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Pleated membrane filters are widely used in many applications, and offer significantly
better surface area to volume ratios than equal-area unpleated membrane filters.
However, their filtration characteristics are markedly inferior to those of equivalent
unpleated membrane filters in dead-end filtration. While several hypotheses have been
advanced for this, one possibility is that the flow field induced by the pleating leads
to spatially non-uniform fouling of the filter, which in turn degrades performance. In
this paper we investigate this hypothesis by developing a simplified model for the
flow and fouling within a pleated membrane filter. Our model accounts for the pleated
membrane geometry (which affects the flow), for porous support layers surrounding
the membrane, and for two membrane fouling mechanisms: (i) adsorption of very
small particles within membrane pores; and (ii) blocking of entire pores by large
particles. We use asymptotic techniques based on the small pleat aspect ratio to solve
the model, and we compare solutions to those for the closest-equivalent unpleated
filter.
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1. Introduction

Pleated membrane filter cartridges are used in a wide variety of applications to
remove particles and undesired impurities of a certain size range from a fluid. A
typical filter design is shown in figure 1: a membrane filter (with pore size chosen
depending on the particular application) is sandwiched between two, much more
porous, support layers. The resulting three-layer structure is pleated and packed
into an annular cylindrical cartridge with mesh walls. This arrangement is placed
within a larger impermeable housing and attached to a feed supply pump (figure 2),
which forces the feed solution through the cartridge from the outer to the inner wall.
This design has the advantage that a large filtration surface area can be confined
to a small volume, allowing for rapid filtration. However, filtration performance, as
measured by flux processed for a given pressure drop, is inferior when compared to
the equivalent-area flat (non-pleated) membrane in dead-end filtration. The precise
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Up and downstream
mesh layers: Create
flow channels for uniform
flow through the filter.

SRT filtration medium: Inert, inorganic
fibers securely bonded in a fixed, tapered pore
structure with increased resistance to system
stresses such as cyclic flow and dirt loading.

O-ring seal: Prevents contaminant
bypassing the filtration medium under
normal operation.

Proprietary outer
helical wrap: Tightly
bonds to each pleat for
stability and strength.

Coreless/cageless
design: Outer element
cage is a permanent part
of the filter housing.

Proprietary cushion
layer: Provides support
for the medium and
protection from handling.

Auto-pull element
removal tabs:
Corrosion-resistant endcaps
feature exclusive auto-pull
tabs for automatic element
extraction upon opening
the housing.

Medium substrate support layer
(not shown): Provides support for the
medium and aids in drainage flow.

Benefit: Reliable, consistent performance.
Benefit: Extended filter
element service life for
lower operating costs.

Benefit: Improved performance over the
service life of the filter element and more
consistent fluid cleanliness.

Benefit: Reliable, consistent
filtration performance.

Benefit: Reliable,
consistent performance
and resistance to severe
operating conditions.

Benefit: Lighter,
environmentally friendly
element for reduced
disposal costs and ease of
filter element change-out.

Benefit: Ease of filter
element change-out.

Benefit: Reliable,
consistent performance.

FIGURE 1. (Colour online) Typical geometry of a pleated membrane filter cartridge.
Reproduced, with permission, from Pall’s Power Generation Catalog (Pall 2013).

reasons for this difference in performance have so far proved elusive, and are likely
to involve several factors: for example, the porous support layers that surround the
pleated membrane add resistance, which increases as the pleat packing density (PPD)
within the cartridge increases; the fluid dynamics through the pleated structure are
much more complex than in dead end (unidirectional) filtration through a non-pleated
filter; and the membrane filter itself may become damaged during the process of
pleating. Recent studies have focused mainly on elucidating, empirically, how filter
cartridge performance scales with any given factor such as PPD; see e.g. Kumar
(2009), Giglia et al. (2010), Brown (2011a,b), Kumar, Martin & Kuriyel (2015). In
this paper we focus on the fluid-dynamical aspects of filtration, in particular: how
the pleated geometry affects fluid flow through the filter; how particles carried by the
flow are deposited on and within the filter membrane; and how this fouling affects
the total flux through the filter (and hence its performance).

During membrane filtration the pores of the membrane become fouled with
impurities, which are carried by the feed solution. Filter performance thus ultimately
deteriorates, via a combination of mechanisms. (i) Particles smaller than the membrane
pore size are deposited (or adsorbed) within the pores, shrinking the pore diameter
and increasing membrane resistance. (ii) Particles larger than the pores cannot pass
through the membrane. Assuming that such particles follow streamlines (large particle
Péclet number, leading to passive advection), they will be sieved out and deposited
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FIGURE 2. (a) (From Brown et al. 2009, reproduced with permission.) Schematic showing
the external housing and pleated filter cartridge within it. (b) Idealization of the pleated
filter cartridge geometry, indicating also the coordinates used in the model (X is measured
in the inward radial direction, while Y is arc length along the outer cylinder boundary,
measured as indicated).

on top of pores, blocking them. (iii) Once pores are blocked in this way, in the
late stages of filtration, larger particles can form a cake on top of the membrane,
adding additional resistance via another porous layer on top. By the time this stage
is reached the filtration is very inefficient due to the high resistance, and filters are
normally discarded (or cleaned) before significant caking has occurred. Mathematical
models for all three fouling mechanisms have been proposed, mostly based on
empirical laws of how membrane resistance relates to total volume processed, or net
flow rate through the membrane, in the different fouling regimes (see, for example,
Bolton, Boesch & Lazzara 2006; Bolton, Lacasse & Kuriyel 2006; Meng et al. 2009;
Daniel et al. 2011; Giglia & Straeffer 2012; van der Sman et al. 2012, among many
others). In this paper we take a different approach that carefully accounts for the
fluid dynamics induced by the pleat geometry and couples the fluid dynamics to a
first-principles model for fouling (via adsorption (i) and blocking (ii)).

An important early paper on mathematical modelling of filtering problems is the
work by King & Please (1996). This paper makes use of approaches that are similar
in spirit to ours. These authors also consider flow through a two-dimensional pleated
filter, and exploit (as we do) the small aspect ratio of the pleat to simplify the fluid
dynamics and fouling problems. The work differs from ours in several key respects
however. First, there is no porous support material separating the pleats in that paper,
so that flow between the pleats is modelled as Stokes flow rather than Darcy flow.
Second, fouling of the pleated filter is assumed to occur only via the caking referred
to in (iii) above (in the applications we consider this to be the ‘end stage’ of the
fouling process, when the filter is nearing the end of its useful life). A primary focus
of King & Please (1996) is tracking and analysing mathematically the cake boundary
as it builds up. Once cake has formed on the filter surface, that part of the filter
admits no flux through it, in contrast to our model, where blockage of a pore simply
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increases the resistance locally. Thirdly, the work of King & Please (1996) focuses on
the case of a constant prescribed flux, whereas we consider the case of flow driven
by a constant pressure drop, so that as fouling occurs, the flux through our filter
drops to zero. While the geometry of our filtering problem corresponds to that of
King & Please (1996), our formulation was done independently of their paper and
for completeness we provide all details of the derivation of our model.

This paper is laid out as follows: in § 2 we develop a mathematical model for the
flow through a pleated sandwich of membrane filter and porous support layers. We
consider the case of high PPD, using an asymptotic approach to exploit both the
small aspect ratio of a pleat and the thinness of the membrane relative to the support
layers. The model contains the membrane permeability Km(X; T), which evolves as
a function of space and time. Initially this is constant, but as particles are deposited
on and within the membrane, spatial variation develops according to our proposed
membrane fouling model. The model we develop has several different features: we
illustrate these by means of representative solutions, and we compare the pleated
filter with the closest equivalent flat (non-pleated) filter, in § 3. In order to make a
meaningful comparison, and to identify the performance difference due to the pleated
geometry, we compare to a flat filter surrounded by the same thickness of support
material as the pleated filter (details of the solution for this simple one-dimensional
model are included in appendix A). We conclude with a discussion in § 4.

2. Mathematical modelling
2.1. Modelling assumptions: outline

The geometry of a cylindrical pleated membrane filter cartridge is sketched in figures
1 and 2 and described in the Introduction. Figure 2(b) also introduces the coordinates
that will be used in this paper: the Z-direction is along the cylinder’s axis, the X-
direction is radially inwards measured from the cartridge outer wall, and Y is arc
length around the outer cylinder boundary, measured as indicated. We idealize the
rather complicated flow scenario depicted in figure 2 in several ways. We assume
there is no variation in the Z-direction, and that all pleats are identical. This justifies
our considering flow confined to a cross-section at constant Z, within a single pleat,
which we assume to be part of a periodic array (periodic in arc length Y). We simplify
further by neglecting the curvature of the cylindrical cartridge, considering instead
one section of a linear periodic array in rectangular Cartesian (X, Y)-coordinates. We
restrict our attention to the case of tightly packed pleats, as shown in figure 3(a). In
this situation, the length L of the pleat (from outer to inner cartridge boundary; X-
direction in figures 2b and 3b) is much greater than the pleat thickness (the thickness
of support layers plus membrane in the Y-direction), so that the vast majority of the
flow through the pleat is expected to pass through the pleat length rather than its ends.
This observation suggests neglecting the flow through the ends of the pleats (the pleat
tips and valleys) as being negligible relative to the flow through the straight section
of the membrane (the section parallel to the X-axis). With this in mind, we make our
final simplification, idealizing the pleat geometry to be rectangular and imposing no-
flux conditions at pleat tips and valleys where shown in figure 3(b). This simplification
is justified further: (i) by noting that the high membrane curvature in the pleat tips and
valleys is likely to lead locally to very low membrane permeability and high resistance
to flow (particularly on the inside of the tight curve); and (ii) by limited experimental
data (Fotovati et al. 2011) on filters subjected to dust-laden air and then analysed,
which indicate little or no dust particle deposition at the actual fold locations.
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FIGURE 3. (Colour online) (a) Section of the pleated geometry, which is repeated
periodically (adapted from Giglia et al. 2010). The Z-axis in figure 2(b) is here
perpendicular to the page. Green/blue correspond to support layers exterior/interior to the
annulus; grey represents the membrane filter (in reality much thinner than the support
layers), and the heavy black arrows indicate the flow direction. (b) Idealized membrane
geometry to be considered in our model. Symmetry lines (dashed) are located at Y =±H,
and the straight portion of the pleat occupies 0 6 X 6 L. (c) The problem domain and
boundary conditions at inlet and outlet. Some schematic flow streamlines are also shown.

The sketches in figures 3(b) and 3(c) summarize the simplified flow problem to
be solved. Figure 3(b) clarifies how the pleat geometry of 3(a) is idealized (the
same colour coding is used to distinguish between inflow and outflow sides of the
membrane), while figure 3(c) shows the solution domain, with the boundary conditions
to be applied on the pressure. The flow region considered is from the lower to the
upper periodicity boundary (the dashed symmetry lines in figure 3b): −H 6 Y 6 H,
and from X = 0 to X = L along the membrane, with the membrane itself occupying
region −D/2 6 Y 6 D/2, 0 6 X 6 L (hatched region in figure 3c). Our small aspect
ratio assumptions, to be discussed further below, are represented by the dimensionless
parameters ε =H/L� 1, δ=D/H� 1. Figures 3(b) and 3(c) also indicate the inflow
and outflow, the no-flux boundaries at the pleat valley (X = L, 0 6 Y 6 H) and tip
(X = 0, −H 6 Y 6 0), and the symmetry conditions at the support layer mid-surfaces
(Y = ±H). In general throughout this paper we use upper-case characters to denote
dimensional variables, while the lower-case equivalent will be dimensionless.
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Parameter Description Typical value

L Length of the pleat 1.3 cm
H Support layer thickness 1 mm
D Membrane thickness 300 µm
A0 Initial pore radius 2 µm (very variable)
B−1 Characteristic particle size 4 µm (very variable)
E Adsorption coefficient within pores Unknown (depends on

characteristics of membrane
and feed solution)

G∞ Total particle concentration Depends on application
N0 Number of pores per unit area 7× 1010 m−2 (very variable)
P0 Pressure drop Depends on application
Kav Average support layer permeability 10−11 m2 (very variable)
Km0 Clean membrane permeability 5×10−13 m2 (very variable)

TABLE 1. Approximate dimensional parameter values (A. Kumar, 2014, Private
communication).

The tight packing means that the whole flow domain considered is occupied
by porous medium (support layer or membrane), within which Darcy flow of an
incompressible Newtonian feed solution, viscosity µ, is assumed, with velocity
U = (U,V) and pressure P. We assume the feed solution to be a dilute suspension of
particles, which are advected passively through the support layers. The permeabilities
of support layers and membrane are K, Km, respectively, with Km/K�1 in accordance
with data for real filter cartridges (see table 1). We allow support layer permeability K
to vary along the pleat, but assume it is symmetric above and below the membrane.
For the most part we assume that K varies only in the coordinate X along the
pleat, K(X); the case of permeability that can vary also in the Y-direction, K(X, Y),
is discussed briefly in § 2.3.1. (Note that, due to the annular configuration of the
cartridge, the valley ends of pleats will be more compressed than the tip ends,
leading to lower permeability at the valleys; see figures 1 and 2.) In general Km

will vary in both space and time as membrane fouling occurs, with the variation in
time being quasi-static: Km(X, T). (We do not account for any fouling of the support
layers, which are not designed to capture particles: the pores of these layers are very
much larger than those of the membrane filter.) The time evolution of the membrane
permeability similarly induces time variation into the solution for the pressure and
fluid velocity within the pleat. However, since no explicit time-dependence appears
in the Darcy flow model, we will mostly suppress the time dependence to simplify
notation, writing Km(X), P(X, Y), etc. This (quasi-static) assumption that only the
dynamics of membrane fouling need explicit consideration amounts to an assumption
(borne out by data) that fouling occurs on a time scale long compared with that of
fluid transit time across the pleated cartridge.

To arrive at a tractable fouling model we consider a membrane composed of an
identical array of uniformly distributed cylindrical pores of radius A(T). Within our
model, membrane resistance is assumed to increase in time due to fouling by two
mechanisms: (i) A(T) decreases in time due to adsorption of tiny particles within the
pores; and (ii) pores become blocked from above by particles too large to pass through
pores. In order to model (ii) we monitor N(X, T), the number of unblocked pores per
unit area of membrane. Again, we will mostly suppress the time-dependence here to
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simplify notation, writing just A and N(X). Membrane permeability will be expressed
as a function of both A and N.

2.2. Governing equations
The feed is assumed to be a dilute suspension of particles, which do not affect the
fluid dynamics directly (though they do have an indirect effect via the fouling, which
results in increased system resistance). We therefore use a single-phase model, in
which Darcy velocity U = (U, V) within the support layers is given in terms of the
pressure P(X, Y) by

U = (U, V)=−K
µ
∇P, ∇= (∂X, ∂Y). (2.1)

Incompressibility of the feed solution requires

∇ ·U = 0 ⇒ ∇ · (K∇P)= 0, (2.2)

within the support layers. As discussed in § 2.1 above, we assume that the flow is
driven by an imposed pressure difference, P0, across the pleated membrane and that
there is no flux through the pleat valley on the inflow side and the pleat tip on the
outflow side, and we impose symmetry across the support layer centrelines Y =±H
(see figure 3). Hence, we impose boundary conditions

P+(0, Y)= P0, P+X (L, Y)= 0, P+Y (X,H)= 0, (2.3a−c)

P−X (0, Y)= 0, P−(L, Y)= 0, P−Y (X,−H)= 0, (2.4a−c)

where we use ± superscripts to distinguish between quantities evaluated in Y ≷ 0
respectively, on either side of the membrane. For most of our simulations we take P0
to be a specified constant, reflecting flow driven by a fixed pressure drop between inlet
and outlet; but we will also present some results for fixed-flux scenarios, where P0
increases in time in order to maintain the same flux as the system resistance increases
due to fouling (see § 2.3.4).

Similar to (2.1) we also assume Darcy flow across the membrane, which is itself
a porous medium, though much less permeable than the support layers. We are
primarily concerned with the flux, Vm, per unit area across the membrane in the
Y-direction. Anticipating in advance the fact that the pressure within the membrane
will be independent of the coordinate Y perpendicular to the membrane (due to
the small aspect ratio D/L = εδ � 1), and given that the pressure is continuous
across the interface between the membrane and support layers, the vertical pressure
gradient within the membrane may be written, correct to leading order in εδ, as
(P+|Y=D/2 − P−|Y=−D/2)/D. The Darcy law for the flow through the membrane then
gives

|Vm| = Km

µD
[P+|Y=D/2 − P−|Y=−D/2], 0 6 X 6 L, (2.5)

where, by continuity of flux, |Vm(X)|= |V(X,D/2)|= |V(X,−D/2)| (with V as defined
in (2.1)),

|Vm| = K
µ

∂P+

∂Y

∣∣∣∣
Y=D/2

= K
µ

∂P−

∂Y

∣∣∣∣
Y=−D/2

, 0 6 X 6 L. (2.6)
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The total flux through the membrane, Q (per unit length along the axis of the
cartridge), which will be an important performance characteristic in our simulations,
is defined by

Q=
∫ L

0
|Vm| dX =

∫ L

0

K
µ

∂P+

∂Y

∣∣∣∣
Y=D/2

dX. (2.7)

Membrane permeability Km changes, over time scales long compared to the fluid
transit time, due to pore shrinkage (arising from particle adsorption) and to blocking
of pores by large particles. We now consider these fouling phenomena in more detail.
We assume that membrane pores are long thin cylindrical tubes, of length D and
radius A(T), spanning the membrane, which initially all have the same radius, A(0)=
A0. A more sophisticated model would allow for non-uniform shrinkage of pores due
to the adsorption, but in our simple model we assume uniform adsorption, so that the
pore radius does not vary spatially. Where an individual pore (at position X and time
T) is unblocked the total flux through it Qu,pore(X, T) is given (approximately) by the
Hagen–Poiseuille formula

Qu,pore = 1
Ru
(P+|Y=D/2 − P−|Y=−D/2) where Ru = 8µD

πA4
, (2.8)

and Ru is the pore resistance. Blocking occurs when a large particle becomes trapped
at the entrance to a pore, obstructing the flow. We model this effect by adding an extra
resistance of magnitude 8µDρb/(πA4

0), where ρb is a dimensionless number, in series
with the Hagen–Poiseuille resistance Ru. The flux through a blocked pore, Qb,pore(X,T),
is thus given by

Qb,pore = 1
Rb
(P+|Y=D/2 − P−|Y=−D/2) where Rb = 8µD

πA4
0

((
A0

A

)4

+ ρb

)
. (2.9)

The dimensionless parameter ρb characterizes blocking strength: for large values of ρb
pore resistance increases dramatically after blocking, while for small values resistance
is almost unchanged. In the limit ρb→∞ our model captures the simplest blocking
assumption: that deposition of a large particle over a pore blocks it completely.

We can now relate the number densities of unblocked and blocked pores, N(X, T)
and N0 − N(X, T) respectively (where N0 = N(X, 0)), to the membrane permeability
Km by noting that the flux |Vm| of fluid (per unit area of membrane) is

|Vm| =N(X, T)Qu,pore + (N0 −N(X, T))Qb,pore (2.10)

so that, on substituting for Qu,pore from (2.8) and for Qb,pore from (2.9) in the above
and comparing to (2.5), we obtain

Km = πA4
0

8

(
N

(A0/A)4
+ N0 −N
(A0/A)4 + ρb

)
. (2.11)

To complete the model we need equations describing the evolution of N(X, T), the
local number density of unblocked pores, and A(T) the pore radius. We assume a pore
is blocked whenever a particle with radius S>A(T) is advected to the pore entrance. If
we assume a cumulative particle size distribution function G(S), giving the number of
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particles per unit volume of fluid with radius smaller than S, then the concentration of
particles of size S>A(T) is G∞−G(A) (where G∞= limS→∞G(S) is the total particle
concentration). The probability that a particular pore is blocked (per unit time) is thus
(G∞ −G(A)) multipled by the flux through the pore, Qu,pore (given by (2.8)):[

Probability per unit time that
pore of radius A is blocked

]
= πA4

8µD
(G∞ −G(A))(P+|Y=D/2 − P−|Y=−D/2). (2.12)

Given that we assume unblocked pores all have radius A(T), the number of pores
blocked per unit time, per unit area, is equal to N(X, T) times the probability, per
unit time, that a pore of radius A(T) is blocked. It follows that the rate of change of
the number density (per unit area) of unblocked pores is given by

∂N
∂T
=−N

πA4

8µD
(G∞ −G(A))(P+|Y=D/2 − P−|Y=−D/2). (2.13)

In order to describe fouling we make the simplest possible assumption, namely
uniform adsorption within the pores, so that particle radius decreases uniformly
according to

∂A
∂T
=−E, A|T=0 = A0, (2.14)

for some constant E. Deposition within pores in reality will be controlled by a
complex interplay between suspended particles in the feed, and the membrane material,
the details of which will vary from one system to another; in the absence of detailed
experimental data our model reflects an assumption that the rate of loss of pore area
is proportional to the pore circumference only, other effects being largely the same
from one pore to another.

All our simulations will be conducted with an exponential cumulative particle
distribution of the form

G(S)=G∞(1− e−BS), (2.15)

where B−1 is a characteristic particle size. This functional form was not chosen to fit
to any specific dataset, but has the general features required. While some particle size
distributions characterized in the literature (see e.g. Giglia & Straeffer 2012, with two
distinct characteristic particle sizes) are more complicated, we recall that our model
implicitly assumes two separate particle size distributions: the ‘macroscopic’ particles
modelled by G(S) with pore-blocking potential; and the ‘microscopic’ particles
implicit in our pore adsorption model.

2.3. Scaling, non-dimensionalization and asymptotics
Even with the simplifications introduced, the model above is complicated, and we
therefore exploit asymptotic analysis based on the small aspect ratio of the pleat (ε=
H/L� 1), and on the thinness of the membrane relative to the support layer (δ =
D/H � 1); see table 2 below, which summarizes the model parameters and gives
estimates, where available. For the most part we consider filtration driven by a fixed
pressure drop, P0, between inlet and outlet, and this is the basis on which we non-
dimensionalize below. We will also present some simulations for a prescribed flux
scenario, for which the scalings are a little different; we comment briefly on this in
§ 2.3.4 below.
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Parameter Formula Typical value

ε H/L 0.077
δ D/H 0.3
β (8µED)/(πA5

0P0G∞) Unknown; values in
range 0.001–0.1 used

Γ Km0L2/(KavHD) 1–50
b BA0 0.2–10
ρb Additional constant resistance when

pore blocked.
Unknown; values in
range 0.25–10 used

TABLE 2. Approximate dimensionless parameter values.

2.3.1. Fluid dynamics
In order to exploit the asymptotic simplifications, we introduce dimensionless

variables as follows:

P±(X, Y)= P0p±(x, y), (X, Y)= (Lx,Hy),

K(X)=Kavk(x), Km(X)=Km0km(x),

}
(2.16)

where Kav = (1/L)
∫ L

0 K(X) dX is the average support layer permeability and Km0 is
a typical initial membrane permeability. For definiteness, we can take it to be the
initial membrane permeability in the expression (2.11), with A= A0 and N = N0. For
conciseness in the following we will indicate dependence on variables only where
necessary, but it should be understood that all functions except the support layer
permeability k vary in both space and time. In the dimensionless coordinates our
idealized problem for the pressure p±(x, y) within the support layers (2.2)–(2.4)
becomes

ε2(k(x)p+x )x + (k(x)p+y )y = 0, δ/2 6 y 6 1, (2.17)

p+(0, y)= 1, p+x (1, y)= 0, p+y (x, 1)= 0, (2.18a−c)

ε2(k(x)p−x )x + (k(x)p−y )y = 0, −1 6 y 6−δ/2, (2.19)

p−x (0, y)= 0, p−(1, y)= 0, p−y (x,−1)= 0. (2.20a−c)

This system is closed by enforcing flux continuity across the membrane, (2.5) and
(2.6), which gives

p+y |y=δ/2 = p−y |y=−δ/2 = ε2Γ
km(x)
k(x)
[p+|y=δ/2 − p−|y=−δ/2], (2.21)

where the key dimensionless parameter Γ is defined by

Γ = Km0L2

KavHD
(2.22)

and gives a scaled measure of the relative importance of the resistance of the packing
material to that of the membrane, such that if Γ � 1 the packing material provides
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most of the resistance whereas if Γ �1 the membrane provides most of the resistance.
We now seek asymptotic solutions for p± in the distinguished limit Γ = O(1),
ε� 1 and δ� 1 (note that our solution is asymptotically valid for all Γ � 1/ε2) by
expanding p± in powers of ε as follows:

p+(x, y)= p+0 (x)+ ε2p+1 (x, y)+ · · · , p−(x, y)= p−0 (x)+ ε2p−1 (x, y)+ · · · . (2.23a,b)

We will determine coupled equations for the as yet unknown functions p±0 (x) by
seeking a solvability condition on the first-order solutions p±1 (x, y). This is effected
by substituting the expansions (2.23) into (2.17)–(2.20) and taking the O(ε2) terms,

∂

∂y

(
k(x)

∂p+1
∂y

)
+ ∂

∂x

(
k(x)

∂p+0
∂x

)
= 0, (2.24)

∂p+1
∂y

∣∣∣∣
y=1

= 0, k(x)
∂p+1
∂y

∣∣∣∣
y=0+
= Γ km(x)(p+0 − p−0 ), (2.25a,b)

∂

∂y

(
k(x)

∂p−1
∂y

)
+ ∂

∂x

(
k(x)

∂p−0
∂x

)
= 0, (2.26)

∂p−1
∂y

∣∣∣∣
y=−1

= 0, k(x)
∂p−1
∂y

∣∣∣∣
y=0−
= Γ km(x)(p+0 − p−0 ). (2.27a,b)

Integrating (2.24) between y=0 and y=1 and applying the boundary conditions (2.25)
leads to a solvability condition in the form of an ordinary differential equation (ODE)
(in x) for p+0 (x) and p−0 (x). Similarly, integration of (2.26) between y=−1 and y= 0
and application of the boundary conditions (2.27) leads to a second ODE. Boundary
conditions on these two ODEs come from the leading-order terms of (2.18) and (2.20).
The resulting simplified model for p+0 and p−0 is

∂

∂x

(
k(x)

∂p+0
∂x

)
= Γ km(x)(p+0 − p−0 ), (2.28)

∂

∂x

(
k(x)

∂p−0
∂x

)
=−Γ km(x)(p+0 − p−0 ), (2.29)

p+0 |x=0 = 1,
∂p+0
∂x

∣∣∣∣
x=1

= 0, (2.30a,b)

∂p−0
∂x

∣∣∣∣
x=0

= 0, p−0 |x=1 = 0. (2.31a,b)

In addition p+1 and p−1 can be found by solving the differential equations (2.24) and
(2.26) subject to boundary conditions (2.25) and (2.27) respectively, giving

p+1 (x, y)=− (k(x)p
+
0x)x

k(x)

(
y2

2
− y
)
+ h+(x), (2.32)

p−1 (x, y)=− (k(x)p
−
0x)x

k(x)

(
y2

2
+ y
)
+ h−(x), (2.33)

for some functions h±(x).
This model, at leading order, describes two porous medium flows (with pressures

p+0 (x) and p−0 (x)) separated by a membrane through which fluid is driven (from one
side to the other) by the local pressure difference.
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Generalization to support layer with y-dependent permeability k(x, y)
It is straightforward to generalize this treatment to a support layer with permeability

k(x, y). Dependence on y could be introduced by (for example) choice of a support
material with a layered structure. The result obtained is identical to (2.28)–(2.31)
except that k(x) is replaced by k̂+(x) in (2.28) and k̂−(x) in (2.29), where k̂+(x)
and k̂−(x) are the y-averages of the permeability, above and below the membrane,
respectively,

k̂+(x)=
∫ 1

0
k(x, y) dy and k̂−(x)=

∫ 0

−1
k(x, y) dy. (2.34a,b)

When we come to suggest possible improvements to the pleated filter system in § 4
we will return to this generalized formulation.

The small-Γ limit
In this limit the dominant resistance to flow is that of the membrane (as opposed to

that of the porous support layers) and, to leading order in Γ , the solution to (2.28)–
(2.31) is just

p+0 = 1 and p−0 = 0. (2.35a,b)

It is apparent that the situation here is identical to that of a flat membrane across
which a constant pressure difference is applied. We would thus expect membrane
fouling to occur uniformly along the length of the membrane, leading to optimal
membrane performance (see appendix A and the simulations of § 3).

Method of solution
It is apparent from (2.28) and (2.29) that (k(x)(p+0 + p−0 )x)x = 0. This statement is

readily integrated twice to obtain an expression for p−0 in terms of p+0 ,

p−0 (x)=−p+0 (x)− c1(t)
∫ x

0

dx′

k(x′)
− c2(t), (2.36)

for some c1(t) and c2(t) (which are independent of x, but will vary in time as
fouling occurs). By substituting (2.36) into (2.28) we obtain a single equation for p+0
containing two arbitrary functions of time,

(k(x)p+0x(x))x − 2Γ km(x)p+0 (x)= Γ km(x)
(

c1(t)
∫ x

0

dx′

k(x′)
+ c2(t)

)
, (2.37)

which must be solved subject to the four boundary conditions

p+0 |x=0 = 1, p+0x|x=0 =−c1(t)
k(0)

,

p+0 |x=1 =−
(

c1(t)
∫ 1

0

dx
k(x)
+ c2(t)

)
, p+0x|x=1 = 0.

 (2.38)

Hence, with p+0 determined, we have the leading-order solution for the pressure within
the support layers, from (2.23) and (2.36).
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The flux of fluid through the pleat
The total dimensionless flux q, which we will use to characterize membrane

performance later, is defined in terms of total dimensional flux Q (2.7) by Q= Q0q,
where Q0=Km0P0L/(µD). By mass conservation the total flux of fluid flowing across
the membrane is equal to that flowing across the inlet boundary and so

q=− k
Γ

∂p+0
∂x

∣∣∣∣
x=0

. (2.39)

Another useful quantity for understanding the progress of fouling is the flux |Vm|
(as defined in (2.6)), per unit area, through the membrane (from top to bottom) as
a function of position X along the membrane. When we define the dimensionless
analogue, |vm|, of this quantity by |Vm| = |vm|Km0P0/(µD), this satisfies the relation

|vm(x, t)| = p+0 (x, t)− p−0 (x, t). (2.40)

2.3.2. Membrane fouling
The membrane permeability km and the flow vary in time due only to the fouling

by deposited particles, which occurs in a spatially non-uniform manner. In (2.11) we
expressed membrane permeability in terms of the pore radius A, and the number of
unblocked pores per unit area, N. We scale each of these quantities with their initial
values,

A= A0a, N(X)=N0n(x). (2.41a,b)

We note further that (2.13) defines a natural time scale for the problem (that of
blocking), while G∞ gives a natural scale for the particle size distribution, motivating
us to rescale as follows:

T = 8µD
πP0G∞A4

0
t, G=G∞g(s), S= A0s, B= b

A0
, g(s)= 1− e−bs (2.42a−e)

while (2.11) gives a natural choice of Km0 and leads to the definition

Km0 = πA4
0N0

8
. (2.43)

Applying these rescalings together with our original non-dimensionalization (2.16) to
(2.11)–(2.14), we obtain the remaining dimensionless equations in the model:

km(x, t)= a4

(
n+ 1− n

1+ ρba4

)
, (2.44)

∂n
∂t
=−na4e−ba(p+|y=δ/2 − p−|y=−δ/2), n|t=0 = 1, (2.45)

∂a
∂t
=−β, a|t=0 = 1, (2.46)

where the dimensionless parameter β is given by

β = 8µED
πA5

0P0G∞
. (2.47)
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2.3.3. Fluid velocity and streamfunction in support layers
It will be convenient in our simulations to be able to visualize the fluid flow

through the support layers. Since the flow within these layers is quasi-static and
two-dimensional, a streamfunction ψ may be defined. From the asymptotic solution
for the pressure, (2.23), and using the dimensionless form of the Darcy equation, we
have dimensionless velocity in the upper and lower support layers given by

u±(x, y)= (−k(x)p±0x(x), (k(x)p
±
0x(x))x(y∓ 1)). (2.48)

From the streamfunction definition

u±(x, y)= (ψ±(x, y)y,−ψ±(x, y)x) (2.49)

we find

ψ+(x, y)=−k(x)p+0x(x)(y− 1), ψ−(x, y)=−k(x)p−0x(x)(y+ 1)− c1, (2.50)

where the integration constant in ψ− (the same c1 that was introduced in (2.36)) was
chosen to match streamlines on the x-axis (the filter membrane location).

2.3.4. Modification for the constant flux case
In the alternative scenario where the total flux Q0 through the membrane is fixed

instead of the pressure drop, we define the inlet pressure by P0ζ (t), where ζ increases
monotonically as the membrane is fouled, in such a way as to sustain constant total
flux Q=Q0 (as defined by (2.7)). By modifying (2.39),

ζ

[
k
Γ

∂p+0
∂x

]x=1

x=0

= q0, constant, for all t, (2.51)

with dimensionless flux as defined there.

2.4. Model summary
Our final model is represented by (2.23), (2.36)–(2.38), (2.44)–(2.46). At this stage
we now emphasize each quantity that depends on space and/or time. At each instant
of time we must solve the boundary value problem (2.37),

∂

∂x

(
k(x)

∂p+0 (x, t)
∂x

)
− 2Γ km(x, t)p+0 (x, t)= Γ km(x, t)

(
c1(t)

∫ x

0

dx
k(x)
+ c2(t)

)
, (2.52)

subject to conditions (2.38)

p+0 (0, t)= 1, p+0x(0, t)=−c1(t)
k(0)

, (2.53a,b)

p+0 (1, t)=−
(

c1(t)
∫ 1

0

dx
k(x)
+ c2(t)

)
, p+0x(1, t)= 0, (2.54a,b)

in terms of which the pressures in the support layers are given by (2.23), (2.36). Note
that we have four boundary conditions (2.53), (2.54) for the second-order equation
(2.52), which ensures that the unknown functions c1(t) and c2(t) are fixed also. The
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membrane permeability km(x, t) varies quasi-statically in (2.52) due to the fouling; it
satisfies (2.44),

km(x, t)= a(t)4
[

n(x, t)+ (1− n(x, t))
(1+ ρba(t)4)

]
, where a(t)= 1− βt. (2.55)

The number density of unblocked pores, n(x, t), varies according to (2.45),

∂n(x, t)
∂t

=−n(x, t)a(t)4e−ba(t)

(
2p+0 (x, t)+ c1(t)

∫ x

0

dx
k(x)
+ c2(t)

)
, n(x, 0)= 1.

(2.56)

The solution scheme for this system is straightforward. At time t = 0 assign
km(x, 0) = km0 = 1. Then: (i) solve the boundary value problem (2.52)–(2.54) for
p+0 (x, t); (ii) use this solution, and the current membrane permeability km(x, t) and
pore radius a(t) as given by (2.55) to solve (2.56) for n(x, t); (iii) update km(x, t)
and a(t) via (2.55) according to the new n(x, t); and (iv) use the updated km(x, t) and
return to step (i); repeat.

3. Results

The model contains a number of parameters, which are summarized in table 1
(dimensional parameters) and table 2 (dimensionless parameters) along with typical
values, where known. Considerable variation in the exact values is possible as
indicated in the table, but exhaustive investigation of the effects of each parameter is
impractical, hence for most of our simulations we fix their values as discussed below.

The relative measure of the resistance of the packing material to that of the
membrane, Γ , could certainly vary quite widely from one system to another
depending on the detailed structure of the filter membrane and the support layers.
Our analysis assumes Γ = O(1), which appears to be in line with data for real
pleated filters (A. Kumar, 2014, Private communication). Based on the values given
in tables 1 and 2 we take Γ = 10 throughout most of our simulations (figures 4–6),
but consider how results depend on Γ in figure 7. The dimensionless pore shrinkage
rate, β, is unknown but will be small (this represents the time scale on which pores
close due to adsorption, relative to that on which particles block individual pores
from upstream): we set β= 0.02. Assuming the characteristic particle size to be larger
than the membrane pore size, we set b, the ratio of initial pore size to characteristic
particle size, to 0.5 for most simulations. Finally, assuming that blocking of a pore
by a particle increases its resistance by some O(1) factor, we set ρb = 2 for most
simulations. We briefly demonstrate the effect of changing parameters ρb and b in
figure 6.

For the support layer permeability function k(x) we investigate several different
profiles to see how this affects the outcome. For a real pleated filter we anticipate
that decreasing support layer permeability will be the more realistic scenario, since
the annular cartridge leads to higher compression (and lower permeability) of the
layers at the inner cartridge boundary (corresponding to x = 1; we refer the reader
back to figures 2 and 3 for the cartridge geometry). However, for a more complete
investigation, and to gain further insight into the model behaviour, we also consider
increasing support permeability profiles, and the case of uniform support permeability.



Pleated membrane filters 51

0.2 0.4 0.6 0.8 1.0
–1.0
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1.0

–1.0

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

x x

y

0.01
0.02
0.05
0.08
0.13
0.18
0.25

(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. (Colour online) (a) The streamlines (level curves of ψ±(x, y)) at time t= 0.2tf
for the case of uniform support layer permeability k(x) = k1(x) = 1. (b–f ) Membrane
permeability km at several different times (indicated in the legends) for the support
permeability profiles k1–k5 (defined in (3.1)), respectively. In all cases, tf = 50. Other
parameter values are: β = 0.02, Γ = 10, b= 0.5, ρb = 2.

The different profiles considered are:

k(x)=



k1(x)= 1 uniform
k2(x)= 1.5− x linear decreasing

k3(x)= 1
1.2

(
tanh

(
0.5− x

0.25

)
+ 1.2

)
abruptly decreasing

k4(x)= 0.5+ x linear increasing

k5(x)= 1
1.2

(
tanh

(
x− 0.5

0.25

)
+ 1.2

)
abruptly increasing

(3.1)
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FIGURE 5. (a) Total flux q(t) versus throughput
∫ t

0 q(t′) dt′ with imposed constant pressure
drop for the pleated membrane with support permeabilities k1, k2, k3 (defined in (3.1)),
and for the non-pleated membrane solution of appendix A (labelled ‘Flat’ in the legend).
(b) Scaled inverse pressure drop versus throughput

∫ t
0 q(t′) dt′ for the case of imposed

constant total flux, for the pleated membrane with support permeabilities k1, k2, k3 and for
the non-pleated membrane solution. Parameter values in both cases are set to the ‘default’
values: β = 0.02, Γ = 10, b= 0.5, ρb = 2.
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FIGURE 6. Flux-throughput graphs for the uniform support layer permeability k= k1 = 1
(a) for several different values of ρb (a measure of the relative increase in pore resistance
when a pore is blocked by a large particle), with b = 0.5; and (b) for several different
values of b, with ρb = 5. Other parameter values are β = 0.02, Γ = 10.

(note that each of these support permeability profiles averages to 1, in line with the
non-dimensionalization chosen for k(x)).

We solve the model numerically for each chosen permeability profile, until the
membrane becomes impermeable and the total flux through it falls to zero at final
time t= tf : for each simulation considered here the flux falls to zero by virtue of the
pore radius a→ 0 and hence tf = 1/β = 50 (see (2.55)). Our numerical scheme is
straightforward, based on second-order-accurate finite difference spatial discretization
of the equations, with a simple explicit time step in the pore-blocking equation (2.56).
Figure 4(a) shows the streamlines, obtained by plotting the level curves of ψ±(x, y)
defined in (2.50), within the support layers at t= 0.2tf for the case of uniform support
layer permeability k1; since the streamlines appear qualitatively similar for the other
cases k2 to k5 we do not show streamlines for all cases. Figure 4(b–f ) shows the
evolution of the membrane permeability km(x, t) until it falls to zero, for each support
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FIGURE 7. Flux-throughput graphs for the uniform support layer permeability k= k1 = 1
for several different values of Γ , with β = 0.02, b= 0.5, ρb = 2.

permeability profile k1–k5 in (3.1). We also (below) compare results for our pleated
filter model with the closest equivalent non-pleated membrane (a flat membrane,
surrounded by the same porous support layers as the pleated filter, but in dead-end
filtration; see appendix A for the solution of this problem).

Figures 4(a) and 4(b) show the results for the case of uniform support layer
permeability (USP), k1(x)= 1. Here the fouling profile remains symmetric about the
centreline x= 0.5, but is distinctly non-uniform in x. Fouling occurs preferentially at
the edges of the domain, near the pleat valleys and tips. Since the pore-clogging
(adsorption) mechanism is assumed to operate homogeneously throughout the
membrane, this enhanced edge-fouling can be due only to greater pore-blocking
there, which itself is a consequence of enhanced flux through the membrane in those
regions (evidenced by the streamline pattern).

Figures 4(c) and 4(d) show results for decreasing support layer permeability (DSP)
profiles. In both cases the symmetry is now broken; the highest flow rate, and the
fouling, are skewed towards the right-hand boundary x= 1 where support permeability
is lowest. Compared with the previous USP case, the support permeability is higher
where the flow enters. Hence, compared with USP, the flow has an easier path through
the support layer, and a greater proportion of the flow entering will pass along the
support layer in the x-direction, rather than through the membrane. Both figures
show this trend, but the effect is more dramatic in figure 4(d) where the support
permeability spatial profile is more extreme (and hence the support permeability at
entry is higher).

As we would anticipate, the converse trend is seen for the increasing support
layer permeability (ISP) profiles (figures 4e and 4f ). Here, the fluid has an initially
difficult path through the upper support layer parallel to the membrane. Thus initially
(again relative to the USP case) a greater proportion of fluid prefers to flow through
the membrane near the boundary x = 0, rather than along the support layer in the
x-direction. This leads to a greater flux through the x= 0 end of the membrane, with
greater particle deposition in that region, giving decreased membrane permeability
there as time increases.
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In all cases, however, as t→ tf the membrane permeability necessarily becomes
uniform again. The explanation for this is straightforward: if km→ 0 in one area of
the membrane then that part is impermeable, and fluid must pass through other parts
of the membrane, fouling those until km = 0 over the whole membrane.

We remark that the fouling patterns obtained here, with increased fouling in the
neighbourhood of pleat valleys and tips, appear qualitatively consistent with the
experimental data of Fotovati et al. (2011) on the deposition of dust particles within
a pleated filter. It is also of interest to note that the fouling patterns we find (due
to adsorption and pore-blocking) are quite different in nature to those obtained by
King & Please (1996), who model only cake formation on a pleated filter (and in
the absence of any permeable support layers). This suggests that the type of fouling
can significantly affect how the filtration proceeds, and hence it is important to know
which fouling modes are operational at all stages. Our model is relevant to the many
applications in which cake formation occurs only in the very late stages, when the
filter is already heavily fouled, and is near the end of its useful life.

To gain insight into the performance of the filter membrane, we plot the graphs
of total flux (q(t), defined by (2.39)) versus throughput (defined by

∫ t
0 q(t′) dt′). In

order to present results that are readily distinguished from one another, and to focus
attention on problems of most immediate industrial relevance, we plot these graphs
for simulations corresponding to the uniform and decreasing support permeabilities
k1–k3 in (3.1) (note also that, given the symmetries observed in figure 4 we anticipate
results for k2 and k4 to be identical, and results for k3 and k5 to be identical).
This flux-throughput graph is a commonly used tool in the filtration literature to
characterize experimentally the performance of filter membranes (see e.g. Daniel
et al. 2011; Giglia & Straeffer 2012; van der Sman et al. 2012 among many others).
Such curves exemplify the tradeoffs often inherent in membrane performance: high
total throughput over a filter lifetime may only be obtained at the expense of low
flux (meaning that filtration is slow); or flux may be high over the filter lifetime, but
total throughput low (meaning that the filter has a short lifespan). Both scenarios are
costly in different ways, and usually in practice some compromise between the two
is found.

The results for our pleated filter model are shown in figure 5(a), alongside the
corresponding graph for the equivalent non-pleated membrane filter (the solution
for which is outlined in appendix A). The graphs clearly demonstrate the superior
performance of the non-pleated membrane, which gives a higher net throughput and
higher total flux throughout. Figure 5(b) shows results for the case in which total flux
through the system, rather than pressure drop across it, is prescribed. In this case as
the membrane is fouled the pressure drop required to maintain the constant flux rises
in time, and we demonstrate this by plotting the inverse pressure drop across the
system as a function of throughput. The same cases as for figure 5(a) are shown, and
once again the superior performance of the equivalent non-pleated filter is apparent:
comparing this filter with any of our pleated simulations, the same throughput is
achieved at lower pressure drop during the later stages of filtration when blocking
becomes significant. The lower pressure drop required for the same throughput is
clearly a more efficient scenario, requiring less power to carry out the filtration.

Figure 6 briefly demonstrates the effect of varying the parameters ρb and b, which
measure (respectively) the relative increase in pore resistance when a pore is blocked,
and the relative size of pores and particles. These results reveal that the pleated filter
model retains features qualitatively similar to those observed for ‘dead end’ filtration
models (for non-pleated filters). In particular as ρb varies from large to small there
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is a clear qualitative change in the shape of the flux-throughput performance curves,
as the model transitions from blocking-dominated to adsorption-dominated behaviour
(figure 6a; this figure also includes the limit ρb→∞, which represents the case in
which deposition of a large particle over a pore blocks it entirely). Such qualitative
changes have been observed experimentally as the membrane type and/or filtrate is
varied, see e.g. Giglia & Straeffer (2012). Similar qualitative changes are observed
as the parameter b is varied (figure 6b). Again, this may be attributed to the model
transitioning from blocking-dominated (small b; pores smaller than particles) to
adsorption-dominated (large b; particles smaller than pores) behaviour. Figure 6(b)
demonstrates how the flux-throughput graph varies as b is changed for ρb = 5 (other
parameters as before). When a smaller value of ρb is used (e.g. ρb = 0.25) there is
less variation in the flux-throughput graphs with b.

Since other parameters remained constant for these simulations of figure 6, overall
filter performance deteriorates as ρb increases (larger ρb means that blocking of
individual pores by large particles leads to a greater decrease in system permeability);
nonetheless there is a clear and distinct change in the shape of the flux-throughput
curves as ρb changes, and this is in line with what would be anticipated from the
empirical laws commonly assumed in the filtration fouling literature (as described,
e.g. by Giglia & Straeffer 2012). Similar inferences may be made for the variations
with b.

Figure 7 shows how the results change as the parameter Γ varies. In line with
the asymptotic small-Γ results of § 2.3, we observe convergence of the pleated filter
results to the non-pleated (flat) filter as Γ → 0 and the membrane resistance is the
dominant contribution to the total system resistance. For very large values of Γ the
support layer adds very significant additional resistance to the system, and overall filter
performance is very poor.

4. Discussion and conclusions

We have presented an asymptotically reduced, first-principles model that can
describe the key features of flow through and fouling of a pleated membrane filter.
Our model accounts for the non-uniform flow induced by the pleated geometry,
and for fouling by two distinct mechanisms: adsorption and pore-blocking. While
essentially predictive, our model contains several parameters that may be difficult to
measure for a given system (most notably, the relative importance of blocking and
adsorption, ρb, and the dimensionless adsorption rate, β). In practice such parameters
could be inferred by fitting to a reliable dataset; but even so these parameters will
vary from one membrane-filtrate system to another, since they depend on membrane
structure, and the chemical interactions between the filtrate particles and the membrane
material. In the absence of definitive data, for our simulations we chose what we
believe to be plausible parameter values (summarized at the start of § 3 and in tables
1 and 2).

The focus in this paper is on development of a model that can be used to
quantify (i) the performance of a pleated filter with known characteristics under
given operating conditions and (ii) the key differences between this and the closest
equivalent non-pleated membrane filter in dead-end filtration. There are many different
metrics that can be used to quantify filter performance: we focus primarily on
optimization of filtrate throughput over the filter lifetime, for fixed filter-membrane
characteristics. Though particle capture efficiency is obviously another important
performance indicator, we assume that the same filter membrane will make an equally
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good (or bad) job of this whether in a pleated or flat configuration, and instead
try to elucidate how results depend on cartridge design, and why the comparable
unpleated case performs better. We present selected results that bear out the expected
performance discrepancy, but we do not, in this paper, investigate exhaustively how
this discrepancy depends on all model parameters.

One of the suggested hypotheses for the underperformance of pleated filters relative
to non-pleated filters is that the presence of the porous support layers in the pleated
filter cartridges could be key, due to the increased system resistance they impart. In
making our comparisons, we therefore compared our model to a non-pleated filter
surrounded by support layers with the same dimensions and permeability as those in
our pleated filter (see appendix A). A critical performance parameter in our models
turns out to be Γ = Km0L2/(KavHD) (see tables 1 and 2), a scaled dimensionless
measure of the ratio of the membrane resistance and the support layer resistance.
Recalling the brief analysis of the small-Γ limit presented in § 2.3.1 we note that
this case corresponds, at leading order, to the non-pleated membrane solution. As can
be seen from figure 7 the performance of the membrane approaches that of the flat
membrane as Γ → 0 and furthermore, this is the optimal value of Γ in the sense that
it maximizes throughput before the membrane becomes completely fouled. In the light
of this observation we briefly consider what steps might be taken to reduce Γ . These
could include reducing the length L of the pleat, or increasing the thickness H of the
support layer, but both of these act counter to the goal of pleating the membrane in
the first place, which is to pack a large amount of membrane into a compact device
of small volume. The only realistic way of reducing Γ is therefore to increase the
average permeability Kav of the surrounding support layers.

Our model can account for spatial variations in permeability of the support layers,
which may be present due to the annular geometry of the filter casing, or could
be introduced by choice of support material. These permeabilities were assumed
symmetric about the membrane (though the model could be easily adapted to describe
the situation when this is not the case); and we investigated primarily how filtration
performance varies as this support permeability profile varies with distance x along
the pleat. Our results indicate firstly that such variations in support permeability
can lead to different fouling patterns within the membrane, at least at intermediate
filter lifetimes. More importantly, if variations in support permeability are sufficiently
abrupt, they can give rise to a marked decrease in filter performance, as borne out
by figure 5(a). It was also noted, however, that variations of support permeability
in the y-direction perpendicular to the membrane may be described within the basic
modelling framework, provided only that the support permeability is averaged in the
y-direction (see (2.34)). This observation suggests that a smaller value of Γ could
be obtained simply by adding an additional layer of highly permeable material (e.g.
mesh, as seen in figure 1) to the existing support, which would increase Kav and
hence decrease Γ , with an accompanying performance improvement.

The consistency of our results with previous models and literature gives us
confidence that our model, based as it is on first-principles assumptions about
how fouling occurs, is sound, and provides a good basis for predictive simulations.
While a more complicated model could provide more accurate predictions, our
model has the advantage that it is simple and quick to simulate, offering a useful
tool for investigating filter design characteristics. Future work on the pleated filter
problem, already underway, will include: (i) calibrating and testing the present model
against reliable experimental data; (ii) exploring reasonable model parameter space
to identify optimum performance within industrial constraints; and (iii) refining the
model presented here.
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Many possible refinements of our modelling could be pursued, depending on
the end goal. From the point of view of more realistically describing an industrial
pleated filter cartridge geometry, one could, for example, model the variations along
the cartridge axis. As figure 2(a) indicates, the two ends of the annular cartridge
are not subject to identical conditions: the top end at Z = Lc is capped off, while
the bottom end Z = 0 is where the drainage occurs. There will, therefore, be some
axial variation, neglected in the present model. Such variation could be modelled
by first solving an ‘outer’ problem, in which the entire annular cartridge is treated
as a porous annulus, across which Darcy flow occurs, driven by a uniform pressure
exterior to the annulus, with Z-dependent interior pressure determined by solving an
inviscid flow problem with no flux through Z = Lc and uniform pressure at Z = 0.
With sufficiently slow axial variation, this interior Z-dependent pressure could then
feed parametrically into the present model. Another geometric refinement would be
to drop our implicit assumption of radial symmetry (which translates to periodicity in
Y in our idealized problem), and investigate how azimuthal variation in the fouling
affects the flow through the whole device.

We are also currently investigating more fundamental model refinements, of
relevance to more general filtration applications. These include: (1) improving the
description of the filter membrane, from its current characterization in terms of
identical cylindrical pores; (2) improving the model for particle adsorption within
pores; and (3) expanding the model to allow for caking, which occurs in the late
stages of membrane fouling (such work, at least in the pleated filter application,
can draw on the modelling and ideas of King & Please 1996). Such refinements
will require that we model specifically the concentration of small adsorbing particles
carried by the feed, which are directly responsible for the internal stenosis of the
membrane pores, but which are only implicitly modelled in the present work. This
leads naturally to modelling of membranes with depth-dependent permeability, with
non-uniform, non-cylindrical pores, whose shape evolves as fouling occurs, and one
can begin to address questions regarding the optimum depth profile of the membrane
itself. More sophisticated modelling of the particle concentration carried by the feed
will also enable us to quantify this important aspect of filter performance. We have
already made significant progress with modelling some of these issues.
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Appendix A. Non-pleated membrane model
In our simulations we compared the performance of our pleated filter model to that

of the closest equivalent non-pleated membrane filter. The scenario we consider for
the unpleated membrane is a three-layer sandwich (support layer in H > Y > D/2;
filter membrane in D/2 > Y > −D/2; support layer in −D/2 > Y > −H) through
which unidirectional flow is driven by an imposed pressure drop, with P+(X, H) =
P0 and P−(X, −H) = 0 (all notation here is as introduced in § 2.2). The support
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layer permeability is here considered constant, K = Kav, and flow is perpendicular to
the membrane (‘dead end’ filtration). Due to the uniformity of conditions along the
X-axis the problem is independent of X, so the support layer permeability Km will
vary only in time. We again assume Darcy flow through both support layers, with
continuity of flux across the membrane, which sustains a pressure drop according to
its permeability.

We introduce the same scalings and non-dimensionalization as in § 2.3, which leads
to the following problems in upper and lower support layers:

d2p±

dy2
= 0 with p+(1)= 1, p−(−1)= 0. (A 1)

Additional conditions matching the flow across the membrane must be imposed as in
§ 2.3, giving

dp+

dy
(δ/2)= dp−

dy
(−δ/2)= Km

Kavδ
[p+(δ/2)− p−(−δ/2)]. (A 2)

We assume, as before, that the membrane and support layer permeabilities satisfy
a certain balance: Km0/(Kavδ) = ε2Γ , where the measure of the resistance of the
packing material to that of the membrane, Γ , is order-one with respect to both ε and
δ (see (2.22); note that, in this problem where the X length scale L does not enter the
problem, this balance of permeabilities may be considered as the definition of ε). This
allows us to seek a perturbation expansion for the pressure as p± = p±0 + ε2p±1 + · · · .
Using (A 1) and (A 2) together, we obtain

p+ = 1+ ε2Γ
km

k
(y− 1)+O(ε4), (A 3)

p− = ε2Γ
km

k
(y+ 1)+O(ε4), (A 4)

representing the fact that, as we would anticipate for a membrane whose permeability
is low compared to that of the surrounding layers, the pressure is constant to leading
order in each surrounding layer, with the pressure drop taking place across the
membrane. To close the model, we need to couple it to the fouling model developed
in § 2.2, § 2.3 for adsorption within pores (represented by pore radius a(t); (2.46))
and occlusion of pores by large particles (represented by n(t); (2.45)). For the simple
one-dimensional model here, this reduces to

km(t)= a(t)4
[

n(t)+ (1− n(t))
(1+ ρba(t)4)

]
, where a(t)= 1− βt, β = 8µED

πA5
0P0G∞

, (A 5)

dn(t)
dt
=−a4(t)e−ba(t)n(t), n(0)= 1, (A 6)

and ρb is again a dimensionless number characterizing the additional resistance
induced when a large particle blocks a pore (see (2.9)).
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