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Bistable beam propagation in liquid crystals

Armando Piccardi*, Alessandro Alberucci, Nina Kravets, K3l@ndr Buchnev, Gaetano Assanfe)low, IEEE

Abstract—Light-controlling-light is one of the most advanced
paradigms in optical signal processing, including light-induced
waveguides as well as all-optical switching and routing. Other
fundamental aspects of all-optical processing are optical memo-

ries and sequential elements, which require responses depending

coupling to waveguides [23], [24], [25], [26], nonlinear-op
tical nanocavities and ring resonators [27], [28], graghen
[29], Anderson localization [30], self-focusing with cden
propagating beams [31]. The self-focusing case correspond

on the evolution history of the system, such as the hysteresistO @ distributed self-lens resulting from an intensity-elegent

stemming from optical multistability. Hereby we report on optical
bistability and hysteresis in cavity-less geometries and in the

presence of self-localized beams, i.e., spatial optical solitons,

exploiting the nonlocal reorientational nonlinearity of nematic
liquid crystals. When the optic axis of NLC is initially orthogonal

to the applied electric field, the molecular dipoles start to
rotate above a threshold named after the Feedericksz transition,
usually second-order. Here we show that such transition becomes
first-order via the intrinsic feedback provided by self-focusing,
in turn leading to the appearance of a hysteresis loop between
diffracting and self-confined beams. We report on hysteresis of

refractive index, as in the so-called Kerr or Kerr-like meedi
where such an intensity dependence is linear or nearlgiline
When self-focusing is strong enough to balance the natural
beam spreading due to diffraction, the transverse profila of
light beam can remain invariant in propagation, correspand

to the fundamental mode of the self-induced waveguide [32].
Such self-trapped wavepackets are named spatial solitons.
Spatial solitons (and their temporal counterparts whele se
phase modulation compensates chromatic dispersion) have

the beam size versus the input power, as well as hysteresis versuP€en widely investigated in optics during the last decades

applied voltage at a fixed beam power. Our findings introduce a
novel kind of cavity-less optical bistability with propagating light
beams and disclose a novel approach to information storage based
on light self-localization.

Index Terms—Bistability, Spatial solitons, Reorientational non-
linearity.

I. INTRODUCTION

Optical multistability occurs when light-matter interiacts

for their ubiquitous character [33], [34]. The possibilibf
combining light self-localization into solitons with OB wa
investigated theoretically by Kaplan in 1985 [35], but neve
demonstrated experimentally until 2014, when it was regabrt

by us in liquid crystals without external feedback [36].

In this Paper we address, both experimentally and theatistic

OB between wave-propagation states corresponding to beam
diffraction and spatial solitons, respectively, in an ogliy
nonlinear as well as electro-optic reorientational medium
namely nematic liquid crystals (NLC), where either the ogiti

support the coexistence of two or more stable states sharjigver or the bias voltage can control light localization ésd
the same set of excitation parameters [1]. When exploitimyolution/switching between different states. With retpe

dispersive and absorptive mechanisms [2], [3], opticaltimul
stability is usually due to the interplay of a nonlinear s

our previous works [36], [37], here we generalize the apgiioa
of Ref. [38] developing a general theory based upon the

and a feedback mechanism: the former stems from the mateGaken function, and accounting for the simultaneous psen

response to light, the latter can be inherent to the system

afr voltage and optical fields. Our semi-analytic approach

provided externally (e.g., by a cavity or a mirror). In theprovides a simple physical picture of the central role pthye

simplest limit of two stable states, optical bistability BD

by self-focusing in the appearance of optical bistabilitythe

has been widely investigated because of its potentialshi®r thighly nonlocal limit. We also address the role played by the
implementation of optical memory elements and/or seqakntiongitudinal beam variation, a point never dealt with inailet

logic circuits [4], [5], particularly in the framework of lal
optical signal processing [6], [7], [8], [9], [10], [11], &1. The

in the previous works.
Liquid crystals are soft materials sharing the properties

vast available literature on OB includes, besides resesatef both solids and liquids; in the nematic phase, the elon-
and external mirrors [1], interfaces between nonlinear mgated organic molecules are randomly distributed in space

dia [13], photonic crystals and distributed feedback ggsi
[14], [15], [16], [17], [18], [19], [20], [21], [22], distrbuted
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with a high degree of orientational order, with the average
direction of their long-axes associated to a point-wise-uni
vector distribution, the so called molecular director{39].
Owing to such angular order, NLC are optically birefrin-
gent due to the anisotropic polarizability of their molexsyl
with refractive index eigenvalues; andn) corresponding
to electric fields perpendicular and parallel to the directo
respectively. When uniformly aligned, most NLC behave as
positive uniaxial dielectrics, with optic axis alomg ordinary-
wave indexn, = n, and extraordinary-wave index.(0) =

(cos;9+sinz9

2
n n
L I

—1/2
) , depending on the anglé between
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the director and the wave-vector of the propagating wave br BISTABLE BEAM STATES IN NEMATIC LIQUID CRYSTALS
wavepacket. The well established technology of NLC displa’&/
and photonic devices exploits their peculiar optical prepe -
ties and response to electromagnetic fields [40], including The geometry we consider for the analysis and observation
extended spectral transparency, high nonlinearity anctrele of OB is sketched in Fig. 1. The NLC sample consists of
optic effect, easy tunability to external excitations adiVveege a planar cell defined by glass substrates infinitely extended
damage threshold [41]. The most exploited response toarielectlong y (a few cms in actual samples), of length along
fields at both low and optical frequencies is reorientationghe propagation coordinate and thicknessh (h < L)

the molecular dipoles induced by electric fields react with arossz. The glass/NLC interfaces are treated so to ensure a
torque, which tends to reduce the overall system energy bgmogeneous director distribution in the absence of eatern
aligning the director to the field vector. The elastic resggn stimuli, with planar alignment a# = 0° [41]. On each of
due to intermolecular interactions in the liquid crystadli the interfaces parallel to the plang;, Indium Tin Oxide
phase, counteracts such torque and determines the final ethih film electrodes are deposited, permitting the appbcat
librium, i.e., the resulting director distribution. In thease of a (low-frequency) bias voltagé” across the thickness
of an extraordinary polarized optical field, self-focusiogn . To first approximation, the bias electric fiek,r across
occur at low powers through the refractive index increagke sample can be considered uniform, wighr = zV/h
associated to molecular reorientation [42], [43]. A finitees [40]. The optical excitation is a beam with electric fietd,;
light-beam can therefore reorient the NLC molecules ammblarized alongi and wavelength\ with input wave-vector
induce a graded index transverse profile, thus acting ak d| z. Hence, both the electric field§,r and E,,; tend
self-waveguide through compensation of linear diffractia to induce molecular rotation in the planez, so that the
self-confined wavepacket or spatial optical soliton in NL@ngle ¢ is sufficient to describe the director distribution in
is usually referred to as a “Nematicon” [44], [45], [46]the medium. The reorientational torque due to an electric
The reorientational nonlinearity of NLC is accompanied bffeld isT' = ¢ Ae((n - E) (n x E)), where Ae = ¢ — ey

a highly nonlocal response, with range depending only d® the anisotropy computed at the frequency of the external
the sample geometry in the unbiased case; nonlocality is @rctric field E. For a fixed field and director distribution,
important stabilization mechanism of (2+1)D solitons agai the torque diminishes for increasing temperature, vangsht
catastrophic collapse [47], [48]. Since the nonlinear oesp the isotropic-nematic transition. [39] The sample encosspa
depends on the mutual alignment of molecular director afdéedericksz transition as both low-frequency and optical-
electric field, the torque vanishes when director and fiefoequency electric fields are initially orthogonal to theedior.
vector are mutually perpendicular, i.e.= 0°. In this limit The director distribution is modified by the electromagoeti
the molecules, in the presence of noise, can only rotateeabevaves and described by the point-wise reorientafign y, z)

a power threshold, termed &edericskz transition (FT) [49]. resulting from the balance between the overall induceduirq
The latter transition is usually second-order, i.e. it does and the restoring elastic forces [39]:

support bistability; nevertheless, under specific coodgion B )|2

NLC properties or external feedback, first-order transgio <2 €0 | €a|Lopt(T,Y, 2 o | . _

with bistability were reported in NLC [50], [38], [51], [52] K 5 + AeLpEiy | sin20 =0 (1)
[53], [54], [55], [56]. In this work we investigate cavitygss

first-order transitions in a standard material and configuma Whereeo is the vacuum dielectric constarft, is a scalar (ef-
exploiting the intrinsic feedback provided by the mediurfEctive) Franks constant for the elastic resporges nf—n?

response to intense beams in order to obtain a bistable loeha@nd Az are the optical and low-frequency anisotropies,
without external feedback. respectively. In Eq. (1) and in the following we neglect

The Paper is structured as follows. In Sec. Il we introduddrefringent walk-off, that is, we tak&., || # even after

the theoretical model and discuss molecular orientatian fd€orientation [57].

turing or not self-focusing. We demonstrate the evolutiohile the quasi-static fiel&.r is nearly independent of

from second- to first-order transitions when self-focusisg Perturbations, the optical field distribution strongly dafs on

strong enough to affect the beam profile. We also shdworientation, as the latter leads to self-focusing andesadly

how optical and electric fields interact in allowing/tuniag Self-localization. Specifically, naming,, (=) the maximum¢

bistable behavior. In Sec. Ill we experimentally demortstrain €ach section: = constant, paraxial light propagation in

the appearance of hysteresis loops between diffracting & case can be modeled by a nonlinear 8dimger equation

self-trapped beams as predicted in Sec. II. Two kinds ofgoof36l:

can be observed: for a fixed bias voltage and varying the A 2A  92A )

input beam power, for a fixed input beam power and varying??lkone(ﬂm)87+ wW‘FW—FkSATLg(Q) Al =0, (2)

the voltage. We also briefly address the role of temperature. N v 4

Finally, in Sec. IV we summarize our results. where ko is the vacuum wavenumber), is the diffrac-
tion coefficient alongz, An?(0) = n?(0) — n2(0,,) is the
extraordinary-wave refractive index well associated te th
director distribution,A = E, e~ *on<(9n)= is the slowly-
varying envelope of the beam.

Geometry and model
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is formally given by

x X X 00 h/2
A == 0(x, :/ / G(z,y,2',y ) sin [20(2', y')] x
@ t,;-;-!ggg > (z,y) o (z,y,2",y') sin [26(2", y/')]
= 42 4 0 [YoptLopt (', y') + ’YLFE%F] dx'dy/, 3
* o X where YLF = GQAGLF/(QK), Yopt (Qm) =
(b) ===== () c0€aZo/[2ne(0,n) K], and the Green functionG in our
””” 1 r 2 5 geometry is [59]
o A ===== ‘ x\ § G(x,y,2',y') = Z%sin [7;; <x - Z)} X
k _—— —— 4 =1
2 " wl|ly—y’
1_ ) = AF / 4 sin [7;; (:E’ — ;L)] e‘¥. 4)

Equation (3) is the starting point to look for approximatéuso
tions of Eq. (1). Let us focus on the maximum reorientatign

Fig. 1. Sketch of the NLC sample subject to FT. In a planar sampl . K . . L . .
9 b ) " P f38]: if the optical intensity profile is circularly symmetrwith

reorientation is provided by either a light beam or an eiedtias. To observe

hysteresis in this work, FT is overcome by the combined actfdyoth a light
beam of enveloped propagating along and an applied voltag® across
z. (@) A low-power beam (power below optical FT) diffracts digelack
of reorientation. (b) A modest external voltage (below elecET) is not

respect to the cell axisz = 0,y = 0), to first approximation
we can assumé(z,y) =~ 0,, = 0(z = 0,y = 0) on the right
hand side (RHS) of Eq. (3). We find

enough to reorient the molecules on its own. (c) The combin¢idraof

both low-frequency and optical frequency electric fields saluce molecular
reorientation and result into beam self-confinement (nemaYidn each row,
the corresponding profiles of beam intensity, voltage ithistion and director where
orientation are sketched versusrespectively.

gm = F(Iopta gma ‘/7 h) Sin(QGm)v (5)

we defined  F(Iopt, 0, V. h) =
ffooo fh}/ig G(Oa Oa .13/, y/)(’YoptIopt + ’YLFE[%F)d-/E/dy/ ThUS,

we can separaté’ into two contributions, accounting for the
LF field Err and for the beam field&,,, denoting them/

2 2
and F,¢, respectively. Writinglope = 25 exp [—Wl

Equation (1) is a nonlinear equation én thus, in general, corresponding to a Gaussian beam of waisand powerP,
the superposition principle cannot be applied to sepafate {ve get:
effects of Err and E,p,¢ [58]. Moreover, Eq. (1) must be
solved with the boundary conditiorls= 0° on the glass/NLC

B. Molecular reorientation for constant excitations

ml

)Ql(y =0; h7’LU), (6)

2%opt P i sin (

. . . . . . . Fopt(P7wah): 2
interfaces, in line with the strong anchoring approximatio L — ml
A vanishing 6(z,y, 2) = 0 everywhere is always a solution 4y 2 V28
. . _ 4LF 1
of Eqg. (1), regardless of the forcing terms; however, if the Fa(V) = — 3 (7)

external excitations overcome the FT, non-trivial solusio o
exist. The Feedericksz transition can be either first- owhere we introduced; = Zf;}% ~ 0.9689 [see
second-order, depending on the configuration, but bistabilthe Appendix A for details and the definition 6% (y; h, w)].
requires a first-order transition [6]. Here we are inteeste The differences betweeR,; and F;, stem from the unequal
optical bistability related with light self-focusing il the spatial overlaps between the external fields and the medium
NLC volume [50], [36]. (i.e., the associated Green functi@¥). For narrow beams

(w < h) we haveF,,; = Yopt PS2(w, h), where Sy (w, h) =

1) Invariant beam profile: Let us start by considering Y ;2 W(Q}H)erfc{”(;f;%lh)w [60].
solutions of Eq. (1) in a two-dimensional geometry, that issrom Eq. (5) it is possiblé to describe the mechanism behind
neglecting the beam evolution alongwhich is dictated by the FT. We first assum@&F/d0,, = 0, corresponding to
the interplay of diffraction and self-focusing. We assutatt n.(6,,) ~ n, in the expression providing,.. Then, a
the beam intensity,,, = "“Q(gg") |Eopt|” (Zo is the vacuum nontrivial solution beyond,,, = 0 exists if

impedance) does not change with reorientatioAn invariant

I, entails a change in the optically-induced torque acting F(lopt, Om, V, h) > 0.5. ®)

on the molecules, due to the non-homogeneous impedancegfiation (8) yields the minimum external (pair of) excita-
the medium: since for large anisotropies such mechanism Gggh(s) capable to overcome the FT [see Fig. 2(a)]. Under
lead to bistability even in the absence of self-focusing,[88 the condition OF/90,, = 0, it is 6,, = 0° at the FT,
need to account for it. Using the Green function formali$m, corresponding to a continuous reorientatinversus external
stimuli: the phase transition is second-order and hysteiss
inhibited. Fig. 2(b) shows the case when the full expression
of F' is accounted for. For anisotropies corresponding to

standard liquid crystals, there are only minor adjustments

1In the exact case, a Poisson equation should be solvedyjeiitti Eq. (1),
leading to a change ik r with reorientation. In this Paper we neglect this
second-order effect.
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Fig. 2. (Color online) (a) Graphic solution of Eq. (8) pararizetd with F’
(values next to each line). (b) Solution for an optical beaarametrized with
n, F' (as marked next to each line). Solid lines correspond @) ~ n | ,
dashed and dash-dotted lines correspon®ty0,, # 0 for n| = 1.7
andn|| = 2, respectively. (c) Maximum reorientatiah, corresponding to
the curves plotted in (b) versus magnitude of the externaitatian £ for

Power Threshold (mW)
® © . B
(4] © (] o (4]

o)

N
o

10 20
Beam Waist (um)

30 40

Fig. 4. Beam power threshold versus input waist in a cylcalrgeometry
with a radius of 400um and propagation length, = 1.5 mm. Triangles
result from numerical simulations, the solid line is the splinterpolation of
the numerical data.

ne ~ n (blue),n = 1.7 (black) andn = 2 (red), from top to bottom,
respectively. In all plots:; = 1.5.

is given by:
60 @ 60 (b) P . _ 4 i (0)
B 3 nm(Viw, h) = |1 — W P, 9)
i’g 30 i’g 30 th
0 0 Consistently with the experiments described in the secantd p
0 20 40 0 20 40 of this Paper, hereafter we focus on the specific NLC mixture
Power (mW) Power (mW) E7 in a planar cell of thickness = 100 um, excited by a
(c) — @ ! laser beam ah = 1064 nm. The relative dielectric constants
S €0 EZO I for the quasi-static LF field are 19.6 and 5.1, for fields patal
EE 20 gm\: and normal ton, respectively. The refractive indices, and
= K \ n) are 1.5038 and 1.6954 at room temperature, respectively.
0 0

The single Frank elastic constant (taken equal for splaydbe
and twist deformations) is 12x 10~'2 N. Fig. 3 shows
the maximum anglé,,, versus input powel” computed via
Fig. 3. (Color online) Maximum reorientation anglg, versus beam power Eq. (5) for three beam sizes [Fig, 3(a-c)], At a fixed power
for(@w = 2 um, (b)w = 5 pm and (Cw = 10 um, respectively, computed 1ha ragrientation increases for narrower beams owing to the
via the semi-analytic approach Eq. (5). The applied bias &.®and 0.8V . ) . . )
from right to left, respectively. (d) Threshold pow#;, versus applied bias Stronger fieldE,,¢, while the reorientation curves shift to
V for w =2, 5 and10 pm, from bottom to top, respectively. Here we referthe left (i.e., less power is required to reach the sdné
to the mixture E7 at room temperature and a beam wavelength6zf . as the bias increases. For > Vt(]i)), the voltage overcomes
the (electric) FT and reorientation is finite even withogthli
power P. The comparison with the full numerical solution
the approximatiom,(6,,) ~ n,. Moreover for small, i.e., developed and shown in ref.[36] and supplemental material
close to threshold)?F/962%, < 0 thus the reorientation curve shows a good match between the two approaches, with the
0., versus external excitatiofi is continuous, confirming that accuracy of the analytic approach decreasing as the beam
the transition is second-order [38]. Both in the approxematvidth increases, consistently with the assumptions. Kinal
and in the exact cases, given the system symmetry with respeig. 3(d) graphs the optical threshold powgy, versus applied
to positive or negative, at the FT a pitchfork bifurcation voltage [Eq. (9)] for three beam widths. The trend is pariabol
occurs [see Fig. 2(c)] [39], [61]. and all curves cross iy, = 0 whenV = V,\?).
To compute the optical and electric FT we can use Eq. (5)2) Longitudinal effects: Although the applied bias and
and consider the two fields applied separately, under thg effects are essentially invariant versus in the linear
condition F' = 0.5. In the absence of light, Eq. (7) providesegime the intensity distribution of the beat,, changes
the voltage threshold/t(,?) =1z m&%' The analytical @n pr:)pagatiorr: thror:JghRdiflfre_lc:]iog_. The di_ffractive sptdslrag "
. : wact % is relevant when the Rayleigh distance is comparable wit
(exact) calculation provides; ™ = coAeLr [39], [40], or shorter than the cell length along Eqg. (5) remains
thus Vt(ho)/vtzmct = 0.5,/3 0.9. Conversely, in the valid, but the functionF cannot be expressed in a closed
absence of voltage, from Eq. (6) the threshold beam powéerm due to az-dependent Green function [57]. Nevertheless,
is pt(}?) = m [60]. the problem can be addressed numerically. For the sake of
When both light and voltage are applied simultaneously, tgénplicity, we assume a cylindrically symmetric sample as
power threshold?,, for each value of the applied bias can the qualitative behavior does not vary with the geometry.
be found by equating the left hand side of Eq. (8) to 0.5. Usirigpecifically, we solved Eg. (1) settirg.» = 0 (unbiased cell)

Egs. (6-7), the threshold beam powes, for narrow beams and I,,, = ﬂjffzz) exp —% , where, consistently with

0 20
Power (mW)

40

o

0.5
Bias (V)

~
~
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free diffraction,w(z) = wg/1 + (%)2; hereL is the Rayleigh

. ) ) “E
distance. In essence, we compute the maximum reorientat § ;
angle in the cell versus the input pow#; the latter curves u%_
providing the threshold power for a given input waigt. The E
e . 0 . -
threshold power versus beam waisf (in z = 0) is plotted in 0 30 60 90 0 10 20 30

Fig. 4 and shows a relative minimum far, ~ 8 pum. In fact, 9 (deg) Power (mW)
despite the higher intensities in the early propagatiogesta "

narrower beams undergo larger diffraction and, akrgr give Em (d)
rise to a weaker light-matter interaction. Conversely,léoger 5
waists the relative weights of the two effects reverse awd ti 5
lower beam intensity determines higher thresholds. §
0 10 20 30 0 02 04 06 08 1
Power (mW) Applied Bias (V)

C. Role of self-focusing
. . Fig. 5. Reorientation in the presence of self-focusing.Gaaphic solution
In Sec. 1I-B, we showed that the &dericksz transition of Eq. (5) when (10) is used and the cell is unbiased. Fromoboto top,
from the initial distribution to a reoriented state is seton the C\lj\;ves COerSplonld to powers of 5, 35}-115 (qqrre(zg)mdlmfc)z 20 and
i . . mW, respectively. Inset: zoom around the origin. aximmeorientation
order, thus hysteresis is not _aHOW_Gd' the dynam'c_sl of tlif% and (c) beam width versus beam power for three biases, adteldb®olid
system does not depend on its history. The transition Cafi dashed lines correspond to stable and unstable branespectively.
become first-order when the optical nonlinearity is taken ininset: zoom at large powers. (d) Dependence of treedericksz threshold
account. as in this regime the beam can chanae the dielec dec from applied voltage. Here we considered the NLC mixture Efbain
o 9 ) . 9 e ) perature and a wavelength of 1064 nm.
properties of the medium [Eq. (1)], in turn modifying its
intensity through self-focusing, as modelled by Eq. (2)][62

[63], [64]. In other words, the nonlinearity provides anémént . ientation curve versus power in the presence of self-

fl_ehe dpaﬁk r_nechfafms;nt; nic'estshary to do?tdaln Tysteargsz. " apping. As sketched in Fig. 5(a) for the unbiased case
€ Inclusion of teecback in the modet developed I SeC. fl-gne  pehavior remains similar when a voltage is applied),

IS not strglghtforward. T_he actual dyr_wa_m|cs,_|n fact, COB®E . he function F defined by Eq. (6) does no longer exhibit
a Gaussian beam subject to quasi-sinusoidal oscillations |

. ) . ~a sinusoidal trend with respect t,. At low powers there
width u;.(z),ttﬁeéo call?d b{%zhln?hThfelllattrt]er Wg_uld requwel are no solutions of Eqg. (5) (besides the trivig, = 0)
compulllng ti Ireen tlrjlncl') N k? ult three- l;mensmnad?j) reorientation does not occur. Thee&dericksz threshold,
case. Neverineless, Ine basic physics can be grasped fby - pdec (we introduce the subscript “dec” as this value
assuming az-invariant beam profile: in the equivalent two-

th
; ; ! corresponds to the FT for decreasing powers in the hysteresi
dimensional model the breathing can be replaced by an aver b gp y
soliton width, corresponding to the shape-preservingtswiu

?c%p, see below) is achieved when the two curves are tangent
In the highly nonlocal limit, the perturbation of the oriatibn

to one another fop,, # 0: reorientation versus input power
9 can be approximated by a parabola as in the ”accessiﬁrows a sudden jump, that is, a first-order transition. For
o ) : SwersP > Pg}f’c two solutions can exist [Fig. 5(b-c)] [60].
soliton” model introduced by Snyder and Mitchell [65], [66]One family of such solutions exhibits a maximum reorieotati
to be slightly amended/adjusted in ;mtuazl diffusive meG_E_a],[ 0., increasing with power [solid lines in Fig. 5(b-c)], and it
[68]. A“ef seting § = i, B b2 (2 Ty ) S.UCh qumed corresponds to stable solutions (see Appendix C). Viceayers
Snyder-MltcheII model provides the implicit equation (Se?he other family presents an inverted trend for reorieotati
Appendix B) versus power [dashed lines in Fig. 5(b-c)], correspondmng t
2 1 unstable solutions (see Appendix C). Maximum reorientatio
0., and beam width are plotted in Fig. 5(b) and Fig. 5(c),
ne (O ) (B )3 P02 (O, ws, P, V) >(10 respectively. Fig. 5(d) finally illustrates how theé&edericksz
where n,(6,,) = %= and 0, is provided by Eq. (14). The thresholq powerP3°¢ monotonically decreases with applied
solution of (10) yields Eq. (15) in Appendix B. Although theP18S: 90ing to zero fob” = V,.
average beam width depends on the input width as well Optical bistability between diffracting and self-confined
[69], this does not alter the basic physics and affects or{pﬁeam states is confirmed by direct numerical simulations. Fo
slightly our results; hence, it will be neglected. Eq. (1@)tas the sake of clarity (and physical intuition) we refer to an
that the width of the shape-preserving soliton depends en #nbiased cell: the role and effects of an applied voltage are
input powerP, the biasl’ and the maximum reorientatigh,, discussed in Ref. [36].
the latter being related to the size of the nonlinearity. We start from the solution of the reorientational equation
When self-focusing is accounted for, the beam width depenld. (1)] and a constant intensity profile, taken invarigdong
on the input powerP, with #,, and the biasV/ acting as z. The absolute value of the maximum reorientatity is
free parameters related to the material response. It is tigraphed in Fig. 6(a) versus beam powerthe same trend of
possible to solve Eq. (5) jointly with Eq. (10) to get thé-ig. 3 is observed.
Next we account for self-focusing by solving the optical
2This corresponds to the highly nonlocal limit, that is, when< h. evolution equation together with the reorientational eiguia

W (P7V79m):(
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N

high and spatial solitons tend to be temporally unstablé) wi

80f (a €
5 60 @ §1 ] path fluctuations [70], [62]. The application of a Iow_—fremlm:y
3540 = electric fieldErr can reduce the power threshaljli° [see
20 / ;%1.2 Fig. 3] and make the solitons observable [63] as FT is reached
" 40 60 20 30 40 s e 70 bythe combined action of voltage and beam induced torques.
§3°Li_| P(mgvé)m ol @ P Wefirst measured the beam width as a function of the applied
<, % 5 60 voltage at fixed power [64]. Fig. 7(a) shows the average beam
o 100§ o0 100 g 1002 4 width versus bias forP = 2 mW. The beam width was
§§0_1} ‘ 0_1} A\ ‘ T 20 obtained from the intensity profile in the plape, acquired
50705 %50 s ° pc pie from the light scattered out of the plane (see Appendix D),
y (um) y (um) through a best-fit procedure with a fundamental Gaussia@. Th

. _ 1 L. .
Fig. 6. Bistability in the presence of optical solitons in &amar cell. average width was calculated as = L. fO w(z)dz, with

(a) Maximum reorientation versus input beam power when feelising is L the length of the NLC cell along. An abrupt drop in
neglected (beam widths are 2, 5, 10, 20 and.4@, solid lines from blue to w, is observed whe;;, ~ 1.1 V, where the molecules start

red, yellow, violet and green, respectively, from left tght) but feedback on ~ ;
the wavepacket profile is accounted for (black line withrigies). (b) Soliton to rotate. AtV 1.5 V, the beam widthw. reduces to a

width versus power along: (dashed line) and; (solid line). Reorientation Value only slightly wider than the input, i.e., a self-trapp
angled (c,e) and field profile (d.f) versus (dashed blue lines) ang (solid beam is formed. Fig. 7(b) shows the corresponding intensity

irr?(:h“englseih;g:np—’powzeor Eﬂlemg;r?)diifnrg]cgting ?So?t]mvz] (v%g)éﬁég)viﬁt:hbeli)lgﬁg evolution in t.he plang = and the output profile invy. When
self-confined states (finité.). the beam width starts to reduce.{V < V < 1.1V),
the output profile (bottom photographs) shows a wide profile
acrossy and fringes across: the molecules are reoriented
We look for z-invariant solitary wavepackets with the ansatby the bias, leading to g—invariant multi-mode waveguide,
A = ug(w,y)e’*o"* and = 6,(x,y). The substitution leads without an appreciable role of all-optical reorientatidfor
to a nonlinear eigenvalue problem, the solutions of which1 V < V < 1.3V, i.e., corresponding to the drop in
are plotted in Fig. 6(b-f). In agreement with Fig. 5, solgonFig. 7(a), the waveguide becomes more confining owing to the
do not exist for powers below a threshold, owing to larger6,,, supporting a light stripe parallel tp at the output.
the Feéedericksz transition. The reorientation curve in th&s V is further increased, nonlinear confinement occurs across
presence of self-focusing is plotted in Fig. 6(a) (blackeliny (already appreciable for = 1.3 V). Finally, atV = 1.5V,
with triangles): for P < Pge self-focusing does not occura cylindrically-symmetric self-confined beam is observad,
and the beam diffracts. Within the soliton existence irdgrv nematicon invariant iyz and transversely confined iy [63].
u, is Gaussian within a good accuracy, ahdmaintains the A nematicon appears only for large enough voltages owing to
same spatial profile regardless of the input power. Speltyficathe modulation of the nonlinearity with the initial orietitan
the nonlinear optical perturbation is parabolic near thane angle in the absence of light [57]. The-shift of the output
axis and close to the Green function away from it [Fig. 6(daeam vs voltage is due to the walk-off angle varying with
f)]. We stress that both beam profile and molecular distigbut [71], [72].
are approximately circularly symmetric. Fig. 6(g) shows thAccording to our model, bistability is not expected far >
hysteresis loop corresponding to the first-order transitfor V;,,; this was confirmed by measuring the beam width versus
a given input field (Gaussian beam of wais§ and planar the input power forV = 1 V (see Fig. 7(b)) [63], i.e., just
phase front inz = 0), we gradually increase the input powerbove the FT. The intensity profiles are the same for inangasi
from zero: the wavepacket diffracts untit = Py, where vs decreasing powers. Furthermore, stable self-locabeeths
reorientation at FT occurs. The minimum pow@f° to form  exist for P ~ 12 mW: the power threshold is lowered by the
a solitary wave depends on the initial width of the beam joint effect of light and bias, in agreement with Fig. 3.
see Fig. 3 and Fig. 4. For further power increases, selfsiogu Therefore a trade-off needs to meet to obtain bistability. O
comes into play and, consequently, the beam profile changiks one hand, it must b& < V4, to ensure the existence of
towards a self-confined state. We pinpoint once again that,the diffracting state when light power increases from z&mo.
actual samples, a breather soliton is normally excitedh withe other hand, too low biases correspond to unstable sslito
width oscillating around the shape-preserving solutioovsh because of the large power required to support self-guianc
in Fig. 6(b). In any event, the reorientational curve diféom  With reference to Fig. 3(d), the width of the hysteresis loop
the initial one, so that when the beam power is ramped dowdecreases and eventually vanishesVaspproaches/,,: in
self-trapping is maintained until the soliton exists,,igown fact, the loop size is determined by the separation between

to the (lower) threshold® = Pgec. reorientation curves corresponding to different beam heidt
With these considerations in mind, we measured the hysseres
1. EXPERIMENTAL RESULTS loop for V' = 0.92 V, just below the FT, near room temperature

T = 18°C. The experimental results are shown in Fig. 8, with
photographs of beam propagation g and output profiles

From the results shown in Fig. 3(d), one expects the widigr xy, as well as a graph the average beam width versus
hysteresis loops to occur in unbiased cells. However, fppwer. For powers up t@ = 13 mW, the beam propagated
V = 0, the power corresponding to optical FT is relatively

A. Bistability versus input beam power
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Fig. 7. (a) Electric FT (EFT) for & = 2 mW beam as calculated from the acquired propagatiopzinThe inset shows the average beam width aleng
versus input power, fol” = 1.1V corresponding to the electric FT threshold, for increggiblack squares and line) and decreasing (red squaresra)d li
powers: no hysteresis is observed. (b) Photographs of @@ propagation ipz and (bottom) output profiles imy for several voltages. The voltage driven
reorientation occurs sooner acraesswith the beam confined in the linear index well. The actuagéshold value is lower than derived from (a).

linearly with no reorientation. Then the beam size started B. Optical bistability versus applied voltage

reduce without reaching a self-trapped state. A self-cedfin . ) ) .

state could be observed & = 16.5 mW (corresponding to  Equation (1) states that reorientation can be triggered by
Pinc) when the beam width suddenly collapsed. The powqw- and optical frequency fields and Eq. (9) describes the FT
was then raised up t8 ~ 20 mW, where stable solitons couldthreshold in terms of their joint action. Hence, we should be
still be observed. To complete the counterclockwise hgsfer able to observe optical bistability when varying the applie

loop the beam power was decreased back and the self-confi¥eiage while keeping the input beam conditions constant.
beam survived down t& = 14 mW (corresponding td>3ec

As shown in Fig. 7(a), we investigated the propagation of
for further reductions a diffracting state was retrieveig. Be) & I = 2 mW beam for various applied voltages: self-

shows the measured hysteresis, with a loop width of abdihfinement occurred when all-optical and electric respsns
3 mW.

sufficed to overcome the FT [37]. This was observed above
V =1V, when the beam width gradually reduced until it

resulted into a spatial soliton. However, the transitiotween
1) Temperature dependencé: finite FT derives from the diffracting and self-confined states was smooth, prevgntin

unavoidable fluctuations associated with a finite tempegatithe observation of bistability: the curves for increasingl a
[39], [51]. The noise-induced rotation of an ensemble afecreasing biases superposed and no hysteresis could be
molecules gets amplified by the external field up to macrobserved. As apparent from the simulations in Fig. 10, ireord
scopic scales and transferred to the surrounding molecutesobtain self-confinement for low beam powers, the voltage
via elastic interactions, provided the torque is strongugiio must be high enough to overcome the FT on its own, which
Hence, temperature is expected to play a central role. ilplies a second-order transition. Conversely, large ghou
control of the sample temperature allows optimizing andeam powers mak®,;, appreciably dependent on beam width,
tuning the occurrence and the size of the hysteresis loagh Hipaving the way to a first-order transition.

temperatures increase the noise contribution to the syst&xperimentally, we varied the relative weights of the two
energy, flattening the potential barrier and preventindabis reorientational torques. First, we observed a reduction of
bility; low temperatures reduce the nonlinearity, preirgnt the voltage needed to overcome the FT as the optic power
efficient self-confinement and increasing the relaxationeti increased, as in Fig. 11(a) in good agreement with Fig. 3(d).

in the transitions between the two states. We repeated theFig. 11(b) it is apparent that higher powers correspond
measurements shown in Fig. 8’At= 16°C andT = 23°C,

to steeper transitions versus applied bias, with an abrupt
see Fig. 9(a-b) [73]. The higher temperature lowered bath thwitch (the slope approaches/2) between diffracting and
power thresholds’i¢ and Pge

¢ due to stronger fluctuations; self-trapped states - a first-order transition - for= 25 mw.
the loop sizePic — Paee

¢, shrunk as well. These results arddigher powers would allow the light beam to overcome the
in qualitative agreement with the model [Fig. 9(c)] accaumt FT by itself when self-trapped [Fig. 3(d)].

for the three different values of the elastic constants@ated Figure 12 shows the beam evolution fé& = 25 mW. As
with splay, bend and twist deformations [39] (see the Supplhe bias increases, the electric FT occurred for> 0.88 V:
mental Material in Ref. [36] for more details). The temparat above this value, the beam turns into a self-confined wave,
dependence of the elastic constant and the refractivea@adievith a sharp transition [Fig. 12(e)]. A narrower beam yields
are taken into account [74], [75].

a stronger light-matter interaction even when decreadieg t
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Fig. 10. Maximum reorientation angts,, versus applied bias for three beam
powers, computed by solving numerically Eq. (1). In each pahnelbeam

width is 2 um (blue line), 5um (red line) and 1Qum (black line), from left
to right, respectively.
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§N4 Fig. 11. (a) Threshold voltag®;;, and (b) transition slope of the loop vs

bias graphed as a function of the input beam power, the |kt constant
during each cycle. FoP = 25 mW the transition slope is large enough to
be considered first-order and support bistability.

X [um]

bias, with reorientational solitons surviving in a wideterval

o 2W 0.84 V< V < 0.88 V and diffraction occurring only at
(] lower voltages than in the ramp-up branch. Similar to the

power-driven hysteresis discussed in Sec. llI-A, all theest

Fig. 8. Bistable beam propagation versus input beam powerfe- 0.92 v,  in the |0(_)p are .stab!e, demonstrating that b|5tap'||ty stem

(@)At P =1 mW the beam diffracts, so it does for (b)-lft = 15.5 mW  from the interacting fields and the feedback provided by the

and (c)-leftP = 16.5 mW. When the FT is overcome, a nematicon forms ; ; i ;

as in (d) forP = 20 mW. When decreasing the input power after reachinéeorle_ntatIonal r_ESponse' regardless of the SpECIfIC ajpuc

the self-confined state, the narrower beam corresponds dwer Ithreshold €/€Ctric mechanism.

P = Ptﬂec and the soliton survives also in (b)-right = 15.5 mW and (c)-

right P = 16.5 mW. (e) Hysteresis of the average beam width, for increasing

(black squares) and decreasing (red circles) input powes.ifisets show the IV. CONCLUSIONS
output intensity profiles at the points indicated by thews@” = 16.5 mW), We reported nonlinear beam propaagation in nematic liguid
in either the diffracting (top) or the self-confined (bottostates. P propag d

crystals in the presence of @adericksz threshold, describing
the propagation of light wavepackets in planar cells versus
input optical power and applied voltage. For propagatiass di
tances exceeding the Rayleigh length, the feedback inh&ren
self-focusing via reorientation transforms a second-omna®

& @) M}%% o] 4 ©| a first-order transition, resulting in bistability and hsistsis

off %@gﬂ 9 %‘fﬁ\ g between diffracting and self-confined beam states. Thecbasi
- . o7 M] 53 + ingredient is the dependence of the power threshold at the
§~5 §~5 22 *{7 Fréedericksz transistion on the beam profile: a self-trapped

n 3 84 Bp beams provides larger light-matter coupling, in turn lawegr

] w@ ; 0y 0 T the threshold.

5 i . . . . . .
0131416 820 4 6 8 f0121a 95 17 19 37 23 We demonstrated opthal bistability using either the input
Power [mW] Power [mW] Temperature [°C] beam power or the applied voltage as control parameters. The
occurrence of bistability strongly depends on the joinicact
Fig. 9. Temperature dependence of the hysteresis loop. gedraam width _Of aII-optlcql and eleCtrO'Opt'C _responses. For p(_)werb_l@n_
for T = 16°(a) and23°C (b) for increasing (black squares) and decreasing the bias is above the Eedericksz threshold, bistability is

(red circles) input power. (c) Measured (black trianglesi @alculated (red jnhibited. For biases below threshold, the lower the vatag
inverted triangles) loop width versus temperature. . . .
the wider the hysteresis loop, with a marked dependence on
temperature, as well. In experiments, a minimum bias was
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Fig. 12. Bistable beam propagation versus voltage Hoe 25 mW. At (a)
V = 0.70 V the beam diffracts, as for (b)-lef’ = 0.84 V and (c)-left
V = 0.85 V. (d) When the FT is overcome, a nematicon forms ¥or=
0.90 V. Decreasing the voltage after the self-confined state kas beached,
the narrower beam lowers the threshold values and the sditovives also

for (b)-rightV = 0.84 V and (c)-rightV = 0.85 V. (e) Hysteresis of average

beam width vs bias, for increasing (black squares and lin€)) decreasing
(red circles and line) voltages. The insets show the outpensity profiles
in zy corresponding to the points indicated by the arroWs=£ 0.87 V), in
the diffracting (top) and self-confined (bottom) states. éHire temperature
wasT = 19°C

required to avoid beam instabilities, with a measured hgste
loop width of about 3 mW. For voltage control,

factorn = 2 accounts
hysteresigyitchell model when the nonlinearity is ruled by a Poisson

APPENDIXA
SOLUTION OF THE POISSON EQUATION FOR AGAUSSIAN
INPUT

The generic solution of
82g

the standard Poisson
equation in two dimensionss %

oz2 + %Jg Kf(.T,’lj)
is obtained via the superposition principle(z,y)
e f}/jQ f(@',y)G(z,y, 2,y )dx'dy’, with the Green
function G expressed by (4) in our geometry. For a Gaussian

input f(z,y) = exp [-2(2* 4+ y*)/w?], we find [59]

=1 .| ml(x—h/2
g = —HZ ﬁQl(y; h,w) sin {(h/)]
=1

11)

In Eq. (11) we introduced they—dependent quantity
N (y; h,w) = QF (h,w)Q (y; b, w), with

h/2 a2 _
Qf (h,w) = / e~ w? sin [M} dz, (12)

—h/2 h
VW x2w2i?
OV (y: h,w) = s [W(y;h) +W(—y;h)], (13
[y h,w) 2\/§e (W (y; h) (—=y;h)], (13)

where W (y; = erfc [\/iy/w + mlw/(2v/2h)] e/,
with erfc(y) 2/ym) [° e~t’dt. In the limit of nar-
row beams ¢ < thqu. (12) provides Q7.

(VFw/V2) sin () ¢~ =5

h)

~
~

8h?2

APPENDIXB
NEMATICONS IN THE HIGHLY NONLOCAL LIMIT

According to the accessible soliton model [65], [48], the
nonlinear index well can be approximated by a parabola.
Expanding the reorientational equation (1) around the beam
axis (i.e.,x = y = 0), for the second derivative d@f at each
beam location we find [66]

). (14)

sin(20,,) [ 2Yopt P
4 ( Tw?

In writing (14) we assumed a cylindrical symmetry frin
proximity of the beam, as confirmed with good accuracy by
full numerical simulations [see Fig. 6] [36]. The beam width
wg of the shape-preserving nematicon provided by Eq. (10)
can then be found by using the well known formula for the
guantum harmonic oscillator. In fact, making the approxima
tion An? =~ 2n.(0,,)n.(0,,) in Eq. (2)i ihe soliton width

2n :
(—kgne IR . The corrective

for departure from the original Snyder-

YLrV?
h2

62(9m1w7P) =

is provided byw; =

can be achieved by ramping the bias at fixed beam powggation, see Refs. [67], [68]. Using Eq. (14) the solitodttvi
The requirement on input power is twofold: it cannot be tog,  ;

low to provide a nonlinear response and must ensure that

reorientation vanishes for a finite voltage in the preserice o

TyLr V

Yo tP h
self-trapped beam. We observed a maximum loop size of 4 m\Ws Z\/T X

for P=25 mW. The demonstration of optical bistability with
propagating beams in nematic liquid crystals can be foresee
in other reorientational media [76], [77] and paves the way t

a novel class of sequential logics and memory elements based

on light self-confinement.

8nm2yLr V2
—1 1 .
- \/ R0 (01, (Orm) ST (20 )12 P2
(15)
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In unbiased cells\( = 0), Eqg. (15) in the limitV’ — 0 yields a laser at\ = 1064 nm was focused into the sample to a waist

[69] wo ~ 2 pm. Out-of-plane scattered light was collected by a
1/2 CCD camera to acquire the beam evolution in the propagation
1 47 1 - : S
wy (P, 0,) = — : — ) plane, while a microscope objective imaged the beam output
ko | Yopt Sin (20:,) e (0 )1l (0) P s O" another CCD device [46].
We finally stress that, with respect to the cdée= 0, the
presence of the static fiel r introduces a further screening, ACKNOWLEDGEMENTS
in turn lowering the effective nonlocality [48], [78]. A. A. and G. A. acknowledge the Academy of Finland for
support through the Finnish Distinguished Professor gnant
APPENDIXC 282858 and the European Union for the COST action IC1208.
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