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Abstract

We have studied a polar, biaxial nematic liquid crystal formed from
bent-core molecules using molecular field theory. The model includes a
simple Heisenberg-form dipolar intermolecular interaction in addition
to the usual quadrupolar nematic interaction, and mimics a system
consisting of nematogenic bent-core molecules with an large transverse
dipole along the bisector of the two molecular arms. Such systems
are regarded as good candidates for biaxial nematic liquid crystals. In
principle, the molecular dipoles can align, thus stabilizing the ordering
of the minor axes. Our calculations predict that, for suitable values
of the bent-core interarm angle, the biaxial nematic phase can be sta-
bilized at higher temperatures than in the absence of the transverse
dipole. In general, the transverse macroscopic polar order stabilizes
the biaxial nematic phase. In particular, for a large enough dipolar in-
teraction, the Landau point in the pure biaxial nematic develops into a
line of first-order polar biaxial nematic-to-isotropic phase transitions.

1 Introduction

Most nematic liquid crystals exist as uniaxial phases (NU ). An idealized
picture of these phases is such that constituent molecules align one molecular
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axis to form a single macroscopic director. Over forty years ago, Freiser
[?] predicted the possible existence of a biaxial nematic liquid crystal phase
(NB). In this phase, all three molecular axes align to form three macroscopic
directors. In the intervening period the subject has been the focus of much
intensive theoretical (e.g. [?, ?, ?, ?]), computational (e.g. [?, ?]) and
experimental (e.g. [?, ?, ?, ?]) research.

There are well-attested observations of lyotropic biaxial nematic phases
[?]. There have also been well-publicised reports of the existence of ther-
motropic biaxial nematic phases in bent-core nematics [?, ?]. But this work
has attracted some controversy in the literature (see e.g. [?, ?, ?]). In par-
ticular, the onset of the experimental NB [?, ?] seems to occur at a much
higher temperature than that predicted theoretically [?] and the phase bi-
axiality is very small. It has been suggested [?, ?] that this may be due to
a large permanent tranverse electrostatic dipole in the bent-core molecules.
Electro-optical experiments by Lee et al.[?] have shown some evidence of
this phase polarity. However if this were true, the resulting phase might
be expected to be polar, due to the ordering of the molecular dipoles [?].
This paper concerns the possibility of polar nematics formed from bent-core
molecules with transverse electrostatic dipoles.

The possibility of a ferroelectric biaxial nematic phase was discussed long
ago by Palffy-Muhoray et al.[?]. By using a molecular field theory for ferro-
electric uniaxial nematics, the authors concluded that transverse dipoles on
rod-like molecules tend to align parallel and this might lead to a ferroelec-
tric biaxial nematic. Other studies using molecular field theory by Sonnet
et al.[?, ?], which include both electrostatic interactions and steric effects,
predict that although electrostatic interactions promote parallel alignment
of electrostatic dipoles, polar steric effects favour antiparallel alignment of
bent-core molecules. Thus within this theory [?, ?], polar nematic phases
will be formed if the electrostatic interactions were to be large enough to
overcome steric effects.

We recall the potentially interesting effect of the macroscopic polarisa-
tion of a nematic phase on the director distribution. Many years ago Meyer
[?] showed that a polarization would produce a flexopolarization coupling,
causing the uniform nematic to be unstable with respect to a chiral phase
of indeterminate sense. In this chiral phase – the twist-bend nematic phase
– the director is tilted with respect to the helix axis of the chiral phase.
This prediction long lay essentially unrecognised, but interest in this novel
nematic phase was reawakened largely by the prediction of Dozov [?] that
bent molecules can also form such a phase. The bend in the molecule signifi-
cantly reduces the bend elastic constant, stabilizing the twist-bend nematic.
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It was this prediction that prompted the discovery of the twist-bend nematic
phase for liquid crystal dimers having odd spacers [?]. It remains to be seen,
however, which of these predicted driving mechanisms are responsible for the
existence of the twist-bend nematic phase [?].

The effect of the electrostatic dipolar interactions in bent-core molecules
has been studied using lattice Monte Carlo simulations by Bates [?] and
Ghoshal et al.[?]. In the former work, the dipolar interaction is modeled
by a Heisenberg form which only depends on the relative orientation of two
interacting molecules. In the latter work, which assumes the same second-
rank quadrupolar interaction, the dipolar interaction is more comprehensive
and also depends on the relative position of the two interacting molecules.
No polar phases were found in either study, in agreement with a density
functional theory developed by Grzybowski and Longa [?], a series of atom-
istic simulations by Peláez and Wilson [?] and a two-particle-cluster theory
by Osipov and Paja̧k [?]. However, by contrast, Ghoshal et al.[?] suggested
that the unrealistic Heisenberg form of dipolar interaction potential used by
Bates [?] might form polar phases. Moreover, they asserted that long-range
directional contributions are unfavourable to dipolar phase.

This paper addresses the apparent contradiction between these points of
view. We develop a molecular field theory with an internal energy analogous
to the pair potential used in the lattice simulations by Bates [?], with the
specific aim of investigating whether this interaction potential can form polar
nematics. The paper is organized as follows. In Section ?? we derive our
molecular field theory from the pair potential used by Bates [?]. In Section
?? we present results from our calculations where we use the same parameter
values as Bates [?]. Finally in Section ?? we discuss the context in which
our results should be understood.

2 Molecular field theory

2.1 Basis functions and order parameters

The molecular field theory requires an orientational distribution function
f(Ω) and a set of order parameters. A complete theory for biaxial nemat-
ics C2v symmetry (that of the letter V) formed from molecules with C2v

symmetry requires a first-rank order parameter and four second-rank order
parameters. These second-rank order parameters are the same as those with
D2h symmetry. They are denoted as (S,D, P,C) [?, ?], which are orienta-
tional averages of basis angular functions (RS , RD, RP , RC). We follow the
notation convention of Teixeira et al.[?], but with different scaling (see also
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Dunmur and Luckhurst [?]). The functions are:

RS(Ω) =
1

2

(

3 cos2 β − 1
)

; (1a)

RD(Ω) =

√

3

8
sin2 β cos 2γ; (1b)

RP (Ω) =

√

3

8
sin2 β cos 2α; (1c)

RC(Ω) =
1

2

(

1 + cos2 β
)

cos 2γ cos 2α

− cosβ sin 2γ sin 2α. (1d)

The order parameters are defined in terms of basis angular function averages:

i = 〈Ri〉 =
∫

dΩf(Ω)Ri(Ω). (2)

with i ∈ {S,D, P,C}. We note that (subject to exchange of axes) in the
NU phase, in general, S,D 6= 0, but C = P = 0. In biaxial phases all four
order parameters in general are non-zero. By convention, for the ground
state, S = C = 1 and D = P = 0. We also note, as discussed by a number
of authors (see e.g.[?]), when the molecular axes (x, y, z) are permuted, the
order parameters {S,D, P,C} are subject to linear transformation.

Our molecular field theory for polar biaxial nematics requires a first-
rank order parameter, in addition to the four second-rank order parameters
(S,D, P,C). This is the orientational average of the basis function R1(Ω).
The exact form for R1, as for the second-rank order parameters {S,D, P,C},
depends on our labeling of molecular axes (x, y, z). The precise formulae
are presented in section ?? (see Eqs. (??),(??),(??)). The first-rank order
parameter is defined in term of the basis angular function average

P = 〈R1〉 =
∫

dΩf(Ω)R1(Ω). (3)

2.2 Basic material

In this paper, the molecular orientation Ω is parameterized in terms of the
three Euler angles α, β, γ which take their conventional meanings (polar
angle β and zenithal angles α, γ). The Euler angle α is only of interest
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in the spontaneously biaxial phases. We suppose the constituent bent-
core molecules possess C2v symmetry. Thermodynamic quantities, namely
the free energy, internal energy, potentials of mean torque, orientational
distribution functions and partition functions are formulated per particle.
In addition, the temperature and energy quantities are expressed in non-
dimensional units. We denote the internal energy by U , and the potential of
mean torque acting on a molecule with orientation Ω by U(Ω). In addition,
ǫ denotes the energy scaling parameter which scales the interaction between
a uniaxial arm and the molecular field.

Our molecular field theory relies on the Maier-Saupe theory of nematic
ordering (see e.g. de Gennes and Prost [?]) for which the free energy per
particle is given by:

A = kBT

∫

Ω
dΩf(Ω) ln 8π2f(Ω)− 1

2
uS2, (4)

where S is the nematic order parameter, defined as the average of the second-
rank Legendre function

S = 〈P2(cosβ)〉 =
〈

3 cosβ2 − 1

2

〉

, (5)

where kB denotes the Boltzmann constant, T is the absolute temperature
and u sets the scale of the molecular anisotropic interaction.

The value of the molecular interaction scale u (see Eq. (??)) depends on
ǫ, the molecular interarm angle θ and the molecular coordinate axes set in
the molecule. This dependence will be derived in Sections ?? and ??. We
shall work, where possible, in non-dimensional quantities, given in terms of
their physical quantities by

T ∗ =
kBT

ǫ
; A∗ =

A

ǫ
;

U∗ =
U

ǫ
; U∗(Ω) =

U(Ω)

ǫ
. (6)

The theory combines elements of the molecular field theory of biaxial ne-
matics with D2h symmetry (that of a rectangular parallelepiped) developed
elsewhere [?, ?, ?, ?] with the molecular field theory of polar uniaxial nemat-
ics [?]. At second-rank level, the theories for molecules formed from D2h and
C2v symmetry are equivalent. We note that in this sense the mathematical
structure of our model is equivalent to a system consisting of parallelepiped
molecules each possessing a Heisenberg dipole.
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Figure 1: A sketch of our idealized bent-core molecule. (p, e, f) are dummy
labels of the molecular axes which can take any one of the permutations of
(x, y, z) (see Appendix ??).

2.3 Lattice model

We study the same molecular model as Bates [?]. In this model, bent-
core molecules are composed of two identical uniaxial arms joined at one
end with the interarm angle θ (see Fig. 1). For now we use the dummy
variables (p, e, f) to label the molecular axes. Thus (p, e, f) can be any of
the permutations of (x, y, z). We label two interacting molecules as A and B
and the two arms of a molecule as 1 and 2. This model is an adaptation of
the Maier-Saupe model which neglects the dependence of pair interactions
on the intermolecular vector. Following Bates [?], we suppose that two
neighbouring point molecules interact via a pair potential

U∗
(2)(Ω) =

U(2)(Ω)

ǭ
= −

∑

i,j=1,2

P2(cosφ
AB
ij )

−κpA · pB. (7)

Here we use the subscript (2) to avoid confusion between the pair potential
and the potential of mean torque (see Eq. (??)). ǭ scales the interaction
between two arms of two interacting molecules. φAB

ij denotes the angle
between arm i of molecule A and arm j of molecule B and pk is the unit
vector along the p axis of molecule k = A,B. Here Ω denotes the three Euler
angles between the coordinate axes (p, e, f) of molecules A and B. The first
term is the sum of the Maier-Saupe interactions of the uniaxial molecular
arms. Although this is the sum of uniaxial interactions, when the interarm
angle is different from (0o, 90o, 180o), the sum results in a biaxial interaction
potential [?]. For two molecules interacting via a biaxial potential, at the
ground state all three molecular axes align. In contrast, for two molecules

6



interacting via a uniaxial potential, only one molecular axis aligns in the
ground state. The second term is a Heisenberg model and is simpler than
the electrostatic dipole-dipole interaction presented by Ghoshal et al.[?]

Uµ = −ψ
(

pA · pB − 3(pA · r)(pB · r)
)

, (8)

where ψ is a scalar; r denotes the intermolecular vector.
Osipov and Paja̧k [?] have shown that, subject to the absence of screen-

ing, the volume integral of the electrostatic dipole-dipole interation in Eq.
(??) can be expressed as two terms. The first contribution to the poten-
tial has the Heisenberg form (the second term in Eq. (??)) and the sec-
ond contribution depends on the boundary conditions. As an example, the
dipole-dipole interaction is equal to the Heisenberg-like potential within the
molecular field theory for a spherical sample in a conducting medium. In
addition, the dipolar potential also has a non-zero Heisenberg form when the
electrostatic dipole-dipole interaction is coupled to the anisotropic molecu-
lar shape of short-range correlations [?]. Thus our model can be considered
as valid in those conditions.

Note that in our model, for κ > 0, the state in which molecular dipoles
align parallel has the lowest dipolar energy, which is only an idealization of
dipolar interactions. The first-rank orientational function (see Eq. (??)) is
defined by

R1(Ω) = pA · pB. (9)

In the simulations by Bates [?], each molecule interacts with its six near-
est neighbours in a cubic lattice via the pair potential in Eq. (??). The
temperature in the simulations is scaled with ǭ (see Eq. (??)) whereas that
in the molecular field theory is scaled with ǫ (see Eqs. (??)), the interac-
tion between a rod and the director . Thus when comparing results from
the two approaches, the temperatures calculated from the molecular field
theory need to be multiplied by six.

Bates and Luckhurst [?] have shown that the second-rank interactions of
the pair potential of bent-core molecules in Eq. (??) is equivalent to the pair
potential of parallelepiped molecules with the separability approximation for
the interaction tensors [?]

U∗
(2)(Ω) =

U(2)(Ω)

ǫm
= −

(

J1(Ω) + 2λJ2(Ω)
)

, (10)

where ǫm scales the interactions between two molecules. The relation be-
tween ǭ and ǫm and is the same as the relation between ǫ and u (see
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Section ??). J1(Ω), J2(Ω) are linear combinations of the basis functions
Ri, i ∈ (S,D, P,C) (see Eqs. (??),(??))

J1(Ω) = RS(Ω) + 2λRD(Ω), (11a)

J2(Ω) = RP (Ω) + λRC(Ω). (11b)

The parameter λ measures the biaxiality of interacting molecules, either in
board-like or bent-core system. For bent-core molecules, λ strictly depends
on the interarm angle θ and their relation depends on our choice of the
molecular axis systems.

2.4 Mathematical model

In order to map the second-rank interactions of bent-core molecules in Eq.
(??) into Eq. (??), we have the option of selecting the set (p, e, f) (see Fig.
1) from one of the permutations of (x, y, z). Note that by convention our
definition of the uniaxial order parameters are given by

S = SZZ
zz ; D =

SZZ
xx − SZZ

yy√
6

, (12)

where, also by convention, z is the molecular major axis which aligns in the
uniaxial phase such that S > D, and x and y are labelled such that D is
positive.

There are thus three distinct cases, in which z may correspond to p, e
and f , respectively. Previous studies by Ferrarini et al.[?] and Bates and
Luckhurst [?] for pure second-rank interactions reported two of these cases.
For 90o < θ <∼ 109.5o, the molecule is discotic and the molecular axis e aligns
in the uniaxial phase. In this case, e ≡ z and thus (p, e, f) ≡ (y, z, x). For
109.5o <∼ θ < 180o, the molecule is calamitic and the molecular axis f aligns
in the uniaxial phase. In this case, f ≡ z and thus (p, e, f) ≡ (x, y, z). In
our theory, when the dipolar interaction is strong enough, it can cause the
molecular axis along p to align to form a uniaxial nematic phase. In this
case we need to define the molecular axis p ≡ z and thus (p, e, f) ≡ (z, y, x).

The detail derivations are given in Appendix ??. In all three cases, the
pair potential can be written in a generalized form

U∗
(2)(Ω) = −g(θ)

(

J1(Ω) + 2λJ2(Ω)
)

− κR1(Ω). (13)

The relation between the molecular energy scale (see Eq. (??)) and that of
an arm is given by ǫm = g(θ)ǭ.

The dependence of g(θ), R1(Ω) and λ(θ) on θ is given by
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• Case 1: (p, e, f) ≡ (x, y, z) rod-like molecule

g(θ) =
1

4
(1− 3 cos θ)2, (14a)

λ =

√

3

2

(1 + cos θ)

(1− 3 cos θ)
, (14b)

and
R1(Ω) = x1 · x2 = cosβ cos γ cosα− sin γ sinα. (14c)

• Case 2: (p, e, f) ≡ (z, y, x) dipolar molecule

g(θ) =
1

4
(1 + 3 cos θ)2, (15a)

λ =

√

3

2

(cos θ − 1)

(1 + 3 cos θ)
, (15b)

and
R1(Ω) = z1 · z2 = cosβ. (15c)

• Case 3: (p, e, f) ≡ (y, z, x) disc-like molecule

g(θ) = 1, (16a)

λ = −
√

3

2
cos θ, (16b)

and
R1(Ω) = y1 · y2 = cos γ cosα− cosβ sin γ sinα. (16c)

The formulae for λ in case 1 and 3 are in agreement with those given
by Ferrarini et al.[?] and Bates and Luckhurst [?]. In Fig. 2 we show
the mapping of θ to λ for Case 1 (continuous line) and Case 3 (broken
line). The dependence of λ on θ for these two cases are shown in Fig.
2. The dotted broken horizontal line λ =

√

3/2 and the continuous line
λ = 0 mark the boundary of λ that we discuss in this paper. The dotted
broken horizontal line λ = 1/

√
6 marks the boundary between the rod-

like and disc-like molecule in the λ parameter space. Similarly, the vertical
line θ = θc = cos−1 (−1/3) ≈ 109.5o separates the rod-like and disc-like
molecules in the θ parameter space.

First we discuss Case 1, in which as θ increases from 0 to 180o, λ decreases
from

√

3/2 to 0. For κ = 0 and 0 < λ < 1/
√
6 (θc < θ < 180o), the molecule
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0

0.2

0.4

0.6
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1.2

1.4

λ =
√

3/2

Case 3

λ = 1/
√

6

Case 1θ = θc

Figure 2: The biaxiality of bent-core molecules as a function of the interarm
angle for Case 1 (continuous line) (Eq. (??)) and Case 3 (broken line)
(Eq. (??)). θc = cos−1 (−1/3) ≈ 109.5o. The dotted broken horizontal line
λ =

√

3/2 and the continuous line λ = 0 marks the boundary of λ that we
discuss in this paper. The dotted broken horizontal line λ = 1/

√
6 marks

the boundary between the rod-like and disc-like molecule in the λ parameter
space. The vertical line θ = θc = cos−1 (−1/3) ≈ 109.5o separates the rod-
like and disc-like molecules in the θ parameter space.
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aligns along z(≡ f) in the NU phase. Since in this case the molecule is
elongated, we identify the NU phase as rod-like, N+

U . By contrast, for κ = 0

and 1/
√
6 < λ <

√

3/2 (90o < θ < θc), the molecules align along y(≡ e) in
the NU phase. Since in this case the molecule is oblate, we identify the NU

phase thus formed as disc-like N−
U .

Next we discuss Case 3, as θ increases from 0 to 180o, λ increases from 0
to

√

3/2. For κ = 0 and 0 < λ < 1/
√
6 (90o < θ < θc), the molecule aligns

along z(≡ e) in the NU phase. Since in this case the molecule is oblate, we
identify the NU phase formed as disc-like, N−

U . By contrast, for κ = 0 and

1/
√
6 < λ <

√

3/2 (θc < θ < 180o) and, the molecules align along y(≡ f) in
the NU phase. Since in this case the molecule is elongated, we identify the
NU phase as rod-like N+

U .
There is an equivalent transformation between Case 1 and Case 3 by

changing the molecular axes. By changing the molecular axes from Case
1 to Case 3, the region 1/

√
6 < λ <

√

3/2 of the continuous line (Case
1) is mapped onto the region 0 < λ < 1/

√
6 of the broken line (Case 3).

Similarly, by changing the molecular axes from Case 3 to Case 1, the region
1/
√
6 < λ <

√

3/2 of the broken line (Case 3) is mapped onto the region
0 < λ < 1/

√
6 of the continuous line (Case 1).

For numerical calculations, it is more convenient to have z as the molecu-
lar axis that aligns in the NU phase. Thus for κ = 0 and 1/

√
6 < λ <

√

3/2,
we need to relabel the axes so that 0 < λ < 1/

√
6. Namely, if we are using

Case 1 then we need to relabel the axes to Case 3 and vice versa. Likewise,
if the dipolar interaction is strong enough to induce the alignment of the
molecules along p to form the NU phase, we need to relabel the axes so that
z ≡ p as in Case 2.

2.5 Self-consistent field equations

We now formulate the internal energy per molecule as analogous to the pair
potential defined in equation (??).

U∗ = −1

2
g(θ)

(

J 2
1 + 2J 2

2

)

− 1

2
κP2, (17)

where we define the order parameters Ji, i = 1, 2 as orientational averages
of the functions (J1(Ω), J2(Ω)) (see Eqs. ((??), (??)))

Ji =

∫

dΩf(Ω)Ji(Ω), (18)

with i ∈ {1, 2}. Thus the analysis of our model requires only two order
parameters, rather than the full complement of four. The internal energy in
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Eq. (??) is the consequence of the geometric mean approximation for the
molecular interaction parameters [?, ?, ?], in addition to a dipolar interaction
energy. We will address this issue in the Discussion. In the isotropic (I)
phase both order parameters are zero, in the NU phase, J1 6= 0, but J2 = 0,
while in the NB phase neither order parameter is zero.

The orientational distribution function f(Ω) is derived by minimizing a
Helmholtz free energy functional

A∗ = −T ∗

∫

dΩf(Ω) log
(

8π2f(Ω)
)

+ U∗. (19)

The resulting equilibrium orientational distribution function f(Ω) is ex-
pressed in term of the potential of mean torque

U∗(Ω) = −g(θ)
(

J1J1(Ω) + 2J2J2(Ω)
)

− κPR1(Ω), (20)

and is given by

f(Ω) = Q−1exp

[

−U
∗(Ω)

T ∗

]

, (21)

where the partition function Q is defined in order to normalize f(Ω):

Q =

∫

dΩexp

[

−U
∗(Ω)

T ∗

]

. (22)

In Eq. (??), the dependence of u and ǫ (see section ??) is given by u = g(θ)ǫ,
analogous to the relation ǫm = g(θ)ǭ in section ??. Thus in this model, there
are three self-consistency equations, given by Eqs. (??) and (??). The phase
stability of the system is determined from the equilibrium Helmholtz free
energy

A∗ = −T ∗ logQ− U∗. (23)

Note the apparent absence of the usual factor of 1
2 in front of the energy U∗.

The missing factor has been included in eq.(??).

2.6 Method

Rather than solve Eqs. (??) and (??) directly, we minimize the Helmholtz
free energy in Eq. (??). The first derivatives of this equation are the self-
consistent Eqs. (??) and (??). We note that there are some subtle analytic
points, which are addressed, for example by Katriel et al.[?]. Strictly speak-
ing this procedure is not valid everywhere for finding minimizers of A[f(Ω)].
We note that Eqs. (??) and (??) describe both the minima and the saddle
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points of the Helmholtz free energy in Eq. (??). Thus, in cases where Eq.
(??) has saddle points, the method of minimising it is invalid and we have
to resort to solving Eqs. (??) and (??) directly. However, the minimisation
method is valid for finding stationary points. In the region of interest the
method also suffices for determining the present quantities of interest.

The procedure determines the equilibrium order parameters (P,J1,J2)
at a given temperature. The minimization uses the MATLAB function fmin-

con and iterates toward a solution using a quasi-Newton method. The phase
transitions are found by determining (P,J1,J2), as a function of T ∗, θ, κ.
The first-order transition is located when there is a discontinuous change in
the order parameters as a function of T ∗.

3 Numerical results

3.1 Phase diagrams

In Figs. 3 we show a representative set of four phase diagrams for increasing
θ from 100o to 130o. Each phase diagram shows a constant κ slice in the
(κ−θ−T ∗) space. Our chosen values for θ and κ are the same as those used
in lattice simulations by Bates [?]. All topological configurations of phases
that we find are shown in one of these examples. First-order and continuous
transitions are plotted as continuous and broken lines, respectively.

First we review the zero dipolar interaction case κ = 0 (see Fig. 3a)
which has been discussed by several authors [?, ?, ?]. Here we use N+

U

and N−
U to denote the uniaxial nematic phases formed by the spontaneous

alignment of the molecular axes f and e, respectively. ThusN+
U is a calamitic

uniaxial nematic which exists between the I and NB phases for 109.5o <∼
θ < 180o (equivalent to 0 < λ < 1/

√
6). On the other hand, N−

U is discotic
uniaxial nematic which exists between the I and NB phases for 90o < θ <∼
109.5o (equivalent to 1/

√
6 < λ <

√

3/2). At the intersection of these two
parameter ranges, namely θ = θc = cos−1(−1/3) ≈ 109.5o or λ = 1/

√
6 (see

Fig. 2) (see also [?, ?, ?, ?]), the I phase enters directly into the NB phase
through a second-order phase transition at the Landau multicritical point.
The stability of the non-polar biaxial nematic phase NB increases relative to
that of the uniaxial nematic N−

U on increasing θ from 100o up to the Landau
multicritical point at θ = θc. As θ increases away from θc the stability of
NB decreases relative to that of N+

U . Here, the ground state is always NB.
For θ <∼ 100o and θ >∼ 130o, the NB phase only intercedes at very low
temperature. As θ approaches θc the NB − NU phase boundary increases
gradually in temperature. We note the sharp increase of the NB − NU
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Figure 3: (Colour online) The phase diagrams as a function of the interarm angle
θ and scaled temperature T ∗, for representative values of the dipolar parameter κ.
Continuous lines: first-order phase transitions; broken lines: second-order transi-
tions; red circles: tricritical points. I: isotropic phase. N+

U : uniaxial nematic phase
formed from aligning molecular axis f . N−

U : uniaxial nematic phase formed from
aligning molecular axis e. NP

U : uniaxial nematic phase formed by aligning molecular
axis p with dipolar ordering along p. NB: biaxial nematic phase. NP

B : biaxial ne-
matic phase with polar ordering along molecular axis p. See Fig. 1 for definitions of
the molecular axes. The vertical crosses indicate the temperature range over which
the order parameters shown in Figs. 4 were calculated.
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transition temperature in the vicinity of θc, indicating the sensitivity of the
phase transition to θ at the Landau point. Then at the Landau multicritical
point θ = θc, all phases coincide. We recall that for κ = 0 there is an
equivalent transformation of the transition temperatures between the two
parameter spaces 0 < λ < 1/

√
6 and 1/

√
6 < λ <

√

3/2 by changing the
molecular axes from Case 1 to Case 3 (see Appendix ??) [?].

For κ = 0.2 (see Fig. 3b), the higher temperature part of this diagram
(T ∗ >∼ 0.14) is unchanged from the κ = 0 case, indicating that the dipolar
interaction is sufficiently small that low temperatures are required to align
the molecular dipoles. But now at sufficiently low temperatures a polar
biaxial nematic phase NP

B is stabilized.
The ground state biaxial nematic phase is unsurprisingly polar, while for

values of θ for which the NB phase requires very low temperatures, the NU

phase yields to the NP
B phase. This picture seems generic for small positive

κ. Although the NU and NB phases are retained at higher temperatures,
the NB phase is now confined to a window around the Landau multicritical
point. In the κ = 0.2 case, this corresponds to 106o <∼ θ <∼ 117o. The
tricritical points at θ ≈ 101o and θ ≈ 127o separate the first and continuous
sections of the NP

B −NU transition lines. Likewise, the tricritical points at
θ ≈ 107o and θ ≈ 114o separate the first- and second- order sections of the
NP

B −NB transition line.
For κ = 0.5 (see Fig. 3c), the stability regions of the non-polar nematic

phases are smaller, as expected for a larger value of dipolar interaction.
The NB stability has shrunk further, and is now just a sliver for 109o <∼
θ <∼ 110o. Similar to the case for κ = 0.2, the two tricritical points at
θ ≈ 105o and θ ≈ 118o separate the first-order and continuous sections of
the NP

B −NU transition lines. The existence of the tricritical points in our
model is interesting and resembles that found in the Sonnet-Virga-Durand
approximation on the NB −NU transition line [?].

In the final case we consider, κ = 1 (see Fig. 3d). Here, a new uniaxial
phase NP

U appears which is formed by aligning the molecular dipoles p

parallel. The polar phases NP
U and NP

B replace the non-polar NU phase
over most of its range. Both the NB phase and the Landau multicritical
point disappear. Instead there is a line of first-order NP

B − I transitions for
116o <∼ θ <∼ 121o.

3.2 Order parameters of the arms

For the three cases κ = 0, 0.2, 0.5, shown in Figs. 4a, 4b and 4c, respectively,
the I − NU phase transition occurs at T ∗ ≈ 0.31 where SAA 6= 0 and
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SXX = SY Y = −1
2S

ZZ . For apolar or small dipolar interaction κ = 0, 0.2,
the NU − NB transition takes place at a common temperature, T ∗ ≈ 0.13,
where SXX 6= SY Y 6= SZZ and SZZ is the largest component. This feature
seems to be generic for 0 ≤ κ <∼ 0.2.
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Figure 4: The temperature dependence of the order parameter tensor components of
the rod-like arm SXX , SY Y and SZZ (continuous lines), the polar order parameter
P (broken line) and the relative biaxiality parameter η (crosses) for interarm angle
θ = 115o. We note that the limiting values of η are the same for all of these systems;

this limit is related to the inter-arm angle by η =
3 cos2 θ/2

2− 3 cos2 θ/2
.

To make more detailed comparison with simulations by Bates [?], we
calculate the three tensorial components SAA, A = X,Y, Z for the molecular
arms for θ = 115o (see Appendix ??). Their values are shown in Figs. 4.
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We also plot the polar order parameter P as broken lines. Here, first-order
transitions are clearly seen as discontinuous changes in the order parameters.
In addition, we also show the relative biaxiality parameter η as crosses, where

η =
SXX − SY Y

SZZ
√
6

. (24)

As we see in Figs. 3, the ground state for non-zero dipole cases is the
NP

B phase. For κ = 0.2 (see Fig. 3b), the NP
B − NB transition occurs at

T ∗ ≈ 0.125. For stronger dipole κ = 0.5 (see Fig. 3c), the NP
B phase is

formed directly from the N
+/−
U phase at T ∗ ≈ 0.23.

In the case with the strongest dipolar interaction that we study, κ = 1
(see Fig. 4d), the polar NP

U phase is formed directly from the isotropic phase
although this phase occurs over a tiny temperature range at T ∗ ≈ 0.37. In
this phase, SXX = SZZ = −1

2S
Y Y . At a slightly lower temperature, the

first-order NP
B − NP

U phase transition occurs. In the NP
B phase, SXX 6=

SY Y 6= SZZ and SY Y is now the largest component.

4 Discussion and Conclusions

This paper was prompted by an apparent disagreement between theory and
experiment. A small nematic phase biaxiality was found in a system of
bent-core molecules in experiments by Madsen et al.[?, ?]. However it was
noted by Luckhurst [?] that the onset of the NB phase occurs at a much
higher temperature than the theoretical prediction for bent-core molecules.
It was suggested that this might be due to a large transverse electrostatic
dipole present in the bent-core molecules [?, ?]. However, if this is the case,
the transverse dipole will stabilize the alignment of the short molecular axis,
and thus the resulting biaxial nematic phase might be polar.

To test this hypothesis, we have developed a simplified two-parameter
molecular field theory for polar biaxial nematics formed from rigid V-shaped
bent-core molecules. The theory extends the standard model for uniaxial
and biaxial nematics to allow for polar ordering of a minor axis. We have
used the same values for the biaxiality and dipole parameters as the lattice
Monte Carlo simulations by Bates [?].

We find phase diagrams in qualitative agreement with the simulations.
Firstly, the stability of the biaxial nematic phase increases upon increasing
the dipole strength κ. Secondly, for a large dipole strength, κ = 1, the
Landau multicritical point in a non-polar system develops into a line of
first-order biaxial nematic-to-isotropic transitions.
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However, we also find extra features not reported in the simulations [?].
Firstly, for positive κ, the ground state is always a polar biaxial nematic
NP

B . For zero or small κ (0, 0.2, 0.5), the NP
B phase is formed from one

of the non-polar phases NU or NB. For the large dipole strength, κ = 1,
the Landau multicritical point develops into a line of NP

B − I transitions.
Secondly, the uniaxial nematic phase that we found for κ = 1 is in fact
a polar uniaxial nematic phase NP

U ; this is in the same region as the NU

phase found in the simulations by Bates [?]. This phase is formed by aligning
only the molecular short axis along the dipole moment. Our findings are
consistent with the remark by Ghoshal et al.[?] that the Heisenberg form
for the dipolar interaction can stabilize polar phases.

Our result for the NP
B −I transition line also provides an explanation for

the disagreement between theory and experiment. In the presence of a strong
dipolar interaction, a system formed from relatively low biaxiality bent-
core molecules is still able to form a biaxial nematic phase directly below
the isotropic phase due to the formation of the NP

B phase. We note that
another explanation is also possible. The hypothesis that phase biaxiality is
stabilized by electrostatic dipolar interaction proposed by Madsen et al.[?]
has been confirmed by previous simulation studies by Peláez and Wilson [?],
Bates [?], Ghoshal et al.[?] and Osipov and Paja̧k [?]. However, the atomistic
simulations by Peláez and Wilson [?] found local polar-order domains in the
biaxial phase while studies by Bates [?], Ghoshal et al.[?] and Osipov and
Paja̧k [?] did not find any polar phases. These simulation results suggest
another explanation for the stabilisation of the biaxial phase, namely, the
consequence of local ordering of the molecular dipoles. Indeed, the two-site-
cluster study by Osipov and Paja̧k [?] has demonstrated that there are strong
polar correlations between electrostatic and steric dipoles of neighbouring
bent-core molecules both in NU and NB.

To compare our results with the experiment by Madsen et al.[?] directly,
we plot the phase diagram for a constant molecular biaxiality slice at the
interarm angle of 140o in Fig. 5 (the value estimated for their bent-core
compounds). The compounds in their experiment, namely ODBP-Ph-OC12

and ODBP-Ph-C7, experience a direct biaxial nematic-to-isotropic phase
transition. From Fig. 5, we see that this happens for the relative dipole
strength 1.55 <∼ κ <∼ 1.75. We can also compare our values for the relative
phase biaxiality given in Eq. (??) for θ = 140o and κ = 1.6 with the NMR
experiment by Madsen et al.[?]. In the experiment, the NB − I transition
temperatures for ODBP-Ph-OC12 and ODBP-Ph-C7 are 477K and 495K,
respectively. In addition, the given experimental values for η for these sys-
tems at 463K and 447K are 0.02±0.02 and 0.11±0.02, respectively. Thus we
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Figure 5: The phase diagram as a function of relative dipolar strength κ
and scaled temperature T ∗, for the interarm angle θ = 140o. Continuous
lines: first-order phase transitions; broken lines: continuous (or second-
order) transitions.

calculate the values for η at 463/477TNB−I and 447/495TNB−I and obtain
0.041 and 0.046, respectively. We conclude that these values are of the same
order of magnitude as the experimental values with differintg by factors of
2 and 4 . Therefore within our hypothesis, the polar order with P = 0.5
(see Fig. 4d) for these systems induces only a small phase biaxiality. This
suggests that this polar induction of phase biaxiality can give weak phase
biaxiality whereas for Freiser the quadrupolar terms [?] gives larger values.

We have found two biaxial nematic phases with point group symme-
tries D2h (nonpolar biaxial phase) and C2v (polar biaxial phase). The point
groups symmetry D2h has an identity element, three orthogonal two-fold
symmetry axes, an inversion center and three orthogonal reflection symme-
try planes. When the dipoles align in the NP

B phase, two symmetry axes, one
symmetry plane and the inversion center are broken, thus the phase symme-
try is reduced to C2v. We note that the theoretial analysis by Karahaliou,
Vanakaras and Photinos [?] has suggested that the biaxial nematic phases
formed from bent-core molecules might have the point group symmetry C2h.
This point group symmetry has an identity element, one two-fold symmetry
axis, one reflection symmetry plane and an inversion center. Indeed one of
the bent-core compounds which forms the biaxial nematic phase [?, ?] has
an asymmetric dipole moment which points away from the bent-core angu-
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lar bisector, but is still coplanar with the molecular arms. This bent-core
molecule has Cs point groups symmetry with an identity element and one
reflection plane. Thus in this case we can speculate that three NB phases
with different point group symmetry. When the dipolar interactions are
weak, the dipoles do not align, the NB phase with D2h symmetry can be
formed. When the dipoles align in anti-parallel configuration, the symmetry
of the NB phase is reduced to C2h. Finally, in the NP

B phase, the dipoles
align in parallel configuration, the two-fold rotation axis and the inversion
center in the NB phase with C2h symmetry are destroyed and the symmetry
is reduced to Cs. The Monte-Carlo simulations by Ye, Merlitz and Wu [?]
for bent-core molecules with asymmetric dipoles has demonstrated that for
discotic bent-core molecules (with 90o ≤ θ . 109.5o), as the dipole devi-
ates from the bisector, the temperature range of the NB phase increases
whereas the temperature range of the NU phase decreases. In this case we
may expect that a NB phase of low symmetry (C2h or Cs) is formed and
is stabilized for a longer temperature range than the NB phase with D2h

symmetry. This is in accordance with a previous study of the molecular
field theory for nematic phases formed from molecules with C2h point group
symmetry [?] that, the NB phase with the lower symmetry C2h can exist for
a longer temperature range compared to the NB phase with D2h symmetry.

We now discuss the approximations that we have made. Firstly, we
assume that a bent-core molecule has a rigid V-shape and interacts with
another via a linear combination of the uniaxial interaction of each arm. In
addition, the uniaxial interaction of molecular arms has the same form as
in the Maier-Saupe theory which depends on the relative orientations of the
molecular arms. Our assumptions are partly for simplicity but also have a
justification based on the success of the Maier-Saupe theory. In addition, our
form for the molecular interactions also agree with the so-called geometric
mean approximation [?, ?, ?]. This uses the Berthelot combining rule to
reduce the number of molecular biaxiality parameters from 2 to 1.

The Heisenberg model for the dipolar interaction in Eq. (??) has an
isotropic distribution for the intermolecular vector and favors parallel align-
ment of neighbouring dipoles for κ > 0. We discuss the applicability of
such a model later, but note here that other authors have used more realis-
tic models for the dipolar interaction both in density functional theory [?],
lattice Monte Carlo simulations [?] and two-site cluster theory [?]. These
studies include the effect of short-range order which, of necessity, do not
appear in our molecular field theory. In neither case do polar phases seem
to occur, although the existence of a dipolar interaction nevertheless does
stabilize the biaxial nematic phase. The first study [?] found a shift in the
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Landau multicritical point as the dipole strength is increased. The second
study [?] found similar qualitative features as our results. These are the
stabilisation of the biaxial nematic phase with increasing dipolar strength
and the development of the Landau multicritical point into a line of first-
order biaxial nematic-to-isotropic phase transitions. Moreover, in the biaxial
phase, there is an equal number of dipoles aligning both parallel and anti-
parallel, and thus on average the polar order parameter cancels. The third
study [?] found that both electrostatic interaction and polar steric effect
increase the stability of the NB phase. However, we note that the model
by Ghoshal [?] and Osipov and Paja̧k [?] assumes a linear combination of
the first- and second-rank interactions. Other studies by Palffy-Muhoray et
al.[?] and Sonnet et al.[?, ?] have included non-linear combinations of first-
and second-rank interactions. Detailed studies of these models for biaxial
bent-core nematics may well find that the NP

B phase is stabilized in the
ground state.

Finally, we focus on the key approximation of our model, which involves
replacing the rather complex but realistic electrostatic dipolar interaction by
a directionally-independent Heisenberg form. At first sight this approxima-
tion seems rather far-fetched since the dipolar interaction energy in Eq. (??)
vanishes as we take the average of the pair potential over all orientations of
the intermolecular vector. Our picture is that the apparent Heisenberg form
results from a combination of steric and electrostatic effects. In this context
we note that studies by Sonnet et al.[?, ?] have shown that the polar steric
interaction of bent-core molecules favours local anti-parallel configurations,
thus weakening the effect of electrostatic dipolar interaction. In future work
we shall use a more realistic dipolar form which includes both electrostatic
and steric effects to test the hypothesis of the current paper, and to find
a balance between these two effects that may stabilize the NP

B phase. One
possibility is to use a simple model developed recently by Osipov and Paja̧k
[?] which also has a more realistic description of the dipolar interaction.
In this model, each molecule is composed of three coplanar spheres and a
transverse electrostatic dipole. The angle formed by connecting one of the
centres of the spheres to the other two reflects the molecular biaxiality. The
molecular interaction consists of an electrostatic dipole-dipole potential and
a Lennard-Jones potential between spheres of different molecules. Thus this
simple model can be used to study the influence of both electrostatic and
steric effects on the stability of the polar nematic phases.
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A Molecular anisotropy and biaxiality in different

coordinate systems

In this Appendix we show how to apply Eq. (??)

U∗
(2)(Ω) =

U(2)(Ω)

ǭ

= −
∑

i,j=1,2

P2(cosφ
AB
ij )− κR1(Ω), (A1)

to three different molecular axis systems which are discussed in section ??.
We recall that Ω denotes the three Euler angles required to transform the
molecular axes of molecule A into those of molecule B. φAB

ij denotes the
two Euler angles required to transform the long axis of arm i of molecule A
into that of arm j of molecule B. Thus φAB

ij is the result of three successive

rotations (ωA
i
−1
,Ω, ωB

j ) where ω
A
i denotes the two Euler angles required to

transform the molecular axis z of molecule A into the long axis of the arm
i of molecule A (we will consider three cases with different locations of z).
Likewise, ωB

j denotes the two Euler angles required to transform the molec-
ular axis z of molecule B into the long axis of the arm j of molecule B. For
convenience, we denote ω′ as the result of two successive rotations (Ω, ωB

j ).

Thus φAB
ij is the result of two successive rotations (ωA

i
−1
, ω′). In order to

transform P2(cosφ
AB
ij ) into the coordinate of Ω, we use the modified spher-

ical harmonic notations CLm(ω), these are also known as Racah spherical

harmonics [?]. Their relations to the standard spherical harmonics YLm(ω)
are given in Eq. A.11, p. 445 [?]. Using the spherical harmonic addition
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theorem (see Eq. A.33, p. 451 [?]) and Eq. A.3, p. 442 [?] we find

P2(cosφ
AB
ij ) =

∑

C2p(ω
A
i )

∗
C2p(ω

′)

=
∑

(−1)pC2−p(ω
A
i )C2p(ω

′), (A2)

since φAB
ij is the angle between the vectors ωA

i and ω′. Using transformation

under rotation (Eq. A.41, p. 452 [?]) we obtain

C2p(ω
′) =

∑

D2
np(Ω)C2n(ω

B
j ). (A3)

Thus

P2(cosφ
AB
ij ) =

∑

(−1)pC2−p(ω
A
i )C2n(ω

B
j )D

2
np(Ω)

(A4)

A.1 Case 1: (p, e, f) ≡ (x, y, z) rod-like molecule

. We have
ωAB
12 = (βAB

12 , γAB
12 ) = (π/2± θ/2, 0). (A5)

Thus,

C20(ω
AB
12 ) =

1

4
(1− 3 cos θ); (A6)

C2±1(ω
AB
12 ) = 0; (A7)

C2±2(ω
AB
12 ) =

1

4

√

3

2
(1 + cos θ). (A8)

By substituting Eqs. (??, ??, ??, ??) into Eq. (??), we obtain Eqs. (??)(a)
and (??)(b).

A.2 Case 2: (p, e, f) ≡ (z, y, x) dipolar molecule

. We have
ωAB
12 = (βAB

12 , γAB
12 ) = (±θ/2, 0). (A9)

Thus,

C20(ω
AB
12 ) =

1

4
(1 + 3 cos θ); (A10)

C2±1(ω
AB
12 ) = 0; (A11)

C2±2(ω
AB
12 ) =

1

4

√

3

2
(cos θ − 1). (A12)

By substituting Eqs. (??, ??, ??, ??) into Eq. (??), we obtain Eqs. (??)(a)
and (??)(b).
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A.3 Case 3: (p, e, f) ≡ (y, z, x) disc-like molecule

. We have
ωAB
12 = (π/2, γAB

12 ) = (π/2,±(π/2− θ/2)). (A13)

Thus,
C20(ω

AB
12 ) = 1; (A14)

C2±1(ω
AB
12 ) = 0; (A15)

C2±2(ω
AB
12 ) = −1

4

√

3

2
cos θ. (A16)

By substituting Eqs. (??, ??, ??, ??) into Eq. (??), we obtain Eqs. (??)(a)
and (??)(b).

We note that previously cases 1 and 2 were analysed by Bates and Luck-
hurst [?] using the separability approximation for the interaction tensors.
Here we have provided an alternative derivation for all three cases which
does not require this approximation.

B Order parameters of the arms in Cartesian co-

ordinates

In this Appendix we discuss the calculations for the order parameters of the
arms in Cartesian coordinates SAA, A = X,Y, Z in Section ??. The first
step is to calculate the Cartesian order parameters for the molecule. These
are given by

SAA
aa =

1

2

(

3〈l2Aa〉 − 1
)

; a = x, y, z;A = X,Y, Z. (B1)

Here, lAa denotes the direction cosines between the reference axes A and the
molecular axes a. The dependence of the components of lAa on the Euler
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angles is given by

lXx = − sinα sin γ + cosβ cosα cos γ,

lXy = − sinα cos γ − cosβ cosα sin γ,

lXz = sinβ cosα,

lY x = cosα sin γ + cosβ sinα cos γ,

lY y = cosα cos γ − cosβ sinα sin γ,

lY z = cosβ sinα,

lZx = − sinβ cos γ,

lZy = sinβ sin γ,

lZz = cosβ. (B2)

The next step is to transform from the molecular coordinate axes to the axis
s along an arm (see Fig. 1) by

SAA =
∑

b

(lsb)
2SAA

bb ;A = X,Y, Z; b = x, y, z. (B3)

For our calculation, we consider two cases

• Case 1: (p, e, f) ≡ (x, y, z)

SAA = cos2(θ/2)SAA
xx + sin2(θ/2)SAA

zz . (B4)

• Case 2: (p, e, f) ≡ (z, y, x)

SAA = cos2(θ/2)SAA
zz + sin2(θ/2)SAA

xx . (B5)
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