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Abstract

A language recognition system is used to build quantitative mea-
sure of language distance. The OpenEAR toolkit is used to extract
more than 6,000 features per speech sample. The features consist of 56
low level descriptors (LLDs) and their Delta and Delta Delta values,
the corresponding 39 functionals. The language model training com-
ponent is based on the Gentle AdaBoost algorithm. When tested on a
group of 10 principally Indo-European languages, the language recog-
nition system performs comparatively to other language recognizers.
The UPGMA tree built from the interlanguage distances identifies the
major subgroups of Indo-European. Genetic algorithms are also im-
plemented to generate the language map on the 2D plane. Although
some errors remain, the obtained language tree and map are indicators
of language relationships. We discuss errors in our system and more
generally perspectives for the use of sound file classifiers in historical
linguistics.
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1 Introduction

Computational language recognition, i.e. the automatic identification of
language(s) spoken in speech samples, dates back to the 1970s. There are
several successful strategies. Zissman’s classic approach [1], implemented
in the parallel-phone recognition language modeling (PPRLM), classifying
languages using phone tokenization of speech combined with a phonotactic
analysis of the output. An alternative approach relies on Gaussian mix-
ture models (GMMs), using the acoustic characteristics of the speech utter-
ance [2]. More recent alternative acoustic-based systems (e.g. GMMs [3, 4]
and SVMs [5, 6]) perform comparably. The field possesses both numerous
commercial applications and great intrinsic interest; over the period 1996-
2015, NIST has held seven language recognition evaluations [7] involving
both commercial and academic organizations.

Linguists often study language relationships using language distance
metrics [8, 9]. This paper uses language recognition algorithms to gener-
ate such metrics. World languages are divided into families, known as phyla
(singular phylum) [10]. Within families the relationships can be represented
as trees. Linguists use many techniques to construct the trees. For exam-
ple, the so-called Swadesh word list [11, 12] summarises word/meaning shifts
between languages, and a metric (the Levenshtein distance) is constructed
by determining the number of non-cognates that exist in root words in the
Swadesh word list. High interlanguage distance implies very diffferent lan-
guages. We note that other philologically plausible possible metrics exist
(see e.g. [13, 14]). A conceptually different approach [15] defines a lan-
guage distance from the difficulty a speaker of one of the languages finds in
learning the other.

Here by building a language-recognition-based language metric, we are
able, least conceptually, to build a possible phylogeny. There are then algo-
rithms which can be used to construct a linguistic phylogeny (family tree),
the simplest of which is the so-called UPGMA algorithm [16].We shall re-
mark further at the end of the paper on various issues in theoretical linguis-
tics raised by this research programme.

In the view of historical linguistics, the trees represent a real language
evolution history [10, 17]. The standard historical-linguistics technique for
establishing common origin is the Comparative Method. This requires the
researcher to use well-understood mechanisms of language change, to re-
construct words and grammar in hypothetical ancestor languages (see, e.g.
[18]). Distinct language phyla can be identified (e.g. Indo-European, Sino-
Tibetan etc.). The trees in each are clear, but between them there is little
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connection.
But building metrics only on written languages is incomplete. The spo-

ken language is more basic. Since acoustics could provide much more infor-
mation than written languages, it is reasonable to build language metrics
by considering acoustic influences. Two unrelated or only distantly related
languages sound very different to naive listeners unfamiliar with either. For
with closely related dialects, observers can sometimes use subtle pronunci-
ation, prosody or vocabulary differences to geographically identify speaker.
The human ear, however, has difficulty in quantifying these differences. But
computational language recognizers, using measurable features, may auto-
matically measure sound differences between languages or dialects.

In this paper we make some steps to build language metrics using acous-
tic cues, and also comment on implications for theoretical linguistics. We
select acoustic features from a large set (see Hassan et al. [19]). The Gentle
AdaBoost algorithm constructs language classifiers using on these features.
We build a language classifier for each language pair and use the recognition
rate as a distance measure for languages. Lower recognition rates imply
more similar languages. The resulting UPGMA language trees are generally
but not completely consistent with linguistic approaches, validating our hy-
pothesis that acoustic cues may benefit linguistic analyses. We note other
work in the general same spirit (e.g. [20, 21]) but differing much in detail.

Our contribution is twofold. We first propose a language recognition
method based on acoustic feature selection by the Gentle AdaBoost algo-
rithm; the recognition accuracy is comparable with current approaches. We
then build language distance metrics based on recognition accuracy of the
proposed algorithm and show that such metrics are consistent with existing
linguistic approaches. Thus, we propose a new analytical tool that may give
linguists insight into language phylogeny.

This paper is organized as follows. In 2 we describe our language recog-
nition system. We discuss also the features used in our experiments, and
also give a brief review of the traditional AdaBoost algorithm (“TA”) as
well as the Gentle AdaBoost (“GA”) algorithmic strategy. 3 discusses the
performance of our language recognition system, as well as the results of the
linguistic distance analysis. In 4 we make some brief concluding remarks
to put our work in context.
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2 Language Recognition Algorithm

The language recognition method has two steps: (a) a feature extraction
method is implemented on each speech file to obtain a feature vector; (b)
the AdaBoost algorithm is implemented to build language classifiers by using
the extracted feature vectors.

2.1 Feature Extraction

Feature extraction uses the OpenEAR toolkit [22]. The feature set consists
of 56 low level descriptors (LLDs). Input audio files are divided into 20
millisecond frames, with 10 millisecond overlap. Descriptors are taken for
each frame. We also include the Delta value (the value of the current frame
minus that of the previous frame), and the Delta Delta value for these de-
scriptors. There are thus in all 56×3 = 168 descriptors. For each descriptor,
we extract 39 functionals, yielding a feature vector with 168 × 39 = 6, 552
dimensions for each audio file. Descriptor and functional details are given
in Table 1. Features are normalized into the range of 0 to 1.

2.2 Gentle AdaBoost for Language Recognition

Given the feature vectors, GA is used to build language classifiers. At this
stage a classifier need only distinguish language pairs. Suppose training
samples {(xi, yi)}, i ∈ (1, 2, ...m). Each xi represents a feature vector; yi ∈
{−1, 1} represents the class information; yi = ±1 imply xi belongs to
languages (1) and (2), respectively.

From the extracted features we now generate a series of weak classifiers.
A weak classifier h(x, f, p, θ) consists of a feature f , a threshold θ and a
polarity p = ±1 indicating the direction of the inequality:

h(x, f, p, θ) =

{

1 if pf(x) < pθ
−1 otherwise

(1)

For each feature f , the threshold θ and polarity p are chosen so that
the classifier based on eq.(1) obtains the minimum error rate on the train-
ing data. This procedure yields 6,552 single-feature related weak classifiers
hi(x); (i = 1, 2....6552).

TA, proposed by Freund and Shapire [23], generates a strong classifier
from these weak classifiers. During initialization, we set D1(i) =

1
m
, where

i = 1, ...,m. Then we repeat the following training procedure for T times.
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At every iteration t, we choose a weak classifier ht which minimizes the error
rate with respect to Dt.

ht = argmin
hj

εj , (2)

where

εj =

m
∑

i=1

Dt(i)[yi 6= hj(xi)]. (3)

We then update the probability distribution of Dt(i) given the error rate εt:

Dt+1(i) =
Dt(i) exp[−αtyiht(xi)]

Zt

(4)

where

αt =
1

2
ln

1− εt
εt

, (5)

and Zt is a normalization factor to make all Dt+1(i) sum to 1.

Zt =

m
∑

i=1

Dt(i) exp[−αtyiht(xi)]. (6)

After T iterations, there are T weak classifiers, a linear combination of which
provides the final strong classifier H(x):

H(x) = sign

( T
∑

t=1

αtht(x)

)

(7)

Here αt is produced during each iteration. It increases when the minimum
error rate εt decreases. It can be seen that the more confidence the weak
classifier has, the more effect it has on the final decision.

TA has the drawback of forcing the weak classifiers to have more influ-
ence on misclassified samples. This may lead to the problem that the final
strong classifier performs very well on testing samples which are hard to
classify, while performance on more easily classified samples may be poor.
GA, proposed by Friedman et al. [24], alleviates this problem, by changing
the binary output of ht to continuous values over [-1,1] and replacing the
probability distribution update step eq.(4) by:

Dt+1(i) =
Dt(i) exp(−yiht(xi))

Zt

, (8)
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while the final strong classifier generated by eq.(7) is replaced by

H(x) = sign[
T
∑

t=1

ht(x)]. (9)

GA omits the variable αt occurring in TA (see eq.(4)). All contribu-
tions from the selected weak classifiers are thus equivalent, causing it to be
resistant to noisy data and outliers.

By using TA and GA, we can build classifiers for language pairs. These
classifiers are used to produce the language distance metrics for experiments.

3 Experimental Results

Experiments are carried out on the Oregon Graduate Institute Multi-Language
Telephone Speech (OGI-TS) corpora [25] which consist of fixed vocabulary
utterances as well as fluent continuous speeches collected from 22 languages
with around 90 minutes per language from different speakers. Each speaker
contributes between one or two minutes of speech. Most utterances last less
than 10 seconds, and there are few pieces of continuous speeches lasting more
than 30 seconds. The short samples could in principle influence negatively
the performance of the classifier.

Experiment 1 tests the proposed language recognition algorithm. We
choose 4 languages (English, German, Spanish and Japanese). Each lan-
guage has 100 different speakers. We randomly select 70 speakers for train-
ing and the remaining for testing. Both AdaBoost and Gentle AdaBoost
algorithms are applied to these language pairs. The iteration time T is set
to 200.

The recognition rates are shown in Table 2. In all cases GA performs
better than TA. Note that for the Japanese vs. Spanish, the recognition
rate is increased by ∼ 15%. Another observation is that the recognition
rates are roughly reflections of language distances. For example, it correctly
indicates that English is closer to German than to Spanish, and German
is closer to Spanish than to Japanese. Admittedly, there are some cases in
which recognition rates incorrectly reflect language distances. For example,
English seems closer to Japanese than to Spanish. However, in most cases,
recognition rate is a reliable distance measure for languages.

Experiment 2 extends the language recognition algorithm to multiple
classes. We use the 1992 version of the OGI-TS corpora, with 10 languages:
English, Mandarin, German, Spanish, Japanese, Korean, Farsi, Hindi, Tamil
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and Vietnamese. We then build 45 classifiers by the Gentle AdaBoost algo-
rithm for each pair of these languages. For testing, an audio file is put into
these classifiers and obtain 45 recognition results. Then a voting scheme is
implemented and the language which receives the biggest votes is selected as
the final result. The proposed method is compared with other two methods
(GMM and PPRLM) described in [2], and the recognition error rates are
shown in Table 3. Our method performs better than GMM, but worse than
PPRLM.We note that PPRLM is a phoneme-level method, i.e., it constructs
classifiers for phoneme recognition and then uses the phoneme information
for language recognition. However, we here only use acoustic features which
can be easily extracted from language files. Thus, our method is a much
simpler model than PPRLM, but with a comparable recognition error rate.

Experiment 3 implements the recognition rate as the distance measure
between two languages; this distance measure is also compared with other
distance measures in linguistics. Supposing that the recognition rate be-
tween language A and B is R(A,B), then the distance between A and B is
defined as:

D(A,B) = 2× [(R(A,B)− 0.5] (10)

The above definition ensures that the distance is within the range of [0, 1]
and meanwhile it is zero in the case of random guess (recognition rate is 0.5).

We firstly compare the proposed distance measure in eq.(10) with Chiswick
and Miller’s study [26], in which they measure a language distance between
English and other languages based on the difficulty level that Americans
learn other languages. This comparison is shown in Table 4. The correla-
tion coefficient of these two distance measures is 0.7427, which shows that
the two distance measures share significant features.

We next compare the proposed distance metrics with currently accepted
linguistic history for a subset of Indo-European languages with one out-
group member. We select eight languages, calculate their recognition rate
distances, and then build languages trees using the UPGMA algorithm, as
in e.g. [13]. The resulting tree is shown in Fig. 1.

Topologically, this tree is broadly similar to the widely accepted language
tree [8, 9, 10, 13], shown in Fig. 2. The most serious anomalies are the ap-
parent large distance between Italian and Spanish, forcing Italian outside a
hypothetical Romance clade, and the apparent proximity of Czech and Hun-
garian, preventing the formation of a Slavonic clade in our tree. In this set
of seven Indo-European languages and one other, Hungarian is the linguistic
phylogenetic outlier. But it is possible that there is phonological diffusion
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German

Spanish

Portuguese

Czech

Swedish

Hungarian

Polish

Italian

Figure 1: Language tree from UPGMA and recognition rate distances.

between Czech and Hungarian resulting from geographical proximity. We
note also that in preliminary experiments using other classifiers, we have
found Italian and Spanish close together.

Hungarian  Polish  Czech    English  German  Swedish   Italian          Spanish          Portuguese 

Latin 

(Romance)  

Germanic 

Slavic 

Proto-Indo-

European (PIE) 

Finno-Ugrian 

Nostratic (?)  Standard (well-accepted) language 

phylogeny for languages under study. 

 

Shows topology but not to scale 

,Figure 2: Topological representation of widely accepted language tree for
languages in Fig.1 .

Experiment 4 draws a language relationship map using our language
metrics. This is an alternative to visualising the distance data through
a tree. With N languages there are N(N − 1)/2 language distances dij
(1 ≤ i < j ≤ N). The language map assigns a 2D point ri = (xi, yi) for each
language i. The mapping procedure involves solving the following non-linear
optimization problem:
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Figure 3: The language relationship map for 20 languages.
Minimize:

∑

i,j;1≤i<j≤N

|ξij |

subject to d2ij = (xi − xj)
2 + (yi − yj)

2 + ξij ,

where 1 ≤ i < j ≤ N (11)

The idea is that the data imperfectly represents an underlying clustering,
and that the error functions ξij represent the effect of hidden variables.
We use a genetic algorithm method [27] to solve this problem for N = 20
languages.

The final language relationship map is shown in Fig. 3. The map cor-
rectly clusters many Western languages into one group, e.g., English, Ger-
man, Portuguese, Spanish. The Slavic languages Polish and Czech are neigh-
bours. However, other language relationships are poorer; e.g. (a) Italian is
in the Western cluster close to Russian and Swedish, not in the Latin Group
(Spanish and Portuguese); (b) Russian is far from Polish and Czech.

4 Conclusions

We propose here a new measure of linguistic distance relying on the output
of a language recognition system, which involves (a) a new feature set to
language recognition and (b) training of the classifier through the Gentle
AdaBoost algorithm. System performance on the OGI-TS data corpora
outperforms the GMM-based system. The linguistic distances bear some
resemblance to previous linguistic studies.

The long-range goal is to extend the system to cast some light on deep
language history using acoustic data, by analogy with the construction of
trees from syntactic data [9]. We stress that this paper represents a first
stage. The results give cause for some optimism, but there are still big gaps.
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Each part of the problem presents major challenges and requires further
study. Linguistically, we may ask: (a) which acoustic features are linguis-
tically conservative and so can be used in order to build phylogenies, (b)
how important it is to use phonemic and other data to add to our primarily
prosodic data, (c) how to correct for variable speaking speeds in different
individuals, and (d) what are the effects of linguistic diffusion which create
false homologies (e.g. the Hungarian-Czech homology mentioned above).
From a computer science viewpoint, we may: (a) seek to improve the lan-
guage recognizers in order to identify regions of feature space associated
with different languages, and (b) note that UPGMA is easy to apply but
very unstable, and seek to employ more intelligent tree-building algorithms,
e.g. Bayesian methods [28]. From a statistical point of view it is also impor-
tant to study the stability of the learning system with respect to changing
samples, and to investigate average trees. Finally, as mentioned earlier, the
short OGI-TS speech utterance samples may also be a negative factor.
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Table 1: The 56 low level descriptors and 39 functionals. (a) The 56 low
level descriptors (LLDs), (b) The 39 functionals.

Feature Group Feature Descriptions

Pitch Pitch (f0) in Hz and its smoothed
contour

Raw Signal Zero-crossing rate
Voice Quality Probability of voicing
Energy Log Energy per frame, and energy in

frequency bands 0-25- Hz, 0-650 Hz,
250-650 Hz, 1-4 KHz, respectively.

Mel-spectral Energy in 26 mel-frequency bands
Cepstral 13 Mel-frequency cepstral coefficients
Spectral Centroid, flux, relative positions of

spectral max and min, spectral roll of
points 90%, 75%, 50% and 25%

(a)

Functionals Number

Relative positions of max/min values 2
Range (max - min) 1
Arithmetic and quadratic means 2
Quartile and inter-quartile ranges 6
95 and 98 percentile values 2
Zero crossings and mean crossing rate 2
Number of peaks and mean distance between 2
peaks
Arithmetic mean of peaks 1
Overall arithmetic mean 1
Linear regression coefficients and error 4
Quadratic regression coefficients and error 5
Centroid of contour 1
Standard deviation, variance, kurtosis, skewness 4
Arithmetic, quadratic and absolute means 3
Arithmetic, quadratic and absolute means of 3
non-zero values

(b)
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Table 2: Recognition rates of 6 language pairs using Traditional Adaboost
(TA) and Gentle AdaBoost (GA) algorithms.

Language pairs AdaBoost Gentle AdaBoost

Eng. vs Ger. 0.9362 0.9685
Eng. vs Spa. 0.9884 0.9919
Eng. vs Jap. 0.9685 0.9811
Jap. vs Spa. 0.7637 0.9120
Ger. vs Spa. 0.8252 0.8986
Ger. vs Jap. 0.8146 0.9076

Table 3: Recognition error rates of the GMM, PPRLM and the proposed
methods.

GMM PPRLM This work (GA)

Error Rate 29% 22% 25%

Table 4: The distance between English and other languages.
Recognition The Proposed Distance as

Rate Distance Defined in [26]

Swedish 0.9042 0.8084 0.3333
Italian 0.9111 0.8222 0.3636
Russian 0.9462 0.8924 0.4444
Farsi 0.9367 0.8734 0.5
Polish 0.9605 0.9210 0.5
Hindi 0.9550 0.9100 0.5714
Vietnamese 0.9551 0.9102 0.6667
Arabic 0.9618 0.9236 0.6667
Korean 0.9641 0.9282 1.0
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