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Abstract—A kriging based optimization approach is proposed for problems with large datasets and high dimensionality. Memory 

usage is maintained via model centering aided by minimizing the impact of information loss on accuracy of new point prediction using 
points aggregation techniques. The 8-parameter TEAM problem 22 is revisited in the context of computational efficiency and accuracy.  
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I. INTRODUCTION 
urrogate modelling techniques are helpful tools in design 
optimization, especially when the underlying problem is 

computationally expensive. This situation frequently arises in 
the design of electromagnetic devices where time consuming 
finite element simulations may be necessary to ensure accurate 
performance prediction. Kriging based methodologies have 
been shown to be particularly useful and offer good accuracy 
while reducing the number of required objective function calls. 
Unfortunately, the complexity of the algorithm increases as 
applying kriging involves the inversion of a correlation matrix, 
resulting in O(n^3) computation cost and O(n^2) storage cost. 
Consequently, the otherwise efficient kriging is often limited to 
smaller scale problems. Attempts have been made to address 
this bottle-neck of kriging methods when applied to large 
datasets, including zooming-in modeling [1], moving-window 
kriging [2], covariance tapering [3] and fixed rank kriging [4].  

In this paper points aggregation is proposed. The method 
locates the most interesting search area for the next infill point, 
aggregates points outside this area, and finally builds a kriging 
model for infill point search within the identified center area.  

II. CENTER POSITIONING 
The objective is to locate a center around which a prescribed 

number of ‘interior’ points will not be aggregated and where the 
next infill point will be added inside this region. For an arbitrary 
location inside the design space a corresponding 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 
can be introduced based on (1) below, then the location with the 
maximum 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  will be defined as the model center 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐(𝑥𝑥) = �𝐶𝐶1 + 𝐶𝐶2,        𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) < 𝑣𝑣
𝐶𝐶3,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒        (1)  

𝐶𝐶1 = 𝑅𝑅𝐶𝐶1
−1 × �‖𝒙𝒙𝒊𝒊 − 𝒄𝒄‖

𝟏𝟏
𝟐𝟐

𝑘𝑘

𝑖𝑖=1

,   𝑅𝑅𝐶𝐶1 = 𝑘𝑘 × max �‖𝒙𝒙𝒊𝒊 − 𝒄𝒄‖
𝟏𝟏
𝟐𝟐� (2) 

 

𝐶𝐶2 =  𝑅𝑅𝐶𝐶2
−1 × �∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇)2𝑘𝑘

𝑖𝑖=1

𝑘𝑘
,   𝑅𝑅𝐶𝐶2 =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝒚𝒚)
2

       (3) 

𝐶𝐶3 = 𝑅𝑅𝐶𝐶3
−1 × �𝑚𝑚𝑚𝑚𝑚𝑚(𝒀𝒀) − 

∑ −𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑖𝑖=1

� ,                        (4) 

𝑅𝑅𝐶𝐶3 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝒀𝒀),   and  𝑤𝑤 = 𝑒𝑒−𝑣𝑣−5(𝒙𝒙𝒊𝒊−𝒄𝒄)                         (5) 
 
where 𝒄𝒄 denotes the center, 𝒙𝒙𝑖𝑖 is the location of its 𝑖𝑖𝑡𝑡ℎ closest 
point, 𝑘𝑘 defines the number of closest neighborhood points 
around 𝒄𝒄, 𝑦𝑦𝑖𝑖  denotes the objective function values of the 𝑖𝑖𝑡𝑡ℎ 
closest neighborhood point, 𝑤𝑤𝑖𝑖  is the weight term which has an 
inverse relationship with the distance from point 𝑖𝑖 to the center 
𝒄𝒄, 𝜇𝜇 is the mean of 𝒚𝒚, and 𝑣𝑣 is the calculated probability. 𝐶𝐶1 in 
(1) is the sum of square roots of Euclidean distances between 
the hypothetical center c and k nearest points around it. The 
value of 𝐶𝐶1 is a measure of a sample rate within the region; it 
determines how close a hypothetical center c is in relation to its 
nearest k points, while the square root deemphasizes the 
influence of remote points. 𝐶𝐶2 is a weighted standard deviation 
of the objective function values of all the neighborhood points. 
Finally, 𝐶𝐶3 is the weighted mean of the objective function 
values of all the neighborhood points. Each point is weighted 
by an exponential function, whose gradient is controlled by the 
parameter 𝑣𝑣. The smaller values of 𝑣𝑣 apply less weight on 
remote points. The 𝐶𝐶1 and 𝐶𝐶2 terms will encourage exploration 
of the under-sampled and rough areas, respectively, while 𝐶𝐶3 
focuses on exploitation of the current optimum region.  

The probability of exploration and exploitation is controlled 
by a parameter 𝑣𝑣, whose value is related to the root-mean-
square deviation (RMSD) of the kriging model. Instead of a 
deterministic mixture of exploration and exploitation terms, a 
stochastic approach has been applied to eliminate the risk of the 
criterion function being trapped in a local optimum. 

The predictor deviation 𝑑𝑑 in iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is defined as 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑓𝑓(𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1(𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)                 (4) 

where 𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the location of the infill point in the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡ℎ 
iteration, 𝑓𝑓(𝒙𝒙) is the evaluated objective function at location 𝒙𝒙 
and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1(𝒙𝒙) is the predicted objective function value at 
location 𝒙𝒙 in iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1. 

S 
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The deviation 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is calculated and recorded whenever a 
new infill point is defined. Finally, the historical root-mean-
square deviation (RMSD) is  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1

𝑚𝑚
                             (5) 

where 𝑚𝑚 is the most recent iteration. 
To obtain a generalized weight term, an exponentially 

weighted RMSD is applied in this case in order to put more 
weight on recent results; the aim is to emphasize the recent 
prediction error to reflect on the optimization progress. The 
exponentially weighted RMSD is calculated using the formula 

𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = �∑ (1 − 𝛼𝛼)𝑚𝑚−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1
∑ (1 − 𝛼𝛼)𝑚𝑚−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1

        (6) 

where 𝛼𝛼 is the decay parameter and 0 < 𝛼𝛼 < 1. A larger 𝛼𝛼 will 
put less weight on past prediction errors and vice versa. When 
𝛼𝛼 = 0, 𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡  is identical to 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The parameter 𝛼𝛼 
is defined by considering the smoothness of the underlying 
function and the ‘allowance’ for the number of function calls. 
Generally, a smaller value provides a smoother decay of the 
parameter 𝑣𝑣, thus the solver has a better chance to locate the 
global optimum. Based on our experiments, the algorithm 
preforms best when 𝛼𝛼 is set within the range of 0.01 to 0.1. 

A generalized weight term that represents the current 
optimization progress in terms of model prediction deviations 
may be defined by taking a ratio of the exponentially weighted 
RMSD and regular RMSD of historical prediction errors 

𝑣𝑣 = weighted_RMSD RMSD⁄                       (7) 

The parameter 𝑣𝑣 can be regarded as a measure of model 
quality at any stage, 𝑣𝑣 often ranges between 𝛼𝛼 and 1 + 𝛼𝛼, and 
α controls the gradient of the exponential weight function; as 
model deviation decreases 𝑣𝑣 will gradually move towards zero. 

  
 
 
 
 
 
 
 
 

 
 
Fig. 1. (a) The prediction error, (b) the value of 𝑣𝑣, as iterations progress. 
 

Regardless of which criterion function is used, this stage 
involves finding the number of closest neighborhood points k 
around 𝒄𝒄 and calculating the parameter 𝑣𝑣; this requires extra 
computation resources, thus finding the hypothetical center 𝒄𝒄 
using exhaustive search is not practical. It may be seen as a 
global optimization problem with the input 𝒄𝒄, the output 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 , and the objective function 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = (𝐶𝐶1 +
𝐶𝐶2) or 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = 𝐶𝐶3. Because the center only defines an 

area for the new infill point, an approximate solution will 
suffice; here a stochastic sequential global optimization method 
of simulated annealing has been utilized. It is argued that as the 
precision of estimating this intermediate optimum is not that 
important (some inaccuracy may be tolerated), a sequential 
method has the advantage of higher efficiency and very short 
computing times over population based methods. 

The response surface of a 2D function is plotted in Fig. 2, 
with the red crosses at the bottom marking the location of 
existing design points. Figs. 3 (a) and (b) illustrate the criterion 
function for exploration and exploitation terms at the 90th 
iteration, respectively. As can be seen from the figures, the 
𝐶𝐶1+𝐶𝐶2 term encourages search in less sampled and non-smooth 
areas around x=[0.92,0.79], while the 𝐶𝐶3 function suggests 
exploration of the area around the minimum at x=[0.20 0.27]. 

 
Fig. 2. A 2D test function and existing design points (with normalized axes). 

 
 
 
 
 
 
 
 
 

      (a)                               (b) 
Fig. 3. (a) Exploration functions 𝐶𝐶1 + 𝐶𝐶2, (b) exploitation function 𝐶𝐶3. 

III. OUTSIDE POINTS AGGREGATION 
The objective of this step is to aggregate design points further 

from the model center into a smaller number of nodes (the 
‘knots’), so that the total number of nodes and points in the 
model can be fitted into the memory. The problem of outside 
points aggregation involves hierarchical cluster analysis (HCA) 
[5] and a single variable optimization design. The objective of 
HCA is to group outsider points into a set of clusters so that the 
number of clusters is equal to the number of nodes. The value 
of the node is equal to the weighted mean of aggregated points. 

There is rich literature related to cluster analysis, in particular 
in the field of data science, and many algorithms have been 
published. The points aggregation can be treated as a k-mean 
clustering problem where there are significantly more clusters 
to be identified compared to conventional clustering problems. 
In this paper we developed a sequential algorithm for weighted 
points clustering, the pseudo code of which is given below 
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𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 =  1: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 =  1: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

∙  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
∙  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   
𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑒𝑒𝑒𝑒𝑒𝑒 
∙  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 
   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒 
𝑖𝑖𝑖𝑖 𝑒𝑒 < 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

∙  𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚) 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

∙  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑒𝑒𝑒𝑒𝑒𝑒 

𝑒𝑒𝑒𝑒𝑒𝑒  

The cluster’s centroid 𝒐𝒐 of a set of 𝑚𝑚 points 𝒙𝒙  is given by 

𝒐𝒐(𝒙𝒙) =
1
𝑝𝑝

× �𝒙𝒙𝑖𝑖

𝑝𝑝

𝑖𝑖=1

                                   (8) 

where 𝑝𝑝 is the number of points to be considered. 
The Euclidean distance is weighted by the distance between 

the cluster’s centroid 𝒐𝒐 and the model’s center 𝒄𝒄, based on a 
correlation function, while the dissimilarity is weighted too, as 
a larger distance results in lower correlation and therefore 
information loss due to points aggregation will have a smaller 
impact on the prediction result within the center area. The 
design space is normalized and each cluster’s centroid is 
weighted by the Gaussian function. 

The Gaussian correlation function in the kriging model is 
used to calculate the weight 𝑤𝑤; the original function is given by 

𝑓𝑓�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝑒𝑒−𝜃𝜃𝒅𝒅𝑖𝑖𝑖𝑖
2
                              (9) 

Because the hyperparameter 𝜃𝜃 needs to be tuned during the 
model construction, but is unknown when outside points are 
aggregated, we recommend 𝜃𝜃 = 2 (based on experience) as this 
provides a smoother decay in correlation and gives generally 
good results when the underlying problem is unknown. 

The optimization problem is defined as 𝑂𝑂𝑂𝑂(𝑑𝑑)  =  (𝑛𝑛 − 𝑞𝑞)2, 
where 𝑑𝑑 is the input variable dissimilarity, 𝑛𝑛 is the number of 
nodes/clusters generated during the clustering process, 𝑞𝑞 is the 
number of outside nodes that can be fitted into the memory. The 
pseudo code provided above shows a basic workflow of the 
clustering process; to speed up the process, clusters with the 
minimum value of 𝑛𝑛 − 𝑐𝑐 are kept in memory and a new 
clustering iteration starts with these existing clusters. The 
clustering process is terminated when the sum of the number of 
existing clusters and the number of unclassified points is less 
than the number of nodes calculated previously. 

The following example illustrates outside points aggregation 
applied to a 2D problem. Fig. 4(a) shows the clustering without 
Gaussian weights, while Fig. 4(b) illustrates the clustering with 
Gaussian weight terms applied. The problem consists of 500 
observations, assuming that the memory can build a kriging 
model up to 250 design points. We specify that 40% of the 
memory will be used to store the interior points within the 
model’s central area, while the remaining 60% of memory is 
used to store nodes related to outside points. The 400 points 
outside the center area are aggregated into 150 nodes.  

 
 
 
 
 
 
 
 
 

Fig. 4. (a) Clustering without Gaussian weight functions, (b) Clustering with 
Gaussian weight functions (with normalized axes). 

IV. A 2D EXAMPLE 
The point aggregation technique is illustrated in Figs. 5 and 

6 by a 2D example. The kriging model in Fig. 5 is built using 
100 design points, while the model in Fig. 6 contains 60 nodes, 
including 20 points inside the center area and 40 nodes outside, 
where 62 original points have been aggregated. A slight loss of 
information has resulted – mainly away from the important 
region – but, as the size of the correlation matrix depends on the 
square of the number of points, the memory requirement has 
been reduced by 64%. The test function is given as follows 

𝑓𝑓�𝑥𝑥𝑗𝑗� = 𝑐𝑐 + 𝑎𝑎� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑤𝑤�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑗𝑗�� 𝑒𝑒
−�𝑤𝑤�𝑥𝑥𝑗𝑗−𝑝𝑝𝑗𝑗��

𝑚𝑚𝑗𝑗=2

𝑗𝑗=1
    (10)

+ 𝑏𝑏� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒−�𝑣𝑣�𝑥𝑥𝑗𝑗−𝑞𝑞𝑗𝑗��
𝑘𝑘

�
𝑗𝑗=2

𝑗𝑗=1
+ 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  

where 𝑐𝑐 = 4.5, 𝑎𝑎 = 3.5, 𝑤𝑤 = 8.4, 𝑝𝑝1 = 0.2, 𝑝𝑝2 = 0.3, 𝑚𝑚 = 2, 
𝑏𝑏 = 2.8, 𝑣𝑣 = 6.4, 𝑞𝑞1 = 6.5, 𝑞𝑞2 = 8, 𝑘𝑘 = 6, and 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is an 
interpolation function of a set of randomly generated points. 
 

 
 
 
 
 
 

 
 
 
 

 
Fig. 5. Kriging estimate of a 2D test function (100 design points). 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6. Kriging estimate after point aggregation (60 nodes). 
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TABLE I 
PERFORMANCE COMPARISON BETWEEN DIFFERENT ALGORITHMS 

Algorithm R1 (m) R2 (m) h1 (m) h2 (m) d1 (m) d2 (m) J1 (A/mm2) J2 (A/mm2) Objective 
function 

Constraints 
penalty 2) 

No. of FEM 
calls 

PSO 1 2.2647 1.1076 1.7766 0.5225 0.3442 28.1779 ‒5.4921 1.5673 85.0413 ∼6000 
Q-PSO 2.2947 2.6126 0.39 2.2704 0.3967 0.204 30 ‒21.293 2.4016 13.3456 ∼6000 

E-QPSO 1 1.8 0.38 3.6 0.5155 0.2851 19.9975 ‒6.3571 0.3464 0.3685 ∼6000 
GSA 1.939 2.823 0.37 1.101 0.399 0.195 22.5 ‒22.5 1.5547 0.195 17150 
ES 1.99 2.931 0.421 0.94 0.29 0.188 26.6 ‒26.6 0.4103 1.69235 4200 

SAA 1.694 2.907 0.394 0.882 0.323 0.207 20.9 ‒20.9 1.0087 1.09395 14000 
Kriging standard 1 1.8 1.56 1.39 0.4 0.15 30 ‒30 1.4065 32.9056 449 

Kriging proposed 1) 3.272 3.573 1.819 1.106 0.195 0.154 26.932 ‒23.259 0.0383 0.0159 500 3) 
  1.103 2.318 3.193 0.288 0.259 0.734 22.5 ‒22.5 0.0014 0.0003 829 4) 

Original answer 1.296 1.8 2.178 3.026 0.583 0.195 16.955 ‒ 18.91 0.0033 5) 0 – 
PSO: particle swarm optimization [6], Q-PSO: quantum-behaved particle swarm optimization [6-8], E-QPSO: QPSO with exponential probability distribution [9], 
GSA: global search algorithm [10], ES: evolution strategy [10], SAA: simulated annealing algorithm [10]. Results for PSO, Q-PSO, E-PSO, GSA, ES and SAA 
taken from [6] to [10]. The comparison is for the 8 parameter continuous case [11]. Notes: 
1) The new kriging algorithm offers significant savings in memory related to the correlation matrices; this has been achieved by aggregating the outside points. 
2) Solutions from some previously published methods have violated the quench condition; the degree by which this constraint has not been met is given by the 

‘penalty’ (high values indicate severe violation). In some cases the geometrical or current density constraints have not been met either.   
3) For a fairer comparison of memory usage between standard kriging and the proposed kriging method, the maximum number of iterations was set to 500, while 

maintaining a maximum of 375 nodes; a memory saving on correlation function of ~50% was achieved and – as a bonus – a better optimum was found. 
4) The proposed enhanced kriging method may be allowed to continue the search with the number of nodes maintained at 500; improved results have been 

achieved (better value of objective function and lower constraint violation) after more iterations, at the modest expense of more FEM calls. 
5) The value of the objective function in the original specification was a little different; it was recalculated here using a consistent FEM model for comparison. 
 

V. PRACTICAL EXAMPLE TEAM 22 

The superconducting magnetic energy storage device in 
TEAM problem 22 consists of two superconducting coils. The 
design objective is to minimize the stray magnetic field while 
maintaining the stored energy at 180 MJ (see Fig. 7), subject to 
specified quench conditions and geometrical constraints [11].  
 

 

𝑂𝑂𝑂𝑂 =
𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2

𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 + �𝐸𝐸−𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟�

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟
  

 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 180 𝑀𝑀𝑀𝑀, 
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 200 𝜇𝜇𝜇𝜇 
 

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 =
∑ �𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�
𝑛𝑛=22
𝑖𝑖=1

22
  

 
 

 
Fig. 7. The superconducting magnetic energy storage device (TEAM 22) [11]. 

 
The results are summarized in Table I. As reported before, 

kriging has shown its superiority by dramatically reducing the 
number of function calls and thus avoiding excessive use of the 
computationally expensive finite element software. Moreover, 
points aggregation has capped the number of active points in 
the design space with the benefit of reducing the memory 
requirements without sacrificing the accuracy. Finally, the 
iterations may be allowed to continue to achieve an even better 
design. The computational overhead associated with the 
proposed algorithm is very modest and considerable savings in 
overall simulation times may therefore be achieved. 

VI. CONCLUSIONS 
A kriging based optimization approach for large datasets has 

been proposed and its efficiency demonstrated using the TEAM 
22 problem. The model center positioning algorithm balances 

exploration and exploitation assisted by the use of a stochastic 
approach, which eliminates the risk of a deterministic criterion 
function being trapped in a local optimum. It has been found 
that the size of the correlation matrices can be greatly reduced 
by applying points aggregation techniques. It is shown that the 
proposed approach can fit a large set of data into a limited size 
of memory and whereas some loss of information about remote 
points may be experienced this is alleviated by the use of points 
aggregation incorporating a new weighted clustering algorithm.  
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