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Abstract
We show that a finitely generated abelian group G of torsion-

free rank n > 1 admits a n+ r dimensional model for EFrG,
where Fr is the family of subgroups of torsion-free rank less
than or equal to r > 0.

1. Introduction
In this note we consider classifying spaces EFG for a family of subgroups F of G. We
are particularly interested in the minimal dimension, denoted gdF G, such a space
can have.
Let G be a group. We say a collection of subgroups F is a family if it is closed under
conjugation and taking subgroups. A G-CW-complex X is said to be a classifying
space EFG for the family F if, for each subgroup H 6 G, XH ' {∗} if H ∈ F, and
XH = ∅ otherwise.
The spaces EG = EFG for F = Fin the family of finite subgroups and EG = EFG for
F = Vcyc the family of virtually cyclic subgroups have been widely studied for their
connection with the Baum-Connes and Farrell-Jones conjectures respectively. For a
first introduction into the subject see, for example, the survey [3].
We consider finitely generated abelian groups G of finite torsion-free rank r0(G) = n
and families Fr of subgroups of torsion-free rank less than or equal to r < n. Note
that for r = 0, F0 = Fin and that it is a well known fact, see for example [3], that
Rn is a model for EG and that gdF0

G = n. For r = 1, F1 = Vcyc and it was shown
in [5, Proposition 5.13(iii)] that gdF1

G = n+ 1.
The main idea is to use the method developed by Lück and Weiermann [5] to build
models of EFr

G from models for EFr−1
G. We begin by recalling those results in [5]

that we need for our construction. Let F and G families of subgroups of a given group
G such that F ⊆ G.

Definition 1.1. [5, (2.1)] Let F and G be families of subgroups of a given group G
such that F ⊆ G. Let ∼ be an equivalence relation on G\F satisfying:
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• For H,K ∈ G\F with H 6 K we have H ∼ K.

• Let H,K ∈ G\F and g ∈ G, then H ∼ K ⇐⇒ gHg−1 ∼ gKg−1.

Such a relation is called a strong equivalence relation. Denote by [G\F] the equivalence
classes of ∼ and define for all [H] ∈ [G\F] the following subgroup of G:

NG[H] = {g ∈ G | [gHg−1] = [H]}.

Now define a family of subgroups of NG[H] by

G[H] = {K 6 NG[H] |K ∈ G\F , [K] = [H]} ∪ (F ∩NG[H]).

Here F ∩NG[H] is the family of subgroups of of NG[H] belonging to F.

Theorem 1.2. [5, Theorem 2.3] Let F ⊆ G and ∼ be as in Definition 1.1. Denote
by I a complete set of representatives of the conjugacy classes in [G\F]. Then the
G-CW-complex given by the cellular G push-out

t[H]∈IG×NG[H] EF∩NG[H](NG[H])
i
//

t[H]∈I idG×NG[H]f[H]

��

EF(G)

��

t[H]∈IG×NG[H] EG[H](NG[H]) // X

where either i or the f[H] are inclusions, is a model for EG(G).

The condition on the two maps being inclusions is not that strong a restriction, as
one can replace the spaces by the mapping cylinders, see [5, Remark 2.5]. Hence one
has:

Corollary 1.3. [5, Remark 2.5] Suppose there exists an n-dimensional model for
EFG and, for each H ∈ I, a (n− 1)-dimensional model for EF∩NG[H](NG[H]) and a
n-dimensional model for EG[H](NG[H]). Then there is an n-dimensional model for
EGG.

Corollary 1.3 gives us a tool to find an upper bound for gdG G. A very useful tool
to find a lower bound for gdG G is the following Mayer-Vietoris sequence [4], which
is an immediate consequence of Theorem 1.2, see also [1, Proposition 7.1] for the
Bredon-cohomology version.

Corollary 1.4. With the notation as in Theorem 1.2 we have following long exact
cohomology sequence:

...→ Hi(G\EGG)→ (
∏

[H]∈I

Hi(NG[H]\EG[H]NG[H]))⊕Hi(G\EFG)→

∏
[H]∈I

Hi(NG[H]\EF∩NG[H]NG[H])→ Hi+1(G\EGG)→ ...

This note will be devoted to proving the following Theorem:

Main Theorem. Let G be a finitely generated abelian group of finite torsion-free
rank n > 1, and denote by Fr the family of subgroups of torsion-free rank less than
or equal to r > 0. Then

gdFr
G 6 n+ r.
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The case for more general classes of groups G is going to be dealt with, using different
methods, by the second author in his Ph.D thesis.

2. The Construction
Throughout, let G denote a finitely generated abelian group of torsion-free rank
r0(G) = n.
The idea is to construct models for EFrG in terms of models for EFr−1G using the
push-out of Theorem 1.2 inductively. As a first step we shall define an equivalence
relation in the sense of Definition 1.1.

Lemma 2.1. Let ∼ denote the following relation on Fr\Fr−1 :

H ∼ K ⇐⇒ rk(H ∩K) = r.

Then ∼ is a strong equivalence relation.

Proof. We show that ∼ is transitive: If H ∼ K and K ∼ L, this implies that both
H ∩K and K ∩ L are finite index subgroups of K. Hence also H ∩K ∩ L is a finite
index subgroup of K, and in particular of K ∩ L and thus of L. Hence H ∩ L is finite
index in both H and L. The rest is easily checked.

Definition 2.2. We say a subgroup M of G is maximal if it is not properly contained
in a subgroup of G of the same torsion-free rank as M .

Lemma 2.3. G satisfies (MFr−1⊆Fr
), i.e. every subgroup H ∈ Fr\Fr−1 is contained

in a unique Hmax ∈ Fr\Fr−1, which is maximal.

Proof. The existence follows from [6]. As regards uniqueness, suppose H is included
in two different maximal elements K,L ∈ Fr\Fr−1: then H 6 KL. Note that, since
H ∼ L and H 6 L, it follows that |L : H| <∞. Hence

|KL : K| = |L : K ∩ L| 6 |L : H| <∞

implies KL ∈ Fr\Fr−1, contrary to the maximality of K and L.

Note that we always have maximal elements in Fr\Fr−1 as long as the ambient group
is polycyclic [6], but uniqueness already fails for the Klein-bottle group K, which is
non-abelian but contains a free abelian subgroup of rank 2 as an index 2 subgroup.
Denote

K = 〈a, b | aba−1 = b−1〉

and consider F1 the family of cyclic subgroups. Since a2 = (ab−1)2, in follows that
〈a2〉 6 〈ab−1〉 as well as 〈a2〉 6 〈a〉, both of which are maximal.
For M 6 G a subgroup of G we denote by All(M) the family of all subgroups of M .

Lemma 2.4. Let M be a maximal subgroup of G of torsion-free rank r. Then Rn−r

is a model for EAll(M)G, and gdAll(M) G = n− r.

Proof. SinceM is maximal it follows that G/M is torsion-free of rank n− r and hence
Rn−r is a model for E(G/M). The action of G given by the projection G� G/M
now yields the claim.
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Lemma 2.5. Let F and G be two families of subgroups of G. Then

gdF∪G G 6 max{gdF G, gdG G, gdF∩G G+ 1}.

Proof. By the universal property of classifying spaces for families, there are maps,
unique up to G-homotopy, EF∩GG→ EGG and EF∩GG→ EFG. Now the double
mapping cylinder yields a model for EF∪GG of the desired dimension.

Lemma 2.6. Given r < n, suppose there exists a d > n such that gdFr−1
G 6 d and

that for all maximal subgroups N with r0(N) > r − 1 we also have gdFr−1∩All(N) G 6
d. Then

gdFr
G 6 d+ 1 and gdFr∩All(M) G 6 d+ 1

for all maximal subgroups M of r0(M) > r.

Proof. We begin by applying Theorem 1.2 to the families G = Fr and F = Fr−1.
Lemma 2.3 implies that G satisfies (MFr−1⊆Fr ). Denote by N the set of equivalence
classes of maximal elements in Fr\Fr−1. Then [5, Corollary 2.8] gives a push-out:

tN∈NEFr−1
(G) //

��

EFr−1(G)

��

tN∈NEFr−1∪All(N)(G) // Y,

and Y is a model for EFr
G.

By assumption we have that gdFr−1
G 6 d and gdFr−1∩All(N) G 6 d for all N ∈ N .

Furthermore, by Lemma 2.4 we have that gdAll(N) G = n− r0(N) < n. Lemma 2.5
now implies that gdFr−1∪All(N) G 6 d+ 1. Applying Corollary 1.3 to the above push-
out yields

gdFr
G 6 d+ 1.

The second claim is proved similarly applying Theorem 1.2 to the families G =
Fr ∩ All(M) and F = Fr−1 ∩ All(M). The argument of Lemma 2.3 applies here as
well and hence G satisfies (M(Fr−1∩All(M))⊆(Fr∩All(M))). We denote by N (M) the set
of equivalence classes of maximal elements in Fr ∩ All(M)\Fr−1 ∩ All(M). this now
gives us a push-out:

tN∈N (M)EFr−1∩All(M)(G) //

��

EFr−1∩All(M)(G)

��

tN∈N (M)E(Fr−1∩All(M))∪All(N)(G) // Z,

and Z is a model for EFr∩All(M)G.
Since N 6M , it follows that (Fr−1 ∩ All(M)) ∩ All(N) = Fr−1 ∩ All(N) and hence,
by assumption gd(Fr−1∩All(M))∩All(N) G 6 d and Lemma 2.5 implies that
gd(Fr−1∩All(M))∪All(N) G 6 d+ 1. Now the same argument as above applies and

gdFr∩All(M) G 6 d+ 1.
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Proof of Main Theorem: We begin by noting that for r = 0 we have that Fr = F0

is the family of all finite subgroups of G. Then for all maximal subgroups M of rank
1, we have that F0 = F0 ∩ All(M). Furthermore, is is well known that gdF0

G = n,
see for example [3].
Now an induction using Lemma 2.6 yields the claim.

Question 2.7. Is the bound of our Main Theorem sharp, i.e. for n > r, is

gdFr
G = n+ r?

Since gdF0
G = gdF0∩All(N) G = n for all maximal subgroups N , we can assume equal-

ity in the inductive step (assumptions of Lemma 2.6). Then a successive application
of the Mayer-Vietoris sequences to the push-outs in Lemmas 2.6 and 2.5, reduces the
question to whether the map

Hd(G\EFr−1G)→ Hd(G\EFr−1∩All(N)G)

is surjective or not.

We know by [5] that gdF1
G = n+ 1 and it was shown in [2] that the question has a

positive answer for G = Z3, i.e. that gdF2
(Z3) = 5.
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