The University of Southampton
University of Southampton Institutional Repository

Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest

Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest
Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest

The perception of vehicle ride comfort is influenced by the dynamic performance of full-depth foam used in many vehicle seats. The effects of the thickness of foam on the dynamic stiffness (i.e., stiffness and damping as a function of frequency) of foam cushions with three thicknesses (60, 80, and 100mm), and the vibration transmitted through these cushions at the seat pan and the backrest were measured with 12 subjects (6 males and 6 females). With increasing thickness, the stiffness and the damping of the foam decreased. With increasing thickness of foam at the seat pan, the resonance frequencies around 4Hz in the vertical in-line and fore-and-aft cross-axis transmissibilities of the seat pan cushion and the backrest cushion decreased. For the conditions investigated, it is concluded that the thickness of foam at a vertical backrest has little effect on the vertical in-line or fore-and-aft cross-axis transmissibilities of the foam at either the seat pan or the backrest. The frequencies of the primary resonances around 4Hz in the vertical in-line transmissibility and the fore-and-aft cross-axis transmissibility of foam at the seat pan were highly correlated. Compared to sitting on a rigid seat pan with a foam backrest, sitting with foam at both the seat pan and the backrest reduced the resonance frequency in the vertical in-line transmissibility of the backrest foam and increased the associated transmissibility at resonance, while the fore-and-aft cross-axis transmissibility of the backrest was little affected. Compared to sitting without a backrest, sitting with a rigid vertical backrest increased the resonance frequency of the fore-and-aft cross-axis transmissibility of the seat pan cushion and increased the transmissibility at resonance. Relevance to industry: The transmissibility of a seat is determined by the dynamic properties of the occupant of the seat and the dynamic properties of the seat. This study shows how the thicknesses of foam at a seat pan and foam at a backrest affect the in-line and cross-axis transmissibilities of the foams at the seat pan and the backrest. The findings have application to the design of vehicle seats to minimise the transmission of vibration to the body.

Cushion thickness, Drivers, Foam, Passengers, Seating, Transmissibility, Vibration
0169-8141
36-45
Zhang, Xiaolu
8606e0a1-c6fd-42f5-8e74-d3f7923649a3
Qiu, Yi
ef9eae54-bdf3-4084-816a-0ecbf6a0e9da
Griffin, Michael J.
24112494-9774-40cb-91b7-5b4afe3c41b8
Zhang, Xiaolu
8606e0a1-c6fd-42f5-8e74-d3f7923649a3
Qiu, Yi
ef9eae54-bdf3-4084-816a-0ecbf6a0e9da
Griffin, Michael J.
24112494-9774-40cb-91b7-5b4afe3c41b8

Zhang, Xiaolu, Qiu, Yi and Griffin, Michael J. (2015) Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest. International Journal of Industrial Ergonomics, 48, 36-45. (doi:10.1016/j.ergon.2015.03.006).

Record type: Article

Abstract

The perception of vehicle ride comfort is influenced by the dynamic performance of full-depth foam used in many vehicle seats. The effects of the thickness of foam on the dynamic stiffness (i.e., stiffness and damping as a function of frequency) of foam cushions with three thicknesses (60, 80, and 100mm), and the vibration transmitted through these cushions at the seat pan and the backrest were measured with 12 subjects (6 males and 6 females). With increasing thickness, the stiffness and the damping of the foam decreased. With increasing thickness of foam at the seat pan, the resonance frequencies around 4Hz in the vertical in-line and fore-and-aft cross-axis transmissibilities of the seat pan cushion and the backrest cushion decreased. For the conditions investigated, it is concluded that the thickness of foam at a vertical backrest has little effect on the vertical in-line or fore-and-aft cross-axis transmissibilities of the foam at either the seat pan or the backrest. The frequencies of the primary resonances around 4Hz in the vertical in-line transmissibility and the fore-and-aft cross-axis transmissibility of foam at the seat pan were highly correlated. Compared to sitting on a rigid seat pan with a foam backrest, sitting with foam at both the seat pan and the backrest reduced the resonance frequency in the vertical in-line transmissibility of the backrest foam and increased the associated transmissibility at resonance, while the fore-and-aft cross-axis transmissibility of the backrest was little affected. Compared to sitting without a backrest, sitting with a rigid vertical backrest increased the resonance frequency of the fore-and-aft cross-axis transmissibility of the seat pan cushion and increased the transmissibility at resonance. Relevance to industry: The transmissibility of a seat is determined by the dynamic properties of the occupant of the seat and the dynamic properties of the seat. This study shows how the thicknesses of foam at a seat pan and foam at a backrest affect the in-line and cross-axis transmissibilities of the foams at the seat pan and the backrest. The findings have application to the design of vehicle seats to minimise the transmission of vibration to the body.

This record has no associated files available for download.

More information

Accepted/In Press date: 9 March 2015
e-pub ahead of print date: 11 April 2015
Published date: 1 July 2015
Keywords: Cushion thickness, Drivers, Foam, Passengers, Seating, Transmissibility, Vibration

Identifiers

Local EPrints ID: 406277
URI: http://eprints.soton.ac.uk/id/eprint/406277
ISSN: 0169-8141
PURE UUID: b43b1604-8e94-4369-8494-29bd8ff5bc2b
ORCID for Michael J. Griffin: ORCID iD orcid.org/0000-0003-0743-9502

Catalogue record

Date deposited: 10 Mar 2017 10:43
Last modified: 15 Mar 2024 12:22

Export record

Altmetrics

Contributors

Author: Xiaolu Zhang
Author: Yi Qiu
Author: Michael J. Griffin ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×