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Abstract—Cyber-physical systems represent an engineering
challenge due to their safety and security concerns, particularly
those systems involved in critical infrastructure which require
some of the highest standards of safety, availability, integrity
and security. The complexity of these systems makes the
identification and analysis of safety and security requirements
challenging. In this paper, we present a methodology for identi-
fying and formally analysing safety and security requirements,
based on the STPA methodology and combined with modelling,
traceability and formal verification through use of the Event-
B formal method. Our STPA approach is then leveraged to
generate ‘critical requirements’ to mitigate against undesirable
system states, which are then subsequently translated into
constraints on an Event-B representation of the system. The
Rodin toolset then allows us to demonstrate that these critical
requirements fully mitigate against the undesirable system
states and therefore provide automated verification of the
critical requirements.

Index Terms—System analysis and design, systems modeling,
cyber-physical systems, formal verification

1. Introduction

Cyber-physical systems - those systems with a real-
world physical component and “whose operations are moni-
tored, coordinated, controlled and integrated by a computing
and communication core” [I] - are increasingly finding
a place in infrastructure across the world, as well as in
domains such as vehicle design and healthcare. While these
cyber-physical systems present opportunities to monitor and
manipulate the physical world through computation [2],
there exists within this growing field a distinct need to
ensure safety and security of such systems which are a
synergy of software and hardware wherein any failure modes
within the system may have profound effects on anything
from the success of a continued medical treatment to the
survival of a plane full of passengers. It is therefore clear
that this new category of computing systems require an
extensive regime of design and formal assurance support to
ensure that these opportunities are fully embraced while still
maintaining the safety and security of this class of systems.

This represents a challenge - particularly on the side
of the security of these systems - where historically cyber-
security researchers are said to have not considered how
attacks affect the estimation and control algorithms and
ultimately, how attacks affect the physical world [3[. It
is therefore clear that there is a requirement for a robust
methodology to ensure that the inseparable need for both
safety and security within cyber-physical systems is ad-
dressed.

One possibility for addressing the need to ensure both
security and safety of a system is through the use of formal
method techniques. Cai et al. concisely describe the potential
benefits of formal methods as follows:

Formal methods is an effective way to improve
the quality of large-scale software and reduce the
cost of software development...formal methods
also enable accountable validation and verification
of the resulting system, which reduces or even
eliminates possible defects in the software and
thus better maintains safety of the system [4]].

This view is reinforced in the recently-published guide-
lines for systems security engineering [5]], which states that
“Security, like safety and other system quality properties,
is an emergent property of a system.” Since this emergent
behaviour “cannot be predicted through analysis at any
level simpler than the system as a whole” [[6], the sheer
complexity of this analysis means that traditional testing
methods alone are insufficient for full and proper verification
- formal methods are needed. In this paper, we propose a
methodology combining a technique for analysing systems
for hazardous states and producing system level constraints,
which we will then translate into a formal method model.

2. State of the art

2.1. Historical accident models

Traditional models for understanding the origin of ac-
cidents within systems originate with Heinrich and his
Domino Model [[7]. This focus on direct causation (as rep-
resented by the linear nature of the metaphorical dominoes
falling one by one) simplified the notion of an accident to



a simple series of failures wherein the prevention of one
failure could prevent the accident in its entirety.

Heinrich’s model inspired many refinements and evo-
Iutions of his original contribution - Bird and Loftus [§]],
as well as Adams [9] both presented modernisations of the
Domino Model in order to maintain its relevance during
the latter half of the 20th century through attempting to
rebalance the contribution of organisational and regulatory
failings to the linear chain. It also encouraged the develop-
ment of the ‘Swiss Cheese’ model presented by Reason [[10]
which took an alternative approach of viewing an accident
as a result of the chance alignment of multiple failures
in a “perfect storm” but still viewed the occurrence of an
accident as a linear process once more - this time, as slices
of swiss cheese.

Criticisms have been levelled at these accident models
for simplifying the nature of accidents too much and failing
to take into account the sheer number of contributing factors
in most accidents [7], [[11]].

2.2. STPA and derivative methodologies

2.2.1. STAMP and STPA. Systems-Theoretic Process
Analysis and its associated accident model - Systems-
Theoretic Accident Model and Processes - depart signifi-
cantly from the historical model of Heinrich and his contem-
poraries. In this accident model, accidents are not the result
of a linear chain of events but instead are viewed as resulting
from inadequate enforcement of constraints on system be-
haviour [12]]. Safety is therefore an emergent property which
is a result of adequate control of the system through suf-
ficiently complete constraints on system behaviour. Failure
to adequately constrain the system can result in the system
entering an unsafe state and thus a certainty of causing an
accident when worst-case environmental conditions occur.

The STAMP model also views that systems can be
adequately explained through interrelated components that
are kept in equilibrium through feedback loops and control
actions. Controllers are viewed as having a ‘process model’
which represents their understanding of the current state of
the process they are controlling and they update this with
information coming from a ‘feedback’ or sensor channel
(which may correlate to multiple actual sensors in the sys-
tem). They then ‘act’ on the process in response through
some form of actuator. Any given system therefore consists
of a multitude of these controllers - acting on each other
and their individual processes to carry out the functions of
the system. Safety therefore is ensuring that these individual
controllers maintain their process within a set of constraints,
as well as ensuring that these constraints cover all potential
states of the underlying process. There is an additional
requirement that the process model for each controller is
also detailed enough and that the sensor channels can read
- to a sufficient granularity - the current process state and
relay this information.

A “safe” system contains some number of controllers
which all have a thorough understanding of the underlying
process that they are controlling, and which can also react

to maintain the state of their processes within some set
of constraints. Safety is therefore a result of emergent be-
haviour and accidents often are a result of more than a single
action but multiple failings across a series of control loops
at a variety of levels - this is the fundamental difference
between a systems-theory-based approach as compared to
the existing linear/casual chain-of-events models embodied
by the Domino Model and its derivatives [11], [[13].

2.2.2. Methodologies derived from the STAMP/STPA
approach. One of the first substantial pieces of work to
build on STPA was the STPA-Sec methodology proposed by
Young [14]. This extension of the existing STPA methodol-
ogy focuses tightly on the notion of “mission assurance” and
the security elements of a system under analysis. Through
manipulating the terminology used in the analysis, it is
possible to utilise STPA-based analysis to derive security
vulnerabilities which may lead to loss states. The result of
the analysis is a set of constraints which can then be used to
iterate the system concept and design towards a more secure
design.

Further methodologies - such as STPA-Priv - gener-
alise the STPA approach once again, but this time towards
privacy-based concerns. This is primarily realised through
modification of the terminology once more to allow the
privacy issues to be highlighted through the analysis -
the notion of a ‘loss’ is instead substituted for ‘adverse
consequences’ as this terminology is better understood in
the field of privacy engineering [15].

STPA-SafeSec is an additional methodology developed
to address perceived shortcomings in the STPA-Sec method-
ology, which was criticised for viewing security as an issue
only in relation to safety. STPA-SafeSec seeks to improve
the capabilities of STPA-Sec by aligning terminology and
viewing security and safety as equal concerns when per-
forming the analysis [16].

It is therefore clear that the STPA approach has demon-
strated itself to be quite malleable in the hands of researchers
and has permitted refinement and development in a variety
of ways as demonstrated by the methodologies detailed in
this section.

2.3. Formal methods and system design

There has been substantial use of formal methods within
the context of system design within the literature. Formal
methods are defined within the literature broadly as “‘mathe-
matical techniques, often supported by tools, for developing
software and hardware systems” [[17]. Formal methods have
been used in many contexts and have even been used by the
likes of Amazon as part of their Web Services product to
aid in its design and verification [18].

Of the many formal methods available in the literature,
we focus on the Event-B formal method which takes a set-
theoretic approach to modelling of systems [[19] and has
been utilised in modelling a number of case studies [20],
[21]).



Event-B has also been paired with the STPA methodol-
ogy previously in a paper by Butler & Colley [22] wherein
the artefacts generated from the STPA analysis were utilised
in an Event-B model in order to leverage the automated
proving and model checking capabilities available with this
formal method and its associated tools. This analysis used
the standard STPA technique and was therefore focused on
identifying and demonstrating successful mitigation against
unsafe system states within the resultant model.

3. Proposed methodology and process

We propose a methodology building on the
STAMP/STPA model. The proposed methodology takes
a lot of cues from the STPA-Sec and STPA-SafeSec
methodologies, but aims to couple this with a more focused
modelling approach.

The approach can be broadly summarised in a series
of discrete steps, which will be expanded on at a later
point in this paper. Before this is discussed, we devote a
short amount of time to the specific nomenclature involved
in the methodology, as well as the role of the Event-B
formal method within the methodology, before describing
the process of the methodology more thoroughly.

3.1. Nomenclature

Please see for clarification on terms.

3.2. Role of the formal method

The usage of the Event-B formal method - and the
associated Rodin toolset - aid the methodology by providing
a more robust assurance that identified critical requirements
actually mitigate against hazardous system behaviours.

This is due to the following:

1) The use of the Rodin tool for the Event-B for-
mal method provides the ability to use interactive
proving (and a variety of formal proof plugins)
to demonstrate formally that the properties of the
model hold or are unprovable in their current state.
This can aid in improving the model (and thus the
underlying system design) and also aid in improv-
ing the critical requirements themselves.

2) The use of model checking within Rodin to ensure
there are no deadlock states which may be a risk
when constraining system behaviour. Model check-
ing can also provide counter-examples where there
is a possible series of events which may under-
mine any given system constraints which can allow
the analyst to consider development/refinements of
each critical requirement to ensure that critical re-
quirements cannot be undermined by a specific path
of system behaviour.

3) Event-B supports the notion of refinement of a
model as well as two types of decomposing models
into sub-models which can then be composed to

TABLE 1. TERMINOLOGY USED WITHIN THE METHODOLOGY

Term

Meaning

Hazard

Hazards are unsafe or insecure system states which,
when coupled with worst case environmental
conditions, will result in a loss. The STPA family
of methodologies makes the assumption that
environmental conditions (being out of control of
the system) will certainly align to represent the
worst case and therefore focuses on preventing the
system from entering into these hazardous system
states. We utilise the term ‘hazard’ for both
identified safety and security problem states in
contrast with some existing work in the literature
which uses ’vulnerability’ for security states [[14] -
we use the same term in the interests of brevity.

A loss represents a failure of the system in fulfilling
its declared purpose. All loses are deemed to be of
equal importance and are derived from the system
purpose. A loss may represent a security breach or
an accident - the term “loss” is utilised due to its
applicability in both security and safety domains.

System
purpose

A sentence (or set of sentences) describing the
overarching goals and responsibility of the system
under analysis.

Critical
Requirements

Constraints generated as a result of the modified
STPA methodology proposed by this paper. These
constraints take the form of natural language
sentences, which may then be translated into
model-based constraints and are used to identify
boundaries on system behaviour such that
hazardous states are not entered into.

Machine

A machine in Event-B represents part of a model
and contains variables, invariants, theorems and
events. A machine may refine another machine and
’sees’ a context.

Context

A context in Event-B contains carrier sets,
constants, axioms and theorems. A context can
extend another.

Event

An event in Event-B represents a transition. Events
contain guards (which constrain when they can
occur), parameters, witnesses (if extending an
abstract event) and actions. The transition
represented by an Event must maintain all the
invariants in the model to which they belong.
Events can refine abstract events if the Machine
they reside in is the refinement of another Machine.

Guard

A guard represents a condition under which the
Event may occur. If all the guards of an event are
true then the Event is permitted to occur.

Constants

Constants represent either sets or numeric
constants. They then have their behaviours
represented by axioms or theorems within the sets.

Sets

Sets represent the mathematical notion of sets and
may have axioms and theorems apply to them.

Axioms

Axioms are behaviours or characteristics that sets
or constants definitely have and are taken as
correct.

Invariant

Invariants represent assertions about the properties
of the model that must remain true.

Variants

Variants are utilised in models where events may
have convergent or divergent behaviours.




verify overall system behaviour. This can be of sig-
nificant aid when carrying out the modified STPA
analysis described by this paper in an iterative
fashion over multiple system designs and then down
into component-level analysis.

3.3. Broad steps of the methodology

We will present each step of the methodology in its own
paragraph to present the concrete actions required at each
step. There may also be some small examples of artefacts
from some of the steps in order to highlight the ideal outputs
from those steps.

3.3.1. Step 1 - Establishing the system engineering basis.
We begin by taking the system under analysis and defining
its boundaries as well as the underlying purpose of the sys-
tem. The underlying purpose and system boundaries should
be explained in plain English, in the form of a statement.
An example of such a statement would be:

The purpose of this system is to maintain the

temperature of a hydroponics facility such that

the seedlings and plants do not expire due to

overheating or freezing and equally that the work

environment remains tolerable for those person-

nel working within the hydroponics areas of the

facility.
The purpose statement is then used to identify potential
losses - outcomes or system states where the system may
fail to fulfil its purpose in any way. Following on from the
example above, one potential loss state might be ‘Plant and
seedling matter expires due to poor temperature control’, an-
other may be ‘Harm to personnel due to excessive tempera-
ture within facility’. These loss states then allow us to define
top-level system hazards. These hazards should attempt to
encapsulate all ways in which the system may reach the loss
state in combination with worst-case environmental condi-
tions. One example of a worst-case environmental condition
is a heatwave, which in our example could be combined with
inadequate ventilation or cooling. This would result in the
following hazard state: ‘Temperature within seedling growth
zone exceeds upper bound’. Later steps should then identify
much more specific hazards at the component level which
are connected with the system-level hazards.

3.3.2. Step 2 - Build the control structure. The next step
is to build a functional control structure diagram for the
system under analysis. The route to building this depends
on whether this analysis is being performed on a system that
already exists or one that is still in the early design stage:

1) For systems already in existence: This is per-
formed by identifying the main components of the
system and determining which components inter-
act, which components control which other com-
ponents, what underlying processes are being man-
aged/controlled, etc. This process may be aided
by review of the existing documentation for the

system. A brief overview of how this process is
performed can be found in the STPA Primer [13].

2) For systems that have not already been imple-
mented: If the system has open questions with
regards to the architecture (i.e. a system that exists
only in terms of functional/non-functional require-
ments), a proposed system design can be analysed
to help aid in the process of finalising the system
design. Systems with existing designs can equally
be analysed as each pass of analysis should suggest
refinements or changes to the design which can be
integrated to increase the security/safety properties
of the resulting system. In either case, elements of
the control structure may not be explicit and may
need to be inferred in order to entirely represent
the system under analysis.

In either case, this functional control structure diagram
should capture the processes and interactions between con-
trollers and processes, as well as controllers and other
controllers. Examples of functional control structures can
be found in much of Leveson’s work [L1]].

3.3.3. Step 3 - Generate control actions. The third step
of the analysis is to generate a list of control actions - these
should be derived from the control structure for the system
from Step 2 wherever commands are exchanged between
any elements. It may be appropriate to also identify the
data types that are involved in each control action - with
existing systems this should be clear while systems that are
yet to be integrated can utilise requirements to derive this
information.

3.3.4. Step 4 - Build the formal model. This step involves
representing the control structure and control actions using
the Event-B formal method. As there is ordinarily a fairly
clear mapping from control actions to the notion of Events
in Event-B, it is suggested that most control actions should
be representable as events. The underlying state information
maintained by the system will either be representable as
variables within the Event-B Machine of the model of the
system, or as constants in the Context of the system. Existing
data typing should be expressed through axioms in the
Context for constants, or through invariants on variables
in the Machine. Guards within Events can then be utilised
to ensure control actions occur in the right element of the
system flow and that variables are of the correct type and
status for the control action to occur.

3.3.5. Step 5 - Scenario analysis and critical require-
ment generation. The control actions are then subjected to
analysis through considering if any insecure/unsafe system
states (or negative consequences or hazardous behaviours)
can occur if:

e The control action is issued.

e The control action isn’t issued.

e The control action is issued too soon or too late
within the ordinary sequence of system events.



e The control action is issued for too long/too short
of a period of time.

If there is the potential for a control action to cause
an unsafe/insecure system state as a result of one of these
conditions, the hazardous behavour is noted down (a tabular
form is often used for this in standard STPA - with the four
conditions as columns, and each control action as a row).
The hazardous behaviours of each control action can then
be used to generate ‘critical requirements’ which represent
constraints or limits in natural language on when/how con-
trol actions may be issued.

An illustrative example of a control action undergoing
analysis following our previous example is the ‘Turn on
seedling heater’ control action which - when issued too soon
or for too long - may result in a state in which seedling
temperature is too high. The resultant ‘critical requirement’
in this circumstance would be “Seedling zone heater may
not be activated when temperature enters critical range”.

3.3.6. Step 6 - Critical requirement integration. The
existing set of critical requirements can then be translated
into constraints and integrated into the formal model of the
system.

This usually takes at least one of the following forms
and may involve a combination:

o Refinement and data-refinement, through which the
existing variables and events in the model are respec-
tively refined through the creation of a descendant
of the existing model.

o Addition of invariants to the Machine element of the
model in order to constrain variables.

o Addition of guards to Events to narrow the circum-
stances in which they may occur.

e Addition of axioms to the Context element of the
model to add properties to the constants and sets
represented therein.

e« Addition of new events, variables and other ele-
ments to the model and restricting existing variables,
events, etc.

This should be undertaken in a refinement of the model
for each critical requirement, where a refinement is possible.
Each modification to the model should be recorded under
which critical requirement it has mitigated against for trace-
ability and assurance purposes.

Each refinement of the model can then be subjected to
model checking as well as interactive proving to ensure
that the model of the system does not deadlock, that the
invariants and theorems introduced to the model cannot be
contradicted through some series of events, and that the
system’s formal properties can still be verified.

The critical requirement example around the seedling
zone heater can therefore be translated into a Guard on all
Events which involve engaging the seedling zone heater to
ensure that temperature is not within a pre-set temperature
range. It could be further strengthened by placing an Invari-
ant into the model which states that the temperature cannot

be within the pre-set temperature and the heater engaged at
the same time. This would cause the model to halt in the
event that not all events correctly integrate the appropriate
guards and cause this invariant to be false.

3.3.7. Step 7 - Causal factors analysis. At this stage, it
is important (particularly when attempting to identify and
mitigate against insecure system behaviours) to not only
question when hazardous behaviours may emerge but also
how they might emerge. This is primarily done by analysing
the information channels across the entirety of the system
to identify how information may be modified, replayed or
intentionally jammed using the functional control diagram.
By carrying out this analysis, it may be clear that in some
cases that a failure in communication or an adversarial
third party between elements in the control layer diagram
may lead to unsafe/insecure system states. These hazardous
behaviours or circumstances can then have critical require-
ments generated for them and these can equally be integrated
into the model and verified for correctness.

Continuing our example, the heater may be erroneously
engaged manually within the temperature cut-off range due
to inaccurate reporting of temperature to the operator. This
is a casual factor which may be due to component failure or
malicious actors involved in the system control loop. This is
not something likely to be highlighted by the initial pass of
analysis, but is as important to mitigate against, especially
from a security perspective.

3.3.8. Step 8 - Iteration and scoping. One key element
of the STPA family of methodologies is their focus on
not simply carrying out analysis as a one-off effort but
as a continuous process to iterate the design to a state
where as much of the hazardous behaviour is mitigated
against as possible within the system design. It may be
that the identification of the hazardous behaviours and the
resultant critical requirements indicate that the underlying
system architecture requires a significant review. In this
circumstance, it would be appropriate to begin this process
from the beginning as any design changes will likely modify
the functional control structure or the control actions within
the system under analysis, which will necessitate beginning
again. This analysis can additionally be restarted from the
beginning but be scoped in down to specific subsystems
or portions of the functional control diagram to generate
component-level hazards.

3.4. Comparisons to existing methodologies

We believe our modified STPA methodology to provide
added value over the existing STPA-derived methodologies
due to the inclusion of the Event-B formal method. The
majority of STPA-derived methodologies in the literature
view their generated constraints as the primary artefact and
output of the process. These constraints are not inherently
useful when considered in isolation as they will still need to
be integrated into subsequent steps of the system engineer-
ing process. Furthermore, there is no verification that the



generated constraints fully mitigate against the hazardous
behaviour that they are created to prevent.

The addition of the Event-B formal method addresses
both of these issues to a significant degree. The formal
verification of the critical requirements ensures (as discussed
in the previous subsection) that the critical requirements
cannot be bypassed by a series of events occurring, and
also ensures that there is a formal proof associated with
each invariant, guard and theorem added to the model. In
terms of ensuring that the model remains relevant and useful
throughout the remaining steps of the system engineering
process, the model of the system can be utilised until the
implementation stage of the system life-cycle due to the
previously stated support for refinement and decomposition
within the Event-B formal method. Furthermore, some work
has been undertaken in producing test cases from a model
represented in Event-B which may then be utilised to test
controllers within the system [23].

4. Conclusion

In this paper, we presented a methodology to leverage
an existing system analysis technique from which we derive
system-level constraints in the form of ‘critical require-
ments’ when determining unacceptable system states and
behaviours. We then translate these critical requirements
into constraints on a formal model (represented in Event-B)
which allows us to demonstrate that the constraints mitigate
sufficiently against the identified hazardous behaviours and
allow us access to tool support in the format of automated
verification and model checking capabilities.

4.1. Future work

Future work will involve the creation and refinement
of the associated tools which are used during the analysis
portion of our methodology so as to reduce the workload
of the analyst and provide the potential for information
presentation beyond simple tables. An additional goal of
future work will be to develop a corpus of commonly
identified critical requirements and sample representations
of these critical requirements within the model as to aid
analysts in representing these critical requirements they may
encounter.
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