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Bistable beam propagation in liquid crystals
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Abstract—Light-controlling-light is one of the most advanced
paradigms in optical signal processing, including light-induced
waveguides as well as all-optical switching and routing. Other
fundamental aspects of all-optical processing are optical memo-
ries and sequential elements, which require responses depending
on the evolution history of the system, such as the hysteresis
stemming from optical multistability. Hereby we report on optical
bistability and hysteresis in cavity-less geometries and in the
presence of self-localized beams, i.e., spatial optical solitons,
exploiting the nonlocal reorientational nonlinearity of nematic
liquid crystals. When the optic axis of NLC is initially orthogonal
to the applied electric field, the molecular dipoles start to
rotate above a threshold named after the Fŕeedericksz transition,
usually second-order. Here we show that such transition becomes
first-order via the intrinsic feedback provided by self-focusing,
in turn leading to the appearance of a hysteresis loop between
diffracting and self-confined beams. We report on hysteresis of
the beam size versus the input power, as well as hysteresis versus
applied voltage at a fixed beam power. Our findings introduce a
novel kind of cavity-less optical bistability with propagating light
beams and disclose a novel approach to information storage based
on light self-localization.

Index Terms—Bistability, Spatial solitons, Reorientational non-
linearity.

I. I NTRODUCTION

Optical multistability occurs when light-matter interactions
support the coexistence of two or more stable states sharing
the same set of excitation parameters [1]. When exploiting
dispersive and absorptive mechanisms [2], [3], optical multi-
stability is usually due to the interplay of a nonlinear process
and a feedback mechanism: the former stems from the material
response to light, the latter can be inherent to the system or
provided externally (e.g., by a cavity or a mirror). In the
simplest limit of two stable states, optical bistability (OB)
has been widely investigated because of its potentials for the
implementation of optical memory elements and/or sequential
logic circuits [4], [5], particularly in the framework of all-
optical signal processing [6], [7], [8], [9], [10], [11], [12]. The
vast available literature on OB includes, besides resonators
and external mirrors [1], interfaces between nonlinear me-
dia [13], photonic crystals and distributed feedback gratings
[14], [15], [16], [17], [18], [19], [20], [21], [22], distributed
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coupling to waveguides [23], [24], [25], [26], nonlinear op-
tical nanocavities and ring resonators [27], [28], graphene
[29], Anderson localization [30], self-focusing with counter-
propagating beams [31]. The self-focusing case corresponds
to a distributed self-lens resulting from an intensity-dependent
refractive index, as in the so-called Kerr or Kerr-like media,
where such an intensity dependence is linear or nearly-linear.
When self-focusing is strong enough to balance the natural
beam spreading due to diffraction, the transverse profile ofa
light beam can remain invariant in propagation, corresponding
to the fundamental mode of the self-induced waveguide [32].
Such self-trapped wavepackets are named spatial solitons.
Spatial solitons (and their temporal counterparts where self-
phase modulation compensates chromatic dispersion) have
been widely investigated in optics during the last decades
for their ubiquitous character [33], [34]. The possibilityof
combining light self-localization into solitons with OB was
investigated theoretically by Kaplan in 1985 [35], but never
demonstrated experimentally until 2014, when it was reported
by us in liquid crystals without external feedback [36].
In this Paper we address, both experimentally and theoretically,
OB between wave-propagation states corresponding to beam
diffraction and spatial solitons, respectively, in an optically
nonlinear as well as electro-optic reorientational medium,
namely nematic liquid crystals (NLC), where either the optical
power or the bias voltage can control light localization andits
evolution/switching between different states. With respect to
our previous works [36], [37], here we generalize the approach
of Ref. [38] developing a general theory based upon the
Green function, and accounting for the simultaneous presence
of voltage and optical fields. Our semi-analytic approach
provides a simple physical picture of the central role played
by self-focusing in the appearance of optical bistability in the
highly nonlocal limit. We also address the role played by the
longitudinal beam variation, a point never dealt with in detail
in the previous works.

Liquid crystals are soft materials sharing the properties
of both solids and liquids; in the nematic phase, the elon-
gated organic molecules are randomly distributed in space
with a high degree of orientational order, with the average
direction of their long-axes associated to a point-wise unit-
vector distribution, the so called molecular directorn [39].
Owing to such angular order, NLC are optically birefrin-
gent due to the anisotropic polarizability of their molecules,
with refractive index eigenvaluesn⊥ and n|| corresponding
to electric fields perpendicular and parallel to the director,
respectively. When uniformly aligned, most NLC behave as
positive uniaxial dielectrics, with optic axis alongn, ordinary-
wave indexno = n⊥ and extraordinary-wave indexne(θ) =
(

cos2 θ
n2
⊥

+ sin2 θ
n2
||

)−1/2

, depending on the angleθ between
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the director and the wave-vector of the propagating wave or
wavepacket. The well established technology of NLC display
and photonic devices exploits their peculiar optical proper-
ties and response to electromagnetic fields [40], including
extended spectral transparency, high nonlinearity and electro-
optic effect, easy tunability to external excitations as well large
damage threshold [41]. The most exploited response to electric
fields at both low and optical frequencies is reorientational:
the molecular dipoles induced by electric fields react with a
torque, which tends to reduce the overall system energy by
aligning the director to the field vector. The elastic response,
due to intermolecular interactions in the liquid crystalline
phase, counteracts such torque and determines the final equi-
librium, i.e., the resulting director distribution. In thecase
of an extraordinary polarized optical field, self-focusingcan
occur at low powers through the refractive index increase
associated to molecular reorientation [42], [43]. A finite size
light-beam can therefore reorient the NLC molecules and
induce a graded index transverse profile, thus acting as a
self-waveguide through compensation of linear diffraction: a
self-confined wavepacket or spatial optical soliton in NLC
is usually referred to as a “Nematicon” [44], [45], [46].
The reorientational nonlinearity of NLC is accompanied by
a highly nonlocal response, with range depending only on
the sample geometry in the unbiased case; nonlocality is an
important stabilization mechanism of (2+1)D solitons against
catastrophic collapse [47], [48]. Since the nonlinear response
depends on the mutual alignment of molecular director and
electric field, the torque vanishes when director and field
vector are mutually perpendicular, i.e.θ = 0◦. In this limit
the molecules, in the presence of noise, can only rotate above
a power threshold, termed Fréedericskz transition (FT) [49].
The latter transition is usually second-order, i.e. it doesnot
support bistability; nevertheless, under specific conditions on
NLC properties or external feedback, first-order transitions
with bistability were reported in NLC [50], [38], [51], [52],
[53], [54], [55], [56]. In this work we investigate cavity-less
first-order transitions in a standard material and configuration,
exploiting the intrinsic feedback provided by the medium
response to intense beams in order to obtain a bistable behavior
without external feedback.
The Paper is structured as follows. In Sec. II we introduce
the theoretical model and discuss molecular orientation fea-
turing or not self-focusing. We demonstrate the evolution
from second- to first-order transitions when self-focusingis
strong enough to affect the beam profile. We also show
how optical and electric fields interact in allowing/tuninga
bistable behavior. In Sec. III we experimentally demonstrate
the appearance of hysteresis loops between diffracting and
self-trapped beams as predicted in Sec. II. Two kinds of loops
can be observed: for a fixed bias voltage and varying the
input beam power, for a fixed input beam power and varying
the voltage. We also briefly address the role of temperature.
Finally, in Sec. IV we summarize our results.

II. B ISTABLE BEAM STATES IN NEMATIC LIQUID CRYSTALS

A. Geometry and model

The geometry we consider for the analysis and observation
of OB is sketched in Fig. 1. The NLC sample consists of
a planar cell defined by glass substrates infinitely extended
along y (a few cms in actual samples), of lengthLz along
the propagation coordinatez and thicknessh (h ≪ Lz)
acrossx. The glass/NLC interfaces are treated so to ensure a
homogeneous director distribution in the absence of external
stimuli, with planar alignment atθ = 0◦ [41]. On each of
the interfaces parallel to the planeyz, Indium Tin Oxide
thin film electrodes are deposited, permitting the application
of a (low-frequency) bias voltageV across the thickness
x. To first approximation, the bias electric fieldELF across
the sample can be considered uniform, withELF = x̂V/h
[40]. The optical excitation is a beam with electric fieldEopt

polarized alongx̂ and wavelengthλ with input wave-vector
k ‖ z. Hence, both the electric fieldsELF and Eopt tend
to induce molecular rotation in the planexz, so that the
angle θ is sufficient to describe the director distribution in
the medium. The reorientational torque due to an electric
field is Γ = ǫ0∆ǫ 〈(n ·E) (n×E)〉, where∆ǫ = ǫ‖ − ǫ⊥
is the anisotropy computed at the frequency of the external
electric field E. For a fixed field and director distribution,
the torque diminishes for increasing temperature, vanishing at
the isotropic-nematic transition. [39] The sample encompasses
Fréedericksz transition as both low-frequency and optical-
frequency electric fields are initially orthogonal to the director.
The director distribution is modified by the electromagnetic
waves and described by the point-wise reorientationθ(x, y, z)
resulting from the balance between the overall induced torque
and the restoring elastic forces [39]:

∇2θ+
ǫ0
2K

[

ǫa |Eopt(x, y, z)|2
2

+ ∆ǫLFE
2
LF

]

sin 2θ = 0 (1)

whereǫ0 is the vacuum dielectric constant,K is a scalar (ef-
fective) Frank’s constant for the elastic response;ǫa = n2

||−n2
⊥

and ∆ǫLF are the optical and low-frequency anisotropies,
respectively. In Eq. (1) and in the following we neglect
birefringent walk-off, that is, we takeEopt ‖ x̂ even after
reorientation [57].
While the quasi-static fieldELF is nearly independent ofθ
perturbations, the optical field distribution strongly depends on
reorientation, as the latter leads to self-focusing and eventually
self-localization. Specifically, namingθm(z) the maximumθ
in each sectionz = constant, paraxial light propagation in
our case can be modeled by a nonlinear Schrödinger equation
[36]:

2ik0ne(θm)
∂A

∂z
+Dx

∂2A

∂x2
+

∂2A

∂y2
+k20∆n2

e(θ) |A|2 = 0, (2)

where k0 is the vacuum wavenumber,Dx is the diffrac-
tion coefficient alongx, ∆n2

e(θ) = n2
e(θ) − n2

e(θm) is the
extraordinary-wave refractive index well associated to the
director distribution,A = Eopte

−ik0ne(θm)z is the slowly-
varying envelope of the beam.
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Fig. 1. Sketch of the NLC sample subject to FT. In a planar sample,
reorientation is provided by either a light beam or an electric bias. To observe
hysteresis in this work, FT is overcome by the combined action of both a light
beam of envelopeA propagating alongz and an applied voltageV across
x. (a) A low-power beam (power below optical FT) diffracts dueto lack
of reorientation. (b) A modest external voltage (below electric FT) is not
enough to reorient the molecules on its own. (c) The combined action of
both low-frequency and optical frequency electric fields can induce molecular
reorientation and result into beam self-confinement (nematicon). In each row,
the corresponding profiles of beam intensity, voltage distribution and director
orientation are sketched versusx, respectively.

B. Molecular reorientation for constant excitations

Equation (1) is a nonlinear equation inθ: thus, in general,
the superposition principle cannot be applied to separate the
effects of ELF and Eopt [58]. Moreover, Eq. (1) must be
solved with the boundary conditionsθ = 0◦ on the glass/NLC
interfaces, in line with the strong anchoring approximation.
A vanishing θ(x, y, z) = 0 everywhere is always a solution
of Eq. (1), regardless of the forcing terms; however, if the
external excitations overcome the FT, non-trivial solutions
exist. The Fŕeedericksz transition can be either first- or
second-order, depending on the configuration, but bistability
requires a first-order transition [6]. Here we are interested in
optical bistability related with light self-focusing inside the
NLC volume [50], [36].

1) Invariant beam profile: Let us start by considering
solutions of Eq. (1) in a two-dimensional geometry, that is,
neglecting the beam evolution alongz which is dictated by
the interplay of diffraction and self-focusing. We assume that
the beam intensityIopt = ne(θm)

2Z0
|Eopt|2 (Z0 is the vacuum

impedance) does not change with reorientation1. An invariant
Iopt entails a change in the optically-induced torque acting
on the molecules, due to the non-homogeneous impedance of
the medium: since for large anisotropies such mechanism can
lead to bistability even in the absence of self-focusing [38], we
need to account for it. Using the Green function formalism,θ

1In the exact case, a Poisson equation should be solved jointly with Eq. (1),
leading to a change inELF with reorientation. In this Paper we neglect this
second-order effect.

is formally given by

θ(x, y) =

∫ ∞

−∞

∫ h/2

−h/2

G(x, y, x′, y′) sin [2θ(x′, y′)]×
[

γoptIopt(x
′, y′) + γLFE

2
LF

]

dx′dy′, (3)

where γLF = ǫ0∆ǫLF/(2K), γopt(θm) =
ǫ0ǫaZ0/[2ne(θm)K], and the Green functionG in our
geometry is [59]

G(x, y, x′, y′) =
∞
∑

l=1

1

πl
sin

[

πl

h

(

x− h

2

)]

×

sin

[

πl

h

(

x′ − h

2

)]

e−
πl|y−y′|

h . (4)

Equation (3) is the starting point to look for approximate solu-
tions of Eq. (1). Let us focus on the maximum reorientationθm
[38]: if the optical intensity profile is circularly symmetric with
respect to the cell axis(x = 0, y = 0), to first approximation
we can assumeθ(x, y) ≈ θm = θ(x = 0, y = 0) on the right
hand side (RHS) of Eq. (3). We find

θm = F (Iopt, θm, V, h) sin(2θm), (5)

where we defined F (Iopt, θm, V, h) =
∫∞
−∞

∫ h/2

−h/2
G(0, 0, x′, y′)(γoptIopt + γLFE

2
LF)dx

′dy′. Thus,
we can separateF into two contributions, accounting for the
LF field ELF and for the beam fieldEopt, denoting themFel

andFopt, respectively. WritingIopt = 2P
πw2 exp

[

− 2(x2+y2)
w2

]

,

corresponding to a Gaussian beam of waistw and powerP ,
we get:

Fopt(P,w, h) =
2γoptP

πw2

∞
∑

l=1

sin
(

πl
2

)

πl
Ωl(y = 0;h,w), (6)

Fel(V ) =
4γLFV

2S1

π3
, (7)

where we introducedS1 =
∑∞

l=0
sin[π

2
(2l+1)]

[π(2l+1)]3 ≈ 0.9689 [see
the Appendix A for details and the definition ofΩl(y;h,w)].
The differences betweenFopt andFel stem from the unequal
spatial overlaps between the external fields and the medium
(i.e., the associated Green functionG). For narrow beams
(w ≪ h) we haveFopt = γoptPS2(w, h), whereS2(w, h) =
∑∞

l=0
1

π(2l+1)erfc
[

π(2l+1)w

2
√
2h

]

[60].
From Eq. (5) it is possible to describe the mechanism behind
the FT. We first assume∂F/∂θm = 0, corresponding to
ne(θm) ≈ n⊥ in the expression providingγopt. Then, a
nontrivial solution beyondθm = 0 exists if

F (Iopt, θm, V, h) > 0.5. (8)

Equation (8) yields the minimum external (pair of) excita-
tion(s) capable to overcome the FT [see Fig. 2(a)]. Under
the condition ∂F/∂θm = 0, it is θm = 0◦ at the FT,
corresponding to a continuous reorientationθm versus external
stimuli: the phase transition is second-order and hysteresis is
inhibited. Fig. 2(b) shows the case when the full expression
of F is accounted for. For anisotropies corresponding to
standard liquid crystals, there are only minor adjustmentsto
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Fig. 2. (Color online) (a) Graphic solution of Eq. (8) parametrized with F
(values next to each line). (b) Solution for an optical beam, parametrized with
n⊥F (as marked next to each line). Solid lines correspond tone(θm) ≈ n⊥,
dashed and dash-dotted lines correspond to∂F/θm 6= 0 for n‖ = 1.7
andn‖ = 2, respectively. (c) Maximum reorientationθm corresponding to
the curves plotted in (b) versus magnitude of the external excitation F for
ne ≈ n⊥ (blue),n‖ = 1.7 (black) andn‖ = 2 (red), from top to bottom,
respectively. In all plotsn⊥ = 1.5.

Fig. 3. (Color online) Maximum reorientation angleθm versus beam power
for (a)w = 2 µm, (b)w = 5 µm and (c)w = 10 µm, respectively, computed
via the semi-analytic approach Eq. (5). The applied bias is 0,0.6 and 0.8V
from right to left, respectively. (d) Threshold powerPth versus applied bias
V for w = 2, 5 and10 µm, from bottom to top, respectively. Here we refer
to the mixture E7 at room temperature and a beam wavelength of 1064 nm.

the approximationne(θm) ≈ n⊥. Moreover for smallθ, i.e.,
close to threshold,∂2F/∂θ2m < 0 thus the reorientation curve
θm versus external excitationF is continuous, confirming that
the transition is second-order [38]. Both in the approximate
and in the exact cases, given the system symmetry with respect
to positive or negativeθ, at the FT a pitchfork bifurcation
occurs [see Fig. 2(c)] [39], [61].
To compute the optical and electric FT we can use Eq. (5)

and consider the two fields applied separately, under the
conditionF = 0.5. In the absence of light, Eq. (7) provides

the voltage thresholdV (0)
th = π

2

√

πK
ǫ0∆ǫLFS1

. The analytical

(exact) calculation providesV exact
th = π

√

K
ǫ0∆ǫLF

[39], [40],

thus V
(0)
th /V exact

th = 0.5
√

π
S1

≈ 0.9. Conversely, in the

absence of voltage, from Eq. (6) the threshold beam power
is P

(0)
th = 1

2γoptS2(w,h) [60].
When both light and voltage are applied simultaneously, the

power thresholdPth for each value of the applied biasV can
be found by equating the left hand side of Eq. (8) to 0.5. Using
Eqs. (6-7), the threshold beam powerPth for narrow beams

Fig. 4. Beam power threshold versus input waist in a cylindrical geometry
with a radius of 400µm and propagation lengthLz = 1.5 mm. Triangles
result from numerical simulations, the solid line is the spline interpolation of
the numerical data.

is given by:

Pth(V ;w, h) =



1−
(

V

V
(0)
th

)2


P
(0)
th . (9)

Consistently with the experiments described in the second part
of this Paper, hereafter we focus on the specific NLC mixture
E7 in a planar cell of thicknessh = 100 µm, excited by a
laser beam atλ = 1064 nm. The relative dielectric constants
for the quasi-static LF field are 19.6 and 5.1, for fields parallel
and normal ton, respectively. The refractive indicesn⊥ and
n‖ are 1.5038 and 1.6954 at room temperature, respectively.
The single Frank elastic constant (taken equal for splay, bend
and twist deformations) is 12× 10−12 N. Fig. 3 shows
the maximum angleθm versus input powerP computed via
Eq. (5) for three beam sizes [Fig. 3(a-c)]. At a fixed power
the reorientation increases for narrower beams owing to the
stronger fieldEopt, while the reorientation curves shift to
the left (i.e., less power is required to reach the sameθm)
as the bias increases. ForV > V

(0)
th , the voltage overcomes

the (electric) FT and reorientation is finite even without light
power P . The comparison with the full numerical solution
developed and shown in ref.[36] and supplemental material
shows a good match between the two approaches, with the
accuracy of the analytic approach decreasing as the beam
width increases, consistently with the assumptions. Finally,
Fig. 3(d) graphs the optical threshold powerPth versus applied
voltage [Eq. (9)] for three beam widths. The trend is parabolic
and all curves cross inPth = 0 whenV = V

(0)
th .

2) Longitudinal effects: Although the applied bias and
its effects are essentially invariant versusz, in the linear
regime the intensity distribution of the beam,Iopt, changes
in propagation through diffraction. The diffractive spreading
is relevant when the Rayleigh distance is comparable with
or shorter than the cell length alongz. Eq. (5) remains
valid, but the functionF cannot be expressed in a closed
form due to az-dependent Green function [57]. Nevertheless,
the problem can be addressed numerically. For the sake of
simplicity, we assume a cylindrically symmetric sample as
the qualitative behavior does not vary with the geometry.
Specifically, we solved Eq. (1) settingELF = 0 (unbiased cell)
and Iopt = 2P

πw2(z) exp
[

−x2+y2

w2(z)

]

, where, consistently with
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free diffraction,w(z) = w0

√

1 +
(

z
L

)2
; hereL is the Rayleigh

distance. In essence, we compute the maximum reorientation
angle in the cell versus the input powerP , the latter curves
providing the threshold power for a given input waistw0. The
threshold power versus beam waistw0 (in z = 0) is plotted in
Fig. 4 and shows a relative minimum forw0 ≈ 8 µm. In fact,
despite the higher intensities in the early propagation stages,
narrower beams undergo larger diffraction and, overLz, give
rise to a weaker light-matter interaction. Conversely, forlarger
waists the relative weights of the two effects reverse and the
lower beam intensity determines higher thresholds.

C. Role of self-focusing

In Sec. II-B, we showed that the Fréedericksz transition
from the initial distribution to a reoriented state is second-
order, thus hysteresis is not allowed: the dynamics of the
system does not depend on its history. The transition can
become first-order when the optical nonlinearity is taken into
account, as in this regime the beam can change the dielectric
properties of the medium [Eq. (1)], in turn modifying its
intensity through self-focusing, as modelled by Eq. (2) [62],
[63], [64]. In other words, the nonlinearity provides an inherent
feedback mechanism, necessary to obtain hysteresis.
The inclusion of feedback in the model developed in Sec. II-B
is not straightforward. The actual dynamics, in fact, comprises
a Gaussian beam subject to quasi-sinusoidal oscillations in
width w(z), the so called breathing2. The latter would require
computing the Green functionG in the full three-dimensional
case. Nevertheless, the basic physics can be grasped by
assuming az-invariant beam profile: in the equivalent two-
dimensional model the breathing can be replaced by an average
soliton width, corresponding to the shape-preserving solution.
In the highly nonlocal limit, the perturbation of the orientation
θ can be approximated by a parabola as in the ”accessible
soliton” model introduced by Snyder and Mitchell [65], [66],
to be slightly amended/adjusted in actual diffusive media [67],
[68]. After setting θ = θm − θ2

(

x2 + y2
)

, such modified
Snyder-Mitchell model provides the implicit equation (see
Appendix B)

ws (P, V, θm) =

(

2η

ne(θm)n′
e(θm)k20Pθ2(θm, ws, P, V )

)
1
4

(10)
wheren′

e(θm) ≡ dne

dθ and θ2 is provided by Eq. (14). The
solution of (10) yields Eq. (15) in Appendix B. Although the
average beam width depends on the input widthw0, as well
[69], this does not alter the basic physics and affects only
slightly our results; hence, it will be neglected. Eq. (10) states
that the width of the shape-preserving soliton depends on the
input powerP , the biasV and the maximum reorientationθm,
the latter being related to the size of the nonlinearity.
When self-focusing is accounted for, the beam width depends

on the input powerP , with θm and the biasV acting as
free parameters related to the material response. It is then
possible to solve Eq. (5) jointly with Eq. (10) to get the

2This corresponds to the highly nonlocal limit, that is, whenw ≪ h.

Fig. 5. Reorientation in the presence of self-focusing. (a)Graphic solution
of Eq. (5) when (10) is used and the cell is unbiased. From bottom to top,
the curves correspond to powers of 5, 15.15 (corresponding to Pdec

th
), 20 and

30 mW, respectively. Inset: zoom around the origin.(b) Maximum reorientation
θm and (c) beam width versus beam power for three biases, as labelled. Solid
and dashed lines correspond to stable and unstable branches, respectively.
Inset: zoom at large powers. (d) Dependence of the Fréedericksz threshold
Pdec

th
from applied voltage. Here we considered the NLC mixture E7 atroom

temperature and a wavelength of 1064 nm.

reorientation curve versus power in the presence of self-
trapping. As sketched in Fig. 5(a) for the unbiased case
(the behavior remains similar when a voltage is applied),
the functionF defined by Eq. (6) does no longer exhibit
a sinusoidal trend with respect toθm. At low powers there
are no solutions of Eq. (5) (besides the trivialθm = 0)
as reorientation does not occur. The Fréedericksz threshold,
P = P dec

th (we introduce the subscript “dec” as this value
corresponds to the FT for decreasing powers in the hysteresis
loop, see below) is achieved when the two curves are tangent
to one another forθm 6= 0: reorientation versus input power
shows a sudden jump, that is, a first-order transition. For
powersP > P dec

th two solutions can exist [Fig. 5(b-c)] [60].
One family of such solutions exhibits a maximum reorientation
θm increasing with power [solid lines in Fig. 5(b-c)], and it
corresponds to stable solutions (see Appendix C). Vice versa,
the other family presents an inverted trend for reorientation
versus power [dashed lines in Fig. 5(b-c)], corresponding to
unstable solutions (see Appendix C). Maximum reorientation
θm and beam width are plotted in Fig. 5(b) and Fig. 5(c),
respectively. Fig. 5(d) finally illustrates how the Fréedericksz
threshold powerP dec

th monotonically decreases with applied
bias, going to zero forV = Vth.

Optical bistability between diffracting and self-confined
beam states is confirmed by direct numerical simulations. For
the sake of clarity (and physical intuition) we refer to an
unbiased cell: the role and effects of an applied voltage are
discussed in Ref. [36].

We start from the solution of the reorientational equation
[Eq. (1)] and a constant intensity profile, taken invariant along
z. The absolute value of the maximum reorientationθm is
graphed in Fig. 6(a) versus beam powerP : the same trend of
Fig. 3 is observed.
Next we account for self-focusing by solving the optical
evolution equation together with the reorientational equation.
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Fig. 6. Bistability in the presence of optical solitons in a planar cell.
(a) Maximum reorientation versus input beam power when self-focusing is
neglected (beam widths are 2, 5, 10, 20 and 40µm, solid lines from blue to
red, yellow, violet and green, respectively, from left to right) but feedback on
the wavepacket profile is accounted for (black line with triangles). (b) Soliton
width versus power alongx (dashed line) andy (solid line). Reorientation
angleθ (c,e) and field profile (d,f) versusx (dashed blue lines) andy (solid
red lines), forP = 20 mW (c,d) andP = 88 mW (e,f). (g) Bistable loop
in the planeθm-power between diffracting (portion whereθm vanishes) and
self-confined states (finiteθm).

We look for z-invariant solitary wavepackets with the ansatz
A = us(x, y)e

ik0nsz andθ = θs(x, y). The substitution leads
to a nonlinear eigenvalue problem, the solutions of which
are plotted in Fig. 6(b-f). In agreement with Fig. 5, solitons
do not exist for powers below a threshold,P dec

th , owing to
the Fŕeedericksz transition. The reorientation curve in the
presence of self-focusing is plotted in Fig. 6(a) (black line
with triangles): forP < P dec

th , self-focusing does not occur
and the beam diffracts. Within the soliton existence interval,
us is Gaussian within a good accuracy, andθs maintains the
same spatial profile regardless of the input power. Specifically,
the nonlinear optical perturbation is parabolic near the beam
axis and close to the Green function away from it [Fig. 6(c-
f)]. We stress that both beam profile and molecular distribution
are approximately circularly symmetric. Fig. 6(g) shows the
hysteresis loop corresponding to the first-order transition. For
a given input field (Gaussian beam of waistw0 and planar
phase front inz = 0), we gradually increase the input power
from zero: the wavepacket diffracts untilP = P inc

th , where
reorientation at FT occurs. The minimum powerP inc

th to form
a solitary wave depends on the initial width of the beamw0,
see Fig. 3 and Fig. 4. For further power increases, self-focusing
comes into play and, consequently, the beam profile changes
towards a self-confined state. We pinpoint once again that, in
actual samples, a breather soliton is normally excited, with
width oscillating around the shape-preserving solution shown
in Fig. 6(b). In any event, the reorientational curve differs from
the initial one, so that when the beam power is ramped down,
self-trapping is maintained until the soliton exists, i.e., down
to the (lower) thresholdP = P dec

th .

III. E XPERIMENTAL RESULTS

A. Bistability versus input beam power

From the results shown in Fig. 3(d), one expects the wider
hysteresis loops to occur in unbiased cells. However, for
V = 0, the power corresponding to optical FT is relatively

high and spatial solitons tend to be temporally unstable, with
path fluctuations [70], [62]. The application of a low-frequency
electric field ELF can reduce the power thresholdP inc

th [see
Fig. 3] and make the solitons observable [63] as FT is reached
by the combined action of voltage and beam induced torques.
We first measured the beam width as a function of the applied
voltage at fixed power [64]. Fig. 7(a) shows the average beam
width versus bias forP = 2 mW. The beam width was
obtained from the intensity profile in the planeyz, acquired
from the light scattered out of the plane (see Appendix D),
through a best-fit procedure with a fundamental Gaussian. The
average width was calculated aswz = 1

Lz

∫ Lz

0
w(z)dz, with

Lz the length of the NLC cell alongz. An abrupt drop in
wz is observed whenVth ≈ 1.1 V, where the molecules start
to rotate. AtV ≈ 1.5 V, the beam widthwz reduces to a
value only slightly wider than the input, i.e., a self-trapped
beam is formed. Fig. 7(b) shows the corresponding intensity
evolution in the planeyz and the output profile inxy. When
the beam width starts to reduce (0.9 V < V < 1.1 V),
the output profile (bottom photographs) shows a wide profile
acrossy and fringes acrossx: the molecules are reoriented
by the bias, leading to ay−invariant multi-mode waveguide,
without an appreciable role of all-optical reorientation.For
1.1 V < V < 1.3 V, i.e., corresponding to the drop in
Fig. 7(a), the waveguide becomes more confining owing to the
largerθm, supporting a light stripe parallel toy at the output.
As V is further increased, nonlinear confinement occurs across
y (already appreciable forV = 1.3 V). Finally, atV = 1.5 V,
a cylindrically-symmetric self-confined beam is observed,a
nematicon invariant inyz and transversely confined inxy [63].
A nematicon appears only for large enough voltages owing to
the modulation of the nonlinearity with the initial orientation
angleθ in the absence of light [57]. Thex-shift of the output
beam vs voltage is due to the walk-off angle varying withθ
[71], [72].
According to our model, bistability is not expected forV >
Vth; this was confirmed by measuring the beam width versus
the input power forV = 1 V (see Fig. 7(b)) [63], i.e., just
above the FT. The intensity profiles are the same for increasing
vs decreasing powers. Furthermore, stable self-localizedbeams
exist forP ≈ 12 mW: the power threshold is lowered by the
joint effect of light and bias, in agreement with Fig. 3.
Therefore a trade-off needs to meet to obtain bistability. On
the one hand, it must beV < Vth to ensure the existence of
the diffracting state when light power increases from zero.On
the other hand, too low biases correspond to unstable solitons
because of the large power required to support self-guidance.
With reference to Fig. 3(d), the width of the hysteresis loop
decreases and eventually vanishes asV approachesVth: in
fact, the loop size is determined by the separation between
reorientation curves corresponding to different beam widths.
With these considerations in mind, we measured the hysteresis
loop forV = 0.92 V, just below the FT, near room temperature
T = 18◦C. The experimental results are shown in Fig. 8, with
photographs of beam propagation inyz and output profiles
in xy, as well as a graph the average beam width versus
power. For powers up toP = 13 mW, the beam propagated
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Fig. 7. (a) Electric FT (EFT) for aP = 2 mW beam as calculated from the acquired propagation inyz. The inset shows the average beam width alongz
versus input power, forV = 1.1V corresponding to the electric FT threshold, for increasing (black squares and line) and decreasing (red squares and line)
powers: no hysteresis is observed. (b) Photographs of (top)beam propagation inyz and (bottom) output profiles inxy for several voltages. The voltage driven
reorientation occurs sooner acrossx, with the beam confined in the linear index well. The actual threshold value is lower than derived from (a).

linearly with no reorientation. Then the beam size started to
reduce without reaching a self-trapped state. A self-confined
state could be observed atP = 16.5 mW (corresponding to
P inc
th ), when the beam width suddenly collapsed. The power

was then raised up toP ≈ 20 mW, where stable solitons could
still be observed. To complete the counterclockwise hysteresis
loop the beam power was decreased back and the self-confined
beam survived down toP = 14 mW (corresponding toP dec

th );
for further reductions a diffracting state was retrieved. Fig. 8(e)
shows the measured hysteresis, with a loop width of about
3 mW.

1) Temperature dependence:A finite FT derives from the
unavoidable fluctuations associated with a finite temperature
[39], [51]. The noise-induced rotation of an ensemble of
molecules gets amplified by the external field up to macro-
scopic scales and transferred to the surrounding molecules
via elastic interactions, provided the torque is strong enough.
Hence, temperature is expected to play a central role. A
control of the sample temperature allows optimizing and
tuning the occurrence and the size of the hysteresis loop. High
temperatures increase the noise contribution to the system
energy, flattening the potential barrier and preventing bista-
bility; low temperatures reduce the nonlinearity, preventing
efficient self-confinement and increasing the relaxation time
in the transitions between the two states. We repeated the
measurements shown in Fig. 8 atT = 16◦C andT = 23◦C,
see Fig. 9(a-b) [73]. The higher temperature lowered both the
power thresholdsP inc

th andP dec
th due to stronger fluctuations;

the loop size,P inc
th − P dec

th , shrunk as well. These results are
in qualitative agreement with the model [Fig. 9(c)] accounting
for the three different values of the elastic constants associated
with splay, bend and twist deformations [39] (see the Supple-
mental Material in Ref. [36] for more details). The temperature
dependence of the elastic constant and the refractive indices
are taken into account [74], [75].

B. Optical bistability versus applied voltage

Equation (1) states that reorientation can be triggered by
low- and optical frequency fields and Eq. (9) describes the FT
threshold in terms of their joint action. Hence, we should be
able to observe optical bistability when varying the applied
voltage while keeping the input beam conditions constant.
As shown in Fig. 7(a), we investigated the propagation of
a P = 2 mW beam for various applied voltages: self-
confinement occurred when all-optical and electric responses
sufficed to overcome the FT [37]. This was observed above
V = 1 V, when the beam width gradually reduced until it
resulted into a spatial soliton. However, the transition between
diffracting and self-confined states was smooth, preventing
the observation of bistability: the curves for increasing and
decreasing biases superposed and no hysteresis could be
observed. As apparent from the simulations in Fig. 10, in order
to obtain self-confinement for low beam powers, the voltage
must be high enough to overcome the FT on its own, which
implies a second-order transition. Conversely, large enough
beam powers makeVth appreciably dependent on beam width,
paving the way to a first-order transition.
Experimentally, we varied the relative weights of the two
reorientational torques. First, we observed a reduction of
the voltage needed to overcome the FT as the optic power
increased, as in Fig. 11(a) in good agreement with Fig. 3(d).
In Fig. 11(b) it is apparent that higher powers correspond
to steeper transitions versus applied bias, with an abrupt
switch (the slope approachesπ/2) between diffracting and
self-trapped states - a first-order transition - forP = 25 mW.
Higher powers would allow the light beam to overcome the
FT by itself when self-trapped [Fig. 3(d)].
Figure 12 shows the beam evolution forP = 25 mW. As
the bias increases, the electric FT occurred forV ≥ 0.88 V:
above this value, the beam turns into a self-confined wave,
with a sharp transition [Fig. 12(e)]. A narrower beam yields
a stronger light-matter interaction even when decreasing the
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Fig. 8. Bistable beam propagation versus input beam power for V = 0.92 V.
(a)At P = 1 mW the beam diffracts, so it does for (b)-leftP = 15.5 mW
and (c)-leftP = 16.5 mW. When the FT is overcome, a nematicon forms,
as in (d) forP = 20 mW. When decreasing the input power after reaching
the self-confined state, the narrower beam corresponds to a lower threshold
P = P dec

th and the soliton survives also in (b)-rightP = 15.5 mW and (c)-
right P = 16.5 mW. (e) Hysteresis of the average beam width, for increasing
(black squares) and decreasing (red circles) input power. The insets show the
output intensity profiles at the points indicated by the arrows (P = 16.5 mW),
in either the diffracting (top) or the self-confined (bottom)states.

Fig. 9. Temperature dependence of the hysteresis loop. Average beam width
for T = 16◦(a) and23◦C (b) for increasing (black squares) and decreasing
(red circles) input power. (c) Measured (black triangles) and calculated (red
inverted triangles) loop width versus temperature.

Fig. 10. Maximum reorientation angleθm versus applied bias for three beam
powers, computed by solving numerically Eq. (1). In each panelthe beam
width is 2µm (blue line), 5µm (red line) and 10µm (black line), from left
to right, respectively.

Fig. 11. (a) Threshold voltageVth and (b) transition slope of the loop vs
bias graphed as a function of the input beam power, the latterkept constant
during each cycle. ForP = 25 mW the transition slope is large enough to
be considered first-order and support bistability.

bias, with reorientational solitons surviving in a wider interval
0.84 V≤ V ≤ 0.88 V and diffraction occurring only at
lower voltages than in the ramp-up branch. Similar to the
power-driven hysteresis discussed in Sec. III-A, all the states
in the loop are stable, demonstrating that bistability stems
from the interacting fields and the feedback provided by the
reorientational response, regardless of the specific optical or
electric mechanism.

IV. CONCLUSIONS

We reported nonlinear beam propagation in nematic liquid
crystals in the presence of Fréedericksz threshold, describing
the propagation of light wavepackets in planar cells versus
input optical power and applied voltage. For propagation dis-
tances exceeding the Rayleigh length, the feedback inherent to
self-focusing via reorientation transforms a second-order into
a first-order transition, resulting in bistability and hysteresis
between diffracting and self-confined beam states. The basic
ingredient is the dependence of the power threshold at the
Fréedericksz transistion on the beam profile: a self-trapped
beams provides larger light-matter coupling, in turn lowering
the threshold.
We demonstrated optical bistability using either the input
beam power or the applied voltage as control parameters. The
occurrence of bistability strongly depends on the joint action
of all-optical and electro-optic responses. For power-control,
if the bias is above the Fréedericksz threshold, bistability is
inhibited. For biases below threshold, the lower the voltage
the wider the hysteresis loop, with a marked dependence on
temperature, as well. In experiments, a minimum bias was
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Fig. 12. Bistable beam propagation versus voltage, forP = 25 mW. At (a)
V = 0.70 V the beam diffracts, as for (b)-leftV = 0.84 V and (c)-left
V = 0.85 V. (d) When the FT is overcome, a nematicon forms forV =
0.90 V. Decreasing the voltage after the self-confined state has been reached,
the narrower beam lowers the threshold values and the soliton survives also
for (b)-rightV = 0.84 V and (c)-rightV = 0.85 V. (e) Hysteresis of average
beam width vs bias, for increasing (black squares and line) and decreasing
(red circles and line) voltages. The insets show the output intensity profiles
in xy corresponding to the points indicated by the arrows (V = 0.87 V), in
the diffracting (top) and self-confined (bottom) states. Here the temperature
wasT = 19◦C

required to avoid beam instabilities, with a measured hysteresis
loop width of about 3 mW. For voltage control, hysteresis
can be achieved by ramping the bias at fixed beam power.
The requirement on input power is twofold: it cannot be too
low to provide a nonlinear response and must ensure that
reorientation vanishes for a finite voltage in the presence of a
self-trapped beam. We observed a maximum loop size of 4 mV
for P=25 mW. The demonstration of optical bistability with
propagating beams in nematic liquid crystals can be foreseen
in other reorientational media [76], [77] and paves the way to
a novel class of sequential logics and memory elements based
on light self-confinement.

APPENDIX A
SOLUTION OF THE POISSON EQUATION FOR AGAUSSIAN

INPUT

The generic solution of the standard Poisson
equation in two dimensions∂2g

∂x2 + ∂2g
∂y2 = κf(x, y)

is obtained via the superposition principleg(x, y) =

κ
∫∞
−∞

∫ h/2

−h/2
f(x′, y′)G(x, y, x′, y′)dx′dy′, with the Green

functionG expressed by (4) in our geometry. For a Gaussian
input f(x, y) = exp

[

−2(x2 + y2)/w2
]

, we find [59]

g = −κ

∞
∑

l=1

1

πl
Ωl(y;h,w) sin

[

πl(x− h/2)

h

]

. (11)

In Eq. (11) we introduced they−dependent quantity
Ωl(y;h,w) = Ωx

l (h,w)Ω
y
l (y;h,w), with

Ωx
l (h,w) =

∫ h/2

−h/2

e−
2x2

w2 sin

[

πl(x− h/2)

h

]

dx, (12)

Ωy
l (y;h,w) =

√
πw

2
√
2
e

π2w2l2

8h2 [W (y;h) +W (−y;h)] , (13)

where W (y;h) ≡ erfc
[√

2y/w + πlw/(2
√
2h)
]

eπl(y/h),
with erfc(y) ≡ (2/

√
π)
∫∞
x

e−t2dt. In the limit of nar-
row beams (w ≪ h) Eq. (12) provides Ωx

m ≈
(√

πw/
√
2
)

sin
(

πl
2

)

e−
π2w2l2

8h2 .

APPENDIX B
NEMATICONS IN THE HIGHLY NONLOCAL LIMIT

According to the accessible soliton model [65], [48], the
nonlinear index well can be approximated by a parabola.
Expanding the reorientational equation (1) around the beam
axis (i.e.,x = y = 0), for the second derivative ofθ at each
beam location we find [66]

θ2(θm, w, P ) =
sin(2θm)

4

(

2γoptP

πw2
+

γLFV
2

h2

)

. (14)

In writing (14) we assumed a cylindrical symmetry forθ in
proximity of the beam, as confirmed with good accuracy by
full numerical simulations [see Fig. 6] [36]. The beam width
ws of the shape-preserving nematicon provided by Eq. (10)
can then be found by using the well known formula for the
quantum harmonic oscillator. In fact, making the approxima-
tion ∆n2

e ≈ 2n′
e(θm)ne(θm) in Eq. (2), the soliton width

is provided byws =
(

2η
k2
0ne(θm)n′

e(θm)θ2

)1/4

. The corrective
factor η = 2 accounts for departure from the original Snyder-
Mitchell model when the nonlinearity is ruled by a Poisson
equation, see Refs. [67], [68]. Using Eq. (14) the soliton width
ws is

ws =

√

γoptP

πγLF

h

V
×

√

√

√

√−1 +

√

1 +
8ηπ2γLFV 2

h2k20ne(θm)n′
e(θm) sin(2θm)γ2

optP
2
.

(15)
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In unbiased cells (V = 0), Eq. (15) in the limitV → 0 yields
[69]

ws (P, θm) =
1

k0

[

4πη

γopt sin (2θm)ne(θm)n′
e (θm)

1

P

]1/2

.

(16)
We finally stress that, with respect to the caseV = 0, the
presence of the static fieldELF introduces a further screening,
in turn lowering the effective nonlocality [48], [78].

APPENDIX C
SOLITON STABILITY IN UNBIASED CELLS

The stability of the solutions can be derived by considering
the free energyF of the NLC subject to external fields, in
particular its dependence on the maximum angleθm. We
refer to the unbiased case for simplicity, as in this limid
closed form solutions are available and correspond to Eq. (11).
We also neglect the dynamics alongz, considering invariant
beams in propagation. The free energy is the sum of the
elastic energy due to NLC distortion and the electromagnetic
energy [39]. In the framework of the continuum theory and
under the single elastic constant approximation [39], the elastic
contribution isFel =

K
2 ∇θ · ∇θ. The electromagnetic term is

Fem = 1
2

[

ǫ0n⊥E2
opt + ǫ0ǫa (n̂ · Eopt)

2 − B2
opt

µ0

]

, where Bopt

is the magnetic field. By integrating the sumFel+Fem through
the cross section, i.e.,F =

∫∞
−∞

∫ h/2

−h/2
(Fel + Fem)dxdy, we

obtain the system free energy as [73]:

F ≈ ακ2θ2m +
Γǫa
2π

P

nsw2

∫ h/2

−h/2

dx

∫ ∞

−∞
cos(2θ)e−2 x2+y2

w2 dy+

Γ

[

1

k20nsw2
+ ns +

ǫa
4

cos(2θm)

ns

]

P,

(17)

where α = 1
4

∑∞
p=0

∑∞
−∞

[

π2 Ω2
2p+1

h + h
(

dΩ2p+1

dy

)2
]

,

κ(w) = − 1∑∞
p=1

Ωp(0) sin(
πp

2
) and Γ = ǫ0Z0

K . Below FT,

i.e., P < P dec
th , the system exhibits an absolute minimum

in θm = 0, in agreement with Fig. 5(a). Above FT, i.e.,
P > P dec

th , a new local minimum arises forθm 6= 0◦. Between
the two minima, a local maximum appears. The minimum in
θm = 0◦ is associated to diffracting beams, the other minimum
is a stable self-confined wavepacket [solid lines in Fig. 5(b-
c)] [79]; the local maximum represents a wider and unstable
soliton solution [dashed lines in Fig. 5(b-c)].

APPENDIX D
SAMPLE GEOMETRY AND SETUP

The planar cell consists of two glass slides separated byh ≈
100 µm using Mylar spacers. Indium Tin Oxide transparent
thin film electrodes are deposited on the inner surfaces and
allow for the application of the low-frequency electric field, a
sinusoidal AC voltage at 1kHz. The inner surfaces were also
coated with polyimide polymer, mechanically rubbed to obtain
molecular alignment along thez direction (Fig. 1). Two further
glass cover slides sealed the regions at input and output facets.
Using a microscope objective, thex-polarized TEM00 mode of

a laser atλ = 1064 nm was focused into the sample to a waist
w0 ≈ 2 µm. Out-of-plane scattered light was collected by a
CCD camera to acquire the beam evolution in the propagation
plane, while a microscope objective imaged the beam output
on another CCD device [46].
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