ q

∑

T∈Tk−1

1

|AutT |
ℓT (xi1 , . . . , xik−1

) = ǫ ℓk−1(xi1 , . . . , xik−1
),

which is zero by the observation (3.4) above. Hence,

φ(∂ui1...ik−1
) = ∂Ψi1...ik−1

and we define
φ(ui1...ik−1

) = K∂Ψi1...ik−1
.

Obviously φ(Vk) = φ(V ) ⊂ A and using again the identity ∂K∂ = ∂ we
see that φ commutes with differentials. Therefore φ(ω) is an element in
[x1, . . . , xk]W for which we can apply Theorem 3.3 and the proof is finished.

Corollary 3.6. Let x1, x2, x3 ∈ H such that [x1, x2, x3]W 6= ∅. Then, for any
homotopy retract,

ǫ ℓ3(x1, x2, x3) ∈ [x1, x2, x3]W .

�
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Corollary 3.7. Let L be a DGL such that H is abelian. If [x1, x2, x3, x4]W 6=
∅, then, for any homotopy retract,

ǫ ℓ4(x1, x2, x3, x4) ∈ [x1, x2, x3, x4]W .

�

We finish with an example which shows that Theorem 3.5 is the most
general version of its Eckmann-Hilton dual, even for reduced DGL’s or equiv-
alently, for simply connected rational complexes.

Example 3.8. Consider the following DGL,

(L, ∂) = (L(v1, v2, v3, v4, v12, v13, v14, v23, v24, v34, z, w123, w124, v134, v234), ∂),

where |vi| = 2, 1 ≤ i ≤ 4, |z| = 5 and the differential is given by:

∂(vi) = 0, 1 ≤ i ≤ 4;

∂(vij) = [vi, vj ], 1 ≤ i < j ≤ 4;

∂(z) = 0;

∂(vijk) = [vi, vjk]− [vij , vk]− [vj , vik];

∂(wijk) = [vi, vjk]− [vij + z, vk]− [vj , vik].

The realization of this DGL is (of the rational homotopy type of) the complex
X obtained by removing two 9-cells from the space T (S3, S3, S3, S3)∨S6 and
attach them again in a twisted way using the sphere S6.

We claim that [v1, v2, v3, v4]W is non empty and that, for any homotopy
retract of L,

ℓ4(v1, v2, v3, v4) /∈ [v1, v2, v3, v4]W .

For it, define a DGL morphism φ which solves the extension problem

(L(u1, u2, u3, u4), 0)� _

��

ϕ
// L

(L(U), ∂)

φ

77♦
♦

♦
♦

♦
♦

♦

as follows:

φ(u1) = v1; φ(u2) = v2; φ(u3) = v3; φ(u4) = v4;

17



φ(u12) = v12 + z;

φ(u13) = v13; φ(u14) = v14; φ(u23) = v23; φ(u24) = v24; φ(u34) = v34

φ(u123) = w123; φ(u124) = w124;

φ(u134) = v134; φ(u234) = v234.

Then, [v1, v2, v3, v4]W 6= ∅. More precisely, the morphism φ defines the non
zero 4th order Whitehead bracket φ(ω) = Φ where

Φ = [w123, v4]− [w124, v3] + [v12, v34] + [z, v34]

+ [v14, v23] + [v1, v234]− [v13, v24] + [v134, v2].

Note that H is not an abelian Lie algebra and that, for any decomposition
A⊕∂A⊕C giving rise to any chosen homotopy retract, the element φ(u12) =
v12 + z /∈ A as z represents a non zero class. Hence, theorems 3.3 and 3.5 do
not apply.

In fact, it is straightforward to check that Φ generates H10(L) and it is
the only element in [v1, v2, v3, v4]W . Moreover, for any homotopy retract,
ℓ4(v1, v2, v3, v4) 6= Φ.

To help the reader with the computations, we make explicit a particular

decomposition of L as A⊕∂A⊕C with ∂ : A
∼=
→ ∂A and C ∼= H up to degree

10. Here, the first column denotes degree and the twisted arrow � indicates
the action of ∂ in the corresponding set.
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A ∂A C

2 v1, v2, v3, v4
3
4 [v1, v2], [v1, v3], [v1, v4],

� [v2, v3], [v2, v4], [v3, v4]
5 v12, v13, v14, z

v23, v24, v34

6
[
v1, [v1, v2]

]
,
[
v1, [v1, v3]

]
,
[
v1, [v1, v4]

]
,[

v2, [v2, v1]
]
,
[
v2, [v2, v3]

]
,
[
v2, [v2, v4]

]
,[

v3, [v3, v1]
]
,
[
v3, [v3, v2]

]
,
[
v3, [v3, v4]

]
,[

v4, [v4, v1]
]
,
[
v4, [v4, v2]

]
,
[
v4, [v4, v3]

]
,[

v1, [v2, v3]
]
,
[
v2, [v1, v3]

]
,[

v1, [v2, v4]
]
,
[
v2, [v1, v4]

]
,[

v1, [v3, v4]
]
,
[
v3, [v1, v4]

]
,

�

[
v2, [v3, v4]

]
,
[
v3, [v2, v4]

]

7 [v1, v12], [v1, v13], [v1, v14], [z, v1], [z, v2],
[v2, v12], [v2, v23], [v2, v24], [z, v3], [z, v4]
[v3, v13], [v3, v23], [v3, v34],
[v4, v14], [v4, v24], [v4, v34],
[v1, v23], [v2, v13] −[v12, v3] + [v1, v23]− [v2, v13]− [z, v3]
[v1, v24], [v2, v14] −[v12, v4] + [v1, v24]− [v2, v14]− [z, v4]
[v1, v34], [v3, v14] −[v13, v4] + [v1, v34]− [v3, v14]
[v2, v34], [v3, v24] −[v23, v4] + [v2, v34]− [v3, v24]

�

8 w123, w124, v134, v234

[
v1,

[
v1, [v1, v2]

]]
,
[
v1,

[
v1, [v1, v3]

]]
, . . .

9 . . . . . . . . .

10 . . . . . . Φ

Remark 3.9. Let X be a 1-connected CW-complex of finite type and let L be
a reduced, finite type DGL model of X . If (ΛsH, δ) is the DGC equivalent
to a transferred L∞ structure on H , then, its dual (ΛsH, δ)♯ is isomorphic [3,
§23] to (Λ(sH)♯, d) which is the Sullivan minimal model of X . In this case,
Proposition 3.1 and theorems 3.3 and 3.5 are in some sense the reciprocal of
Theorem 5.4 in [1].
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