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Abstract 

Numerical simulations of acoustic streaming flows can be used not only to explain the complex phenomena 

observed in acoustofluidic manipulation devices, but also to predict and optimise their performances. In this 

paper, two numerical methods based on perturbation theory are compared in order to demonstrate their viability 

and applicability for modelling boundary-driven streaming flows in acoustofluidic systems. It was found that the 

Reynolds stress method, which predicts the streaming fields from their driving terms, can effectively resolve 

both the inner and outer streaming fields and can be used to demonstrate the driving mechanisms of a broad 

range of boundary-driven streaming flows. However, computational efficiency typically limits its useful 

application to two-dimensional models. We highlight the close relationship between the classical boundary-

driven streaming vortices and the rotationality of the Reynolds stress force field. The limiting velocity method, 

which ignores the acoustic boundary layer and solves the outer streaming fields by applying the “limiting 

velocities” as boundary conditions, is more computationally efficient and can be used for predicting three-

dimensional outer streaming fields and provide insight into their origins provided that the radius of curvature of 

the channel surfaces is much greater than the acoustic boundary layer thickness (𝛿𝑣). We also show that for the 

limiting velocity method to be valid the channel scales must exceed a value of approximately 100𝛿𝑣 (for an error 

of ~5% on the streaming velocity magnitudes) for the case presented in this paper. Comparisons of these two 

numerical methods can provide effective guidance for researchers in the field of acoustofluidics on choosing 

appropriate methods to predict boundary-driven streaming fields in the design of acoustofluidic particle 

manipulation devices. 

Keywords: Acoustic streaming; Boundary-driven streaming; Reynolds stress method; Limiting velocity method; 

Acoustofluidics; Acoustic boundary layer 
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1. Introduction 

Acoustic streaming comprises steady, time-averaged fluid flows driven by acoustic absorption in a fluid. 

Various acoustic streaming patterns have been analysed in acoustofluidic manipulation devices due to different 

mechanisms of attenuation, most notably Eckart streaming(Eckart 1947) and boundary-driven 

streaming(Nyborg 1958). The former is generated due to the energy dissipation in the bulk of a fluid while the 

latter is formed from dissipation in an acoustic boundary layer(Wiklund, Green et al. 2012). The streaming in 

both these cases is driven by spatial variation in the Reynolds stress (the mean value of the acoustic momentum 

flux). We refer to the driving term here as the Reynolds stress force (RSF)(Lighthill 1978). 

Most bulk acoustic wave microfluidic manipulation devices utilise ultrasonic standing waves, where the scale of 

the fluid channel (in at least one dimension) is typically of the same order as the acoustic wavelength meaning 

that the acoustic streaming fields are dominated by boundary-driven streaming as Eckart-type streaming 

generally needs longer distances to allow acoustic attenuation in the bulk of the fluid. Both types of streaming 

are typically found in surface acoustic wave (SAW) devices(Nama, Barnkob et al. 2015). The classical two-

dimensional (2D) boundary-driven acoustic streaming fields are usually referred to as Rayleigh-Schlichting 

streaming(Lord Rayleigh 1883, Schlichting 1932), recognising the contributions of Rayleigh and Schlichting to 

solving the acoustic streaming problems outside and inside the acoustic boundary layer region, respectively. 

Generally, their solutions describe the steady motion of periodic vortices within one-dimensional (1D) standing 

wave fields, comprising four pairs of counter-rotating vortices within each acoustic half-wavelength (Fig. 1). 

Subsequently, a series of modifications of Rayleigh’s solution have been proposed(Westervelt 1952, Nyborg 

1953, Nyborg 1958, Zarembo 1972, Riley 1998, Hamilton, Ilinskii et al. 2003), many of which have been 

reviewed by Boluriaan and Morris(Boluriaan and Morris 2003) and Valverde(Valverde 2015). Moreover, many 

solutions for boundary-driven streaming patterns around obstacles have been proposed (Stuart 1965, Riley 1975, 

Riley 1987, Amin and Riley 1990, Riley 1992, Rednikov and Sadhal 2004, Rednikov and Sadhal 2011) based 

on the streaming patterns observed around vibrating cylinders and spheres. 

In most acoustofluidic particle manipulation devices, the acoustic streaming fields are considered as a 

disturbance as they place a practical lower limit on the particle size that can be manipulated by the primary 

acoustic radiation force(Barnkob, Augustsson et al. 2012, Bruus 2012). However, acoustic streaming can also 

play an active role in such systems, such as particle trapping(Lutz, Chen et al. 2006, Chung and Cho 2008, 

Hammarstrom, Laurell et al. 2012, Yazdi and Ardekani 2012, Hammarstrom, Nilson et al. 2014), two-

dimensional (2D) particle focusing(Antfolk, Muller et al. 2014) and particle separation(Devendran, Gralinski et 

al. 2014). Understanding the causal mechanisms of boundary-driven streaming flows is important in order to 

create designs for enhancing or minimizing the streaming effects in acoustofluidic manipulation devices. 

In recent decades, the rapid development of computational technology has allowed numerical simulations of 

acoustic streaming in models at the scale of practical experimental devices, making simulation an important tool 

in estimating the performance of acoustofluidic manipulation systems too complex for analytical solutions. On 

the one hand, 2D modelling of classical boundary-driven streaming has shown good consistency with theoretical 

solutions (Kawahashi and Arakawa 1996, Aktas and Farouk 2004) and with experimental measurements 

(Augustsson, Barnkob et al. 2011, Muller, Barnkob et al. 2012, Muller, Rossi et al. 2013). On the other hand, 
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most recently, computationally efficient methods have allowed three-dimensional (3D) simulations of boundary-

driven streaming(Lei, Glynne-Jones et al. 2013, Lei, Hill et al. 2014, Hahn, Leibacher et al. 2015, Lei, Glynne-

Jones et al. 2016), enabling the demonstration of complex 3D characteristics of acoustic streaming flows and 

leading to an understanding of the driving mechanisms of streaming patterns experimentally observed in many 

practical acoustofluidic manipulation devices(Hagsater, Jensen et al. 2007, Hammarstrom, Laurell et al. 2012). 

However, despite having shown good agreement between the modelling and experimental measurements and 

insight into previously puzzling phenomena, the scope of application of the numerical methods has not been 

fully established. In this paper, two numerical methods for the simulation of boundary-driven streaming in 

acoustofluidic devices are compared to analytical solutions for boundary-driven streaming in order to explore 

the conditions in which they can be applied to predict boundary-driven streaming fields to assist the design of 

acoustofluidic devices. By establishing this, boundary-driven streaming patterns in acoustofluidic devices can be 

solved using one or both of these two methods. 

Section 2 presents the fundamental governing equations for acoustic streaming theory. In Section 3, two 

numerical methods for modelling boundary-driven streaming are explicitly described, including the equations 

solved, the boundary conditions required for each step of the numerical processes, and the modelled results, 

including the driving mechanism of classical boundary-driven streaming and comparisons between these two 

numerical methods and Hamilton et al.’s analytical solution(Hamilton, Ilinskii et al. 2003). Overall conclusions 

are drawn in Section 4. 

 

Fig. 1 Schematic representation of the classical boundary-driven acoustic streaming flows in a two-dimensional 

rectangular channel, where 𝜆 is the acoustic wavelength, 𝛿𝑣 is the thickness of the acoustic boundary layer and 

the curves represent the distribution of acoustic pressure magnitudes. 

2. Basic theory of acoustic streaming 

Before describing the two numerical methods, the fundamental governing equations of acoustic streaming 

theory are introduced. In the following, we use bold and normal-emphasis fonts to represent vector and scalar 

quantities, respectively. Here, we assume a homogeneous isotropic fluid, in which the continuity and 

momentum equations for the fluid motion are 
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 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0, (1a) 

 
𝜌 (

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖) = −∇𝑝 + 𝜇∇2𝒖 + (𝜇𝑏 +

1

3
𝜇) ∇∇ ∙ 𝒖, (1b) 

where 𝜌 is the fluid density, 𝑡 is time, 𝒖 is the fluid velocity, 𝑝 is the pressure, and 𝜇 and 𝜇𝑏 are respectively the 

dynamic and bulk viscosity coefficients of the fluid. It is well worth noting the meaning of each term in 

Equation (1b). The left-hand-side represents the inertia force per unit volume on the fluid and the two terms in 

the bracket are the unsteady acceleration and convective acceleration of a fluid particle, respectively. The right-

hand-side indicates the divergence of stress, including the pressure gradient and the viscosity forces. Other 

forces, e.g. the gravity force, are not shown as they are generally negligible compared to the forces presented. 

The two methods introduced in this paper are based on perturbation theory, which provides an excellent tool for 

bringing out the fundamental core of acoustic and streaming phenomena (Bruus 2012, Sadhal 2012). It is 

assumed that the second-order acoustic streaming is superposed on the steady state first-order acoustic velocity 

field. Following this theory, the fluid density, pressure, and velocity can respectively be expressed as: 

 
𝜌 = 𝜌0 + 𝜌1 + 𝜌2 + ⋯, (2a) 

 
𝑝 = 𝑝0 + 𝑝1 + 𝑝2 + ⋯, (2b) 

 
𝒖 = 𝒖𝟏 + 𝒖𝟐 + ⋯, (2c) 

where the subscripts 0, 1 and 2 represent the static (absence of sound), first-order and second-order quantities, 

respectively. 

Substituting Equations (2) into Equations (1) and considering the equations to the first-order, Equations (1) for 

solving the first-order acoustic velocity take the form, 

 𝜕𝜌1

𝜕𝑡
+ 𝜌0∇ ∙ 𝒖𝟏 = 0, (3a) 

 
𝜌0

𝜕𝒖𝟏

𝜕𝑡
= −∇𝑝1 + 𝜇∇2𝒖𝟏 + (𝜇𝑏 +

1

3
𝜇) ∇∇ ∙ 𝒖𝟏. (3b) 

Repeating the above procedure, considering the equations to the second-order and taking the time average of 

Equations (1) using Equations (2), the continuity and momentum equations for solving the second-order time-

averaged acoustic streaming velocity can be turned into 

 
∇ ∙ 𝜌1𝒖𝟏̅̅ ̅̅ ̅̅ + 𝜌0∇ ∙ 𝒖𝟐̅̅̅̅ = 0, (4a) 

 
−𝑭 = −∇𝑝2̅̅ ̅ + 𝜇∇2𝒖𝟐̅̅̅̅ + (𝜇𝑏 +

1

3
𝜇) ∇∇ ∙ 𝒖𝟐̅̅̅̅ , (4b) 

where the upper bar denotes a time-averaged value and 𝑭 = −𝜌0𝒖𝟏∇ ∙ 𝒖𝟏 + 𝒖𝟏 ∙ ∇𝒖𝟏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the RSF(Lighthill 1978). 

The divergence free velocity 𝒖𝟐
𝑴̅̅ ̅̅ = 𝒖𝟐̅̅̅̅ + 𝜌1𝒖𝟏̅̅ ̅̅ ̅̅ /𝜌0, derived from Equation (4a), is the mass transport velocity of 
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the acoustic streaming, which is generally closer to the velocity of tracer particles in a streaming flow than 

𝒖𝟐̅̅̅̅ (Nyborg 1998). 

Taking the curl of both sides of Equation (4b), we establish that 

 
𝜇∇2(∇ × 𝒖𝟐̅̅̅̅ ) = −∇ × 𝑭. (5) 

It can be seen that the second-order streaming vortices are closely related to the rotationality of the RSFs. One 

advantage of this equation over Equation (4b) is that the second-order pressure, 𝑝2̅̅ ̅ , does not need to be 

considered. Thus it can be established whether acoustic streaming vortices can be generated in a plane from the 

rotationality of the RSF field in that plane, although Nyborg(Nyborg 1965) points that for certain boundary 

conditions some knowledge of 𝑝2̅̅ ̅ is necessary to determine 𝒖𝟐̅̅̅̅ . The use of Equation (5) to investigate the 

potential existence of streaming vortices is very useful to many problems, including the question of boundary-

driven streaming in bulk acoustofluidic devices discussed here, in which the acoustic streaming fields usually 

appear as regular vortex patterns. 

In the results shown later, this relationship will be used to elucidate the driving mechanism of classical 

boundary-driven streaming patterns and to draw out the key causal factors. 

3. Numerical methods, results and discussion 

The numerical simulations were conducted in COMSOL 4.4(2014). In this paper, we focus on Rayleigh-

Schlichting streaming (shown in Fig. 1), the classical boundary-driven streaming in 2D water-filled rectangular 

channels, and which is the most common type of acoustic streaming extensively discussed in literature. Two 

methods are introduced and compared here in order to demonstrate their viability and applicability for the 

modelling of boundary-driven streaming fields in acoustofluidic systems of varying dimensions. For both 

methods, only the acoustic and streaming fields in the upper half of the rectangular channels were modelled as 

they are symmetric about 𝑦 = 0 (Fig. 1). 

The required 1D standing wave fields in these rectangular channels were established by a harmonic excitation of 

the left boundaries at a frequency 𝑓 ≈ 1 MHz, shown in Fig. 2. The thickness of the acoustic boundary layer in 

water at this frequency, 𝛿𝑣 = √2𝜈 𝜔⁄ ≈ 0.6 μm, where 𝜈 = 𝜇 𝜌0⁄  is the kinematic viscosity coefficient of the 

fluid and 𝜔 = 2𝜋𝑓 is the angular frequency. Generally, it is found that the acoustic velocity decays from its 

maximum value to zero at the wall over a greater distance than 𝛿𝑣; In the results below, and also in the work of 

Hamilton et al.(Hamilton, Ilinskii et al. 2003), this distance increases with the decrease of channel height, ℎ. 

This will be discussed further below. 
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Fig. 2 Comparisons of boundary conditions between the two numerical methods on the modelling of classical 

boundary-driven streaming fields in 2D rectangular channels: (a) the Reynolds stress method (RSM); and (b) the 

limiting velocity method (LVM), where 𝜎0 is the amplitude of harmonic oscillation, 𝑓 is its driving frequency, 

the orange layer is the acoustic boundary layer thickness (𝛿𝑣 , not to scale) and 𝑢𝐿  is the limiting velocity 

working as a slip velocity boundary condition on the edge where the acoustic boundary layer is ignored. 

3.1. The Reynolds stress method (RSM) 

As illustrated, boundary-driven streaming originates from the dissipation of acoustic energy within the thin 

acoustic boundary layer region. The first method, the RSM, explores the origin of boundary-driven streaming 

flows, the net force on the fluid and investigates how the boundary-driven streaming vortices inside and outside 

the acoustic boundary layer region are formed from the RSFs. The numerical process can be split into two steps: 

(1) Acoustic step: the first-order acoustic fields were solved, including the fine structure in the acoustic 

boundary layer. A COMSOL ‘Thermoacoustics, Frequency Domain’ interface was used to predict the first-order 

acoustic fields, which solves the acoustic pressure fields following (valid when |𝑝1| ≪ 𝜌0𝑐2(Kinsler, Frey et al. 

2000), where |𝑝1| represents the acoustic pressure amplitude and 𝑐 is the sound speed): 

 
∇2𝑝1 +

𝜔2

𝑐2
𝑝1 = 0, (6) 

and the acoustic velocity fields using the relationships between the acoustic pressure and velocity fields derived 

from the inviscid form of Equations (3). 

In this step, the left boundary of the rectangular channel was set as normal stress excitation, the bottom 

boundary was a symmetric condition and the remaining boundaries were sound reflecting conditions, shown in 

Fig. 2 (a). 
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(2) Computational fluid dynamics (CFD) step: the acoustic streaming fields were then solved. Here, a COMSOL 

‘Creeping Flow’ interface was used to solve the second-order acoustic streaming fields following Equations (4). 

The supplied ‘Creeping flow’ interface was edited to reflect Equations (4), which initially does not include the 

first term in (a) and the last term in (b). In 2D Cartesian coordinates shown in Fig. 2 (a), the two components of 

the RSF 𝑭, (𝐹𝑥, 𝐹𝑦), can be calculated from 

 𝐹𝑥 = 𝜌0(𝜕𝑢1
2̅̅ ̅ 𝜕𝑥⁄ + 𝜕𝑢1𝑣1̅̅ ̅̅ ̅̅ 𝜕𝑦⁄ ), (7a) 

 𝐹𝑦 = 𝜌0(𝜕𝑢1𝑣1̅̅ ̅̅ ̅̅ 𝜕𝑥⁄ + 𝜕𝑣1
2̅̅ ̅ 𝜕𝑦⁄ ), (7b) 

where 𝑢1  and 𝑣1  are the two components of the acoustic velocity vector 𝒖𝟏  along coordinates 𝑥  and 𝑦 , 

respectively. In this step, all the edges were set as no-slip boundary conditions besides the symmetric condition 

of the bottom boundary, which are shown in Fig. 2 (b). 

3.2. The limiting velocity method (LVM) 

It has been demonstrated previously that the time-averaged streaming velocity at the extremity of the inner 

streaming vortex (the limiting velocity) can be approximated as a function of the first-order linear acoustic 

velocity field outside the acoustic boundary layer as long as the radius of curvature of the surface is much 

greater than the acoustic boundary layer thickness(Nyborg 1958, Lee and Wang 1989). The streaming field in 

the bulk of the fluid (the outer streaming) is assumed to be driven by this limiting velocity field. Thus, the 

acoustic streaming fields outside the acoustic boundary layer region (the outer streaming) can be predicted 

provided that the distribution of the first-order linear acoustic velocity field is known. This is referred to as the 

LVM here and the numerical process for this method can also be split into two steps: 

 (1) First, a COMSOL ‘Pressure Acoustics, Frequency Domain’ interface was used to model the first-order 

acoustic fields, which solves the harmonic, linearized acoustic problem, described in Equation (6). In this step, 

the left boundary of the chamber was considered as normal stress excitation, the bottom boundary was a 

symmetric condition and the remaining two edges were sound hard boundary conditions (this includes a slip 

velocity boundary condition, thus no boundary layers are created), which are described in Fig. 2 (c). 

(2) Then, a COMSOL ‘Creeping Flow’ interface was used to obtain the fluid motion, on which the limiting 

velocity, 𝑢𝐿 , derived from the first-order acoustic velocity field, was applied as a slip velocity boundary 

condition on the top edge of the fluid channel, 𝑦 = ℎ. In the 2D models with their 1D standing wave field 

presented here, the limiting velocity equation can be approximated as 

 
𝑢𝐿 =

3

4𝜔
𝑢1

∗
𝑑𝑢1

𝑑𝑥
, (8) 

where the superscript, *, represents the complex conjugate. Other boundary conditions are the same as for the 

RSM method. In this domain, the following equations were solved: 

 ∇ ∙ 𝒖𝟐̅̅̅̅ = 0, (9a) 
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 ∇𝑝2̅̅ ̅ = 𝜇∇2𝒖𝟐̅̅̅̅ . (9b) 

As only outer streaming fields are solved in this method, with the assumption of low velocity, incompressible 

flow, the first term in the left hand side of Equation (4a) is zero and thus 𝒖𝟐̅̅̅̅ = 𝒖𝟐
𝑴̅̅ ̅̅ (Hamilton, Ilinskii et al. 2003) 

(the last term in the right-hand-side of Equation (4b) is also zero) as we presented previously(Lei, Glynne-Jones 

et al. 2013, Lei, Hill et al. 2014, Lei, Glynne-Jones et al. 2016). Then, as discussed by Lighthill(Lighthill 1978), 

the RSF in the bulk of the fluid can set up hydrostatic stresses, but in the absence of attenuation these will not 

create vortices, hence these terms are not included in Equation (9b). This is confirmed by noting that ∇ × 𝒖𝟏 =

0  in the model presented here which from Equation (4) implies that the RSF is also irrotational. 

3.3. Mesh constitutions 

In terms of channel dimensions, a series of channels with ℎ ranging from 𝛿𝑣 to 250𝛿𝑣 were considered, where 

the channel widths were the same, 2𝑤 = 𝜆 2⁄ = 0.74 mm. All the model parameters are summarised in Table 1. 

As shown in Fig. 3, for the LVM, a uniform mesh along the channel height was used while a boundary layer 

mesh near the top boundary of the fluid channel was used in order to resolve the acoustic and streaming fields in 

the acoustic boundary layer region for the RSM. Moreover, it can be seen that mesh sizes in the bulk of the fluid 

for the RSM should be small enough to keep the mesh size continuity inside and outside the acoustic boundary 

layer. A mesh size-dependency study was firstly conducted in order to determine the mesh sizes required for 

each case for high accuracy. It was found that as few as two elements in the 𝑦-direction are sufficient to 

accurately capture the streaming pattern and magnitude using the LVM. However, in order to allow for cases 

that are more complex than the simple one explored in the dependency study we used a higher density of five 

elements in the 𝑦-direction, which makes it suitable for both 2D and 3D modelling of outer streaming flows. For 

the RSM, however, smaller mesh elements (first layer of ~𝛿𝑣/5) are required to resolve the acoustic and 

streaming fields inside the acoustic boundary layer and tens of layers of mesh elements in the 𝑦-direction are 

needed in order to obtain smooth distributions of acoustic and streaming fields across the channel heights (𝑦 

direction). Based on the mesh constitutions described above, the computational time and virtual memory 

required for the RSM and the LVM in devices with various channel heights are compared in Fig. 4 (performed 

on a Lenovo Y50 running Windows 8 (64-bit) equipped with 16 GB RAM and Intel(R) Core(TM) i7-4710HQ 

processor of clock frequency 2.5 GHz). It can be seen that the RSM is a far more computationally expensive 

method and is less suitable for 3D modelling of large-scale devices, where the length-scale of the fluid channels 

are orders of magnitude larger than the acoustic boundary layer thickness (the case for most practical 

experimental acoustofluidic manipulation devices). 
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Fig. 3 Examples of the mesh constitutions in rectangular channels for the two different methods: (a) the limiting 

velocity method; and (b) the Reynolds stress method, where only a portion of the fluid channels in the 𝑥-

direction (distance of 60 µm) is shown. 

 

Fig. 4 Comparisons of computational time (a) and virtual memory (b) required for the Reynolds stress method 

(RSM) and the limiting velocity method (LVM) in devices with various ℎ. For ℎ 𝛿𝑣⁄ = 200, the LVM takes 2 s. 

Table 1 Model parameters. 

Quantity Abbreviation Value Unit 

Density of water 𝜌0 998 kg·m-3 

Dynamic viscosity of water µ 0.893 mPa·s 

Bulk viscosity of water µ𝑏 2.47 mPa·s 

Speed of sound in water 𝑐 1480 m·s-1 

Acoustic wavelength 𝜆 1.48 mm 

Boundary layer thickness 𝛿𝑣 ~0.6 µm 

Channel dimensions 2𝑤 × ℎ 𝜆 2⁄ × (𝛿𝑣 − 250𝛿𝑣) mm2 



10 

 

3.4. First-order acoustic fields 

 

Fig. 5 Modelled first-order acoustic pressure and velocity fields: (a) distribution of the normalised acoustic 

pressure magnitude (both RSM and LVM methods); (b) RSM: distribution of the normalised acoustic velocity 

magnitude (ℎ = 40𝛿𝑣) solved from the COMSOL ‘Thermoacoustics, Frequency Domain’ interface; (c) LVM: 

distribution of the normalised acoustic velocity magnitude solved from the COMSOL ‘Pressure Acoustics, 

Frequency Domain’ interface, where |∙|𝑚𝑎𝑥 represents the maximum amplitude in the cavity. 

The modelled first-order acoustic fields are shown in Fig. 5. It can be seen that, for both methods, a 1D half-

wavelength standing wave field was established in the 𝑥-direction of the chambers (Fig. 5 (a)) with a pressure 

node at the centre (𝑥 = 0) and antinodes at the two ends (𝑥 = ±𝑤) (the model was run at the resonant frequency, 

which was chosen to obtain the maximum energy density in the channel). However, the modelled acoustic 

velocity fields vary between these two models. Fig. 5 (c) plots the acoustic velocity field modelled from the 

LVM. It can be seen that the velocity and pressure fields are uniform along the 𝑦-axisand have a 900 phase 

difference. The modelled acoustic velocity field from the RSM is shown in Fig. 5 (b), where an acoustic 

boundary layer near the top boundary, 𝑦 = ℎ, is seen. It can be seen that the acoustic velocity magnitude 

increases rapidly from 0 at the top boundary, 𝑦 = ℎ, to its maximum value and then decreases a little in 

magnitude to the constant value found in the bulk of the channel. 

3.5. Second-order acoustic streaming patterns 

The modelled acoustic streaming patterns are shown in Fig. 6. Fig. 6 (a) – (b) plot the acoustic streaming 

patterns modelled from these two methods in a channel where ℎ = 40𝛿𝑣. In the RSM method, the 𝑦-extent of 

the inner and outer acoustic streaming vortices are labelled respectively 𝑆𝑖𝑛 (defined here as the distance from 

the boundary to the location at which streamlines switch between clockwise and anticlockwise directions) and 

𝑆𝑜𝑢𝑡 as shown in Fig. 6 (a). The sizes of the inner streaming vortex, 𝑆𝑖𝑛, in devices with various channel heights 

are plotted in Fig. 6 (c), which shows that 𝑆𝑖𝑛 scales linearly with the growth of ℎ in devices where ℎ ≤ 5.6𝛿𝑣 as 

only inner vortices were obtained in the entire chamber, which is close to the value found from Hamilton et al.’s 

analytical solution(Hamilton, Ilinskii et al. 2003), which is about 5.7𝛿𝑣. With further increases of ℎ an outer 

vortex appears, and 𝑆𝑖𝑛 drops and soon stabilises to a value of ~𝛿𝑣, as the condition ℎ ≫ 𝛿𝑣 is obtained; this is 

shown in Fig. 6 (c). Investigating the cause of this change, which is explored in more detail below, we find that 

in the cases where there are both inner and outer streaming vortices, the 𝑦-extent of the inner vortex closely 
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follows the distance from the wall to the position of maximum acoustic velocity. However, due to the 

approximations of the LVM, this behaviour at small ℎ is not seen, and this method always gives the same 

streaming patterns in channels of different channel heights, leading to substantial errors for small ℎ. 

 

Fig. 6 Modelled boundary-driven streaming patterns: (a) from the Reynolds stress method (RSM); (b) from the 

limiting velocity method (LVM); and (c) the 𝑦-extent of the inner streaming vortex in devices with various ℎ, 

where 𝛿𝑣  is the thickness of acoustic boundary layer and 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡  represent the sizes of inner and outer 

streaming vortices, respectively. 

3.6. Comparisons on the streaming velocities 

In order to demonstrate the accuracy of these two methods, the modelled acoustic streaming velocity 

magnitudes were compared to Hamilton et al.’s analytical solution(Hamilton, Ilinskii et al. 2003) in 2D 

rectangular chambers, shown in Fig. 7, where the vertical distributions of the 𝑥-component streaming velocity, 

𝑢2, along 𝑥 = −𝑤/2 are plotted. In this graph, the excitation amplitude has been adjusted to give a first-order 
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acoustic pressure field amplitude of 0.46 MPa in order to compare the acoustic streaming velocity fields. It can 

be seen that the distribution and magnitudes of streaming velocities modelled from the RSM are in good 

accordance with those obtained from Hamilton et al.’s solution(Hamilton, Ilinskii et al. 2003). 

 

Fig. 7 Comparisons of the vertical distributions of the modelled 𝑥-component acoustic streaming velocities, 𝑢2
𝑀̅̅ ̅̅ , 

along line 𝑥 = −𝑤/2 between the Reynolds stress method (RSM), the limiting velocity method (LVM) and 

Hamilton et al.’s solution(Hamilton, Ilinskii et al. 2003) in a chamber with ℎ = 40𝛿𝑣. The streaming velocity 

magnitudes were obtained from an acoustic pressure amplitude of 0.46 MPa. 

Turning to examine the outer streaming vortex, we first note that in devices where ℎ ≤ 5.6𝛿𝑣  only inner 

streaming vortices exist in the whole chamber, and under such circumstances the LVM is not suitable. For the 

case presented in Fig. 7 ( ℎ = 40𝛿𝑣 ), the modelled magnitude of streaming velocity was found to be 

approximately 14% higher from the LVM than that from the RSM at the centre of the fluid channel (𝑦 = 0). 

The errors for channel heights ranging from 6𝛿𝑣 to 200𝛿𝑣 are shown in Fig. 8. For each case, the percentage of 

difference between these two methods, on the modelled 𝑥-component streaming velocity magnitude, at point 

(−𝑤/2, 0) was calculated: 

 
POD_𝑢2̅̅ ̅ = (𝑢2𝑙̅̅ ̅̅ − 𝑢2𝑟̅̅ ̅̅ ) 𝑢2𝑙̅̅ ̅̅⁄ , (10) 

where 𝑢2𝑙̅̅ ̅̅  and 𝑢2𝑟̅̅ ̅̅  are the time-averaged streaming velocities obtained from the LVM and the RSM, 

respectively.  

It can be seen from Fig. 8 that the difference in the streaming velocity magnitudes modelled by these two 

methods tends to be smaller with the increase of channel heights. We thus do not recommend applying the LVM 

to model the boundary-driven streaming in devices where the channel heights are below 100 𝛿𝑣 , which 
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introduces around 5% of error on the magnitudes of acoustic streaming velocities. However, in most practical 

experimental acoustofluidic manipulation devices (not including SAW devices, see below), where 1D or 2D 

standing wave fields are established and 3D models are required to solve the acoustic and streaming fields, the 

LVM can be effectively applied as the channel dimensions are usually many orders of magnitude larger than the 

acoustic boundary layer thickness and typically only the acoustic streaming fields outside the acoustic boundary 

layer are of interest. This can further explain the good consistency between the experimental measurements in 

acoustofluidic manipulation devices and the results simulated from the LVM in 3D models presented in 

literature recently (Lei, Glynne-Jones et al. 2013, Lei, Hill et al. 2014, Hahn, Leibacher et al. 2015, Lei, Glynne-

Jones et al. 2016). 

 

Fig. 8 Comparisons of the modelled acoustic streaming velocities in the bulk of the fluid by two methods, the 

Reynolds stress method (RSM) and the limiting velocity method (LVM). POD_𝑢2̅̅ ̅ represents percentage of 

difference on the 𝑥-component acoustic streaming velocity, 𝑢2̅̅ ̅, at point (−𝑤/2, 0). POD_𝑢2̅̅ ̅ = (𝑢2𝑙̅̅ ̅̅ − 𝑢2𝑟̅̅ ̅̅ )/𝑢2𝑙̅̅ ̅̅ , 

where 𝑢2𝑙̅̅ ̅̅  and 𝑢2𝑟̅̅ ̅̅  are the streaming velocities obtained from the LVM and the RSM, respectively. 𝛿𝑣 is the 

thickness of the acoustic boundary layer. 

3.7. Driving mechanism of classical boundary-driven streaming 

In the previous section, it was shown that in devices where ℎ ≫ 𝛿𝑣, the size of the inner vortex remains stable at 

approximately 1.7𝛿𝑣  (Fig. 6). This raises the question of why the inner streaming vortex is limited to the 

boundary layer region and does not have a container scale (i.e., size of ℎ), in other words, what the cause of the 

vortex pairs inside and outside the boundary layer region is. While the answer to this is implicit in the well-

established analytical solutions to the problem, it is instructive to examine the fields in more detail to see which 

components of the solution dominate the behaviour that is seen, and hence approach a more causal explanation. 

In this section, we address this by investigating how the RSF fields vary inside and outside the boundary layer 

region. 
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Fig. 9 The modelled results in devices where ℎ = 40𝛿𝑣  (first row) and ℎ = 15𝛿𝑣  (second row): (a) the 

distribution of normalised Reynolds stress force magnitude, 𝑭; (b) the vertical distribution of normalised |𝑢1| 
(solid-line) and 𝐹𝑥 (dotted-line) along 𝑥 = 𝑤/2, where |∙|𝑚𝑎𝑥 represents the maximum absolute value; (c) the 

distribution of normalised ∇ × 𝑭; and (d) the distribution of ∇ × 𝑭 near the top boundary in the dashed box 

shown in (c), where 𝛿𝑣 is the thickness of acoustic boundary layer, 𝑆𝑖𝑛 shows the size of inner streaming vortex, 

𝑢𝐿 is the limiting velocity that drives the outer streaming vortex, 0, -, and + represent the magnitudes of ∇ × 𝑭 

and the curved arrows represent the streaming pattern driven by the rotationality of 𝑭 in the 𝑥𝑦 plane. 

Fig. 9 (a1-d1) shows the RSF field in a channel where ℎ = 40𝛿𝑣, where all the quantities have been normalised 

by their maximum magnitudes to highlight their distributions. Here, we define another parameter 𝑦′ as 

 
𝑦′ = ℎ − 𝑦, (11) 

to describe the vertical distance to the top boundary (𝑦 = ℎ). 

It can be seen from Fig. 9 (a1) that away from the upper boundary the RSF field has a sinusoidal distribution 

along the standing wave (𝑥-direction); this will give rise to a hydrostatic pressure field in the bulk of the 

fluid(Lighthill 2001). Examining a slice of the field in the vertical direction (𝑦), as shown in Fig. 9 (b1), the 

force field has a similar distribution to the 𝑥-component of the acoustic velocity. Consistent with the acoustic 

boundary layer, the magnitude of this velocity rises rapidly as 𝑦′  increases (that is moving away from the 

boundary at 𝑦 = ℎ), reaches a peak and then decreases a little to a constant value in the bulk of chamber. Here, 

only 𝐹𝑥 is shown as the 𝑦-component force, 𝐹𝑦, is typically thousands of times smaller due to the 1D standing 

wave only creating an acoustic boundary layer in the 𝑦-direction being established in the 𝑥-direction of the 

chamber (modelled results do not show significant variation on removing this component, supporting our 

emphasis on 𝐹𝑥). Moreover, under this approximation, the curl of the RSF can be approximated to 

 
∇ × 𝑭 ≈ −

𝜕𝐹𝑥

𝜕𝑦
𝒌, (12) 

where 𝒌 is the unit vector perpendicular to the 𝑥𝑦 plane. This means that, in devices in which a 1D standing 

wave is established along the 𝑥-axis of the chamber, the 𝑦-derivative of 𝐹𝑥 determines the rotationality of the 

RSF, and hence streaming in the 𝑥𝑦 plane. Considering the distribution of 𝐹𝑥 along the channel height (as seen 
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in Fig. 9 (b1)), two main force gradients can be found in the acoustic boundary layer region, shown with arrows, 

and it is these which determine the rotationality of 𝑭 in the near-boundary region, and the boundary between the 

inner and outer streaming vortices. 

The distribution of ∇ × 𝑭 in the whole chamber is shown in Fig. 9 (c1) and a magnification of ∇ × 𝑭 near the 

top boundary in the dashed box is presented in Fig. 9 (d1), where “+” and “-” signs were used to show its 

direction. In the bulk of the fluid chamber, the RSF is nearly irrotational. The force field is rotational in regions 

close to the acoustic boundary layer with different directions in areas inside the boundary layer and that 

immediately outside it. Thus, a pair of oppositely rotating vortices is generated with a boundary close to the 

acoustic boundary layer. The streaming velocity at the juncture of these two vortices is the limiting velocity, 

shown as 𝑢𝐿 in Fig. 9 (d1). It is also the different rotationality on the RSF inside the boundary layer and that 

immediately outside it that determines the 𝑦-extent of inner streaming vortices (𝑆𝑖𝑛), localising it in the thin 

boundary layer with a size of 𝑂(𝛿𝑣). In Fig. 9 (a2-d2), a second case is shown where the reduced chamber 

height leads to an increased distance from the boundary to the maximum acoustic velocity, and hence thicker 

inner streaming vortex. Some model parameters and results shown in Fig. 9 are summarised in Table 2. 

Table 2 Model parameters and results shown in Fig. 9, where 𝛿𝑣 is the acoustic boundary layer thickness, 𝑓𝑟 is 

the resonant frequency and 𝑦′ is the vertical distance to the top boundary. 

ℎ 𝑦′ for |𝑢1|𝑚𝑎𝑥 𝑦′ for (𝐹𝑥)𝑚𝑎𝑥 𝑆𝑖𝑛 

40𝛿𝑣 1.94𝛿𝑣 1.94𝛿𝑣 1.94𝛿𝑣 

15𝛿𝑣 2.31𝛿𝑣 2.08𝛿𝑣 2.31𝛿𝑣 

4. Conclusion 

Two numerical methods for the modelling of boundary-driven streaming fields in acoustofluidic manipulation 

devices have been compared in this paper, to provide guidance on choosing appropriate methods to predict 

acoustic streaming patterns in experimental devices and to assist in selecting device designs to optimise their 

performances. 

It was shown that the RSM can accurately model the inner and outer streaming patterns and the magnitudes of 

streaming velocities in good accord with analytical solutions. The generation mechanism of classical boundary-

driven streaming in 2D rectangular chambers was elucidated by examining its driving forces, the RSF. It is the 

different rotationality of the RSF inside and immediately outside the boundary layer that forms the inner and 

outer streaming vortices and forces the former in the thin acoustic boundary layer with a size of approximately 

𝛿𝑣 in devices where ℎ ≫ 𝛿𝑣. This understanding of the mechanism could also be extended to better understand 

(and hence design) boundary-driven streaming flows in diverse types of acoustofluidic channels, including those 

with non-flat fluid channel surfaces (Lei, Hill et al. 2014, Nama, Huang et al. 2014, Ovchinnikov, Zhou et al. 

2014). However, although the RSM has shown high precision for modelling both acoustic streaming patterns 

and magnitudes of streaming velocities, the tiny mesh element required to resolve the acoustic and streaming 

fields in the near-boundary region suggests it may be a very computationally demanding method and thus not 

suitable for 3D modelling of most practical acoustofluidic manipulating devices. 
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The other method, the LVM, is more computationally efficient. The error it introduces to the magnitudes of 

streaming velocities rises with the fall of the channel dimensions such that it is not recommended for predicting 

the outer acoustic streaming velocities in devices where ℎ < 100𝛿𝑣. However, The LVM can be effectively 

applied to solve both 2D and 3D boundary-driven streaming fields in most practical experimental acoustofluidic 

manipulation devices where the channel dimensions are generally several orders of magnitude larger than the 

acoustic boundary layer thickness. For the LVM to be applicable, the surfaces of the fluid chambers must also 

satisfy the condition that the radius of curvature of the channel surfaces should be much greater than the 

thickness of the acoustic boundary layer. 

It is noteworthy that these methods can also be applied to predict boundary-driven streaming fields in SAW 

devices and to analyse its contribution to the overall acoustic streaming fields in such devices. However in such 

cases (and other situations where boundary motion is significant), care must be taken to accurately model the 

moving surface boundary condition, which is non-trivial in an Eulerian formulation (Koster 2007, Vanneste and 

Buhler 2011, Nama, Huang et al. 2016). In such devices where the length-scales of fluid channel cross-sections 

are typically orders of magnitude larger than the acoustic wavelength, Eckart type streaming is likely to 

dominate the overall streaming fields(Ding, Li et al. 2013, Yeo and Friend 2014). However, in other cases 

where the length-scales of the fluid channel cross-sections are of the same order of acoustic wavelength 

(e.g.(Guo, Kang et al. 2015, Nama, Barnkob et al. 2015)), boundary-driven streaming generated from the energy 

attenuation in the acoustic boundary layer region due to non-slip boundaries may be comparable or have a larger 

contribution to the overall streaming field. 
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