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Abstract:

Given a sound field control algorithm to control the pressure and particle velocity of the field at one
point located in the interior of an array of loudspeakers, it is shown that an exact solution cannot,
in general, be achieved if the secondary source strength is constrained to be nonnegative. This
result is put into relation with Makita’s velocity vector and Gerzon’s energy vector used to model
human sound localisation. It is shown that, in general, Makita’s vector can have the desired
direction and magnitude equal or larger than one only if the non-negativity constraint is removed,
and that Gerzon’s vector cannot have both the desired direction and unitary magnitude.
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Investigation into the role of the nonnegativity
constraint in sound field reproduction problems

1 Introduction
Many sound reproduction techniques aim at correctly synthesising the particle velocity and/or
the sound pressure of a target sound field at a single, central listening position. This includes
first-order Ambisonics [1], [2] but also panning approaches such as vector base amplitude
panning (VBAP) [3].

In a recent paper [4] we proposed the use of a convex optimization framework to describe and
compare various sound reproduction methods in a uniform way. In the present paper we focus
on a specific aspect of reproduction methods, that is gain nonnegativity. Gain nonnegativity
refers to a restriction of the loudspeaker driving gains in a multi-channel audio systems to
nonnegative values. It is conceptually equivalent to in-phase decoding in Ambisonics [5], [6].

We show which reproduction methods comply with this criterion or can be extended to meet this
condition, and the effects on the loudspeaker gain distribution. In particular, we demonstrate
that exact mode matching is not possible if the gains are restricted to be nonnegative. We
outline the relation between the norm of the gain vector and the magnitude of the velocity
vector and of the energy vector.

2 Sound Field Model
The sound field model used here is described in more detail in [4]. It follows the conventions
used in Ambisonics, e.g., [2], but also in 3D amplitude panning approaches as VBAP [3].
The sound fields generated by the i−th loudspeaker as well as that of a single virtual source
are modelled as plane waves, represented by Cartesian unit vectors li and p, respectively.
Consequently, a loudspeaker setup consisting of L loudspeakers is described by the matrix

L =
[
l1 l2 · · · lL

]
. (1)

Sound fields are reproduced by driving the loudspeakers with the signals of virtual sources,
where each loudspeaker signal is scaled by an individual gain gi. Here we consider approaches
to find gain vectors g =

[
g1 g2 · · · gL

]
such that the resulting sound field at the central lis-

tening position approximates the sound field of a single virtual source p.

Omitting physical proportionality constants, the sound pressure p̃sp and the particle velocity p̃
(times −1) of the reproduced sound field are given by

p̃sp =
L

∑
i=1

gi =
[
1 1 · · · 1

]
g (2a)

p̃ =
L

∑
i=1

gili = Lg . (2b)

By definition, the desired sound pressure of virtual sound source is 1.
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2.1 Velocity and Energy Vector Magnitude

The velocity vector, also termed the Makita vector, and the energy vector proposed by Gerzon
[1], [6], are two established objective measures to assess sound localisation. They are defined
as

rv = r̂vrv =
∑

L
i=1 ligi

∑
L
i=1 gi

(3a)

re = r̂ere =
∑

L
i=1 lig2

i

∑
L
i=1 g2

i
. (3b)

The Makita vector rv is suited to describe localisation at low frequencies (< 700Hz), while the
energy vector re is more appropriate for high frequencies (≥ 700Hz).

As represented in (3), these vectors can be separated into unit vectors r̂v and r̂e describing
the particle velocity and energy direction, respectively, and scalar velocity and energy vector
magnitudes rv and re to describe the length of the vectors. These magnitudes are a measure
of the perceived spread of a reproduced sound source. According to Gerzon [1], the velocity
vector magnitude can take arbitrary values, while the energy vector magnitude is less or equal
to 1. For a natural plane wave source, both rv and re are 1. Reproduction methods should
approximate these ideal values.

2.2 Convex Optimisation Representation

In [4] we proposed a convex optimisation framework to describe multiple sound reproduction
methods in a uniform way. Convex optimisation is a powerful way to model and efficiently solve
a wide range of optimisation problems [7]. A convex problem has the general form

argmin
x

f (x) (4a)

subject to gi(x)≤ 0 i = 1, . . . ,m (4b)
h j(x) = 0 j = 1, . . . ,n , (4c)

where (4a) is the convex objective function, and (4b) and (4c) are potentially empty sets of
convex inequality and linear equality constraints, respectively. Among the family of convex
functions, p-norms

‖x‖p =

(
L

∑
i=1
|xi|p

) 1
p

(5)

are of particular importance here, where ‖·‖2 represents the Euclidean or least-squares norm,
and ‖·‖1 is the `1 norm.

For the numerical examples in this paper, we use CVX, a modelling toolkit for convex programs
[8].
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3 The impact of nonnegativity constraints
3.1 First-Order Ambisonics mode matching

Simultaneously controlling sound pressure and particle velocity at the central listening position
can be expressed as a first-order mode matching problem [9]

Ψg =

[
1
p

]
with Ψ =

[
1 · · · 1

L

]
(6)

where Ψ is referred to as the mode matrix of the setup. However, this formulation does not
incorporate nonnegativity constraints for the gain vector g. As the mode-matching problem
is typically underdetermined for multi-loudspeaker setups, additional conditions may be intro-
duced. For mode matching with general, irregular loudspeaker arrays, a minimum `2 norm
solution based on the Moore-Penrose pseudoinverse, namely

g = Ψ
†
[

1
p

]
with Ψ

† = Ψ
H (

ΨΨ
H)−1

, (7)

is typically used. This provides a solution to (6) such that the `2 norm ‖g‖2 of the gain vector
is minimised. This is equivalent to a convex optimisation problem

argmin
g
‖g‖2 (8a)

subject to Ψg =

[
1
p

]
. (8b)

Separating the mode matrix into pressure and velocity components, this problem can be written
as

argmin
g
‖g‖2 (9a)

subject to
L

∑
i=1

gi = 1 (9b)

Lg = p . (9c)

The resulting gains for a 3D loudspeaker setup with 11 loudspeakers and two source locations
p1 = (15◦,15◦) and p2 = (40◦,15◦) are shown in Fig. 1. Obviously, the gain vectors do not comply
with a nonnegativity condition. It is observed that in both cases virtually all loudspeakers are
activated with significant gains and several negative values in each case.
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Figure 1: Loudspeaker gains for first-order Ambisonics mode matching. Outward arrows denote
positive, inward vectors denote negative gains.

3.2 Combining mode matching with gain nonnegativity

To combine the properties of the mode matching solution with gain nonnegativity, an additional
inequality constraint can be added to (9), resulting in

argmin
g
‖g‖2 (10a)

subject to
L

∑
i=1

gi = 1 (10b)

Lg = p (10c)
g≥ 0 . (10d)

This optimisation is, however, not solvable in the general case, because no gain vector exists
that simultaneously fulfils all constraints. In optimisation terminology, this is referred to as an
infeasible problem. Applied to sound reproduction, this implies that it is not possible to correctly
synthesise both sound pressure and particle velocity unless negative gains are allowed. The
only exception is if the virtual source location coincides with a loudspeaker.

This restriction is equivalent to the statement that the velocity vector magnitude rv is always
less than one for nonnegative gains if the reproduced velocity vector direction rv does not
match a loudspeaker location.
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This can be justified as follows. As the reproduced velocity vector p̃ defined in (2b) scales with
any proportionality factor applied to g, we can enforce that p̃ = r̂v without loss of generality,
considering that ‖r̂v‖ = 1 by definition. This implies

rv =
1

∑
L
i=1 gi

. (11)

The contribution of each loudspeaker, with its gain value, to the total velocity vector is deter-
mined by the scalar projection of the loudspeaker’s particle velocity gili onto r̂v, that is, the
scalar product 〈r̂v,gili〉. Thus the total velocity vector magnitude is

re =
L

∑
i=1

gi 〈r̂v, li〉 . (12)

As both r̂v and li are unit vectors, the scalar product equals the cosine of the angle between
the vectors, which is less than one unless they coincide. Consequently, any summation (12)
such that ∑gi = 1 and gi ≥ 0 is less than one unless r̂v = li for some loudspeaker i.

3.3 Maximising the velocity vector magnitude

As a simultaneous exact matching of sound pressure and particle velocity is not possible in
general, a sensible objective is to minimise the sound pressure required to match a desired
particle velocity. This can be stated as an optimisation problem as follows

argmin
g

L

∑
i=1

gi (13a)

subject to Lg = p (13b)
g≥ 0 . (13c)

The resulting gain distributions are displayed in Fig. 2. It is observed that the gains are indeed
nonnegative, and only a few gains (three for both examples) are active. That, is the solution is
sparse. Moreover, the active loudspeakers are close to the desired source location p.

The optimisation problem (13) is equivalent to maximising the velocity vector magnitude under
the constraint that the reproduced particle vector matches the desired vector p. This follows
directly from (3a), as the objective function (13b) forms the denominator of (3a). Furthermore,
as the `1 norm is identical to the sum of a nonnegative vector, (13) is equivalent to the `1
minimisation problem

argmin
g
‖g‖1 (14a)

subject to Lg = p (14b)
g≥ 0 . (14c)

In this way, the sparse gain vector for this design objective can be attributed to the sparsity-
promoting nature of the `1 norm, see e.g., [10].
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Figure 2: Loudspeaker gains for particle velocity magnitude maximisation with a nonnegativity
constraint.

Finally, it is observed that the solutions obtained by minimizing the `1 norm subject to a non-
negativity condition are identical to the VBAP solution in the majority of cases, including the
examples shown here. This equivalence is investigated in detail in a paper currently under
review [11].

3.4 `1 minimisation without nonnegativity

Considering the equivalence between particle vector magnitude optimisation and `1 minimisa-
tion, it is worthwhile to investigate the effect of the nonnegativity constraint in this optimisation
problem. Thus we drop this constraint, yielding the problem

argmin
g
‖g‖1 (15a)

subject to Lg = p . (15b)

The loudspeaker gains obtained by this design objective are shown in Fig. 3. While for the
solution is identical for position p1, the gain vector for p2 shows two negative gains on the
opposite side of the array. Thus, depending on the virtual source position, this approach acti-
vates loudspeakers far off and creates anti-phase contributions to the sound field. Both effects
are potentially detrimental to the perceived localisation of the source, in particular outside the
central listening position.
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Figure 3: Loudspeaker gains for particle velocity magnitude maximisation without nonnegativity
constraint.

3.5 Relation to Energy Vector Magnitude Maximisation

In the same way as with the velocity vector in Sec. 3.3, the loudspeaker gains can be obtained
such that the magnitude of the energy vector proposed by Gerzon is maximised. This design
objective is used to ensure good localisation at high frequencies (≥ 700Hz) and, for instance,
forms the conceptual basis for max re decoding in higher-order Ambisonics, e.g., [6], [12].

As observed in (3b), the sole difference to the velocity vector is that squared gain values g2
i are

used instead of gi. Thus, by substituting g by the vector q =
[
g2

1 g2
2 · · · g2

L
]T , energy vector

magnitude maximisation can be expressed as

argmin
g

L

∑
i=1

qi (16a)

subject to Lq = p (16b)
q≥ 0 . (16c)

The final gains gi is obtained from the square roots of the elements qi. Note that defining qi as
the square of a real-valued gain implicitly introduces the nonnegativity constraint (16c).

As observed in Fig. 4, the obtained loudspeaker gains are closely related to the velocity vector
maximisation approach subject to a nonnegativity constraint described in Sec. 3.3. That is, the
sparsity pattern, the nonnegativity, and the selection of active loudspeakers are identical, and
the gains differ only by a square root operation. Conceptually, this relationship is similar to the
relation between amplitude panning techniques for low and high frequencies described in [2].
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Figure 4: Loudspeaker gains obtained by energy vector maximisation.

4 Conclusion
In this paper we have investigated the role of nonnegativity constraints imposed on the loud-
speaker gains of sound reproduction methods that aim at controlling the sound pressure and
the particle velocity of the reproduced field at one position. We have shown that, for a gen-
eral virtual source location, sound pressure and particle velocity cannot be controlled simul-
taneously to match a desired target sound field if a nonnegativity constraint is active on the
loudspeaker gains . Maximising the magnitude of the particle velocity vector (or Makita vector)
yields the closest achievable approximation of the desired sound pressure while preserving the
correct direction of the particle velocity.

We have shown that this objective can be posed as a `1 minimisation and thus expressed
and solved as a convex optimisation problem. It has been demonstrated that the resulting
gain distributions are sparse, i.e., with only few nonzero values, and equivalent to existing
amplitude panning techniques as VBAP in the majority of possible virtual source positions.
Introducing a nonnegativity constraint effectively prevents antiphase loudspeaker signals, thus
improving sound quality and localisation in practical sound reproduction. Moreover, it is shown
that the computation of panning gains by `1-optimisation with nonnegativity constraint is closely
related to approaches that maximise Gerzon’s energy vector magnitude, because this objective
implicitly involves a nonnegativity constraint.
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