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ABSTRACT 
Robust design optimization involves finding the low-

order statistical moments, i.e. the maximization of some mean 
quantity of interest and minimization of its variance. The 
question arises as to when a mean or variance value can be 
considered to be converged to an acceptable level of certainty. 
A designer naturally seeks to keep the number of function 
evaluations as low as possible when converging statistics. 
There is no general answer to the question of how many CFD 
simulations need to be carried out in order to obtain reliable 
estimators and which sampling methods perform better. 
Furthermore, multi-fidelity optimization techniques such as 
Co-Kriging can be used to combine different convergence 
levels and the question remains as to how many functions 
evaluations should be carried out. Practical guidelines 
applicable for the robust design optimization of 
turbomachinery blades are provided here. The applied 
methodology involves the freely available NASA Rotor 37 
geometry and 3D steady-state RANS-based CFD with the 
Spalart-Allmaras turbulence model. The numerical CFD 
results are validated against actual experimental results. A 
uniformly distributed sweep uncertainty applied at the tip of 
the blade is propagated using Monte Carlo and Quasi-Monte 
Carlo-based sampling (low-discrepancy Halton and 
randomized Sobol sequence) for comparisons. Statistical post-
processing of the results is based on 500 CFD runs for each 
sampling strategy. As an indicator of the error bounds, 
standard deviation and confidence intervals for the converging 
sample means of all quantities of interest are calculated. The 
required number of iterations is estimated. 

INTRODUCTION 
Modern aircraft engines and their individual components 

such as turbine and compressor blades are highly-optimized 
designs and subject to many uncertainties. Blade geometries 
in service now are the result of multi-objective optimization 
processes, involving a plethora of design variables, structural 
and performance constraints and many conflicting objectives. 

Such designs can be very sensitive to inevitable uncertainties, 
for example due to manufacturing tolerances, in-service 
deterioration or varying operating conditions. It has been 
shown in literature (e.g. [4, 14]) that such uncertainties, even 
very small perturbations on the order of tenths of millimetres, 
can lead to significant engine performance degradation. For 
compressor blades, aerodynamic performance considerations 
are of prime importance whereas for turbine blades the metal 
temperature is more crucial. Next generation computational 
modelling and scientific research therefore requires engineers 
and researchers to incorporate variations into the design 
process. This approach is termed robust design and typically 
involves the low-order statistical moments, that is 
maximization of some mean performance measure, such as the 
adiabatic efficiency, and simultaneous minimization of its 
variance. However, it is unclear how many simulations need 
to be carried out in order to obtain reliable estimators (i.e. 
converged to an acceptable margin of error), what errors can 
be considered acceptable and what sampling methods perform 
better than others by requiring fewer function evaluations for 
the same level of accuracy. Furthermore, different levels can 
be combined with multi-fidelity robust design optimization 
techniques such as Co-Kriging. How many simulations should 
be carried out for each level of fidelity? In the literature, Co-
Kriging was for example used to optimize a 2D section of a 
Rolls-Royce compressor blade [6]. 100 LPτ samples were 
used to calculate more accurate, but computationally 
expensive converged sample means and 5 LPτ points were 
used to calculate less accurate but cheap estimates of the 
mean. Was this a good combination or is there a 
computationally cheaper, more efficient combination to get 
results with the same accuracy? Answers to these questions 
are sought in this paper.  

METHODOLOGY 
A commonly used 3D engineering parameter for 

turbomachinery blades, sweep is introduced as an uncertainty 
at the blade tip and 3D Reynolds-averaged Navier-Stokes 

http://www.pps.global/
http://creativecommons.org/licenses/by/4.0/


2 

(RANS)-based steady-state computational fluid dynamics 
(CFD) using the Spalart-Allmaras turbulence model is used to 
evaluate the probabilistic outputs. Mean and variance of 
compressor performance quantities of interest such as 
adiabatic efficiency, pressure ratio and mass flow rate are 
calculated after every new CFD simulation to obtain 
convergence plots. Different sampling methods such as naive 
Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods 
based on low-discrepancy Halton and Sobol sequences are 
used. NASA Rotor 37 was chosen as a test case as it is freely 
available and experimental data for CFD validation exists. It 
is a low-aspect ratio transonic axial compressor rotor with 36 
blades originally designed as an inlet stage for an eight-stage 
core compressor with a 20:1 pressure ratio. It rotates with 
17188.7 rpm (1800 rad s-1) and, as Dunham [3] remarks, is 
roughly representative of design and performance levels of 
transonic blades used in gas turbine compressors 15 years ago. 
One should note that NASA Rotor 37 is somewhat 
controversial as essentially all past numerical studies to some 
degree have inaccurately predicted adiabatic efficiency, 
pressure ratio as well as downstream profiles, prompting more 
and more research with an increasing level of fidelity (e.g. 
large eddy simulations (LES)) in order to account for this 
discrepancy between experimental and CFD results [7, 10]. 
There are discrepancies even with LES calculations, although 
they do perform slightly better than RANS-based simulations 
[5]. The case was employed here anyway as the geometry and 
boundary conditions are freely available and therefore allow 
for verifiable research results. What is more, the discrepancies 
themselves are of limited concern as emphasis is placed on the 
statistics of the quantities of interest, rather than as accurate as 
possible CFD. Nonetheless, of course all efforts are made to 
obtain as good as possible agreement with the experimental 
data using RANS-based CFD. 

COMPUTATIONAL MODEL 
 The computational model of NASA Rotor 37 comprises 

the rotating rotor disk and stationary upstream and 
downstream disks on either side plus the stationary casing 
wall. The fillet at the hub is present but the small cavities 
between the hub and the rotor are closed and not modelled. 
Boundary conditions are given by Tartinville and Hirsch [13] 
and the rotor is running at peak efficiency. For this operating 
point, the static outlet pressure is set to 1.175 bar. The 
rotationally periodic CFD domain and model, defined via 21 
radially stacked aerofoil sections, are shown in Fig. 1. 

The outlet is located 10.67 cm downstream of the blade 
hub leading edge and the inlet 4.19 cm upstream. The tip 

clearance at design speed is 0.356 mm. The blade hub fillet 
radius is 2.5 mm. The inlet turbulence intensity was estimated 
at 3%. Two cavities, 0.75 mm in width, 0.264 cm upstream 
and 4.521 cm downstream of the hub leading edge were 
present in the original experimental set-up but are not present 
in the model used here. All walls are adiabatic with no-slip 
boundary conditions. A subsonic inflow boundary condition is 
prescribed on the inlet and a subsonic outflow with radial 
equilibrium on the outlet. The fluid is air modelled as a perfect 
gas with constant specific gas constant 287.058 J kg-1 K-1 and 
ratio of specific heats of 1.4. 

The computational workflow is based on Rolls-Royce’s 
in-house RANS solver HYDRA. Meshing, the CFD setup and 
post-processing (using ParaView’s Python API) is automated 
using Python and Matlab scripts. A flowchart of all steps 
involved in the workflow is shown in Fig. 2. 

A structured mesh was generated using Rolls-Royce’s in-
house mesher PADRAM with the default single passage mesh 
topology, namely up- and downstream H-meshes with an 0-
mesh around the blade consisting of 12 layers and upper and 
lower H-meshes on the side. Mesh cells become denser near 
the blade LE and TE as well as near the hub and tip. In 
between, the cell density gradually decreases. A butterfly O-
mesh with 15 layers is used in the tip gap. To permit the use 
of wall functions, a desired y+ of above 30 was specified and 
the case was run to examine the actual y+. y+ values were 
found to lie in the desired region above 30 along the entire 
span height. Furthermore, a mesh independence study was 
carried out to determine the final mesh size. For the mesh 
independence study, the mean, mass-averaged absolute total 
outlet pressure was calculated using values from the last 100 

Fig 1: Computational model of NASA Rotor 37

Fig 3: Mesh details 

PADRAM Pre-processing Multigrid and 
solver setup

HYDRA Convergence check
Post-processing 
with ParaView 

& Python

Fig 2: CFD workflow 
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iterations. This mean was monitored whilst the mesh was 
continuously refined. The mesh was deemed to be grid 
independent once the percentage error change of these mean 
values was sufficiently small. The percentage error difference 
between the meshes with 1.37 and 2.06 million cells is only 
0.036 %. This was deemed to be acceptable for the desired 
purpose and the mesh with 1.37 million cells was therefore 
selected as the final mesh, which is depicted in Fig. 3. 

A steady-state RANS (Reynolds-averaged Navier-
Stokes) approach using the one-equation Spalart-Allmaras 
turbulence model with wall functions is employed. A 
multigrid V-cycle scheme with 4 grid levels and 3 fine, 3 
coarse and 3 pre- and post-smoothing iterations as well as first 
order smoothing after the second grid level was set up. 20 
multigrid iterations were carried out on each grid. The change 
of the flow and turbulence residuals as well as the mass flow 
at the outlet were monitored to assess the convergence of the 
solution. All quantities were mass-averaged. 

COMPRESSOR QUANTITIES OF INTEREST 
The pressure increase of a compressor is measured by the 

total pressure ratio ∏ given by Eq. (1). Subscript 3 refers to
the outlet, 2 to the inlet.  

(1) 

∏ is related to the total temperature ratio  through the
isentropic relation in Eq. (2): 

(2) 

Another quantity of interest is the compressor isentropic 
efficiency ad defined in Eq. (3). 

(3) 

CFD VALIDATION 
To validate the CFD results, experimental data and 

numerical results from references [6, 10, 11, 12] are used. It 

Fig 5: Compressor map validation - 

Fig 6: Pitchwise averaged outlet profiles - ad

Fig 7: Pitchwise averaged outlet profiles - Fig 4: Compressor map validation - 
𝒂𝒅

Table 1: CFD validation with experimental data
Quantity Experimental Numerical Error 

20.74 ± 0.3 20.809 +0.33%
2.056 2.006 −2.43%
1.261 1.256 −0.40%
87.6 85.94 −1.89%
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should be noted that for the experimental data, measurement 
errors as given by Suder et al. [11] are ± 0.3 kg s-1 for 
massflow, ± 0.5 ° for flow angles, ± 0.01 N cm-2 for total 
pressures and ± 0.6 K for total temperatures. These errors are 
very small compared to the CFD discrepancies in some areas 
and can therefore be neglected. The percentage errors in Table 
1 reveal that the maximum error of the CFD results is −2.43 
% for the pressure ratio. With regard to the previously 
mentioned intricacies of Rotor 37, this is an acceptable error. 
Common for most CFD solvers, the adiabatic efficiency is 
underpredicted by 1.89%. The compressor map was computed 
and compared to the results from reference [10]. As depicted 
in Figs. 4-5, the results are close to the numerical results of 
reference [10], where the SST k- turbulence model was used 
instead.  The CFD results do not match experimental results 
well in both cases however.  

For further validation, pitchwise averaged profiles at the 
outlet are compared in Figs. 6-7. Overall, the results are very 
similar to the results from Seshadri et al. [10]. Similar to their 
results, the pressure ratio is overpredicted from 0 % to about 
30 % span but accurate above 30 % span. 

The most prominent feature of the flow is the shock wave, 
which emanates from the leading edge of the blade and 
impinges onto the suction side of the adjacent blade causing 
the flow there to separate. Loeven and Bijl [7] obtained about 
1% more accurate quantities of interest with Spalart-Allmaras-
based CFD and an additional transition model. Figure 8 
depicts their results (on the left) and compares them with the 
results obtained in this study (on the right). It is evident that 
visually the differences, including the shock wave position, 
are very small and negligible. Again however, when 
comparing the CFD to experimental results (laser anemometer 
data), the CFD-predicted passage shock wave position on the 
mid-pitch line at 70% span is about 2.5 mm behind the 
measured experimental values [11].  

(4) 

(5) 

(6) 

Out of a range of 3D blade design parameters such as lean, 
sweep, skew, end wall profiling and LE or TE recambering, 
sweep was selected and applied at the blade tip. The 
application of forward or backward sweep at the blade tip is a 
common method of altering the tip flow to improve 
turbomachinery blade performance. Sweep is defined as the 
axial movement of blade sections along the engine axis and is 
known to affect the blade loading, shock strength, shock 
position and the stability margin, e.g. see Dixon and Hall [1] 
for details. This sweep uncertainty is distributed according to 
a uniform probability distribution function between ± 10 mm. 
Radially the deviation is modelled with a piece-wise cubic 
spline. 

KNOWN KNOWNS & KNOWN UNKNOWNS 
It is important to recognize that the effects from 

uncertainties to be modelled and propagated lead to higher 
variations in the quantities of interest than those from the 
computational approach itself. This leads to the common 
distinction of uncertainties in inherent (aleatoric) and model 
(epistemic) uncertainties. Model uncertainties could 
theoretically be fully removed if 100% accurate models 
existed. In contrast, inherent uncertainties such as 
manufacturing deviations cannot be removed from the model. 
Ultimately, it is important to ensure that model uncertainties 
from the mesh and residual oscillations are far smaller than the 
uncertainties one is intending to gauge the effects of. Here, 
effects from model uncertainties are two orders of magnitude 
smaller than effects from the introduced sweep uncertainty. 

SAMPLING STRATEGIES 
In general, the simplest way to propagate uncertainties is 

to use sampling strategies. A set of input points is selected at 

Fig. 9: Maximum sweep variations (red) 
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it is noteworthy that estimating the mean and other statistics is 
the same whether the underlying data comes from a model 
with just one uncertainty (as is the case here) or from a much 
more intricate model with many more parameters. 
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Fig 8: Shock wave position validation at 50% span 

STATISTICAL MEASURES & SWEEP VARIATIONS 

The Law of Large Numbers provides the statistical 
foundation of this investigation and guarantees consistent 
estimators: In the limit, as the sample size n  ∞, the sample 
mean converges to the expected value, x  μ. The sample 
mean and the unbiased sample variance are defined according 
to Eqs. (4) and (5) [9]. In Eq. (6), the square of the 
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CONFIDENCE INTERVALS OF THE MEAN 
The main aim here is to estimate the required number of 

CFD runs to obtain robust estimates of mean output quantities 
and to compare the selected sampling methods’ performances 
in doing so. In order to do this, the mean of each output was 

Figure 11: 50 simulated paths of the mean adiabatic 
efficiency with Monte Carlo

Fig 10: Observed values, percentage error & 
convergence of the adiabatic efficiency's sample 

mean using Monte Carlo results 

calculated. The law of large numbers then ensures that with 
an increasing number of CFD simulations, the sample 
mean converges to the expected value. The observed 
convergence of the sample mean and the data points are 
depicted in Fig. 10. On top of the mean, the standard 
deviation is required to estimate the dispersion. Since only 1 
realization has actually been calculated, other paths are 
generated using curve fits of the output quantities of 
interest, which can quickly be evaluated thousands of 
times. Matlab’s cubic smoothing splines implemented 
in the csaps function were used and 10000 paths were
created for each sampling method. Figure 11 depicts the 
first 50 paths as an example. For the mean (i.e the mean of 
the mean), 95% confidence intervals can be calculated using 
Eq. (6) with significance level α = 0.05 and z0.025 = 1.96 

(6) 

RESULTS AND DISCUSSION 
By calculating Spearman’s correlation coefficient for the 

sweep input and the output variables of interest, their 
dependence on sweep can be revealed. From this data, it is 
immediately apparent that the total pressure ratio and the total 
temperature  ratio  linearly  depend  on  the  sweep  and  their 
distributions are therefore close to the uniform input 
distribution. In  contrast,  adiabatic  efficiency  and  mass  flow 

Fig 12: Histogram of the adiabatic efficiency 

Fig 13: Histogram of the mass flow rate 
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ŝ
−
N
−

√

which the model is evaluated deterministically and the 
statistics of interest are calculated using the results. The 
Monte Carlo (MC) method is the prime candidate. The MC 
method uses pseudo-random numbers based on an underlying 
probability distribution function. Convergence of the 
standard deviation of the error with                      is very slow.
To improve the coverage and the efficiency, quasi-Monte 
Carlo (QMC) methods based on sets of points calculated 
deterministically using a discrepancy measure can be used. 
The main benefit of the use of low-discrepancy sequences is 
the improvement of the error convergence 

O(1/√−
N
−

)

)O((log N)d
N −1 . 

This comes at the drawback of introducing dependence on d-
dimensions. Halton and Sobol sequences are used in this 
study. Whilst the Halton sequence is deterministic, the Sobol 
sequence was randomized (RQMC) using Matlab’s 
Matousek-Affine-Owen algorithm (see Matoušek [7] for 
details). 500 individual CFD simulations were carried out 
using each sampling strategy. 

[8]
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depend nonlinearly on sweep and have skewed 
distributions. As an example, Figs. 12-13 show the resulting 
histograms for the adiabatic efficiency and the mass flow 
rate. 

Figures 14-16 depict the 95% confidence intervals (CIs) 
of the averaged sample means for each output and for 
each method. It is evident that Quasi-Monte Carlo 
methods, regardless of the underlying sequence and 
scrambling, perform substantially faster than brute force 
Monte Carlo. As previously mentioned, this is of course to 
be expected. Halton and Sobol sequence-based sampling 
performance is virtually identical and the choice of the low-
discrepancy sequence and whether or not it is scrambled 
does not matter. The majority of sweep variations worsen 
the adiabatic efficiency and consequently the expected 
value ends up about 0.4% below the deterministic value 
(where the rotor is running at peak efficiency). It is 
important to remember that these variations are based on a 
very high sweep range. Realistic deviations, for example 
from manufacturing variations, tolerances, tool wear, 
material property variations etc., are smaller. For realistic 
studies, experimental data can be used as the statistical basis. 

Regardless, of prime interest are the confidence intervals 
depicted in Figs. 14-16. What is important then for a robust 
optimization workflow is to be able to calculate the sample 
means with some desired level of variance. Since for any 
sampling method, the computational effort required for 
acceptably converged results depends on the variance, no 
general statements or recommendations regarding the number 
of samples can be made. One would be wrong in assuming that 
the choice of just 5 LPτ points as the number of samples for 
each cheaply evaluated sample mean as in reference [6] would 
be sufficient in other cases as well. On the other hand, realistic 
deviations are smaller and evaluating only few number of 
points might be sufficient for a particular case. It is important 
to recognize that the shape of the 95% confidence intervals 
and hence the convergence rates in principle always remain 
the same for each method. Moreover, there will also always 
be some variance inherent to each sample mean regardless of 
the final number of iterations. 

One possible way of estimating the required number of 
samples if the variance is known is by rearranging Eq. (6) and 
by introducing the error E, defined as E =  |x − µ|, which 
leads to Eq. (7) [9]: 

(7) 

It is evident that Eq. (7) depends on the unknown 
population standard deviation σ, which can only be estimated 
from the data with the sample standard deviation  , which is 
itself a random statistic. Therefore, the conclusion must be 
drawn that in order to calculate a required sample size with 
some confidence level, the only viable, general option is to use 
Eq. (7) to estimate this number. Essentially, this is the 
approach presented in reference [2]. In a multi-fidelity study, 
this method could for example be incorporated to calculate 
error bounds for the expensively estimated sample means and 

(8) 

Fig 14: 95% confidence intervals of the mean 
adiabatic efficiency

Fig 15: 95% confidence intervals of the mean 
pressure ratio 

Fig 16: 95% confidence intervals of the mean mass 
flow rate 

it can be displayed whilst the simulation is running. Equation 
(7) can also be written in terms of the percentage error [2]:
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Fig 17: Estimated required number of iterations 

As an example, the estimated number of iterations for the 
convergence of the sample mean for one of the output 
quantities, adiabatic efficiency, is shown in Fig. 17. From Fig. 
10 it was evident that the percentage error ranges from about 
0% to -1.5%. Specifying a desired percentage error of 0.01%, 
Fig. 17 reveals that in case of standard Monte Carlo the 
estimated number of required iterations for this desired 
accuracy is about 114. The interpretation is that at a level of 
95% confidence the calculated adiabatic efficiency after this 
many iterations will be within 0.01% of the true population 
mean. As before and as expected, Quasi-Monte Carlo methods 
converge much quicker. Both suggest that the desired 
accuracy is reached after just 110 iterations. The difference of 
four iterations in the results (MC vs QMC) again highlights 
the stochastic nature of this procedure: In case of standard 
Monte Carlo, the estimated number of iterations is not yet 
converged. Note that Fig. 17 is based on the actually observed 
realizations of the sample mean and standard deviation of all 
3 sampling methods. For Co-Kriging or other multi-fidelity 
techniques, the sample size for cheap function evaluations 
should be chosen in relation to the number of expensive CFD 
simulations and the confidence intervals in Figs. 14-16 can be 
used as an additional guideline. 

CONCLUSIONS 
In robust design optimization studies it is important to 

ensure the calculation of appropriately converged mean 
values. In the face of uncertainty, the challenges of the large 
computational requirements have to be met on one hand. On 
the other hand, convergence has to be ensured to within some 
degree of accuracy in order to obtain statistically significant 
or in other words trustworthy results. The procedure and the 
results presented here for the case of a compressor rotor can 
be implemented and used in similar robust design studies. In 
summary, the required number of iterations for a desired 
confidence level can be estimated and the method to do so can 
easily be implemented in robust design studies. Quasi-Monte 
Carlo methods outperform standard Monte Carlo and are 
preferable in terms of convergence. 




