ON THE DIMENSION OF CLASSIFYING SPACES FOR FAMILIES OF ABELIAN SUBGROUPS

GED COROB COOK, VICTOR MORENO, BRITA NUCINKIS AND FEDERICO PASINI

(communicated by Graham Ellis)

Abstract

We show that a finitely generated abelian group G of torsionfree rank $n \ge 1$ admits a n + r dimensional model for $E_{\mathfrak{F}_r}G$, where \mathfrak{F}_r is the family of subgroups of torsion-free rank less than or equal to $r \ge 0$.

1. Introduction

In this note we consider classifying spaces $E_{\mathfrak{F}}G$ for a family of subgroups \mathfrak{F} of G. We are particularly interested in the minimal dimension, denoted $\operatorname{gd}_{\mathfrak{F}}G$, such a space can have.

Let G be a group. We say a collection of subgroups \mathfrak{F} is a family if it is closed under conjugation and taking subgroups. A G-CW-complex X is said to be a classifying space $E_{\mathfrak{F}}G$ for the family \mathfrak{F} if, for each subgroup $H \leq G$, $X^H \simeq \{*\}$ if $H \in \mathfrak{F}$, and $X^H = \emptyset$ otherwise.

The spaces $\underline{E}G = E_{\mathfrak{F}}G$ for $\mathfrak{F} = \mathfrak{F}in$ the family of finite subgroups and $\underline{E}G = E_{\mathfrak{F}}G$ for $\mathfrak{F} = \mathcal{V}cyc$ the family of virtually cyclic subgroups have been widely studied for their connection with the Baum-Connes and Farrell-Jones conjectures respectively. For a first introduction into the subject see, for example, the survey [3].

We consider finitely generated abelian groups G of finite torsion-free rank $r_0(G) = n$ and families \mathfrak{F}_r of subgroups of torsion-free rank less than or equal to r < n. Note that for r = 0, $\mathfrak{F}_0 = \mathfrak{F}in$ and that it is a well known fact, see for example [3], that \mathbb{R}^n is a model for $\underline{E}G$ and that $\mathrm{gd}_{\mathfrak{F}_0}G = n$. For r = 1, $\mathfrak{F}_1 = \mathcal{V}cyc$ and it was shown in [5, Proposition 5.13(iii)] that $\mathrm{gd}_{\mathfrak{F}_1}G = n + 1$.

The main idea is to use the method developed by Lück and Weiermann [5] to build models of $E_{\mathfrak{F}_r}G$ from models for $E_{\mathfrak{F}_{r-1}}G$. We begin by recalling those results in [5] that we need for our construction. Let \mathfrak{F} and \mathfrak{G} families of subgroups of a given group G such that $\mathfrak{F} \subseteq \mathfrak{G}$.

Definition 1.1. [5, (2.1)] Let \mathfrak{F} and \mathfrak{G} be families of subgroups of a given group G such that $\mathfrak{F} \subseteq \mathfrak{G}$. Let \sim be an equivalence relation on $\mathfrak{G} \setminus \mathfrak{F}$ satisfying:

The first author was partially supported by EPSRC grant EP/N007328/1 and the fourth author gratefully acknowledges the support by the Italian National Group for Algebraic and Geometric Structures and Their Applications (GNSAGA – INDAM)

Received Month Day, Year, revised Month Day, Year; published on Month Day, Year.

²⁰¹⁰ Mathematics Subject Classification: 55R35, 20J06, 18G99

Key words and phrases: classifying space for a family, abelian groups

Article available at http://dx.doi.org/10.4310/HHA.2014.v16.n2.a1

Copyright © 2014, International Press. Permission to copy for private use granted.

2 GED COROB COOK, VICTOR MORENO, BRITA NUCINKIS AND FEDERICO PASINI

- For $H, K \in \mathfrak{G} \setminus \mathfrak{F}$ with $H \leq K$ we have $H \sim K$.
- Let $H, K \in \mathfrak{G} \setminus \mathfrak{F}$ and $g \in G$, then $H \sim K \iff gHg^{-1} \sim gKg^{-1}$.

Such a relation is called a strong equivalence relation. Denote by $[\mathfrak{G} \setminus \mathfrak{F}]$ the equivalence classes of \sim and define for all $[H] \in [\mathfrak{G} \setminus \mathfrak{F}]$ the following subgroup of G:

$$N_G[H] = \{g \in G \mid [gHg^{-1}] = [H]\}.$$

Now define a family of subgroups of $N_G[H]$ by

$$\mathfrak{G}[H] = \{ K \leqslant N_G[H] \, | \, K \in \mathfrak{G} \setminus \mathfrak{F}, \, [K] = [H] \} \cup (\mathfrak{F} \cap N_G[H]).$$

Here $\mathfrak{F} \cap N_G[H]$ is the family of subgroups of $N_G[H]$ belonging to \mathfrak{F} .

Theorem 1.2. [5, Theorem 2.3] Let $\mathfrak{F} \subseteq \mathfrak{G}$ and \sim be as in Definition 1.1. Denote by I a complete set of representatives of the conjugacy classes in $[\mathfrak{G} \setminus \mathfrak{F}]$. Then the G-CW-complex given by the cellular G push-out

where either i or the $f_{[H]}$ are inclusions, is a model for $E_{\mathfrak{G}}(G)$.

The condition on the two maps being inclusions is not that strong a restriction, as one can replace the spaces by the mapping cylinders, see [5, Remark 2.5]. Hence one has:

Corollary 1.3. [5, Remark 2.5] Suppose there exists an n-dimensional model for $E_{\mathfrak{F}}G$ and, for each $H \in I$, a (n-1)-dimensional model for $E_{\mathfrak{F}\cap N_G[H]}(N_G[H])$ and a n-dimensional model for $E_{\mathfrak{G}[H]}(N_G[H])$. Then there is an n-dimensional model for $E_{\mathfrak{G}}G$.

Corollary 1.3 gives us a tool to find an upper bound for $\operatorname{gd}_{\mathfrak{G}} G$. A very useful tool to find a lower bound for $\operatorname{gd}_{\mathfrak{G}} G$ is the following Mayer-Vietoris sequence [4], which is an immediate consequence of Theorem 1.2, see also [1, Proposition 7.1] for the Bredon-cohomology version.

Corollary 1.4. With the notation as in Theorem 1.2 we have following long exact cohomology sequence:

$$\begin{split} & \dots \to H^{i}(G \backslash E_{\mathfrak{G}}G) \to (\prod_{[H] \in I} H^{i}(N_{G}[H] \backslash E_{\mathfrak{G}[H]}N_{G}[H])) \oplus H^{i}(G \backslash E_{\mathfrak{F}}G) \to \\ & \prod_{[H] \in I} H^{i}(N_{G}[H] \backslash E_{\mathfrak{F} \cap N_{G}[H]}N_{G}[H]) \to H^{i+1}(G \backslash E_{\mathfrak{G}}G) \to \dots \end{split}$$

This note will be devoted to proving the following Theorem:

Main Theorem. Let G be a finitely generated abelian group of finite torsion-free rank $n \ge 1$, and denote by \mathfrak{F}_r the family of subgroups of torsion-free rank less than or equal to $r \ge 0$. Then

$$\operatorname{gd}_{\mathfrak{F}_r} G \leqslant n+r.$$

ON THE DIMENSION OF CLASSIFYING SPACES FOR FAMILIES OF ABELIAN SUBGROUPS 3

The case for more general classes of groups G is going to be dealt with, using different methods, by the second author in his Ph.D thesis.

2. The Construction

Throughout, let G denote a finitely generated abelian group of torsion-free rank $r_0(G) = n$.

The idea is to construct models for $E_{\mathfrak{F}_r}G$ in terms of models for $E_{\mathfrak{F}_{r-1}}G$ using the push-out of Theorem 1.2 inductively. As a first step we shall define an equivalence relation in the sense of Definition 1.1.

Lemma 2.1. Let ~ denote the following relation on $\mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$:

$$H \sim K \iff rk(H \cap K) = r.$$

Then \sim is a strong equivalence relation.

Proof. We show that \sim is transitive: If $H \sim K$ and $K \sim L$, this implies that both $H \cap K$ and $K \cap L$ are finite index subgroups of K. Hence also $H \cap K \cap L$ is a finite index subgroup of K, and in particular of $K \cap L$ and thus of L. Hence $H \cap L$ is finite index in both H and L. The rest is easily checked.

Definition 2.2. We say a subgroup M of G is maximal if it is not properly contained in a subgroup of G of the same torsion-free rank as M.

Lemma 2.3. G satisfies $(M_{\mathfrak{F}_{r-1}\subseteq\mathfrak{F}_r})$, i.e. every subgroup $H \in \mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$ is contained in a unique $H_{max} \in \mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$, which is maximal.

Proof. The existence follows from [6]. As regards uniqueness, suppose H is included in two different maximal elements $K, L \in \mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$: then $H \leq KL$. Note that, since $H \sim L$ and $H \leq L$, it follows that $|L:H| < \infty$. Hence

$$|KL\colon K| = |L\colon K \cap L| \le |L\colon H| < \infty$$

 \square

implies $KL \in \mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$, contrary to the maximality of K and L.

Note that we always have maximal elements in $\mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$ as long as the ambient group is polycyclic [6], but uniqueness already fails for the Klein-bottle group K, which is non-abelian but contains a free abelian subgroup of rank 2 as an index 2 subgroup. Denote

$$K = \langle a, b \, | \, aba^{-1} = b^{-1} \rangle$$

and consider \mathfrak{F}_1 the family of cyclic subgroups. Since $a^2 = (ab^{-1})^2$, in follows that $\langle a^2 \rangle \leqslant \langle ab^{-1} \rangle$ as well as $\langle a^2 \rangle \leqslant \langle a \rangle$, both of which are maximal.

For $M \leq G$ a subgroup of G we denote by $\mathfrak{All}(M)$ the family of all subgroups of M.

Lemma 2.4. Let M be a maximal subgroup of G of torsion-free rank r. Then \mathbb{R}^{n-r} is a model for $E_{\mathfrak{All}(M)}G$, and $\operatorname{gd}_{\mathfrak{All}(M)}G = n - r$.

Proof. Since M is maximal it follows that G/M is torsion-free of rank n - r and hence \mathbb{R}^{n-r} is a model for E(G/M). The action of G given by the projection $G \twoheadrightarrow G/M$ now yields the claim.

Lemma 2.5. Let \mathfrak{F} and \mathfrak{G} be two families of subgroups of G. Then

$$\operatorname{gd}_{\mathfrak{F}\cup\mathfrak{G}} G \leqslant \max\{\operatorname{gd}_{\mathfrak{F}} G, \operatorname{gd}_{\mathfrak{G}} G, \operatorname{gd}_{\mathfrak{F}\cap\mathfrak{G}} G+1\}.$$

Proof. By the universal property of classifying spaces for families, there are maps, unique up to *G*-homotopy, $E_{\mathfrak{F}\cap\mathfrak{G}}G \to E_{\mathfrak{G}}G$ and $E_{\mathfrak{F}\cap\mathfrak{G}}G \to E_{\mathfrak{F}}G$. Now the double mapping cylinder yields a model for $E_{\mathfrak{F}\cup\mathfrak{G}}G$ of the desired dimension.

Lemma 2.6. Given r < n, suppose there exists a $d \ge n$ such that $\operatorname{gd}_{\mathfrak{F}_{r-1}} G \le d$ and that for all maximal subgroups N with $r_0(N) > r-1$ we also have $\operatorname{gd}_{\mathfrak{F}_{r-1}} \cap \mathfrak{All}(N) G \le d$. Then

$$\operatorname{gd}_{\mathfrak{F}_r} G \leq d+1$$
 and $\operatorname{gd}_{\mathfrak{F}_r \cap \mathfrak{U}ll(M)} G \leq d+1$

for all maximal subgroups M of $r_0(M) > r$.

Proof. We begin by applying Theorem 1.2 to the families $\mathfrak{G} = \mathfrak{F}_r$ and $\mathfrak{F} = \mathfrak{F}_{r-1}$. Lemma 2.3 implies that G satisfies $(M_{\mathfrak{F}_{r-1} \subseteq \mathfrak{F}_r})$. Denote by \mathcal{N} the set of equivalence classes of maximal elements in $\mathfrak{F}_r \setminus \mathfrak{F}_{r-1}$. Then [5, Corollary 2.8] gives a push-out:

and Y is a model for $E_{\mathfrak{F}_r}G$.

By assumption we have that $\operatorname{gd}_{\mathfrak{F}_{r-1}} G \leq d$ and $\operatorname{gd}_{\mathfrak{F}_{r-1} \cap \mathfrak{All}(N)} G \leq d$ for all $N \in \mathcal{N}$. Furthermore, by Lemma 2.4 we have that $\operatorname{gd}_{\mathfrak{All}(N)} G = n - r_0(N) < n$. Lemma 2.5 now implies that $\operatorname{gd}_{\mathfrak{F}_{r-1} \cup \mathfrak{All}(N)} G \leq d + 1$. Applying Corollary 1.3 to the above pushout yields

$$\operatorname{gd}_{\mathfrak{F}_r} G \leqslant d+1$$

The second claim is proved similarly applying Theorem 1.2 to the families $\mathfrak{G} = \mathfrak{F}_r \cap \mathfrak{All}(M)$ and $\mathfrak{F} = \mathfrak{F}_{r-1} \cap \mathfrak{All}(M)$. The argument of Lemma 2.3 applies here as well and hence G satisfies $(M_{(\mathfrak{F}_{r-1} \cap \mathfrak{All}(M)) \subseteq (\mathfrak{F}_r \cap \mathfrak{All}(M))})$. We denote by $\mathcal{N}(M)$ the set of equivalence classes of maximal elements in $\mathfrak{F}_r \cap \mathfrak{All}(M) \setminus \mathfrak{F}_{r-1} \cap \mathfrak{All}(M)$. this now gives us a push-out:

and Z is a model for $E_{\mathfrak{F}_r \cap \mathfrak{All}(M)}G$.

Since $N \leq M$, it follows that $(\mathfrak{F}_{r-1} \cap \mathfrak{All}(M)) \cap \mathfrak{All}(N) = \mathfrak{F}_{r-1} \cap \mathfrak{All}(N)$ and hence, by assumption $\mathrm{gd}_{(\mathfrak{F}_{r-1} \cap \mathfrak{All}(M)) \cap \mathfrak{All}(N)} G \leq d$ and Lemma 2.5 implies that $\mathrm{gd}_{(\mathfrak{F}_{r-1} \cap \mathfrak{All}(M)) \cup \mathfrak{All}(N)} G \leq d + 1$. Now the same argument as above applies and

$$\operatorname{gd}_{\mathfrak{F}_r \cap \mathfrak{All}(M)} G \leq d+1.$$

ON THE DIMENSION OF CLASSIFYING SPACES FOR FAMILIES OF ABELIAN SUBGROUPS 5

Proof of Main Theorem: We begin by noting that for r = 0 we have that $\mathfrak{F}_r = \mathfrak{F}_0$ is the family of all finite subgroups of G. Then for all maximal subgroups M of rank 1, we have that $\mathfrak{F}_0 = \mathfrak{F}_0 \cap \mathfrak{All}(M)$. Furthermore, is is well known that $\mathrm{gd}_{\mathfrak{F}_0} G = n$, see for example [3].

Now an induction using Lemma 2.6 yields the claim.

Question 2.7. Is the bound of our Main Theorem sharp, i.e. for n > r, is

$$\operatorname{gd}_{\mathfrak{F}_r} G = n + r?$$

Since $\operatorname{gd}_{\mathfrak{F}_0} G = \operatorname{gd}_{\mathfrak{F}_0 \cap \mathfrak{All}(N)} G = n$ for all maximal subgroups N, we can assume equality in the inductive step (assumptions of Lemma 2.6). Then a successive application of the Mayer-Vietoris sequences to the push-outs in Lemmas 2.6 and 2.5, reduces the question to whether the map

$$H^{d}(G \setminus E_{\mathfrak{F}_{r-1}}G) \to H^{d}(G \setminus E_{\mathfrak{F}_{r-1}} \cap \mathfrak{All}(N)G)$$

is surjective or not.

We know by [5] that $\operatorname{gd}_{\mathfrak{F}_1} G = n+1$ and it was shown in [2] that the question has a positive answer for $G = \mathbb{Z}^3$, i.e. that $\operatorname{gd}_{\mathfrak{F}_2}(\mathbb{Z}^3) = 5$.

References

- Dieter Degrijse and Nansen Petrosyan, Geometric dimension of groups for the family of virtually cyclic subgroups, J. Topol. 7 (2014), no. 3, 697–726, DOI 10.1112/jtopol/jtt045.
- [2] A. Lopes-Onorio, Ph.D thesis, University of Southampton (in preparation).
- W. Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, 2005, pp. 269–322. MR2195456 (2006m:55036)
- [4] _____, Algebraische Topologie. Homologie und Mannigfaltigkeiten, Aufbaukurs Mathematik, Vieweg Studium, Wiesbaden, 2005.
- [5] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic subgroups, Pure App. Math. Q. 8 (2012), no. 2, 479–555.
- [6] Daniel Segal, *Polycyclic groups*, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983.

Ged Corob Cook ged.corobcook@cantab.net

Mathematics, University of Southampton, Southampton, SO17 1BJ, UK

Victor Moreno victormglezmoreno@gmail.com

Department of Mathematics, Royal Holloway, University of London, Egham, TW20 0EX, UK

6 GED COROB COOK, VICTOR MORENO, BRITA NUCINKIS AND FEDERICO PASINI

Brita Nucinkis Brita.Nucinkis@rhul.ac.uk

Department of Mathematics, Royal Holloway, University of London, Egham, TW20 $0\mathrm{EX},\,\mathrm{UK}$

Federico Pasini f.pasini1@campus.unimib.it

Department of Mathematics and Applications University of Milano-Bicocca Via Cozzi, 5520125 Milano, ITALY