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Abstract 

This	 work	 addresses	 the	 complex	 interactions	 between	 bed‐generated	

coherent	 turbulence	 structures	 and	 suspended	 non‐cohesive	 sediment	 in	

wave‐dominated	 environments	 and	 under	 combined	 wave‐current	 flows.	

Coherent	structures	are	intermittent,	connected	fluid	masses	with	a	defined	

spatial	 extent	 and	 life‐span	 and	 characterised	 by	 vorticity;	 and	 define	

entrainment	and	momentum	exchanges	 in	 turbulent	 flows.	Prototype‐scale	

experimental	observations	of	flow,	bedforms	and	suspensions	are	presented;	

focusing	on	 the	structural,	 spatial	and	temporal	dynamics	of	 these	motions	

and	 their	 role	 in	 sediment	 entrainment.	Two	 scenarios	 are	 considered:	 (a)	

shoaling	 (and	breaking)	 erosive	 and	 accretive	waves	 in	 the	nearshore	of	 a	

sandy	barrier	beach	(spilling	and	plunging	breakers);	and	(b)	collinear	steady	

currents	aligned	with,	and	opposing	the	direction	of	wave	propagation	over	a	

rippled,	sandy	bed.		

Measurements	collected	in	the	nearshore	of	a	prototype‐scale	sandy	barrier	

beach	show	intermittent	momentum	exchanges	characterised	by	large	wave‐

induced	 coherent	 structures	 within	 the	 benthic	 boundary	 layer,	

corresponding	to	the	mean	flow	properties.	These	structures	can	be	described	

by	 a	 3D	 bursting	 sequence	 which	 plays	 a	 significant	 role	 in	 moving	 and	

maintaining	sediment	in	suspension.	The	temporal	variability	of	these	events	

dictates	 the	 net	 onshore	 and	 offshore	 transport.	 Periods	 associated	with	 a	

succession	of	 powerful	 turbulent	 events	 cause	powerful	 suspension	 clouds	

across	 multiple	 frequency	 scales.	 The	 bulk	 of	 suspension	 is	 attributed	 to	

wave‐induced	 fluctuations	 of	 low	 frequencies.	 These	 modulate	 smaller,	

rapidly	decaying	high‐frequency	turbulence	extending	outside	the	boundary	

layer.	As	larger	structures	persist	for	a	considerable	amount	of	time,	suspensions	

near	the	bed	are	amplified	before	decaying	as	the	supply	of	momentum	ceases.	

Outside	 the	 boundary	 layer,	momentum	 transfer	 via	 turbulent	 fluctuations	

maintains	the	suspensions	until	their	energy	is	depleted.		
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In	 combined	 wave‐current	 flows,	 the	 current	 plays	 a	 significant	 role	 in	

dictating	 the	 prevalence	 of	 specific	 turbulent	 motions	 within	 a	 bursting	

sequence.	 The	 current‐aligned	 structures	 contribute	 significantly	 to	 the	

stress,	 and	 display	 characteristics	 of	 wall‐attached	 eddies	 formed	 by	 the	

pairing	of	counter‐rotating	vortices.		In	aligned	wave‐current	flows,	the	flow	

is	 characterised	 by	 a	 local	 balance	 between	 turbulent	 production	 and	

dissipation,	and	displays	the	‘universal’	inertial	cascade	of	energy	in	the	outer	

flow,	 while	 just	 outside	 the	 combined	 boundary	 layer	 a	 superposition	 of	

eddies	is	observed,	often	linked	to	intermittent	coherent	turbulent	structures	

at	an	intermediate	range	between	energy	production	and	dissipation.	When	

the	 current	 opposes	 the	 direction	 of	 wave	 propagation,	 stress‐bearing	

coherent	 structures	 break	 rapidly	 as	 they	 are	 ejected	 higher	 in	 the	 water	

column.	 Suspended	 clouds	 through	 vortex	 shedding	 thus	 cease	 rapidly	 in	

opposing	flows,	compared	to	more	continuous	sediment	transport	in	aligned	

flow.	

Both	studies	indicate	that	bed‐induced	coherent	turbulence	structures	play	a	

significant	role	 in	 the	entrainment	and	transport	of	suspended	sediment	 in	

flows	 typically	 encountered	 in	 the	 coastal	 environment.	 Suspension	 clouds	

induced	 be	 vortex	 shedding	 are	 maintained	 by	 the	 continuous	 supply	 of	

momentum	 through	 vortex	 clusters;	 and	 transport	 is	 described	 by	 the	

advection	of	these	particles	through	net	currents.	A	complex	feedback	is	then	

imparted	by	 the	 suspended	particles	on	 these	 structures.	This	merits	 a	 re‐

evaluation	 of	 coastal	 sediment	 transport	 models,	 and	 a	 shift	 towards	 a	

stochastic	description	of	the	problem.		
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List of Symbols and Abbreviations 

	
Subscripts,	superscripts	and	indices	
	
,ݔ ,ݕ 	ݖ spatial	dimensions,	along	mean	flow	(x‐axis),	across	flow	(y‐

axis),	vertical	(z‐axis)	
1,	2,	3				 subscripts	pertaining	to	1st,	2nd,	and	3rd	component	in	space	
݅, ݆, ݇	 subscripts	pertaining	to	1st,	2nd,	and	3rd	component	in	space	
i	 Instantaneous	property;	e.g.	 ௜ܷ 	
ܿ				 Current	related	property;	e.g.		ߜ௖	
	ݓ Wave	related	property;	e.g.			ߜ௪	

௖,௪; ௪,௖ 	 Combined	wave‐current	related	property;	 e.g.	ߜ௖,௪	
ܶ	 Turbulence	property,	e.g.	ܶߥ, 	்ݑ
଴	 Near‐bed	or	near	wall	property/	pipe	centre‐line;	e.g.	ܷ଴, ଴ܣ 	
ఋ	 Property	at	the	edge	of	boundary	layer	full	thickness;	e.g.	ܷఋ	
ஶ	 Freestream	property;	e.g.	ܷஶ	
ᇱ
	 Fluctuating	property;	e.g.	ݑᇱ, ,ᇱݒ 	′ݓ
ା
	 Wall‐units;	e.g.	ݖା, ାݑ 	

∗
	 Friction	(shear)	related	property;	e.g.	ݑ∗ 	
௖௥	 Critical	value	(threshold)	
௠௔௫	 Property	magnitude	at	its	maximum;	e.g.	ܷ௠௔௫, ߬௠௔௫	
௠	 Mean	magnitude	of	a	property;	e.g.	 ߬௠;	ߜ௠	
௦	 Property	pertaining	to	sediment;	e.g.	ߩ௦ , 		௦ݓ
௦	 Suspension‐related	;	e.g.	ߠ௦ 	

ହ଴	 Median	value	of	a	statistical	distribution	
ଷହ, ଺ହ	
଼ହ, ଽ଴,			

Subscripts	denoting	the	percentage	of	components	smaller	
than	that	value	in	a	statistical	distribution		

ଵ଴଴	 Property	measured	at	a	height	of	100	cm	above	bed,	e.g.	 ଵܷ଴଴	
௞ೞ	 Subscript	pertaining	to	property	at	level	of	physical	(grain‐

equivalent)	roughness;	e.g.		ܴ݁௪,௞ೞ	
	
Dimensional	Units:	
	
Symbol	 Definition	 SI	unit	
[L]	 Spatial	dimension	(characteristic	length	scale)	 Metres	(m)	
[T]	 Time	dimension	(characteristic	time	scale)	 Seconds	(s)	
[M]	 Mass	dimension	 Grams	(g)	
	
Latin	symbols	
	
Symbol	 Definition	 Dimension	 SI	unit	
ܽ	 scale	of	the	wavelet	(dilation)	 [	]	 	
ܽ଴	 Wavelet	scale	at	octave	zero	 [	]	 	
ܽ௥	 Empirical	coefficient		 [	]		 	
ܾ	 position	(translation)	of	a	wavelet	 [	]	 	
ܾ଴	 Abscissa	of	wavelet	scale	at	octave	zero	 [	]	 	
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ܾ௜௝	 Anisotropy	in	non‐linear	RANS	model	 	 	
c	 Concentration		 [M/L3]	 ݃/݉ଷ	
c	 Constant	of	proportionality	 [	]	 	
݀	 Displacement	height	 [L]	 ݉	
݀	 Full	water	depth	 [L]	 ݉	
݀଴	 Wave	near	bed		orbital	diameter		 [L]	 ݉	
௖݂	 Current	only	friction	factor	 [	]	 	
௪݂	 Wave	friction	factor	 [	]	 	
௪݂௥	 Wave	friction	factor	in	rough	flow	 [	]	 	
௖݂,௪, ௪݂,௖	 Combined	wave	current	friction	factor	 [	]	 	
	݂ሺݐሻ	 Signal	(time‐series)	 [	]	 	
݃	 Gravitational	acceleration	 [L/Tଶ]	 	ଶݏ/݉
݄	 Still	water	depth	 [L]	 ݉	
݇	 Wave	number	 [L‐1]	 ݉ିଵ	
݇	 Turbulent	kinetic	energy	(per	unit)	 [L2/T2]	 ݉ଶ/ݏଶ	
݇ℓ	 Wavenumber	for	eddy	scale	of	the	size	ℓ [L‐1]	 ݉ିଵ	
݇௦	 Projection	(height)	of	the	roughness	

element;	Nikuradse‐equivalent	physical		
roughness	

[L]	 ݉	

݇∗	 non‐dimensional	wave‐number	at	
height	of	measurement		

[	]	 	

݇ట	 Wave	vector	modulated	by	a	Gaussian	
envelop	of	unit	width	

[	]	 	

݈, ݈௠,	 Mixing	length	 [L]	 ݉	
ℓ	 Length	scale	of	an	eddy	 [L]	 ݉	
݊	 Number	of	grain	detachments	 [	]	 	
	݌ Pressure	 [M/L.T2]	 ܰ/݉ଶ	
	ଶݍ Turbulent	intensity	 [L2/T2]	 ݉ଶ/ݏଶ	
	ݏ݉ݎ Root	mean	squared	 [	]	 	
	ݏ Relative	density	(specific	gravity)	 [	]	 	
	ݏ Dilation	scale	 [	]	 	
	ݐ Time	(at	an	instance)	 [T]	 	ݏ
	଴ݐ Starting	time	 [T]	 	ݏ
	ݑ Streamwise	(along	mean	flow)	velocity	

component	
[L/T]	 	ݏ/݉

	ݒ Number	of	degrees	of	freedom	 [	]	 	
	ݒ Crosswise	(transverse)	velocity	

component	
[L/T]	 	ݏ/݉

	ݓ Vertical	velocity	component	 [L/T]	 	ݏ/݉
	௦ݓ particle	settling	(fall)	velocity	in	still	

water	
[L/T]	 	

	ሻݐሺݔ A	continuous	signal	in	time	 [	]	 	
	଴ݖ Reference	height,		hydrodynamic	

roughness	length	
[L]	 ݉	

	ݖ Elevation	above	the	bed	 [L]	 ݉	
	ݖ Height	of	a	measurement	above	bed	 [L]	 ݉	
	௔ݖ Reference	height	above	the	bed	 [L]	 ݉	
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	ାݖ wall	units	(non‐dimensional	wall	
distance	of	wall‐bounded	flow	

[	]	 	

	

A	 area	 [L2]	 ݉ଶ	
	௪ܣ wave	orbital	amplitude	(semi‐orbital	

excursion)	
[L]	 ݉	

	଴,௖௪ܣ Current‐modified,	near	bed	orbital	
amplitude	

[L]	 ݉	

B	 Constant	of	integration	 	 	
C	 Sediment	(mass)	concentration	 [M/L3]	 ݃/݉ଷ	
	௔ܥ Reference	sediment	concentration		 [M/L3]	 ݃/݉ଷ	
	஽ܥ Coefficient	of	drag	 [	]	 	
	஽ೝܥ Rough	turbulent	current	drag	

coefficient	
[	]	 	

	஽,௠,௥ܥ Mean	drag	coefficient	for	rough	
turbulent	combined	wave‐current	flow	

[	]	 	

ுܥ
௜ 	 Concentration	of	data	points		within	

each	quadrant	(݅)	with	a	threshold	H	
[	]	 	

	௄ܥ Kolmogorov’s	constant	 [	]	 	
	கଵܥ Eddy	viscosity	model	constant		 	 	
	ఌଶܥ Eddy	viscosity	model	constant		 	 	
		ܦ Dissipation	by	turbulent	transport	and	

viscous	diffusion	
[L2/T3]	 ݉ଶ/ݏଷ	

	∗ܦ Dimensionless	grain	diamter	 [	]	 	
E	 Turbulent	kinetic	energy	spectrum		 [L2/T]	 ݉ଶ/ݏ	
E	 Ejection	type	motion	(Q2)	 	 	
	௥ܨ Froude’s	number	 [	]	 	
	௦ܨ Sampling	frequency	 [T‐1]	 ݖܪ 	
H	 Wave	height	 [L]	 ݉	
		௦ܪ Significant	wave	height	(statistical)	 [L]	 ݉	
Hm0	 Significant	wave	height	computed	

spectrally	(4	times	zeroth‐order	
moment)	

[L]	 ݉	

H	 Hyperbolic	hole	size	(threshold)	in	a	
quadrant	plot	

[	]	 	

II	 Inward	interaction	type	motion	(Q3)	 	 	
	௦ܭ Eddy	diffusivity	in	the	nearshore		 [L2/T]	 ݉ଶ/ݏ	
	௪௪ܯ integral	of	the	3D	wave‐number	space	 [	]	 	
N	 Number	of	sampled	data	points		 [	]	 	
ܰ	 Temporal	rate	of	transport	 [	]	 	
OI	 Outward	interaction	type	motion	(Q1)	 	 	
P	 Pressure	field	 [M/L.T2]	 ܰ/݉ଶ	
P	 Rate	of	shear	production	 [L2/T3]	 ݉ଶ/ݏଷ	
Q1	 1st			quadrant	motion	(equivalent	to	

Outward	Interaction	in	xy)	
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Q2	 2nd			quadrant	motion	(equivalent	to	
Ejection	in	xy)	

	 	

Q3	 3rd			quadrant	motion	(equivalent	to	
Inward	Interaction	in	xy)	

	 	

Q4	 4th			quadrant	motion	(equivalent	to	
Sweep	in	xy)	

	 	

R	 Pipe	radius	 [L]	 ݉		
R	 Hydraulic	radius	 [L]	 ݉	
R	 The	Rouse	exponent	 [	]	 	
ܴ௕
ଶሺܽሻ	 Wavelet	coherence		 [	]	 	

ܴ݁		 Reynolds’	number	 [	]	 	
ܴ௜௝	 pressure	rate‐of‐strain	tensor		 [	]	 	
R	 Rouse	exponent	 [	]	 	
S	 Sweep	type	motion	(Q4)	 	 	
ܵ	 	Cross‐wavelet	smoothing	operator	 [	]	 	
ܵሺ݇ሻ	 Spectral	energy	distribution	in	wave‐

number	space	
[L3/T]	 ݉ଶ/ݏ	

݆ܵ݅	 rate	of	strain	tensor	 [	]		 	
ܵ∗	 Dimensionless	sediment	factor	 [	]	 	
T	 Wave	period	 [T]	 	ݏ
௣ܶ	 Peak	wave	period	 [T]	 	ݏ
T	 Time	(overall)	 [T]	 	ݏ

௜ܶ௝
ሺ௡ሻ	 Tensor	base	 [	]	 	

௞ܶ௜௝	 Reynolds	stress	flux	 [L2/T2]	 ݉ଶ/ݏ	
U	 Characteristic	velocity	 [L/T]	 	ݏ/݉
U	 Three‐dimensional	velocity	field	 [L/T]	 	ݏ/݉
ܷ௢௥௕	 Wave	orbital	velocity	 [L/T]	 	ݏ/݉
ܷ௢௥௕,௖௪		 Wave	orbital	velocity	modified	by	non‐

linear	wave‐current	interactions	
[L/T]	 	ݏ/݉

W	 Mean	rotation	 [L]	 		݀ݎ

௕ܹ
௑௒ሺܽሻ	 Cross‐spectrum	of	wavelet	transform	of	

signals	X	and	Y	scaled	by	ܽ and	
translated	by	ܾ	

[	]	 	

ܺሺ݂ሻ	 Fourier	transform	of	a	function	 	 	
ܼ௩ሺ݌ሻ	 confidence	level	associated	with	the	

probability	݌	with	ݒ		degrees	of	freedom
	 	

	௔ܥ Reference	sediment	concentration		 [M/L3]	 ݃/݉ଷ	
	௭ܥ mass/	volumetric	sediment	

concentrations	at	height	ݖ	
[M/L3]	or	
[L3/L3]	

	

	ఓܥ 2‐equation	eddy‐viscosity	model	
constant	

	 	

	கଵܥ	 Eddy	viscosity	model	constant		 	 	
	ఌଶܥ Eddy	viscosity	model	constant		 	 	
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Greek	symbols	
	
Symbol	 Definition	 Dimension	 SI	unit	
	ߙ Non‐dimensional	scaling	factor	 [	]	 	
	ߙ Kolmogorov’s	constant	 [	]	 	
݆ܽ݅	 anisotropy	of	Reynolds	stress	 [	]	 	
௡ᇱߙ 	 tensorial	expansion	coefficient	 [	]	 	
	௦௩ߙ attenuation	coefficients	pertaining	to	

viscous	dissipation	due	to	relative	
motion	between	particles	and	the	fluid	

[	]	 	

	௪ߙ attenuation	coefficient	for	viscous	
dissipation	due	to	freshwater	fluid	
motion	under	the	oscillating	pressure	

[	]	 	

	ߚ Stoke’s	parameter	 [	]	 	
	ߜ Boundary	layer	thickness	 [L]	 ݉	
	௜௝ߜ Kronecker’s	delta	 [	]	 	
	ߝ Yalin’s	incipient	motion	statistical	

criterion	
	 	

	ߝ Rate	of	turbulence/shear	dissipation		 [L2/T3]	 ݉ଶ/ݏଷ	
	௦ߝ Eddy	diffusivity	(sediment	mixing	

coefficient)	
[L2/T]	 ݉ଶ/ݏ	

	ߟ the	scalar	invariance	of	strain		 [	]	 	
	௥ߟ Height	of	a	ripple	(bedform)	 [L]	 ݉	
	ߠ Relative	tilt	between	sensor	and	flow	 [	]	 	݀ݎ
	௖௥ߠ Sheilds’	entrainment	function	 [	]	 	
	ߢ von	Kármán’s	constant	 [	]	 	
	ߣ Universal	despiking	threshold	 [	]	 	
	௥ߣ Wavelength	of	a	ripple	(bedform)	 [L]	 ݉	
	ߤ coefficient	of	dynamic	viscosity	 [M/LT]	 ܲܽ. 	ݏ
	ߥ coefficient	of	kinematic	viscosity	 [L2/T]	 ݉ଶ/ݏ	;	ݐݏ
	ߥ Effective	viscosity	 [M/LT]	 ܲܽ. 	ݏ
	ܶߥ Turbulent	eddy	viscosity	(Boussinesq’s	

turbulent	coefficient)		
[L2/s]	 ݉ଶ/ݏ	

	ߦ Surf‐similarity	parameter	(Irribaren	
Number)	

	 	

	ߩ Fluid	density	 [M/L3]	 ݃/݉ଷ	
	௦ߩ Sediment	density	 [M/L3]	 ݃/݉ଷ	
ߪ 	 Standard	deviation		 	 	
ߪ 	 Sediment	sorting		 	 	
	݆݅ߪ Viscous	stress	tensor	 	 	
௨,௩,௪ଶߪ 	 3D	wave‐dominated	verlocity	variance	 	 	

	ఌߪ Eddy	viscosity	model	constant		 	 	
߬	 Reynolds’	(deviatoric)	stress	tensor	 [M/L.T2]	 ܰ/݉ଶ	
߬	 Translation	scale	of	a	wavelet	 	 	
߯	 Ratio	between	shear‐normalised	

particle	settling	rate	and	non‐
dimensional	grain	diameter	

[	]	 	

߱	 Angular	frequency	 	 	ݏ/݀ݎ
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߱	 Specific	dissipation	rate	(per	unit	݇)	 [	]	 	
	ݐ∆ Time	lag	 [T]	 		ݏ
Π	 Cole’s	wake	factor	 [	]	 	
߰	; 	߰ሺݐሻ	 Mother	wavelet	 	 	
	߰௕,௔ሺݐሻ	 Daughter	wavelets	translated	by	ܾ	and	

dialted	by	ܽ	from	the	mother	wavelet	
	 	

߰∗	 complex	conjugate	of		߰	 	 	
෠߰		 Fourier	transform	of		߰	 	 	
Λ	 Scaling	factor	of	cone	of	influence		 [	]	 	
Ξ	 Yalin’s	entrainment	parameter	 [	]	 	
ϕୌ,୨
௜ 	 Binary	criterion	for	data	point	

identification	in	a	quadrant	analysis	
with	threshold	H	

	 	

	߶	; 	߶௖௪	 Relative	angle	between	the	wave	and	
current	direction	

	 	݀ݎ	;	°

߰	 Departure	from	spherical	spreading		 	 	
߰	; 	߰ሺݐሻ	 Mother	wavelet	 	 	
	߰௕,௔ሺݐሻ	 Daughter	wavelets	translated	by	ܾ	and	

dialted	by	ܽ	from	the	mother	wavelet	
	 	

߰∗	 complex	conjugate	of		߰	 	 	
෠߰		 Fourier	transform	of		߰	 	 	

	
	
Operators	
	
〈		〉	 Ensemble‐averaged	

	 Time	averaged	(mean)	
෡ 	 Wave‐averaged	
෡ 	 Fourier	transformed		
෩ 	 Periodic	component		
	 ∗	 Complex	conjugate	
߲	/	߲	 Partial	derivative	
݀		/݀	 Full	derivative	
	2׏ Laplace	operator	
Φ	, Φ଴,Φଵ	 a	function	of		
݂, ଵ݂	, ݂′	 a	function	of		
§	 Sections	of	the	main	text	
| |	 Absolute	value	
ln 	 Natural	logarithm	
log 	 Logarithm	to	the	base	10	
CO	 Co‐spectrum	
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Acronyms	and	abbreviations		
	
ABS	 Acoustic	backscatter	system	
ADE	 Advection‐diffusion	equation	
ADV	 Acoustic	Doppler	velocimetre	
ASM	 algebraic	stress	models	
CFD	 Computational	fluid	dynamics	
coi	 Cone	of	influence	
CWT	 Continuous	wavelet	transform	
DNS	 Direct	numerical	simulation	
DES	 Detached	eddy	simulation	
DIA	 Direct	Interaction	Approximation	
DSM	 differential	second‐moment	(Reynolds’	stress)	models	
EDQNM Eddy	damped	quasi‐normal	Markovian	
FFT	 Fast	Fourier	Transform	
LES	 Large	eddy	simulation	
PT	 Pressure	transducer	
PIV	 Particle	image	velocimetry	
RANS	 Reynolds	averaged	Navier	Stokes	equation	
rms	 Root	mean	squared	
SIS	 Sediment	imaging	sonar	
SRPS	 Sediment	ripple	profiling	system	
SSS	 Sector	scanning	sonar	
SSC	 Suspended	sediment	concentration	
TFM	 Test	Field	models	
3D	 Three‐dimensional	
SNR	 Signal‐to‐noise	ratio	
TKE	 Turbulent	kinetic	energy	
WT	 Wavelet	transform	
XWT	 Cross	wavelet	transform	
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At	any	moment,	there	exists	a	narrow	layer	between	

trivial	and	impossible	where	mathematical	

discoveries	are	made.	Therefore,	an	applied	problem	

is	either	solved	trivially	or	not	solved	at	all.	It	is	an	

altogether	different	story	if	an	applied	problem	is	

found	to	fit	(or	made	to	fit!)	the	new	formalism	

interesting	for	a	mathematician.	

A.N.	Kolmogorov,	diary,	1943.	
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Chapter 1.  

Introduction 
“It	is	not	meaningful	to	talk	about	the	properties	of	
turbulent	flow	independently	of	the	physical	situation	in	
which	it	arises…	Perhaps	there	is	no	‘real	turbulence	
problem’,	but	a	large	number	of	turbulent	flows	and	our	
problem	is	the	self‐imposed	and	possibly	impossible	task	of	
fitting	many	phenomena	into	the	Procrustean	bed	of	a	
universal	turbulence	theory.”	Saffman	(1978)	

	

1.1	Prologue	

Nature,	 with	 “scant	 regard	 for	 the	 desires	 of	 the	mathematician”	 as	 Ames	

(1965)	 so	 eloquently	 put,	 is	 essentially	 non‐linear	 –	 that	 is	 to	 say,	 “the	

mathematical	models	believed	best	to	approximate	her	are	non‐linear”.	True	

to	 form,	 the	 flow	 of	 fluids	 in	 the	 natural	 environment	 from	 the	 smallest	

streams	 to	 the	 bewildering	 scale	 of	 the	 cosmos	 is	 non‐linear,	 displaying	

complex,	 dynamic	 spatial	 structures	 (Goldenfeld	 and	 Kadanoff,	 1999;	

Davidson,	 2004).	 	 The	 evolution	 and	 deformation	 of	 these	 structures	 is	

associated	 with	 turbulence,	 and	 can	 be	 strongly	 influenced	 by	 shear	 and	

proximity	to	boundaries	(Hinze,	1959;	Davidson	et	al.,	2013).	Understanding	

and	predicting	how	such	flows	behave	remain	a	formidable	challenge,	and	one	

of	 the	 most	 notorious	 problems	 in	 classical	 physics	 (Holmes	 et	 al.,	 1996;	

Kellay,	2011).			

Simply	 put,	 turbulence	 refers	 to	 irregular	 fluid	motion	 exhibiting	 random/	

disordered	 spatial	 and	 temporal	 variations	 in	 flow	quantities	 (e.g.	velocity,	

pressure,	temperature);	and	is	induced	by	a	fluid	moving	past	a	solid	surface	

(friction‐induced	“wall	turbulence”)	or	past	another	stream	of	fluid,	otherwise	

known	as	“free”	turbulence	(Hinze,	1959).	Turbulence	is	characterised	by	high	

values	 of	 the	 Reynolds	 number	 (ܴ݁),	 a	 dimensionless	 parameter	 of	 flow	

representing	 the	 ratio	 of	 inertial	 to	 viscous	 forces,	 for	 given	 velocity	 and	

length	scales	(Reynolds,	1883;	Schlichting,	1955).	Turbulent	flows	possess	an	
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increased	ability	to	transfer	momentum,	thus	exerting	greater	forces	on	rigid	

bodies	in	contact	with	the	fluid,	manifest	by	increased	drag	of	wall‐bounded	

flows	(Lozano‐Duran	et	al.,	2012).	Turbulence	also	enhances	a	flow’s	capacity	

to	 transfer	heat,	 soluble	admixtures,	and	suspended	particles,	 to	propagate	

chemical	 reactions	 (particularly	 combustion),	 and	 to	 scatter	or	alter	 sound	

and	 electromagnetic	waves.	 Beyond	 its	 vast	 technological	 applications	 and	

importance	 in	 understanding	 natural	 phenomena,	 turbulence	 is	 of	 great	

interest	 as	 an	 example	 of	 nonlinear	 mechanical	 systems	 with	 very	 large	

numbers	of	degrees	of	 freedom	(Monin	et	al.,	1971;	Kaneda	and	Morishita,	

2013).	In	other	words,	while	flow	conditions	may	be	identical,	they	will	result	

in	largely	different	motions	such	that	predicting	them	in	full	detail	becomes	a	

rather	 difficult	 challenge.	 Nonetheless,	 the	 ultimate	 quest	 in	 the	 study	 of	

turbulent	 fluid	 flows	 is	 to	 obtain	 a	 tractable	 quantitative	 theory	 or	model	

which	 can	be	applied	and	used	 to	 calculate	 relevant	 flow	quantities	 (Pope,	

2000),	be	it	for	engineering	applications,	or	natural	sciences.	 

1.2	Turbulence	and	sediment	dynamics	

In	coastal	and	estuarine	settings,	turbulence	plays	a	fundamental	role	in	bed‐

load	and	suspended	sediment	transport;	both	governed	by	shear	stresses	at	

the	bed	and	within	the	benthic	boundary	layer	(BBL)	(Hunt,	1954;	Bagnold,	

1966;	 Soulsby,	 1983;	 Dyer	 and	 Soulsby,	 1988).	 Defining	 the	 physical	

processes	 which	 dictate	 the	 resuspension	 of	 sediments	 in	 coastal	 and	

estuarine	settings	is	fundamental	for	accurate	predictions	of	bed	morphology	

evolution	 (van	 Rijn	 et	 al.,	 2007),	 and	 has	 profound	 implications	 for	 the	

biogeochemical	 processes	 that	 shape	 their	 local	 ecology	 (Thompson	 et	 al.,	

2011).	It	is	also	a	prerequisite	to	quantifying	erosion	and	deposition	trends,	

and	 hence	 guiding	 engineering	 applications	 such	 as	 beach	 nourishment,	

defence	 schemes	 against	 erosion	 and	 flooding,	 maintenance	 of	 marine	

infrastructure	and	waterways,	and	aggregate	dredging.	Turbulence	resides	at	

the	micro‐scale	(fifth	order;	seconds	to	days	and	up	to	10’s	of	metres	or	sub‐

grid	scales)	within	a	coastal‐tract	cascade	system,	often	classified	as	the	‘noisy	

end’	of	the	spectrum	of	drivers	of	coastal	morphological	change	(Larson	and	

Kraus,	 1995;	 Cowell	 et	 al.,	 2003).	Nonetheless,	 it	 is	 acknowledged	 that	 the	



	

3	
	

cumulative	effect	of	such	sub‐grid	scale	phenomena	dictates	the	mobilisation	

of	sediment	which	is	eventually	manifest	by	changes	in	coastal	morphology;	

however	inconvenient	this	may	be	from	a	modelling	perspective.		

Fluid	 flows	 in	the	coastal	zone	are	often	characterised	by	the	simultaneous	

presence	of	both	waves	and	currents,	extending	towards	the	bed	in	shallow	

waters	and	resulting	in	complex	dynamic	interactions	with	direct	implications	

for	sediment	transport	studies	(Grant	and	Madsen,	1979).	The	mobilisation	of	

sediments	 in	 the	 nearshore	 and	 at	 the	 shoreface	 is	 dominated	 by	 wave‐

induced	bed	shear	stresses	in	moderate	and	stormy	conditions	(Thompson	et	

al.,	 2012).	 The	 vertical	 structure	 of	 sediment	 flux	 components	 on	 the	

shoreface	 and	 in	 the	 inner	 surf	 zone,	 as	well	 as	 the	 dynamics	 of	 sediment	

transport	under	shoaling	waves	in	the	nearshore,	are	both	considered	to	be	

insufficiently	 understood	 (van	 Rijn	 et	 al.,	 2013).	 Moreover,	 where	 both	

currents	and	waves	are	present,	 the	problem	 is	 further	complicated	by	 the	

different	timescales	between	the	uniform	shear	of	the	(steady)	current,	and	

the	oscillating	nature	of	the	wave	orbital	motion	(unsteady).		

There	 is	 a	 genuine	 need	 for	 better,	 robust	models	 of	 suspended	 sediment	

transport	 in	 the	 coastal	 zone	 (Aagaard	 and	 Jensen,	 2013).	 A	 plethora	 of	

practical	 (engineering)	 and	 theoretical	models	 currently	 exists	 to	 describe	

sediment	 suspension,	 designed	 specifically	 for	 wave‐only,	 current‐only	 or	

combined	wave	current	flows.		Such	models	employ	differing	formulations	to	

parametrise	 turbulence	and	display	 large	disparities	 in	results,	particularly	

for	rippled	beds.	Davies	et	al.	(2002)	showed	divergences	up	to	a	factor	of	2	–	

10	times	the	measured	concentrations	in	the	bottom	1	m	of	flow,	in	a	host	of	

research	 and	practical	 (engineering)	models	 covering	 a	 range	of	wave	 and	

current	conditions,	bed	morphology,	turbulence	schemes,	and	fluid‐sediment	

interaction.	 Earlier	 studies	 have	 shown	 that	 most	 models	 where	 waves	

(symmetric	or	asymmetric;	regular	or	irregular,	alone	or	superimposed	on	a	

current)	do	no	provide	a	good	description	of	 the	 time‐dependent	sediment	

suspension,	mainly	due	to	the	strong	non‐linearity	in	stress	and	inadequacy	

of	 employed	 turbulence	 models	 (Soulsby	 et	 al.,	 1993;	 Davies	 et	 al.,	 1997;	

Malarkey	 and	 Davies,	 1998;	 2012).	 Such	 uncertainty	 may	 have	 huge	 cost	
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implications	 when	 predicting,	 for	 example,	 the	 volume	 of	 beach	 recharge	

material	 needed	 in	 a	 nourishment	 project	 (Mason,	 T.,	 2016,	 pers.	 comm.).	

Accurate	 predictions	 of	 sediment	 transport	 remain	 limited	 by	 insufficient	

understanding	of	the	hydrodynamics	and	physical	processes	the	contribute	to	

the	mobilisation	and	suspension	of	bed	material	in	the	coastal	zone	(Aagaard	

and	Jensen,	2013).	

In	a	vision	paper	on	future	research	needs	in	coastal	dynamics,	van	Rijn	et	al.	

(2013)	highlighted	 the	pressing	need	 for	 research	 to	 support	 such	models,	

focusing	 in	 particular	 on	 sand	 transport	 in	 the	 shoreface	 (non–breaking	

waves),	 surf	 and	 swash	 zones;	 employing	 field	 and	 controlled	 laboratory	

experiments.	This	requires	prioritising	research	with	reference	to	coherent	

flow	structures	 and	 the	 intermittent	 stirring	of	 sediments	by	breaking	and	

shoaling	waves,	and	the	time‐history	effects	of	suspended	sediments	under	

irregular	 wave	 conditions	 (ibid.).	 Understanding	 the	 spatial	 and	 temporal	

behaviour	of	sediment	suspension	events	in	relation	to	turbulent	fluctuations,	

both	 in	 structural	 form	 and	 in	 temporal	 distribution,	 is	 an	 important	 step	

towards	 providing	 a	 more	 satisfactory	 conceptual	 model	 for	 describing	

suspended	sediment	transport.		

1.3	Turbulence:	order	and	chaos	

Turbulence	 is	 characterised	 by	 apparently	 disordered	 and	 unpredictable	

vorticity	 at	 a	multitude	of	 scales,	 varying	 spatially	 and	 temporally	 in	 three	

dimensions	 (Hinze,	 1959;	 Tennekes	 and	 Lumley,	 1972;	 Davidson,	 2004;	

Jimenez,	2012).	While	most	of	 the	 turbulent	energy	 resides	at	 large	 scales,	

most	of	the	degrees	of	freedom	(potential	independent	variations)	reside	in	

the	small	scales,	making	such	motions	important	from	a	practical	perspective	

as	 well	 as	 the	 theoretical	 (Kaneda	 and	 Morishita,	 2013).	 Classically,	

turbulence	studies	advocated	a	‘phenomenology	of	cascades’,	arguing	that	the	

enormous	number	of	excited	degrees	of	freedom	dictates	that	turbulence	can	

only	 be	 described	 statistically,	 in	 large	 ensembles	 under	 macroscopically	

identical	external	conditions	(Monin	et	al.,	1971).	As	such,	one	can	only	try	to	

model	the	evolution	of	averaged	flow	quantities.	 



	

5	
	

Nonetheless,	the	unrelenting	scientific	quest	for	order	among	chaos	has	shown	

that	 turbulence	 is	 also	 characterised	by	 remarkably	organised	 and	 sharply	

defined	 flow	 patterns	 of	 irregular	 yet	 repetitive	 nature,	 perceived	 as	

‘coherent’,	or	–	perhaps	 ‘deterministic’	 (Kline	et	al.,	1967;	Kim	et	al.,	1971;	

Offen	 and	 Kline,	 1975;	 Hussain,	 1986;	 Fiedler,	 1988;	 Holmes	 et	 al.,	 1996;	

Schoppa	and	Hussain,	2002).		Such	complex	motions	vary	in	intensity,	wane	

and	wax	in	coherence,	and	interact	nonlinearly	with	one	another	and	with	the	

prevailing	 flow	 and	 nearby	 boundaries	 (Hunt	 et	 al.,	 2010;	 Marusic	 et	 al.,	

2010b;	Lozano‐Duran	et	al.,	2012;	Davidson	et	al.,	2013).	The	vast	wealth	of	

studies	into	the	problem	generally	considers	two	main	issues,	the	structural	

features	 of	 turbulence	 in	 the	 boundary	 layer,	 and	 the	 momentum/energy	

transfer	mechanism	resolved	 in	both	space	and	 time;	employing	numerical	

simulations,	flow	visualisation	and	experimental	measurements.	The	role	of	

vortex	structures	is	seen	as	pivotal,	while	a	statistical	approach	is	needed	to	

deal	with	the	irregularity	of	turbulent	flow	at	all	scales	(Davidson	et	al.,	2011).	 

1.4	Coherent	flow	structures	and	sediment	dynamics	

The	suspension	of	sediment	is	essentially	an	extremely	complex	case	of	fluid‐

particle	interaction,	and	a	large	number	of	studies	have	attempted	to	describe	

or	solve	this	problem	theoretically,	experimentally	and/or	numerically	(Zhu	

et	al.,	2013).	A	complete	mathematical	description	of	the	problem	necessitates	

elaborate	 models,	 accounting	 for	 both	 fluid–sediment	 	 and	 sediment–

sediment	 interactions	 and	 these	 are	 riddled	with	 difficulties	 in	 theoretical	

formulations	and	computational	requirements,	and	thus,	they	tend	to	rely	on	

empiricism	 (Zhang	 et	 al.,	 2011).	 Laboratory	 and	 field	 measurements	 and	

flow/	 transport	 visualisation	 are	 thus	 often	 the	 first	 step	 towards	

understanding	this	complex	problem.	

The	onset	of	movement	and	ensuing	transport	of	sediments,	both	as	bedload	

and	 in	 suspension,	 are	 dictated	 by	 bed	 (bottom)	 shear	 stress,	 which	

represents	 the	 frictional	 force	exerted	by	 the	 flow	per	unit	area	of	 the	bed	

(Soulsby	 and	 Clarke,	 2005).	 The	 bed	 shear	 stress	 depends	 upon	 the	

turbulence	 structure	at	 the	boundary,	 and	 is	 influenced	by	 the	presence	of	
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bedforms	and	the	properties	of	the	(entrained)	sediment	(McLean	et	al.,	1999;	

Maddux	et	al.,	2003;	Singh	and	Foufoula‐Georgiou,	2013).	 	Interchangeably,	

the	mobilisation	of	sediment,	once	stress	exceeds	the	threshold	for	incipient	

motion	(cf.	§3.2),	may	result	in	different	bedform	configurations,	potentially	

altering	the	flow	characteristics	and	stress	generation/dissipation.		Therefore,	

the	dynamic	and	interdependent	feedback	between	bed	morphology,	mobile	

sediments,	and	flow	hydrodynamics	need	to	be	considered	(Bagnold,	1951;	

Amos	and	Collins,	1978;	Thorne	and	Hanes,	2002;	Bolaños	et	al.,	2012;	van	

Rijn	et	al.,	2013).		

The	role	played	by	bed–generated	coherent	eddy	structures	in	entraining	and	

transporting	 sediment	 particles	 is	 widely	 acknowledged,	 yet	 the	 exact	

mechanism	 is	 still	 unclear	 (Dey	 et	 al.,	 2012;	 Ji	 et	 al.,	 2013).	 Coherent	

turbulence	 structures	 have	 been	 defined,	 albeit	 reluctantly,	 as	 “connected	

turbulent	fluid	masses	with	instantaneously	phase‐correlated	vorticity	over	

their	 spatial	 extent”	 (Hussain,	 1983;	 1986).	 In	 other	 words,	 turbulence	 is	

characterised	 by	 an	 organised	 component	 of	 large‐scale	 vorticity,	which	 is	

spatially	 coherent	at	 any	given	 instant,	underlying	 the	 random	and	chaotic	

three‐dimensional	 vorticity	 typical	 of	 turbulent	 flows.	 In	 that	 sense,	 a	

coherent	 structure	 can	 be	 identified	 through	 the	 intermittent	 transfer	 of	

momentum	marked	by	velocity	 fluctuations	within	a	 ‘bursting’	sequence	 in	

the	boundary	layer	(Heathershaw,	1974).	The	turbulent	bursting	process	is	a	

critical	mechanism	in	production	of	turbulent	kinetic	energy,	and	refers	either	

to	violent	intermittent	eruptions	of	fluid	away	from	the	wall	implying	a	local	

instability,	 or	 describes	 localised	 ejections	 of	 fluid	 due	 to	 the	 passage	 of	

vortices	which	persist	for	longer	times	than	ejections	(Robinson,	1991).	These	

motions	 involve	 ejections	 of	 low	 speed	 near‐bed	 fluid	 away	 from	 the	

boundary,	or	sweeping	of	faster	fluids	down	towards	the	bed.			

Fiedler	 (1988)	 added	 several	 criteria	 to	 the	 aforementioned	 definition,	

namely;	 composite	 scales,	 recurrent	 patterns	 (lifespan	 longer	 than	 the	

passage	 time	 of	 the	 structure),	 high	 organisation	 and	 quasi‐periodic	

appearance.	Thus,	besides	the	“conventional”	bursting	events	which	describe	

the	 intermittent,	 energetic	 process	 resulting	 from	 the	passage	of	 near‐wall	
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vortices	 as	 perceived	 by	 passive	 markers	 and/or	 visualisation	 studies	

(Schoppa	 and	 Hussain,	 2002);	 one	may	 identify	 vortices	 induced	 by	 wave	

breaking	 (Aagaard	 and	 Hughes,	 2010),	 or	 by	 flow	 separation	 from	 vortex	

ripples	upon	reversal	in	an	oscillatory	flow,	i.e.	vortex	entrainment/shedding	

(Amoudry	 et	 al.,	 2013).	 These	 intermittent,	 structural	 features	 of	 the	 flow	

arising	near	 smooth	 and	 rough	boundaries	 are	directly	 linked	 to	 relatively	

organised	sediment	‘streaks’	with	corresponding	scales	(Grass,	1971;	Grass	et	

al.,	 1991;	 Smith,	 1996).	 Nonetheless,	 no	 accurate	 mechanism	 has	 been	

described	 for	 the	 interaction	 between	 these	 vortical	 structures	 and	 the	

sediment,	beyond		the	conceptual	model	of	‘spinning‐wheel’	vortices	scooping	

up	sediment	along	the	surface	of	rolling	grain	ripples	put	forward	by	Bagnold	

and	Taylor	(1946)	and	modelled	by	Hansen	et	al.	 (1994).	The	 latter’s	work		

was	 restricted	 to	 a	 Lagrangian	 cloud	 of	 sediment	within	 a	 discrete	 vortex	

(fluid	in	a	cell	concept),	treated	from	a	time‐averaged	perspective.	Similarly,	

Williams	 et	 al.	 (2007)	 reported	 numerical	 and	 experimental	 results	 of	

sediment	 suspension	 by	 vortex	 pairs,	 modelled	 by	 assuming	 no	 initial	

interaction	between	independently	released	vortices	and	sediment	particles.	

More	recently,	studies	are	focusing	on	the	structural	 features	of	 turbulence	

and	their	role	in	sediment	entrainment	(Hardy	et	al.,	2010;	Grigoriadis	et	al.,	

2013;	Keylock	et	al.,	2014).	What	these	studies	lack	is	often	a	clear	resolution	

of	the	correlations	between	the	varied	temporal	and	spatial	scales	of	turbulent	

structures,	 and	 the	 corresponding	 observed	 suspensions.	 Furthermore,	

almost	all	of	these	studies	are	restricted	to	current	only	or	wave‐only	flows;	

and	 very	 little	 is	 known	 about	 the	 characteristics	 of	 coherent	 motions	 in	

combined	wave‐current	flows	(Hare	et	al.,	2014).	Even	less	is	known	about	

their	 dynamics	 in	 space	 and	 time;	 a	major	 shortcoming	 for	 process‐based	

modelling	of	sediment	transport	in	the	coastal	zone.	

1.5	Aim	and	Objectives	

This	 thesis	 investigates	 the	 complex	 interactions	 between	 bed‐generated	

coherent	 turbulence	 structures	 and	 suspended	 non‐cohesive	 sediment	

transport	 in	 (non‐breaking)	 wave‐dominated	 environments	 and	 under	

combined	wave‐current	 flows.	The	overarching	aim	 is	 to	quantify,	 through	
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prototype‐scale	experimental	observations,	the	spatial	and	temporal	scales	of	

coherent	 turbulence	 structures,	 and	 provide	 a	 conceptual	 model	 of	

entrainment	and	suspension	of	sand	in	wave‐induced,	and	combined	wave‐

current	 benthic	 boundary	 layers.	 To	 this	 end,	 a	 number	 of	 objectives	 are	

identified	through	the	following	questions:	

 What	structural	features	of	flow	(type	of	coherent	motion)	dominate	

the	production	of	Reynolds	stresses	in	irregular	oscillatory	flow	over	

rippled	beds?		

 What	 temporal	 and	 spatial	 relationships	 govern	 the	 interaction	

between	wave‐generated	boundary	layer	turbulence	and	event	driven	

sediment	 suspension;	 to	 what	 extent	 these	 co‐vary;	 and	 how	 do	

suspended	particles	affect	vorticity	dynamics	under	shoaling	waves?	

 Can	we	quantify	the	dynamics	of	coherent	flow	structures	in	combined	

flows	 in	 space	 and	 time,	 and	 how	 do	 these	 vary	 between	 currents	

aligned	with	and	opposed	to	the	direction	of	wave	propagation?	What	

implications	does	 this	have	on	sediment	resuspension	 in	 the	coastal	

zone?	

1.6	Structure	of	the	thesis	

To	address	these	questions,	results	from	two	prototype	scale	experiments	are	

presented	 and	 discussed.	 Chapters	 2	 provides	 an	 extensive	 review	 of	

turbulence	and	boundary	 layer	 theory,	 coherent	 turbulence	 structures	 and	

vorticity	 dynamics,	 as	 well	 as	 limitations	 of	 and	 approaches	 to	 modelling	

turbulence.	Chapter	3	addresses	the	fundamental	processes	governing	coastal	

sediment	transport,	with	focus	on	the	role	of	turbulence	in	stress	production	

and	 sediment	 transport.	 This	 is	 primarily	 tailored	 towards	 non‐cohesive	

sediment	dynamics	(sands)	under	oscillatory	flows	over	rough	(rippled)	beds	

and	 to	 combined	 wave‐current	 flows.	 A	 suite	 of	 tools	 for	 analysing	 the	

temporal,	spatial	and	spectral	properties	of	turbulence	stresses	and	sediment	

transport	 through	 acoustically	 measured	 high	 frequency	 velocity	 and	

backscatter	is	introduced	in	Chapter	4.	Subsequently	5	introduces	the	Barrier	

Dynamics	Experiment	 II,	 a	 large	 scale	experimental	project	 studying	 sandy	
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barrier	 beach	 dynamics	 under	 irregular	 waves.	 This	 chapter	 focuses	 on	

identification	 of	 structural	 features	 of	 turbulence	 within	 and	 outside	 the	

wave‐induced	 benthic	 boundary	 layer,	 drawing	 on	 the	 difference	 between	

waves	 that	 cause	 erosion	 or	 accretion	 of	 a	 barrier	 beach.	 The	 spatial	 and	

temporal	 relationships	 between	 wave	 induced	 structures	 and	 sediment	

resuspension	 are	 also	 assessed,	 and	 the	 scale	 of	 covariance	 determined	

through	wavelet	and	coherence	analysis	is	 investigated.	Chapter	6	presents	

the	 results	 of	 another	 prototype	 scale	 experiment	 on	 wave	 current	

interactions	conducted	in	the	HR	Wallingford	Fast	Flow	Facility.	This	chapter	

focuses	 on	 the	 hydrodynamics	 of	 turbulence	 in	 the	 near	 bed	 region,	 and	

assesses	trends,	structural	features,	and	energy	spectra	of	Reynolds	stresses	

to	describe	the	spatial	and	temporal	evolution	of	coherent	structural	features	

with	currents	aligned	with,	and	opposing	the	direction	of	wave	propagation.	

These	are	also	linked	to	event	driven	sediment	resuspension/transport	given	

prevailing	 bed	 configurations.	 	 A	 brief	 discussion	 to	 summarise	 the	 above	

results	 into	 a	 conceptual	 model	 for	 sediment	 suspension	 by	 coherent	

structures	 is	 presented	 in	 chapter	 7,	 together	 with	 the	 conclusions	 and	

limitations	of	 the	present	work,	and	suggestions	 to	extend	the	study	 in	 the	

future.		
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Chapter 2.  

Turbulence and the Benthic 
Boundary Layer 
	

	“It	remains	to	call	attention	to	the	chief	outstanding	
difficulty	of	our	subject”		Lamb	(1932)	‐	Hydrodynamics	

	

2.1	Turbulent	Fluid	Flows	

2.1.1	Turbulent	behaviour	and	flow	regimes	

Turbulence	 is	 the	predominant	and	most	 complicated	 form	of	 fluid	motion	

(Bradshaw,	1971).	Original	definitions,	such	as	that	attributed	to	Taylor,	refer	

to	irregular	motion	of	fluids	over	solid	surfaces	or	neighbouring	fluid	streams	

(Von	 Kármán,	 1937).	 	 However,	 Hinze	 (1959)	 argues	 that	 for	 a	 better	

definition,	 one	 must	 stipulate	 that	 such	 irregularity	 pertains	 to	 random	

variations	 of	 flow	 quantities	 with	 space	 and	 time	 coordinates,	 such	 that	

“statistically	 distinct	 values	 can	 be	 discerned”.	 	 This	 implies	 that	 while	

turbulent	flows	are	irregular	and	thus	it	is	impossible	to	describe	the	motion	

in	 all	 details	 spatially	 and	 temporally;	 it	 is	 possible	 to	 describe	 the	 flow	

quantities	 such	 as	 velocity,	 pressure,	 temperature,	 etc.,	 using	 the	 laws	 of	

probability,	and	indicate	distinct	average	values	of	these.	This	view	underpins	

all	 approaches	 to	 describing	 the	motion	 of	 viscous	 fluids	 by	 averaging	 the	

equations	of	motion	 following	Reynolds	 (1895).	 It	 also	 forms	 the	 basis	 for	

statistical	and	spectral	descriptions	of	 turbulent	 flows	advocated	by	Taylor	

(1935;	1938)	and	Kolmogorov	(1941a,	b;	1991a,	b).	Collectively,	such	a	view	

became	 known	 as	 the	 ‘classical’	 school	 in	 turbulence	 theory,	 following	

development	 of	 alternative	 schools	 advocating	 structural	 approaches	 and	

renormalisation	 groups.	 The	 classical	 school	 argues	 that	 the	 enormous	

number	of	excited	degrees	of	freedom	can	only	be	described	statistically,	in	

large	ensembles	under	 identical	 large‐scale	external	conditions	(Monin	and	
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Yaglom,	1971).		Besides	irregularity,	which	calls	for	a	stochastic	approach	in	

dealing	with	the	problem	rather	than	a	deterministic	one,	turbulent	flows	are	

characterised	 by	 non‐linearity	 in	 all	 three	 dimensions,	 whereby	 small	

perturbations	 may	 grow	 spontaneously,	 rendering	 the	 flow	 unstable	

(Tennekes	 and	 Lumley,	 1972).	 These	 instabilities	 are	 related	 to	 complex	

interactions	 between	 viscosity	 and	 inertia,	 and	 the	 onset	 of	 turbulence	 is	

dependent	upon	the	relative	magnitudes	of	viscous	and	inertial	forces.	

2.1.2	Reynolds	number	and	the	transition	to	turbulence 

The	onset	of	turbulence	is	defined	as	the	point	at	which	viscous	forces	are	no	

longer	 sufficient	 to	 dampen	 any	 irregularities	 within	 a	 moving	 fluid	

(Reynolds,	1883).	The	dimensionless	ratio	between	inertial	forces	pertaining	

to	 the	 mean	 flow	 velocity,	 and	 the	 viscous	 forces	 pertaining	 to	 molecular	

interactions,	is	known	as	the	Reynolds	number,	ܴ݁,	defined	by:	

ܴ݁ ൌ
ܷ. ܮ
ߥ

	
(Eq.	2.1)		

where	 L	 is	 a	 characteristic	 length	 scale	 [L];	 U	 is	 the	 characteristic	 velocity	

[L/T]	 pertaining	 to	 that	 length	 scale,	 and	 	is	ߥ the	 coefficient	 of	 kinematic	

viscosity	[L2/T].	Effectively,	by	choosing	suitable	velocity	and	length	scales,	

critical	values	of	Reynolds	number	can	be	used	to	define	the	transition	from	

laminar	 (sinuous)	 to	 turbulent	 fluid	motion.	 For	 instance,	 in	 conduit	 flows	

(pipes),	where	the	concept	was	originally	investigated	by	Osbourne	Reynolds,	

an	Re	=	2000	–	4000	delimits	the	transition	from	laminar	to	turbulent	flows	

(Reynolds,	1883).	Meanwhile	 in	open	channels,	 replacing	 the	characteristic	

length	 (pipe	 diameter)	 with	 the	 hydraulic	 radius,	 R,	 yields	 a	 transition	

threshold	value	of	500	(Chow,	1959).		

When	the	Reynolds	number	of	a	flow	exceeds	its	corresponding	critical	value,	

instabilities	within	the	flow	reach	a	disordered,	chaotic	state	whereby	fluid	

particles	no	longer	follow	straight	streamlined	trajectories	as	in	laminar	flow.	

As	a	result,	the	flow	develops	vorticity,	manifest	by	three‐dimensional	eddy	
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structures	 of	 varying	 sizes.	 The	 nonlinearity	 within	 the	 flow	 also	 induces	

vortex	 stretching,	which	 transfers	energy	over	decreasing	 scales	of	motion	

until	it	reaches	those	small	enough	to	be	confined	by	the	diffusive	action	of	

molecular	viscosity,	where	energy	is	ultimately	dissipated	as	heat	(Tennekes	

and	Lumley,	1972).		

	The	 transition	 between	 laminar	 and	 turbulent	 flow	 remains	 poorly	

understood	 since	 it	was	 first	 described	 in	Reynolds	 (1883)	 seminal	 paper.		

Several	 factors	 are	 known	 to	 influence	 this	 transition,	 including	 surface	

roughness,	curvature	of	the	boundary,	temperature,	free	stream	turbulence,	

Reynolds	 number,	 pressure	 gradients,	 and	 injection/suction	 of	 fluid	 at	 the	

boundary	(Dhawan	and	Narasimha,	1958;	Williams	et	al.,	1969).	The	process	

is	 intermittent	 in	 both	 space	 and	 time	 (Korinna	 and	 Bruno,	 2012),	 and	

represents	 an	 interplay	 between	 ‘bunches’	 of	 flow	 perturbations,	 their	

transient	growth,	and	ensuing	nonlinear	mixing	(Gebhardt	and	Grossmann,	

1994;	Grossmann,	2000).	Direct	numerical	simulation	results	of	Zaki	(2013)	

show	 an	 initial	 penetration	 of	 low‐frequency	 disturbances	 induced	 by	 the	

free‐stream	flow	into	the	region	affected	by	wall	friction	(the	boundary	layer,	

cf.	§2.2);	streaks	of	varying	scales	get	amplified	as	a	consequence,	then	either	

get	 lifted	 in	slow‐speed	streaks	near	the	edge	of	 the	boundary	 layer	(outer	

instability)	 or	 appear	 as	 near	 wall	 turbulent	 spots/	 wave‐packets	 (inner	

instability).	This	presupposes	the	existence	of	a	steady	‘base’	flow	upon	which	

perturbations	 are	 superimposed,	 and	 sets	 out	 a	 basis	 for	 a	 structural	

description	of	the	boundary	layer;	leading	eventually	to	coherent	structures	

educed	through	seemingly	chaotic	turbulent	fluctuations	within	the	flow.		

The	transition	problem	can	also	be	described	in	relation	to	the	conditions	of	

optimal	energy	growth	given	initial	conditions,	external	forcing,	and	internal	

perturbations	 (Schmid,	 2007).	 This	 fits	 in	 neatly	with	 a	 parallel	 switch	 by	

theoretical	 mathematicians	 to	 treat	 the	 problem	 as	 a	 dynamical	 system	

problem;	 namely	 through	 ‘non‐modal	 stability	 theory’	 (Obrist	 and	 Schmid,	

2003;	 Fransson	 et	 al.,	 2004;	 Chomaz,	 2005).	 	 This	 approach	 incorporates	

stochastic	influences	within	the	flow,	and	accounts	for	time‐dependency	(both	

short	 and	 longer	 terms),	 spatially	 varied	 configurations,	 and	 complex	
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underlying	 geometries	 (Schmid,	 2007);	 and	highlights	 the	 role	 of	 coherent	

turbulence	structures	extracted	by	statistical	analysis	of	velocity	correlations	

decomposed	 into	 three	 orthogonal	 planes	 (Manneville,	 2015).	 Indeed,	

observations	of	coherent	structures	in	turbulent	flows	in	the	late	1960’s	have	

shifted	our	view	of	turbulence	from	a	purely	random	process	to	one	where	

deterministic,	 structural	 features	 play	 an	 important	 role	 in	 defining	 flow	

behaviour	(Smith,	1996).	The	existence	of	such	organised	vortex	structures	

near	a	boundary	results	in	regions	of	high	and	low	momentum;	these	in	turn	

can	 be	 directly	 linked	 to	 classical	 structural	 descriptions	 of	 wall‐bounded	

flows	(Venditti	et	al.,	2013).	The	subsequent	section	provides	a	review	of	the	

classical	 structure	 of	 turbulent	 wall‐bounded	 flows,	 then	 an	 overview	 of	

coherent	turbulence	structures	and	their	role	in	momentum	exchanges	near	

the	boundary.	

2.2	The	boundary	layer		

2.2.1	The	boundary	layer	in	canonical	flows	

When	a	real	 fluid	 (a	 fluid	where	viscous	effects	cannot	be	neglected)	 flows	

past	a	solid	boundary	(wall),	it	adheres	to	the	surface	such	that	the	relative	

velocity	between	the	fluid	and	the	wall	is	zero.	This	implies	that	the	motion	is	

retarded	in	the	vicinity	of	the	wall	due	to	frictional	forces	(Schlichting,	1955).	

A	 layer	 thus	 exists	 whereby	 the	 relative	 velocity	 profile	 increases	 with	

distance	from	zero	at	the	wall	(known	as	the	condition	of	no‐slip)	to	the	full	

upstream	velocity	pertaining	to	the	external	‘frictionless’	flow		(one	that	can	

be	 essentially	 described	 as	 irrotational	 (Stokes,	 1880;	 Lamb,	 1932)).	 The	

region	of	flow	affected	by	friction	at	the	boundary	is	known	as	the	boundary	

layer	(whose	thickness	is	denoted	by	ߜ	[L]);	a	concept	introduced	by	Prandtl	

in	the	1904	as	the	‘transition	layer’	(Tani,	1977)	and	developed	further	by	his	

students	at	Göttingen,	including	Blasius	and	von	Kármán	(Anderson	Jr,	2005;	

Bodenschatz	and	Eckert,	2011).	These	early	studies	focussed	on	what	we	now	

call	 canonical	 flows,	 including	 flat‐plate	 zero‐pressure‐gradient	 boundary	

layers,	and	fully	developed	open	channel	and	pipe	(or	closed	conduit)	flows	

(Marusic	and	Adrian,	2013).		
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2.2.2	Classical	scaling	and	boundary	layer	structure	

	The	transition	from	zero	to	freestream	velocity	in	the	direction	normal	to	the	

wall	 necessitates	 shearing	 action	 between	 fluid	 layers,	 resulting	 in	 strong	

shear	 stress	 at	 the	 boundary	 that	 weakens	 with	 increasing	 distance	

(Middleton	and	Southard,	1984).	This	view	of	the	boundary	layer	structure	is	

concerned	with	the	variations	of	mean	velocity,	and	as	such	subscribes	to	the	

classical	 school	 of	 turbulence	 theory	 (statistical	 fluid	 mechanics).	 Soulsby	

(1983)	 favours	 defining	 the	 boundary	 layer	 as	 the	 region	where	 turbulent	

energy	 (cf.	 §	 2.4.1.2)	 and	 shear	 stresses	 are	 non‐zero,	 rather	 than	 using	

velocity	 profiles.	 Smith	 et	 al.	 (1991)	 also	 warn	 against	 classifying	 flow	

structure	 near	 the	wall	 based	 upon	 the	 shape	 of	 the	mean	 velocity	 profile	

rather	than	dynamical	features	of	turbulence,	particularly	when	the	dynamics	

are	essentially	Lagrangian	near	the	boundary	(i.e.	better	treated	through	the	

passage	of	individual	fluid	parcels		in	space	and	time).	

Whether	 velocity	 or	 turbulence	 arguments	 are	used,	 the	boundary	 layer	 is	

often	viewed	as	comprising	of	two	principal,	partially	overlapping	regions,	an	

‘inner’	region	(also	[near]	wall	region)	where	viscosity	is	important,	and	an	

‘outer’	 one	where	 inertia	 dominates	 (Schlichting,	 1955).	 This	 is	 commonly	

referred	to	as	classical	scaling.		The	total,	wall‐normal	shear	stress,	߬௫௭,	is	the	

sum	of	the	viscous	stress,	defined	by	Newton’s	law	of	viscosity,	ߥߩ. 	;	ݖ߲/〈ܷ〉߲

and	the	inertia‐induced	Reynolds	stress,	defined	by	the	velocity	covariance	in	

the	vertical	plane	െ〈ݓ.ݑ〉ߩ	(cf.	§	2.3.2):	

߬௫௭ ൌ .ߥߩ
߲〈ܷ〉

ݖ߲
െ .ݑ〉ߩ 〈ݓ 	

ሺݍܧ. 2.2ሻ

where	ߩ	is	the	fluid	density	[M/L3];	ߥ	is	the	kinematic	viscosity	[L2/T];	ܷ 	is	the	

mean	 flow	 velocity	 [L/T];	 	ݑ and	 	are	ݓ the	 streamwise	 and	 vertical	 (wall‐

normal)	 components	 of	 the	 velocity	 field,	 respectively,	 and	 the	 angular	

brackets	〈 〉	represent	a	time‐average.	

A	 thinner	 region	 ݖ) ߜ ൏ 0.1⁄ )	 in	 the	 immediate	 vicinity	 of	 the	 boundary	 is	

characterised	by	a	large	velocity	gradient	normal	to	the	wall,	such	that	while	
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viscosity	might	 be	 small,	 the	 resulting	 shear	 stress	 is	 large	 given	 that	 the	

viscous	stress,	߬௫௭,௩௜௦௖,	is	directly	proportional	to	the	velocity	gradient	(Pope,	

2000).	Outside	this	region,	turbulence	dominates	and	the	flow	can	be	treated	

as	 essentially	 inviscid.	 Within	 the	 inner	 layer,	 a	 small	 excess	 of	 turbulent	

energy	 production	 over	 dissipation	 contributes	 to	 energy	within	 the	 outer	

region	 (Townsend,	 1951;	 Townsend,	 1956).	 Townsend	 proposed	 a	 model	

whereby	 the	 interaction	 between	 these	 two	 layers	 occurs	 in	 two	ways:	 (i)	

mean	flow	energy	is	transferred	from	the	outer	to	the	inner	region	at	a	rate	

controlled	by	 the	Reynolds	 stress	 gradient,	 and	 (ii)	 by	 vertical	 diffusion	 of	

energy	(with	both	turbulent	intensity	(ݍଶ)	and	pressure	(݌)	components)	in	

the	opposite	direction	(Figure	2.1).		

The	two	regions	can	be	subdivided	into	several	constituent	sub‐layers,	often	

based	upon	inner	region/viscous	scales	of	length	and	velocity.		The	velocity	

scale	often	used	is	the	wall	shear	velocity	(also	friction/turbulent	velocity),	

which	denotes	wall	shear	stress	in	velocity	dimensions	[L/T];	

ఛݑ ൌ ଴ݑ
∗ ൌ ඨ

߬଴
ߩ

	
ሺݍܧ	2.3ሻ	

where	ݑఛ ൌ ଴ݑ
∗	in	this	particular	formulation	is	the	local	friction	velocity	at	the	

wall	(equivalent	wall	shear	stress	in	velocity	units	[L/T]);	and	߬଴ ൌ ߬௪	is	the	

wall	 shear	 stress	 [M/L.T2]	 at	 	ݖ ൌ 	0.	 Similarly,	 the	 viscous	 length	 scale	 is	

defined	by:	

௩ߜ			 ൌ ඨߥ
ߩ
߬଴

ൌ
ߥ
଴ݑ
∗ 	

ሺݍܧ. 2.4ሻ	



	

17	
	

	
Figure	2.1	Townsend’s	model	for	energy	flow	between	the	inner	and	outer	regions	
in	a	boundary	layer	(after	Townsend,	1956).	

	

The	merit	of	 this	scaling	 is	that	the	corresponding	Reynold’s	number,	ܴ݁ ൌ

.∗ݑ 	equates	ߥ/௩ߜ to	 unity,	 hence	 providing	 a	 clear	 distinction	 between	 the	

viscous	dominated	and	inertia	dominated	regions	of	the	flow	(Figure	2.2).	It	

follows	that	a	friction	Reynolds	number	(ratio	of	boundary	length	to	viscous	

length	scales)	can	be	defined	as	 	ܴ݁த ൌ ܴ݁∗ ൌ 	distance	The		௩.ߜ/ߜ from	the	

wall	can	be	measured	in	terms	of	viscous	lengths,	otherwise	known	as	wall	

units,	denoted	with	a	“+”	superscript,	which	take	the	form	of	a	local	Reynolds	

number,	thus	demonstrating	the	relative	importance	of	viscous	and	turbulent	

processes	locally	(Pope,	2000):	

ାݖ ൌ
ݖ
௩ߜ
ൌ
.∗ݑ ݖ
ߥ

	
ሺݍܧ. 2.5ሻ

Similarly,	this	scaling	is	evident	in	the	mean	velocity	profile	at	high	Reynolds	

numbers,	or	the	velocity	gradient,	which	can	be	shown	by	pure	dimensional	

analysis	to	be	a	function	of	ݖା	and	ܴ݁த,	given	ܴ݁த ൌ ߜ ⁄௩ߜ ൌ ቀݖ ௩ൗߜ ቁ 	ൊ	ቀݖ ൗߜ ቁ:		

݀〈ܷ〉
ݖ݀

ൌ
∗ݑ

ݖ
Φ൬

ݖ
௩ߜ
,
ݖ
ߜ
൰	

ሺݍܧ. 2.6ሻ	

Prandtl	 proposed	 in	 1925	 that	 as	 ݖ ⁄	ߜ → 0;	 equation	 (2.6)	 tends	

asymptotically	to	a	function	of	ݖ ⁄	௩ߜ ;	such	that	(Pope,	2000;	Davidson,	2004):	
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݀〈ܷ〉

ݖ݀
ൌ
∗ݑ

ݖ
.Φଵ 	൬

ݖ
௩ߜ
൰ , ݎ݋݂

ݖ
ߜ
≪ 1 	

ሺݍܧ. 2.7ሻ	

Whereby	the	function	Φ	takes	on	a	specific	form,	Φଵ	,	close	to	the	bed:	

		 lim
௭ ఋ⁄ →଴

Φ ൬
ݖ
௩ߜ
,
ݖ
ߜ
൰ ൌ 	Φଵ ൬

ݖ
௩ߜ
൰ 	 	 ሺݍܧ. 2.8ሻ	

In	wall	units;	this	takes	the	form:	

ାݑ݀

ାݖ݀
	ൌ

1
ାݖ

.Φଵሺݖାሻ 	
ሺݍܧ. 2.9ሻ	

By	integrating	equation	(Eq.	2.9)	it	can	be	shown	that	ݑା ൌ 	function	a	is	∗ݑ/ݑ

of	 only	 	at	ାݖ high	 Reynolds	 numbers	 (beyond	 transitional);	 with	 plentiful	

experimental	 evidence	 supporting	 universality	 of	 this	 relationship	 in	 wall	

bounded	flows,	known	as	the	Law	of	the	Wall:		

ାݑ ൌ ݂	ሺݖାሻ 	 ሺݍܧ. 2.10ሻ	

Subsequently,	 it	 is	 rather	 common	 to	 delimit	 four	 constituent	 sublayers	

within	the	boundary	layer	in	a	flow	of	a	given	Reynolds	number,	classically	

defined	as	follows:	

The	viscous	sub‐layer:	this	is	the	layer	in	the	direct	vicinity	of	the	wall	where	

the	viscous	shear	stress	dominates	the	turbulent	shear	stress,	and	where	the	

shear	is	particularly	high	due	to	the	sharp	vertical	gradient	in	mean	velocity.		

This	 layer	 is	occasionally	misnamed	the	 laminar	sublayer,	owing	 to	 limited	

thickness	which	 forces	 streamlines	 to	be	parallel	 (the	original	definition	of	

sinuous	 motion	 proposed	 by	 Reynolds).	 However,	 this	 sublayer	 does	

experience	random	fluctuations	in	velocity,	and	hence	it	is	not	strictly	laminar,	

despite	the	molecular	diffusion	dominating	the	turbulent	flux	of	momentum.	

Nonetheless,	these	fluctuations,	which	are	often	parallel	to	the	boundary,	can	

induce	significant	variations	in	stress,	with	implications	for	the	transport	of	

scalars	within	the	flow	(Middleton	and	Southard,	1984).		The	viscous	sublayer	
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is	most	 commonly	delimited	by	wall	 units	 ାݖ ൏ 	5	and	 	 ାݑ ൌ 	,However	ା.ݖ

some	authors	delimit	the	viscous	sublayer	by	ݖା ൏ 11.6	based	on	roughness	

arguments,	with	ݖା ൏ 	5	defining	the	extent	of	the	‘laminar’	part	of	it	(Sleath,	

1984;	Paphitis	and	Collins,	2001).		

The	 buffer‐layer:	 just	 outside	 the	 viscous	 sub‐layer,	 the	 mean	 velocity	

gradient	 is	 still	 rather	 high,	 yet	 the	 flow	 is	 markedly	 turbulent,	 and	 both	

viscous	 and	 turbulent	 shear	 stresses	 are	 significant.	 	 	 It	 is	 often	 delimited	

between	5 ൏ ାݖ ൏ 30,	 and	 a	 velocity	 scale	 that	 is	 a	 linear	 function	 of	 the	

length	scale,	ݑା ൌ ଵ݂ሺݖାሻ.	High‐energy	small‐scale	turbulence	is	generated	in	

this	 sub‐layer	 due	 to	 the	 strongly	 sheared	 flow	 where	 the	 generation	 of	

turbulent	 kinetic	 energy	 (by	 conversion	 from	 mean‐flow	 energy	 into	

longitudinal	 streaks	 and	 streamwise	 vortices	 (Jiménez,	 2004));	 	 as	well	 as	

dissipation	 are	 both	 at	 their	 peaks,	 albeit	 dependent	 on	 the	 value	 of	 flow	

Reynolds	 number	 (Willmarth	 and	 Lu,	 1972;	 Wei	 and	 Willmarth,	 1989;	

Hutchins	and	Marusic,	2007;	Hutchins	et	al.,	2009)	.			

The	 log‐layer	 (inertial	 sub‐layer),	 also	 called	 the	 overlap	 region,	 often	

assumed	to	extend	up	to	10‐20%	of	the	full	boundary	thickness,	is	dominated	

by	 turbulent	Reynolds	stresses,	 given	ݖା ≅ 0.1	ሺߜ ⁄௩ߜ ሻ ൌ 0.1. ܴ݁ ≫ 1.	These	

exchanges	of	momentum	work	against	the	mean	velocity	gradient	extracting	

energy	from	the	flow	and	generating	large‐scale	eddies.	The	velocity	profile	in	

this	region	follows	a	logarithmic	distribution	(hence	log‐layer)	and	the	stress,	

as	a	result,	is	often	assumed	constant.	The	eddies,	nonetheless,	‘cascade’	their	

energy	 down	 through	 smaller	 and	 smaller	 scales	 via	 vortex	 pairing,	

intensifying	vorticity	(Willmarth,	1975).	 In	this	 layer,	 insignificant	viscosity	

reduces	Φଵሺݖାሻ			to	a	constant	value;	given	by:		

Φଵሺݖାሻ ൌ
1
ߢ
, for

ݖ
ߜ
≪ 1 and ାݖ ≫ 1 	

ሺݍܧ. 2.11ሻ	

This	relationship	can	also	be	derived	from	self‐similarity	arguments	between	

the	local	and	global	Reynolds	numbers	outside	the	small	viscous	sublayer,	in	
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thermally	neutral	bounded	flows	at	high	Reynolds	numbers	(Barenblatt	and	

Monin,	1979).			

It	follows	that	the	mean	velocity	gradient	can	be	written	as:	

ାݑ݀

ାݖ݀
	ൌ

1
ߢ ାݖ

	
ሺݍܧ. 2.12ሻ	

Or	by	integration;	

ାݑ ൌ
1
ߢ
ln ାݖ ൅ 	ܤ

ሺݍܧ. 2.13ሻ	

where	B	is	a	constant	of	integration,	related	to	wall	condition	(e.g.	roughness,	

cf	§2.2.2).	In	fully	expanded	form;	this	becomes:	

௭ݑ
∗ݑ

ൌ
1
ߢ
ln ൬

.∗ݑ ݖ
ߥ
൰ ൅ 	ܤ

ሺݍܧ. 2.14ሻ	

This	equation	is	known	as	the	logarithmic	law	of	the	velocity	profile	for	a	clear	

fluid	near	a	wall	(log‐law),	attributed	to	von	Kármán‐Prandtl.	The	parameter	

	,(Schlichting	0.40	~	of	value	the	given	often	constant,	Kármán’s	von	the	is	ߢ

1955).		Figure	2.2	reproduces	a	full	representation	of	the	law	of	the	wall	in	the	

inner	part	 of	 a	 smooth,	 turbulent	boundary	 layer,	 based	on	measurements	

from	a	range	of	mean‐flow	Reynolds	numbers	and	flow	geometries;	presented	

in	Middleton	and	Southard	(1984).	The	viscous	dominated	region	is	defined	

by	ݑା ൌ 	;2.14	Equation	by	given	is	region	dominated	inertia	the	whereas	ା;ݖ

whereby	 the	 slope	 represents	 von	 Kármán’s	 constant	 and	 the	 intercept,	

derived	 experimentally,	 is	 equal	 to	 5.1	 for	 a	 smooth	 boundary	 outside	 the	

viscous	and	buffer	layers	(the	latter	of	which	is	not	particularly	evident	here).	

For	 a	 rough	 boundary;	 the	 intercept	 is	 often	 given	 the	 value	 of	 8.5	 over	

granular	walls	(ibid.).		

Prandtl	 also	 showed	 the	 logarithmic	 relationship	 from	 mixing	 length	

arguments.	 Prandtl	 introduced	 the	 concept	 of	 a	 mixing	 length,	 ݈ ൌ .ߢ 	,ݖ

denoting	the	average	transverse	distance	in	the	region	of	flow	over	which	a	

small	fluid	mass	is	carried	by	the	turbulent	mixing	process,	at	a	height	ݖ		above	
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the	bed	 (Prandtl,	 1925;	1926).	 	He	argued	 that	 the	difference	between	 the	

original	average	velocity	of	 the	particle	and	that	of	 the	region	into	which	it	

comes	must	 be	 proportional	 to	 the	magnitude	 of	 the	 velocity	 fluctuations	

(denoted	 by	 the	 prime	 ′	 symbol),	 involved	 in	 the	 lateral	 exchange	 in	

momentum	 caused	 by	 an	 eddy	 (Rouse,	 1937).	 As	 such,	 the	 effective	 shear	

stress	is	given	by:		

߬ ൌ ߩ |′ݑ| ݈.
തݑ݀
ݖ݀

	
ሺݍܧ. 2.15ሻ	

which	yields	ݑ∗ ൌ ݈. ሺ݀ݑ ⁄ݖ݀ ሻ;	the	integral	of	which,	in	the	vertical,	is	the	more	

commonly	used	version	of	the	logarithmic	law	of	the	wall;	given	by:	

ݑ ൌ
∗ݑ

ߢ
ln ൬

ݖ
଴ݖ
൰ 	

ሺݍܧ. 2.16ሻ	

where	 	is	଴ݖ the	 height	 at	 which	 the	 velocity	 profile	 falls	 to	 zero	 for	 a	

logarithmic	distribution.	Yalin	(1972)	suggests	that	if	the	fluid	were	not	clear,	

this	distribution	can	be	logarithmic	only	if	the	vertical	gradient	of	suspended	

particle	 concentration,	 dC/dz	 =	 0,	 such	 that	 		ߢ <	 0.4.	 However,	 there	 is	 no	

consensus	on	the	matter,	with	experimental	results	supporting	(e.g.	Castro‐

Orgaz	 et	 al.	 (2012);	 Gust	 (1984));	 or	 contradicting	 (e.g.	 Coleman	 (1981;	

1986));	the	view	that	ߢ	depends	on	concentration.			
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Figure	2.2	The	law	of	the	wall,	represented	as	a	semi‐log	plot	of	measured,	dimensionless	velocity,	ݑା,	ratio	of	local	time‐averaged	

velocity	to	shear	velocity,	against	dimensionless	height	above	bed	(ݖା,	wall	unit)	for	the	inner	layer	of	a	smooth	turbulent	boundary	

layer	(modified	from	Middleton	and	Southard	(1984).	Boundary	layer	zones	defined	following	Pope	(2000)).	
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The	wake	layer/core	flow:		further	away	from	the	boundary,	outside	the	log‐

layer,	the	velocity	distribution	no	longer	follows	a	logarithmic	profile.	In	this	

region,	which	occupies	most	of	the	flow,	viscosity	is	assumed	to	have	no	role	in	

the	mean	relative	and	turbulent	energy	containing	motions,	and	hence	Φ	tends	

asymptotically	to	a	function	Φ଴	of	ߜ/ݖ	for	large	values	of	ݖା:		

	 lim
௭ ఋ⁄ ೡ→ஶ

Φ൬
ݖ
௩ߜ
,
ݖ
ߜ
൰ ൌ Φ଴ ቀ

ݖ
ߜ
ቁ 	 ሺݍܧ. 2.17ሻ	

By	substituting	this	relation	into	equation	Eq.	2.6,	the	Velocity‐Defect	Law	was	

derived	by	von	Kármán	for	flow	between	parallel	walls	(von	Kármán,	1930):	

ܷ଴ െ	〈ܷ〉
∗ݑ

ൌ 		݂′ ቀ
ݖ
ߜ
ቁ 	

ሺݍܧ. 2.18ሻ	

This	relationship	describes	the	difference	between	the	mean	velocity	〈ܷ〉	and	

the	 centre‐line	 velocity	 ܷ଴		 (centre	 of	 the	 flow)	 such	 that	 the	 defect	

(normalised	 by	 	(∗ݑ is	 solely	 a	 function	 of	 	,ߜ/ݖ yet	 without	 a	 universal	

formulation.	The	log‐law	can	be	derived	by	applying	both	equations	Eq.	2.7	and	

Eq.	2.12	in	the	overlap	region	at	high	Reynolds	numbers.	Yalin	(1972)	suggests	

that	the	universal	law	for	velocity	distribution	for	fully	developed	flow	over	a	

flat	wall	(zero‐pressure	gradient)		is	given	by	:	

ܷ௠௔௫ െ	〈ܷ〉

∗ݑ
ൌ െ	

1
ߢ
. ln ቀ

ݖ
ߜ
ቁ 	

ሺݍܧ. 2.19ሻ	

where	the	velocity	is	maximum,	ݑ ൌ 	ܷ௠௔௫	at	ݖ ൌ 	indicates	expression	This	.	ߜ

universality	 in	 the	 sense	 that	 the	 ‘dimensionless	 velocity	 deficit’	 (left	 hand	

side)	varies	with	dimensionless	position	above	the	wall,	 in	the	same	fashion	

for	any	stage	of	a	two‐dimensional	turbulent	fluid	flow	for	any	geometry	and	

roughness,	 independent	of	density,	viscosity,	bed	shear	stress	and	turbulent	

kinetic	 energy	 (in	 the	 right	 hand	 side	 of	 Equation	 2.14),	 and	 is	 a	 ‘good	

approximation’	otherwise.	The	log‐law	and	the	defect	law	can	also	be	derived	

by	dimensional	analysis	(Millikan,	1939),	and	have	been	extensively	supported	

by	 empirical	 evidence	 (Fernholz	 and	 Finleyt,	 1996).	 Ludwieg	 and	 Tillmann	
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(1949)	have	shown	that	both	the	log‐law	and	the	velocity‐defect	law	still	apply	

to	boundary	layers	with	positive/adverse	pressure	gradients	(Clauser,	1954),	

and	ample	experimental	evidence	supports	these	laws	for	smooth	and	rough	

surfaces.	Clauser	(1954)	has	demonstrated	that	while	the	velocity	profile	in	the	

outer	 layer	 is	 nearly	 universal,	 the	 vertical	 distribution	 deviates	 more	

considerably	in	the	transitions	between	the	inner,	 log	and	outer	layers.	This	

deviation	was	shown	by	Coles	(1956)	to	have	a	wake‐like	shape	relative	to	the	

free	steam,	and	as	such,	it	is	common	practice	to	combine	the	two	into	Cole’s	

law	of	the	wake:	

ାݑ ൌ ݂ሺݖାሻ ൅ Π ݃ ቀ
ݖ
ߜ
ቁ 	 ሺݍܧ. 2.20ሻ	

where	 Π	is	 Cole’s	 wake	 factor	 (which	 varies	 with	 upstream	 distance	 and	

elevation)	 and	 ݃	is	 gravitational	 acceleration	 [L/Tଶ].	 Nonetheless,	 the	

logarithmic	 law	 of	 the	 wall	 (Equation	 2.11),	 which	 can	 encompass	 this	

variation	 within	 the	 B	 parameter,	 still	 enjoys	 immense	 support	 as	 an	

alternative	to	multi‐layered	formulations.	In	fact,	it	is	often	seen	as	superior	to	

alternative	 formulations,	 including	 ‘power	 laws’,	 with	 ample	 experimental	

evidence	 providing	 consistent	 and	 accurate	 description	 of	 mean	 flow	

properties		(Monkewitz	et	al.,	2008;	Marusic	et	al.,	2013).	

It	 is	 rather	 remarkable	 that	 such	 complex	 processes	 can	 be	 reduced	 into	 a	

velocity	 profile	 that	 can	 be	 described	 by	 relatively	 simple	 formulae.	 The	

logarithmic	law	of	the	wall	has	fallen	under	criticism,	particularly	in	relation	to	

the	Reynolds	number	influence	within	the	wake	sub‐region	(e.g.	Barenblatt	and	

Monin,	1979;	Barenblatt,	1993).		One	of	the	underlying	assumptions	of	the	log‐

law	 is	 that	 the	 Reynolds	 stress	 profiles	 are	 independent	 of	 the	 Reynolds	

number	 in	 the	 inner	 layer	 (Pope,	 2000)	 which	 contradicts	 experimental	

observations	 (Wei	 and	 Willmarth,	 1989;	 Gad‐el‐Hak	 and	 Bandyopadhyay,	

1994).	 	 The	 latter	 study	 showed	 that	 at	 the	 same	 	ାݖ near	 the	 wall,	 power	

spectra	of	streamwise	fluctuations	scaled	with	the	inner	variables	over	most	of	

the	 energy‐containing	 frequency	 range	 yet	 the	 vertical	 fluctuations	 did	 not.	

They	attributed	this	primarily	to	increased	stretching	along	the	stream,	as	well	
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as	to	geometry	effects	from	the	side	walls	of	the	channel.	Similarly,	Wosnik	et	

al.	 (2000)	 	argue	that	there	exists	a	 ‘mesolayer’	at	 the	bottom	of	the	overlap	

layer	(bounded	between	30<	z+	<300)	where	no	scale	separation	necessarily	

exists	 between	 energy	 production	 and	 dissipation	 ranges	 while	 inertia	

dominates.	 This	 implies	 that	 both	 the	 Reynolds	 stress	 and	 the	 mean	 flow	

depend	upon	the	Reynolds	number	despite	the	fact	that	the	viscosity	terms	are	

negligible	within	the	equations	of	motion.	Fernholz	and	Finleyt	(1996)	suggest	

that	 any	 Reynolds	 number	 dependence	 is	 often	 hidden	 in	 the	 scatter	 of	

measurements	in	experimental	work.	Figure	2.3	illustrates,	as	an	example,	the	

variation	 of	 boundary	 layer	 structure	 (classical	 scaling)	 as	 a	 function	 of	 the	

Reynolds		number.		

	

Figure	2.3	Inner	and	outer	regions	and	sub‐layers	of	the	boundary	layer	in	a	turbulent	
channel	flow,	as	a	function	of	the	flow	Reynolds	number,	Re,	in	open	channels;	after	
Pope	(2000).	
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2.2.3	Wall	roughness	and	flow	regimes 

While	most	of	the	original	boundary	layer	theory	work	assumed	a	smooth	wall,	

considerable	work	has	been	dedicated	 to	 assess	 their	 applicability	 for	 flows	

over	rough	surfaces.	Systematic	assessment	of	roughness	is	often	hindered	by	

the	difficulty	arising	from	the	potentially	 infinite	number	of	geometric	forms	

and	 shapes	 of	 protrusions.	 Schlichting	 (1955)	 postulates	 that	 for	 a	 wall	 of	

identical	protrusions,	for	example,	the	drag	will	be	a	function	of	the	density	of	

these	elements	(i.e.	number	per	unit	area)	and	how	they	are	distributed,	as	well	

as	their	shape	and	height.	The	review	by	Hopf	(1923)	showed	that,	for	pipes	

and	channels,	roughness	due	to	tightly	spaced	elements	(e.g.	coarse	sand	glued	

onto	a	pipe	wall)	can	induce	‘skin	friction’	that	is	proportional	to	the	squared	

velocity	(i.e.,	independent	of	the	Reynolds	number).	In	this	case,	roughness	can	

be	expressed	singularly	by	the	term	‘relative	roughness’,	the	ratio	between	the	

height	of	protrusion	and	 the	hydraulic	 radius.	Conversely,	 roughness	due	 to	

more	 ‘gentle’,	 scarcely	 distributed	 protrusions	 is	 a	 function	 of	 both	 the	

Reynolds	number	and	relative	roughness.	Nikuradse	(1933)	represented	wall	

roughness	protrusions	by	cementing	sand	grains	of	defined	sizes,	as	closely	as	

possible,	into	the	inner	walls	of	circular	pipes,	to	study	resistance	as	a	function	

of	relative	roughness	and	Reynolds	number	(Figure	2.4).	He	showed	that	the	

form	of	the	velocity	profile	is	more	directly	dependant	on	relative	roughness,	

defined	as	݇௦ ܴ⁄ ;	where	݇௦	is	the	projection	(height)	of	the	roughness	element	

and	ܴ	is	the	pipe	radius;	rather	than	on	the	Reynolds	number,	particularly	in	

flows	 of	 high	 Reynolds	 number.	 Friction	 is	 only	 a	 function	 of	 the	 Reynolds	

number	 in	 laminar	 flows.	 By	 incorporating	 the	 logarithmic	 law	 of	 the	 wall	

(Equation	 2.11)	 into	 this	 argument;	 the	 following	 equation	 can	 be	 written	

(Nikuradse,	1933;	Schlichting,	1955;	Yalin,	1972):		

ݑ
∗ݑ

ൌ
1
ߢ
ln ൬

.∗ݑ ݇௦
ߥ

൰ ൅ 	ܤ
ሺݍܧ. 2.21ሻ	

whereby	ݑ∗݇௦ ⁄	ݒ is	an	equivalent	of	 the	 roughness	element	 (grain)	Reynolds	

number	 	dictates	which	,(∗௦݇	ݎ݋	∗ܴ݁) the	 relation	between	 the	wall	 roughness	
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elements,	 and	 the	 thickness	 of	 the	 viscous	 sublayer,	 	within	manifest	௩;ߜ the	

integration	parameter	ܤ.		Therefore,	 three	regimes	of	 flow	can	be	discerned,	

illustrated	in	Figures	2.4	and	2.5,	as	follows:	

‐ Hydraulically	 smooth:	 	 the	 protrusion	 of	 the	 roughness	 elements,	 ݇௦,	 is	

small	enough	that	they	are	fully	contained	within	the	viscous	sublayer,	ߜ௩.		

Here	the	friction	related	coefficient,	B,	is	a	function	of	the	Reynolds	number	

only.	 This	 region	 is	 delimited	 by	 a	 roughness	 grain	 Reynolds	 number	

between:	0 ൑ .∗ݑ	 ݇௦ ⁄ߥ ൑ 5.		

‐ Transitional:	the	protrusions	extend	outside	the	 ‘laminar’	sublayer	(ݖା ൏

5),	yet	are	still	partly	contained	within	the	upper	limit	of	the	viscous	sublayer	

ାݖ) ൏ 11.6).	 	 In	 this	 regime,	 delimited	 by	 grain	 Reynolds	 number	 5 ൑

.∗ݑ	 ݇௦ ⁄ߥ ൑ ~70;	the	resistance	is	a	function	of	both	the	relative	roughness,	

and	the	Reynolds	number.		

‐ Hydraulically	rough	(completely	turbulent):	the	height	of	the	roughness	

elements	exceeds	the	thickness	of	the	now	incoherent	viscous	sublayer	as	

these	protrusions	perturb	and	instigate	irregularities	into	the	buffer	layer.	

Defined	 by	 .∗ݑ	 ݇௦ ⁄ߥ ൒ 70,	 this	 regime	 is	 only	 a	 	 function	 of	 the	 relative	

roughness.		

It	 is	 important,	however,	 to	note	that	 in	the	above	framework	for	describing	

flow	 over	 rough	 walls	 pertains	 to	 what	 is	 commonly	 referred	 to	 as	 k‐type	

roughness,	characterised	by	roughness	geometry,	namely	average	height	and	

shape	of	protrusion,	and	density	of	distribution,		as	opposed	to	d‐type	(groove‐

like)	roughness	which	was	first	noted	by	(Perry	et	al.,	1969).	In	this	case,	it	is	

common	 to	 identify	 an	 equivalent	 sand	 roughness,	 the	 ݇௦	parameter,	which	

represents	the	size	of		uniform	sand‐grains	that	would	produce	identical	wall	

shear	stress	as	 the	actual	roughness	under	 the	same	 flow	conditions	(Hinze,	

1959).	For	flow	of	loose	boundaries	(e.g.	bed	with	mobile	sediment);	the	value	

of	݇ ௦	is	often	related	to	diameter	of	the	largest	grains	of	the	(plane)	bed,	or	some	

statistical	 description	 of	 the	 particle	 size	 distribution	 (e.g.	 ,଺ହܦ ,ହ଴ܦ ,ସ଼ܦ 	;ଽ଴ܦ

where	 the	 subscript	 denotes	 the	 percentage	 of	 mass	 comprised	 of	 smaller	

particles	in	the	sample)	with	no	regard	to	gradation,	shape	or	flow	conditions	

(e.g.	 Einstein	 and	 El‐Samni,	 1949;	 Engelund	 and	 Hansen,	 1967;	 Ackers	 and	
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White,	1973;	Sleath,	1984;	Nielsen,	1992).	van	Rijn	(1982)	reviewed	a	number	

of	 these	 relationships	 	 and	 showed	 a	 variability	 of	 about	 1‐10	 	that	ଽ଴ܦ is	

independent	 of	 the	 sediment	 transport	 stage	 for	mobile	plane	beds.	He	 also	

demonstrated	a	dependency	on	bedform	height	and	steepness	where	mobile	

bedforms	 were	 present,	 and	 numerous	 alternative	 empirical	 equations	 are	

present	in	the	literature	and	used.		

	In	the	k‐type	roughness,	the	skin	friction	has	a	direct	effect	on	the	mean	flow	

velocity	and	at	high	Reynolds	number,	once	 the	smallest	eddies	 shed	by	 the	

protrusions	are	of	comparable	size,	the	viscous	effects	are	no	longer	enough	to	

supress	these	perturbations	(Allen	et	al.,	2007).	The	effect	of	wall	roughness	is	

thus	expressed	as	a	vertical	shift	in	the	mean	velocity	distribution	for	a	smooth	

wall,	with	 this	 shift	 dependent	 on	 the	 type	 and	magnitude	of	 the	 roughness	

(hence	hydraulic	roughness,	ݖ଴).	For	large	values,	the	flow	becomes	fully	rough,	

and	the	friction	is	independent	of	the	Reynolds	number;	with	‘form	drag’	on	the	

roughness	elements	being	a	principle	mechanism	of	friction,	and	the	wall	shear	

stress		can	be	described	as	a	quadratic	function	of	velocity	(Sternberg,	1968;	

Yalin,	1972;	Allen	et	al.,	2007).	 	Bradshaw	(2000)	thus	raises	the	challenging	

point	 of	whether	 a	 critical	 roughness	 height	 or	 a	 Reynolds	 number	 exist	 to	

denote	 the	 onset	 of	 roughness	 effects	 in	 a	 flow,	 suggesting	 that	Nikuradse’s	

work	 is	 a	 very	 special	 case	 where	 roughness	 was	 uniform	 and	 Reynolds	

numbers	 within	 the	 transitional	 regime.	 On	 the	 other	 hand,	 the	 poorly‐

understood	d‐type	roughness	is	characterised	by	indentations	and	grooves	at	

the	wall,	the	studies	of	which,	while	limited	in	scope,	indicate	the	possibility	of	

perturbing	the	buffer	layer	without	affecting	the	outer	flow	(Jiménez,	2004).	

Another	 ‘conceptual’	 form	 of	 roughness	 is	 given	 by	 the	 parameter	 	଴ݖ in	 the	

logarithmic	law	of	the	wall	(Equation	2.16),	which	denotes	the	height	at	which	

the	 velocity	 profile	 is	 zero	 for	 a	 logarithmic	 distribution.	 This	 term	 is	 often	

referred	 to	 as	 the	 hydrodynamic	 bed	 roughness,	 and	 represents	 the	 bulk	

influence	of	the	physical	roughness	elements	on	the	mean	flow.	The	value	of	

	often	଴ݖ falls	within	 the	viscous	sublayer	where	 technically	 the	 flow	velocity	

distribution	deviates	from	the	log‐law	description.	It	is	often	assumed	that	the	

hydrodynamic	 roughness	 is	 directly	 proportional	 to	 the	 physical	 roughness	
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height	 in	 fully	 rough	 flow,	 or	 the	 equivalent	 sand‐grain	 in	 densely‐packed	

uniform	elements	(Middleton	and	Southard,	1984).	The	two	are	often	related	

such	that		ݖ଴ ൌ ݇௦/30,	based	on	the	work	of	Nikuradse	(1933);	and	this	relation	

is	 commonly	 used	 for	 the	 derivation	 of	 (time‐varying)	 bed	 shear	 stress		

(Soulsby,	1997).	Heathershaw	(1981)	collated	various	authors’	measurements	

of	ݖ଴	based	on	the	logarithmic	profile	for	different	seabed	bottom	types	in	the	

field,	and	this	was	extended	by	Soulsby	(1983).	They	 found	that	mixtures	of	

grain	sizes	have	relatively	small	values	of	ݖ଴,	albeit	highly	varied,	as	the	finer	

grains	tend	to	fill	in	the	spaces	between	the	coarser	roughness	elements.	Where	

ripples	are	present,	the	value	of	ݖ଴	is	higher	than	a	comparable	flat	bed	due	to	

form	drag	(pressure	field	effect	over	the	bed	geometry),	extending	to	heights	

that	 even	 exceed	 the	 ripple	 wavelength.	 A	 further	 complexity	 arises	 when	

sediment	is	mobilised	into	suspension	affecting	the	velocity	profile	and	hence	

the	 value	 of	 	଴ݖ derived	 from	 field	measurements	 (Smith	 and	McLean,	 1977;	

Dyer,	1980).	Finally,	where	the	roughness	elements	are	large	obstacles	(e.g.	a	

vegetation	canopy),	the	corresponding	displacement	in	the	velocity	profile	is	

distinguished	 from	 the	 hydrodynamic	 roughness	 as	 a	 ‘zero‐displacement	

height’,	݀,	 equivalent	 to	 the	 level	 that	 would	 be	 obtained	 by	 flattening	 the	

roughness	elements	into	a	smooth	surface	(Schlichting,	1936;	Pasquill,	1950;	

Takeda,	1966;	Jackson,	1981):	

ݑ
∗ݑ

ൌ
1
	ߢ
ln ൬

ݖ െ ݀
଴ݖ

൰ 	
ሺݍܧ. 2.21ሻ	
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Figure	2.4	Variation	of	integration	constant	ܤ	with	roughness	Reynolds	number	ܴ݁∗	
for	hydraulically	smooth	and	rough	walls;	after	Nikuradse	(1933).	

	
Figure	2.5	 Schematic	 representation	 (not	 to	 scale)	of	 smooth	 and	 rough	boundary	
conditions	and	wall	roughness	height;	after	Tomlinson	(1993).	
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2.2.4	Unsteady	boundary	layers	in	oscillatory	and	combined	flows	 

So	far,	the	discussion	of	boundary	layers	has	been	restricted	to	those	where	the	

flow	 is	 steady,	 resulting	 in	 uniform,	 time‐invariant	 shear	 across	 the	 wall	

boundary	 layer.	 Oscillatory	 turbulent	 boundary	 layers,	 such	 as	 those	

encountered	 in	 offshore	 and	 coastal	 environments	 due	 to	 surface	 gravity	

waves,	differ	from	classical	layers	described	above	in	that	they	are	unsteady.	

The	main	 issue	 to	 contend	with	when	 dealing	with	 oscillatory	 or	 combined	

flows	in	the	coastal	zone	is	the	different	time	scales	between	what	is	essentially	

a	 steady,	 slowly‐varying	 current	 (tidal	 or	 density	 driven);	 and	 the	 unsteady	

oscillatory	motion	of	waves	(Grant	and	Madsen,	1979).	With	steady	currents	

(uniform	shear),	it	is	common	to	assume	that	a	fully	developed	boundary	layer	

occupies	most	of	the	depth	of	flow	(e.g.	 in	a	tidal	setting);	whereas	the	short	

time	scales	of	orbital	motion	imply	an	oscillatory	boundary	layer	confined	to	

the	vicinity	of	the	wall	(or	sea	bed).	Hence,	oscillatory	flows	are	characterised	

by	a	very	thin	layer	of	high	shear	near	the	bed,	outside	of	which	the	flow	can	

often	 be	 considered	 as	 potential	 flow	 (irrotational	 velocity	 field)	 for	 non‐

breaking	waves,	where	various	wave	theories	can	be	applied	(Svendsen,	2006).		

The	 structure	of	 the	wave	boundary	 layer,	where	 the	velocity	profile	 is	 also		

directly	linked	to	friction	at	the	bed,	differs	from	uniformly	sheared	flow	due	to	

phase	differences	between	the	bed	stress	and	ambient	velocity	(Kajuira,	1968).	

A	further	level	of	complexity	arises	from	the	variety	of	wave	theories	available	

to	describe	the	wave‐induced	flow	outside	the	boundary	layer,	as	well	as	wave	

transformations,	 asymmetry,	 and	 non‐linear	 interactions	 leading	 to	 wave‐

induced	 currents,	 including	 boundary	 layer	 streaming	 and	 return	 flows	

(Longuet‐Higgins,	 1953;	 Svendsen,	 2006).	 	 This	 is	 particularly	 important	 as	

water	waves	in	the	environment	tend	to	fall	along	a	spectrum	of	superimposed	

waves	at	various	 stages	of	 generation,	propagation	and	dissipation.	As	 such,	

most	wave	 theories	 are	 often	 simplifications	of	 reality;	 and	 founded	upon	 a	

number	 of	 assumptions	 including	 homogeneous	 and	 incompressible	 fluid	

(water)	that	is	inviscid	and	lacks	surface	tension;	flowing	in	an	essentially	2D,	

quiescent	(purely	oscillatory)	fashion	of	constant	form	over	a	horizontal	and	

impermeable	seabed	(Tomlinson,	1993).	
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In	simplest	 terms,	assuming	 the	(incompressible)	 flow	varies	 in	a	sinusoidal	

fashion	parallel	 to	a	plane	wall,	 (i.e.	 first	order	approximation	or	Airy	waves	

with	zero	net	flow	within	a	single	wave	period,	ܶ),	then	the	ambient	velocity	

varies	in	time,	ݐ,	and	may	be	described	as	follows:	

௧ܷ ൌ ܷஶ. sinሺ߱ݐሻ	 ሺݍܧ. 2.22ሻ	

where	߱ ൌ 	free	the	of	amplitude	the	is	ܷஶ	and	frequency,	angular	the	is	ܶ/ߨ2

stream	 (ambient)	 oscillation	 velocity	 derived	 from	 a	 chosen	 wave	 theory	

outside	the	boundary	layer	(Justesen,	1988).	The	amplitude	of	the	local	velocity	

oscillates	around	the	free	stream;	implying	that	the	velocity	defect	is	akin	to	a	

dampened	wave	that	propagates	away	from	the	boundary	(Nielsen,	1992).	The	

wave‐induced	boundary	layer	thickness,	ߜ௪,	is	defined	by	Jonsson	(1966b)	as	

the	distance	from	the	wall	over	which	velocities	deviate	significantly	from	the	

maximum	free‐stream.	Flows	within	this	boundary	depend	upon	the	ambient	

velocity,	the	wave	orbital	amplitude	(semi‐orbital	excursion,	ܣ௪ ൌ ܷஶ/߱),	the	

(Nikuradse‐equivalent)	wall	 roughness,	 ݇௦	;	 and,	 for	 low	Reynolds	 numbers;	

the	 fluid	 viscosity	 in	 the	 viscous	 sub‐layer	 (Svendsen,	 2006).	 Thus,	 several	

characteristic	Reynolds	numbers	in	oscillatory	flows	can	be	defined,	depending	

on	 the	 chosen	 length	 scale	 (Justesen,	 1988):	 (a)	 a	wave‐induced	 freestream	

(amplitude)	 Reynolds	 number,	 ܴ݁௪;	 (b)	 a	 wave‐induced	 boundary	 layer	

thickness	 Reynolds	 number,	 ܴ݁௪,ఋ,	 and	 (c)	 a	 wave	 roughness	 Reynolds	

number,	ܴ݁௪,௞ೞ:	

ܴ݁௪ ൌ
ܷஶ. ௪,ఋܣ

ߥ
	

ሺݍܧ. 2.23ሻ	

ܴ݁௪,ఋ ൌ
ܷஶ. ߜ
ߥ

	
ሺݍܧ. 2.24ሻ	

ܴ݁௪,௞ೞ ൌ
ܷஶ݇௦
ߥ

	
ሺݍܧ. 2.25ሻ	
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For	 low	 Reynolds	 numbers,	 flow	 over	 a	 rough	 boundary	 can	 be	 laminar,	

following	 its	 outline	 or	 relief.	 In	 this	 case,	 the	 thickness	 of	 the	 laminar	

oscillatory	 boundary	 layer,	 	,௪ߜ is	 proportional	 to	 ߚ	where	ߚ/1 ൌ ඥ߱ ⁄ߥ	2 	 is	

known	as	Stoke’s	parameter	(Justesen,	1988).	The	thickness	of	the	boundary	

layer	is	considered	maximum	in	phase	with	the	maximum	ambient	horizontal	

velocity.	As	 the	 roughness	and/or	maximum	orbital	 velocity	 increase(s),	 the	

wave‐induced	boundary	 layer	becomes	thinner,	and	the	associated	Reynolds	

number	increases	until	a	critical	stage	whereupon	the	flow	separates	behind	

individual	roughness	elements	into	vortices	ejected	into	the	flow	at	half	cycles	

(Sleath,	1984).	This,	while	not	strictly	turbulence,	is	true	for	both	smooth	and	

rough	beds,	and	is	often	viewed	as	the	start	of	 transitional	 flow	for	practical	

reasons,	although	there	is	no	consensus	on	this	definition	due	to	the	range	of	

different	 experimental	 approaches	 employed	 (ibid.).	 The	 majority	 of	 such	

laboratory	 studies	 are	 concerned	with	 the	 dynamics	 of	 sediment	 transport,	

either	 using	 oscillating	 beds	 or	 oscillating	 fluid	 over	 a	 stationary	 bed.	

Nonetheless,	 a	more	 quantitative	 definition	 for	 the	 onset	 of	 fully	 developed	

turbulence	has	been	suggested	whereby	the	horizontal	and	vertical	turbulence	

intensities	reach	a	fixed		proportion	(80	‐	90%)	of	their	fully	developed	values,	

independent	of	the	Reynolds	number	(Sleath,	1988).	As	such,	by	equating	the	

equivalent	 grain	 roughness	 to	 the	 median	 grain	 diameter,	 ݇௦ ൌ 	,ହ଴ܦ Sleath	

suggests	 an	 	 empirical	 threshold	 for	 transition	 in	 coarse‐grained	 sediments	

given	by:	

ܴ݁௪,௞ೞୀ஽ఱబ ൌ 	5770. ൬
௪,଴ܣ
ହ଴ܦ

൰
଴.ସହ

	
ሺݍܧ. 2.26ሻ	

Jonsson	(1966b)	introduced	the	wave	friction	factor,	 ௪݂,	to	link	the	wall	shear	

stress	to	the	free	stream	velocity;	such	that:	

߬௢,௪ ൌ
1
2
	ߩ	 ௪݂ ܷஶଶ 	

ሺݍܧ. 2.27ሻ	
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where	߬௢,௪	is	the	maximum	value	of	time‐varying	bed	shear	stress.	Similar	to	

canonical	flows	presented	earlier,	the	friction	factor	is	solely	dependent	on	the	

boundary	 layer	 Reynolds	 number	 in	 laminar	 flows;	 otherwise,	 three	 flow	

regimes	 can	be	discerned:(i)	 hydraulically	 smooth	 roughness	 regime,	where	

relative	roughness	is	buried	within	the	viscous	sublayer,	(ii)	transitional;	and	

(iii)	rough	turbulent	 flow	where	the	 friction	factor	 is	solely	a	 function	of	the	

relative	 roughness	at	 the	bed,	defined	as	ܣ௪ ݇௦	⁄ .	 In	 laminar	 flows,	 the	wave	

friction	factor	can	be	determined	analytically;	as	a	function	of	the	wave‐induced	

freestream	Reynolds	number	(Nielsen,	1992):		

௪݂ ൌ
2

ඥܴ݁௪
	

ሺݍܧ. 2.28ሻ	

Conversely,	for	fully	turbulent	rough	flows,	a	considerable	number	of	empirical	

relationships	attempt	to	describe	the	wave	friction	factor	as	a	function	of	the	

relative	roughness,	some	of	which	are	summarised	in	Table	2.1.	

In	combined	wave‐current	flows,	the	contributions	of	the	uniform	shear	due	to	

steady	current,	and	time‐varying	shear	due	to	the	oscillating	flow	interact	in	a	

complex,	non‐linear	fashion	(Grant	and	Madsen,	1986).	Bijker	(1966)	proposed	

that	 the	 waves	 and	 current	 induced	 stresses	 could	 be	 considered	

independently	averaged	over	a	single	wave	cycle,	then	added,	demonstrating	

that	the	waves	increase	the	shear	stress	compared	to	a	steady	current.	In	fact,	

the	 bed	 shear	 stress	 under	 combined	 flows	 is	 often	 enhanced	 beyond	 the	

simple	 summation	 of	 wave‐only	 and	 current‐only	 stresses	 (Soulsby,	 1997).	

Studies	 of	 combined	 flows	 often	 resort	 to	 assuming,	 questionably,	 that	 the	

steady	 current	 does	 not	 vary	 with	 height	 above	 the	 bed;	 and,	 even	 more	

problematically,	that	the	combined	wave‐current	friction	factor	is	constant	in	

time	(Sleath,	1984).		
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Table	2.2	Some	empirical	formulations	of	wave	friction	factor	for	fully	rough	turbulent	
flow.	

	

A	rough	approximation	for	the	combined	wave	current	friction	factor, ௖݂,௪,	

defined	in	terms	of	the	wave‐only,	 ௪݂	,	and	current	only,	 ௖݂	,	friction	factors	

was	suggested	by	Jonsson	(1966a);	given	by:	

௖݂,௪ ൌ
ܷஶ	 ௪݂ ൅ ܷ ௖݂

ܷஶ ൅ ܷ
	

ሺݍܧ. 2.36ሻ	

where	 ௖݂ ൌ 	 2	߬଴ ܷ	ߩ
ଶ

⁄ 		; 	ܷ	is	the	steady	current,	and	ܷஶ	the	wave‐induced	

freestream	velocity.	Grant	and	Madsen	(1979)		defined	the	combined	wave‐

current	friction	factor,	 ௖݂,௪,	in	terms	of	the	combined	wave‐current	shear	

velocity	,	ݑ௖௪∗ ,	using	the	maximum	near‐bottom	wave	orbital	velocity	derived		

from	linear	wave	theory,	ݑ଴,௠௔௫;	and	the	mean	steady	current	above	the	bed,	

ܷ;	accounting	for	the	relative	angle	between	the	wave	and	current	

direction,	߶௖:	

∗௖௪ݑ| | ൌ ൬
1
2
	 ௖݂,௪ ߙ ൰

ଶ

. หܷห	
ሺݍܧ. 2.37ሻ	

Jonsson	(1966b):	 ௪݂ ൌ 0.04 ቀ஺ೢ
௞ೞ
ቁ	 for	ቀ஺ೢ

௞ೞ
ቁ ൐ 50; ݇௦ ൌ 2.5 	ହ଴ܦ ሺݍܧ. 2.29ሻ	

Swart	(1974):	ln	 ௪݂ ൌ െ5.977 ൅ 5.213 ቀ஺ೢ
௞ೞ
ቁ
ି଴.ଵଽସ

	for	all		ቀ஺ೢ
௞ೞ
ቁ	 ሺݍܧ. 2.30ሻ	

Kamphuis	(1975):	 ௪݂ ൌ 0.4	 ቀ஺ೢ
௞ೞ
ቁ
ି଴.଻ହ

for	ቀ஺ೢ
௞ೞ
ቁ ൏ 50	 ሺݍܧ. 2.31ሻ	

Vongvisessomjai	(1985):	

௪݂ ൌ 0.287	 ቀ஺ೢ
௞ೞ
ቁ
ିଶ/ଷ

for	ቀ஺ೢ
௞ೞ
ቁ ൐ 1		;		oscillating		fluid	

௪݂ ൌ 0.082	 ቀ஺ೢ
௞ೞ
ቁ
ିଵ/ଶ

for	all	values	of	ቀ஺ೢ
௞ೞ
ቁ		;		oscillating		bed		

	
ሺݍܧ. 2.32ሻ	
	
ሺݍܧ. 2.33ሻ	

Nielsen	(1992):	 ௪݂ ൌ exp ൤5.5 ቀ௞ೞ
஺ೢ
ቁ
଴.ଶ
െ 6.3 ൨	;	݇௦ ൌ 	ଽ଴ܦ

ሺݍܧ. 2.34ሻ	

Soulsby	(1997):	 ௪݂ ൌ 1.39	 ቀ஺ೢ
௭బ
ቁ
ି଴.ହଶ

;	where	ݖ଴ ൌ
௞ೞ
ଷ଴
;	for			all	

ቀ஺ೢ
௞ೞ
ቁ	

ሺݍܧ. 2.35ሻ	
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whereby																								ݑ௖௪∗ ൌ ටหఛ೎ାఛೢ,೘ೌೣห

ఘ
; and	

ሺݍܧ. 2.38ሻ	

ߙ ൌ 1 ൅ ቆ
หܷห

หݑ଴,௠௔௫ห
ቇ

ଶ

൅ 2ቆ
หܷห

หݑ଴,௠௔௫ห
ቇ cos߶௖ 	

ሺݍܧ. 2.39ሻ	

Kemp	 and	 Simons	 (1982)	 attempted	 to	 assess	 the	 discrepancy	 between	

measured	combined	stresses	and	those	predicted	by	linear	superposition	for	

flows	 over	 smooth	 and	 rough	 boundaries.	 Their	 measurements	 were	 taken	

within	 the	 viscous‐dominated	 wave	 boundary	 layer	 near	 the	 bed,	 and	 the	

logarithmic	layer	in	the	turbulent	flow	at	regular	phases	of	the	wave	cycle.	They	

showed	that	the	current	boundary	layer	is	often	reduced	in	thickness	due	to	the	

superimposed	waves	for	both	rough	and	smooth	walls;	and	that	the	maximum	

bed	shear	stress	within	the	wave	dominated	part	was	twice	that	measured	in	

the	 log‐layer.	They	also	showed	that	the	addition	of	the	 individual	wave	and	

current	 stresses	 linearly	 only	 varied	 by	 around	10‐20%	 from	 the	measured	

combined	stress	within	the	viscous	dominated	region	of	the	flow.	Soulsby	et	al.	

(1993)	 compared	 a	 number	 of	 wave‐current	 interaction	 models;	 showing	

variations	of	up	 to	30%	in	 the	estimated	maximum	bed	shear	stress	(Figure	

2.6).	Most	such	models,	developed	for	rough	beds,	require	iterative	solutions	or	

numerical	 discretisation,	 making	 them	 excessively	 time‐consuming.	 Explicit	

algebraic	models,	 such	as	Antunes	Do	Carmo	et	 al.	 (2003)	 	 and	Soulsby	and	

Clarke	(2005),	developed	for	smooth	beds,	and	with	differing	amounts	of	non‐

linearlity	 (Malarkey	 and	 Davies,	 2012)	 have	 shown	 close	 agreement	 with	

experimental	data,	and	variations	of	the	order	of	20%	when	extended	to	rough	

beds.	All	such	models,	however,	attempt	to	describe	the	turbulent	stresses	in	a	

statistical	 sense,	 resulting	 in	 time‐averaged	 mean	 and	 maximum	 estimates,	

with	 no	 account	 for	 the	 instantaneous	 exchanges	 of	 momentum,	 while	

visualisation	 studies	 show	 that	 stress	 varies	 intermittently	 both	 in	 space,	

across	a	wave	phase	and	through	time	series	(Carstensen	et	al.,	2010;	Sumer	et	

al.,	 2010);	 thus	 leaning	 towards	 a	 structural	 description	 of	 boundary	 layers	

focussing	on	coherent	turbulent	structures	within	the	flow.	
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Figure	2.6	Comparison	by	Soulsby	et	al.	(1993)		of	eight	models	for	estimating	mean	
and	maximum	bed	shear	stress	for	combined	wave	and	current	flows	(after	Soulsby,	
1997).	The	models	listed	are:	(Bijker	(1966);	Fredsøe	(1984);	van	Kesteren	and	Bakker	
(1984);	 Christoffersen	 and	 Jonsson	 (1985);	 Davies	 et	 al.	 (1988);	 Myrhaug	 and	
Slaattelid	(1989);	Huyng‐Thanh	and	Temperville	(1990)).	τ୫	is	mean	bed	shear	stress	
over	the	wave	cycle;	τ୫ୟ୶	is	the	maximum	value	of	bed	shear	stress	during	the	wave	
cycle.	
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2.3	Modelling	Turbulence		

2.3.1	The	Reynolds	averaged	Navier‐Stokes	equations	

The	transfer	of	momentum	by	the	fluctuating	velocity	field	in	turbulent	fluid	

flows	gives	rise	to	Reynolds	stresses	(Novak	et	al.,	2010),	often	modelled	with	

eddy	viscosity	in	a	similar	way	the	momentum	transfer	by	molecular	diffusion	

is	 modelled	 with	 molecular	 viscosity	 (Kundu	 et	 al.,	 2008).	 These	 Reynolds	

stresses	involve	interactions	between	large‐scale	structures	of	turbulence	and	

small‐scale	 eddies,	 and	 modellers	 would	 choose	 to	 avoid	 the	 expense	 of	

computing	these	sub‐grid	small‐scale	motions	where	possible	(Gunzburger	et	

al.,	2010).	 

	It	is	generally	accepted	that	the	Navier‐Stokes	equations		(NSE)	contain	a	full	

description	of	turbulence	in	viscous	incompressible	flows	(Antunes	do	Carmo,	

2012).	In	fact,	it	has	been	recently	argued	that	they	do	provide	an	increasingly	

good	 approximation,	 together	 with	 the	 continuum	 assumption,	 over	 an	

increasing	range	of	turbulence	spatial	scales	associated	with	higher	Reynolds	

numbers	 (Moser,	2006).	By	decomposing	 the	velocity	 ሺ ௜ܷሻ	 and	pressure	 ሺܲሻ	

fields	 into	 their	mean	 ൫ܷ݅തതത, ഥܲ൯		 and	 the	 fluctuating	 components	 ൫݅ݑ
′ , 	about	൯݌

that	 mean,	 the	 Reynolds‐averaged	 Navier‐Stokes	 (RANS)	 equations	 are	

obtained	from	conservation	laws	of	mass	and	momentum	(Pope,	2000).		

ܦ ௜ܷ

ݐܦ
ൌ െ

1
ߩ
݌׏ ൅ ଶ׏ߥ ܷ 	

ሺݍܧ. 2.40ሻ	

where,	 the	 pressure	 	݌ ൌ ܲ	 ൅ 	;ݖ݃ߩ 	ߥ	 is	 kinematic	 viscosity,	 and	 	is	2׏ the	

Laplace	 operator;	 	is	ߩ fluid	 density,	 ݃	is	 gravitational	 acceleration,	 and	 	is	ݖ

vertical	 coordinate.	 Where	 combined	 wave‐current	 flows	 are	 involved,	 the	

velocity	field	(in	each	dimension)	is	often	decomposed	into	steady	(ݑ	, ,	ݒ 	,(	ݓ

random	(ݑ′	, ,	′ݒ ,෤ݑ)	components	periodic	and	(	′ݓ ,෤ݒ 		.෥ሻݓ

In	tensor	form,	RANS	equations	can	be	written	as	(Gatski	and	Rumsey,	2002): 
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ܦ ௜ܷ

ݐܦ
ൌ െ

1
ߩ
߲ܲ
௜ݔ߲

൅
௜௝ߪ߲
௝ݔ߲

െ
߲߬௜௝
௝ݔ߲

	
ሺݍܧ. 2.41ሻ	

where	߬௜௝	is	the	(deviatoric)	Reynolds	stress	tensor,	defined	as:	

	

߬௜௝ ൌ െܲߜ௜௝ ൅ ߤ ቆ
߲ ௜ܷ

௝ݔ߲
൅
߲ ௝ܷ

௜ݔ߲
ቇ 	

ሺݍܧ. 2.42ሻ	

with,	݆݅ߜ	being	Kronecker	delta,	ߤ	the	coefficient	of	dynamic	viscosity,	and	݆݅ߪ	is	

the	viscous	stress	tensor,	which,	for	an	incompressible	Newtonian	fluid,	is	given	

by: 

௜௝ߪ ൌ ்ߥ2 ௜ܵ௝ 	 ሺݍܧ. 2.43ሻ	

where,	ܶߥ	is	(turbulent)	eddy	viscosity,	and		݆ܵ݅	is	rate	of	strain	tensor; 

௜ܵ௝ ൌ
1
2
ቆ
߲ ௜ܷ

௝ݔ߲
൅
߲ ௝ܷ

௜ݔ߲
ቇ	

ሺݍܧ. 2.44ሻ	

	

2.3.2	Reynolds	stresses	and	eddy	viscosity	

By	applying	the	aforementioned	Reynolds	decomposition; 

௜ܷ ൌ 	 పഥݑ ൅	ݑ௜
ᇱ ൅ ప෥ݑ 	 ሺݍܧ. 2.45ሻ	

and	taking	the	mean	of	the	momentum	equation	above,	the	Reynolds	equations	

can	be	written	as: 

ഥܦ ௝ܷ

ݐഥܦ
ൌ 	ଶ׏ߥ ఫܷഥ െ

߲൫ݑప ఫതതതതതത൯ݑ
௜ݔ߲

െ
1
ߩ
߲ തܲ

௝ݔ߲
	

ሺݍܧ. 2.45ሻ	

This	 can	 be	 rewritten	 as	 the	 general	 form	 of	 the	 momentum	 conservation	

equation: 
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ഥܦ ௝ܷ

ݐഥܦ
ൌ

߲
௜ݔ߲

ቈߤ ቆ
߲ పܷഥ

௝ݔ߲
൅
߲ ఫܷഥ

௜ݔ߲
ቇ െ ഥܲ ௜௝ߜ െ పݑߩ ఫതതതതതതݑ ቉	

ሺݍܧ. 2.45ሻ	

The	terms	within	the	square	brackets	represent	the	viscous	stress;	the	isotropic	

stress	െܲ	ഥߜ௜௝	 from	 the	mean	 pressure	 field;	 and	 the	 apparent	 stress	 arising	

from	the	fluctuating	velocity	field,	െݑߩప	ݑఫതതതതതത,	respectively.	The	non‐linear	term	in	

the	above	equation	(i.e.,	the	velocity	covariance	or	second	moment)	is	referred	

to	as	the	Reynolds	stress	൫߬௜௝ ൌ െݑߩప	ݑఫതതതതതത൯.	 

The	three	components	of	the	Reynolds	equations	and	the	continuity	equation	

are	needed	to	describe	a	general	three‐dimensional	flow.	However,	these	four	

equations	contain	more	 than	4	unknowns	(velocity	 field,	ܷ,	in	3	dimensions,	

and	 pressure,	 ܲ;	 in	 addition	 to	 the	 Reynolds	 stresses),	 hence	 forming	 an	

unclosed	system	(Pope,	2000).	The	infamous	turbulence	closure	problem	seeks	

to	solve	this	by	determining	the	Reynolds	stresses.	Ironically,	this	is	a	simple,	

deterministic	 unclosed	 equation	 governing	 the	 flow	 field,	 which	 behaves	

randomly	 yet	 appears	 to	 have	 well‐behaved	 and	 reproducible	 statistical	

properties	(Davidson,	2004).	

Perhaps	 the	 earliest	 attempt	 at	 closing	 the	 RANS	 equations,	 and	 the	 most	

widely	used	closure	since	then,	was	that	presented	by	Joseph	Boussinesq	to	the	

French	Academy	of	Sciences	in	1872	and	reported	later	in	1877	(Boussinesq,	

1877).	 For	 turbulent	 flows,	 Boussinesq	 proposed,	 intuitively	 through	 a	

temporal	 average	 of	 the	 transport	 equations,	 that	 the	 tensor,	 we	 now	 call	

Reynolds	 stresses,	 of	 the	 components	of	 the	 ‘mean	actions	 exerted	 	 through	

fixed	planes’	on	an	element	of	fluid	could	be	approximated	as	proportional	to	

the	 element’s	 deformation	 rate,	 analogous	 to	molecular	momentum	 transfer	

(Schmitt,	2007;	De	Lemos,	2012).	According	 to	 this	hypothesis,	 the	so‐called	

turbulent‐viscosity	 hypothesis	 or	 Boussinesq	 approximation,	 a	 coefficient	 of	

viscosity	which	depends	mainly	on	 the	mean	agitation	produced.	Therefore,	

Reynolds	stresses	can	be	defined	as:	 

ఫതതതതതതݑ	పݑ ൌ
2
3
݇ ௜௝ߜ െ ்ߥ ቆ

߲ పܷഥ

௝ݔ߲
൅
߲ ఫܷഥ

௜ݔ߲
ቇ	

ሺݍܧ. 2.46ሻ
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where	݇ 	is	the	kinetic	energy	(it	follows	that,	in	equation	2.42; 	ܲ ൌ ଶ

ଷ
݇,	through	

a	Taylor’s	series	expansion	of	the	mean	actions	exerted,	akin	to	kinetic	theory).	 

For	simple	shear	flows,	this	equation	reduces	to	(Tennekes	and	Lumley,	1972):	

ఫതതതതതതݑ	పݑ ൌ െ	்ߥ .
߲ ഥܷ

ݕ߲
	

ሺݍܧ. 2.47ሻ	

An	 intrinsic	 assumption	 in	 the	 definition	 given	 by	 Boussinesq	 is	 that	 the	

anisotropy	of	Reynolds	stress,	݆ܽ݅,	is	defined	by	the	mean	velocity	gradient,	
߲ܷ݅തതത

݆ݔ߲
. 

ܽ௜௝ ൌ ఫതതതതതതݑ	పݑ	 െ	
2
3
௜௝ߜ	݇ ൌ 	െ ்ߥ ቆ

߲ పܷഥ

௝ݔ߲
൅
߲ ఫܷഥ

௜ݔ߲
ቇ	

ሺݍܧ. 2.48ሻ	

That	is	equivalent	to																											

ܽ௜௝ ൌ 	െ2்ߥ పܵఫതതതത 	 ሺݍܧ. 2.49ሻ	

This,	 obviously,	 is	 the	 analogy	 to	 the	 relationship	 of	 viscous	 stress	 in	 a	

Newtonian	 fluid;	 the	Reynolds	 stress	 anisotropy	 is	 determined	by	 the	mean	

rate	 of	 strain	 locally.	 Although	 this	 intrinsic	 assumption	 has	 been	 proven	

incorrect	 by	 some	 laboratory	work	 (e.g.	 in	 rapid	 axisymmetric	 contractions	

where	 turbulence	 is	 subjected	 to	 rapid	 distortions	 (Sreenivasan	 and	

Narasimha,	1978;	Lee,	1989));	there	is	a	multitude	of	flows	where	it	 is	more	

reasonable.	In	mixing	layers,	round	jets,	channel	flows,	and	the	boundary	layer,	

turbulence	 characteristics	 and	 mean	 velocity	 gradients	 change	 relatively	

slowly	(after	the	mean	flow).	It	follows	that	the	local	mean	velocity	gradients	

characterise	 the	 history	 of	mean	 distortion	 in	 these	 simple	 turbulent	 shear	

flows	(Pope,	2000).	Hence,	the	balance	of	Reynolds	stress	is	dominated	by	local	

processes	such	as	production	and	dissipation	of	kinetic	energy,	and	pressure‐

rate	 of	 strain	 tensor,	 and	 thus	 equation	 (2.47)	 becomes	 more	 reasonable.	

Similarly,	it	can	be	argued	from	timescale	and	level‐of‐anisotropy	perspective,	

that	 the	 specific	 assumption	 that	 the	 Reynolds	 stress	 anisotropy	 is	 linearly	
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related	to	the	mean	rate‐of‐strain	tensor	via	the	eddy	viscosity	holds	true	for	

simple	shear	flows	(ibid.).	 

Therefore,	 if	 Boussinesq’s	 approximation	 were	 to	 be	 accepted	 as	 a	 valid	

hypothesis,	 then	 the	 problem	 becomes	 that	 of	 specifying	 the	 eddy	 viscosity	

term	in	the	RANS	equations.	This	is	reasonable,	as	explained	above,	for	a	variety	

of	 simple	 shear	 flows	 which	 are	 important	 in	 nature	 and	 a	 number	 of	

engineering	applications.	A	plethora	of	 formulations	have	been	proposed	for	

linear	eddy	viscosity,	ranging	from	“simple”	algebraic	to	complex	differential	

models,	as	well	as	non‐linear	models	which	do	not	necessarily	conform	to	the	

Boussinesq	 approximation.	 Within	 such	 framework,	 a	 hierarchy	 of	 closure	

schemes	exist,	ranging	from	zero‐equation	algebraic	models	to	half‐equation,	

one‐	and	two‐equation	models,	and	a	good	yet	concise	review	of	these	is	given	

in	Gatski	and	Rumsey	(2002).	A	brief	review	of	closure	schemes	is	presented	in	

Appendix	1.	

Despite	the	important	achievements	in	mathematical	modelling	of	turbulence,	

and	the	practical	utility	of	such	models,	there	remains	a	variety	of	issues	yet	to	

be	resolved,	simply	due	to	lack	of	understanding	of	the	underlying	physics	and	

the	need	to	employ	far	more	complicated	formulations	and	numerical	schemes	

(Hanjalić,	1994).	Complicating	factors	include,	but	are	not	restricted	to,	three‐

dimensionality	 of	 the	 velocity	 field,	 its	 time	 dependence	 and	 randomness,	

unsteadiness	 and	periodicity,	multiplicity	 of	 time	 and	 length	 scales	which	 is	

directly	dependent	on	the	Reynolds	number	and	boundary	geometry,	straining	

of	eddies	(Kolmogorov’s	kinetic	energy	cascade,	cf.	§2.4.1.2),	viscosity	in	wall	

proximity,	nonlinearity	and	non‐locality	of	the	convective	term	and	more	so	in	

the	 pressure‐gradient	 term,	 as	 well	 as	 other	 specific	 issues	 such	 as	 flow	

separation	and	reversal,	buoyancy	and	rotation,	etc.	(Rogallo	and	Moin,	1984;	

Hanjalić,	1994;	Pope,	2000;	Coleman	and	Sandberg,	2010).	 

The	challenge	presented	by	the	turbulent	closure	problem	is	such	that	Rotta	

expressly	warned	“a	really	universal	turbulence	model	is	a	dream	and	will	be	a	

dream	possibly	for	ever”	(Rotta,	1986);	while	Bradshaw	famously	noted	that	

turbulence	 was	 “probably	 the	 invention	 of	 the	 Devil	 on	 the	 seventh	 day	 of	
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creation	(when	the	Good	Lord	wasn't	 looking)”	in	his	article	titled:	The	chief	

outstanding	 difficulty	 of	 our	 subject	 (Bradshaw,	 1994).	 Progress	 in	

experimental	study	of	turbulence	has	proven	to	be	less	difficult,	however,	and	

numerical	simulations	have	proven	a	valuable	means	of	providing	insight	into	

the	problem.	In	simulating	turbulent	flows,	the	time‐dependent	velocity	field	

(representing	approximately	the	velocity	field	ܷሺݔ, 	opposed	as	for;	solved	is	ሻ,ݐ

to	 solving	 for	 some	 mean	 quantity	 such	 as	 	〈݆ݑ݅ݑ〉	;〈ܷ〉 or	 diffusivity.	 	 The	

common	approaches	 include	Large	Eddy	Simulation	 (LES),	Direct	Numerical	

Simulation	(DNS),	and	more	recently,	Detached	Eddy	Simulation	(DES).	In	the	

meantime,	experimental	and	visualisation	 techniques	are	employed	 to	 study	

turbulent	flows,	particularly	at	scales	not	currently	feasibly	attainable	through	

numerical	modelling,	including	high‐Reynolds	numbers	flows	typical	of	natural	

processes	such	as	geophysical	and	environmental	 flow	over	rough	and	loose	

boundaries.	

	

2.4	Coherent	turbulence	structures	in	the	benthic	boundary	layer	

2.4.1	Order	and	chaos	in	the	turbulent	boundary	layer	

2.4.1.1	Scaling	from	a	momentum	perspective	

Designating	a	multi‐layered	structure	 to	 the	boundary	 layer,	 for	both	steady	

and	unsteady	flows	over	smooth	or	rough	walls,	has	so	far	been	concerned	with	

the	 behaviour	 of	 the	 mean	 velocity	 profile,	 following	 the	 classical	 scaling	

approach	 employed	 traditionally.	 Nonetheless,	 the	 limits	 for	 each	 of	 the	

sublayers	identified,	the	viscous,	buffer,	logarithmic	and	wake	layers,	are	not	

universally	defined.	Wei	et	al.	(2005)	have	presented	an	alternative	four	layer	

structure	 for	 canonical	 flows	by	assessing	 the	changing	balance	of	 the	mean	

momentum	 equations	 governing	 the	 mean	 velocity	 through	 advection	 and	

gradients	 in	 viscous	 and	 Reynolds	 shear	 stresses	 (cf.	 section	 §2.3).	 They	

identified	a	thin	sublayer,	defined	for	0 ൑ ାݖ ൑ 3;	where	pressure/advection	

and	viscous	forces	dominate	the	momentum	balance	equation.	This	is	overlain	

by	a	Reynolds	number	dependent	region	whereby	 the	viscous	and	Reynolds	

stress	 gradients	 balance	 out	 as	 they	 are	 of	 nearly	 equal	 magnitudes	 yet	
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opposing	signs	(hence,	the	‘stress	gradient	balance’	layer).	This	region,	ranging	

between	 3 ൑ ାݖ ൑ 	;ାߜ√	1.6 extends	 to	 the	 traditional	 logarithmic	 layer	 in	

classical	scaling	(based	on	mean	velocity	profile).	The	third	sublayer	is	a	‘meso	

viscous/advection	balance’	layer	whereby	viscous	forces	balance	out	with	the	

advective	force	or	pressure	forces	in	zero‐pressure	boundary	layers,	or	channel	

flows,	respectively.	The	gradient	of	the	Reynolds	stress	passes	through	zero	at	

the	 centre	 of	 this	 meso‐layer,	 which	 encompasses	 flow	 between	 ାߜ√	1.6 ൏

ାݖ ൏ 	layer	balance’	‘inertial/advection	an	is	layer	fourth	the	Finally,	ା.ߜ√	2.6

with	negligible	viscous	effects	(ibid.).	

2.4.1.2	Statistical	turbulence	and	order	among	chaos	

The	above	scaling	raises	an	interesting	alternative	view	for	the	boundary	layer	

structure,	based	upon	momentum	exchanges	within	the	flow.	As	mentioned	in	

section	§2.1.2;	the	transition	to	turbulence	is	concerned	with	inner	and	outer	

instabilities,	 which	 map	 to	 the	 two	 layered	 structure	 in	 Townsend’s	 model	

(section	 §2.2.2).	 These	 correspond	 to	 the	 classical	 inner/outer	 zones	 of	 a	

boundary	 layer.	 Townsend’s	 ‘big	 eddy’	 hypothesis	 postulated	 a	 double	

structure	with	big	eddies	 in	equilibrium	while	 turbulent	energy	 is	contained	

with	the	stochastic	substructure	(Townsend,	1956).	This	perhaps	was	an	early	

attempt	 at	 driving	 the	 statistical	 description	 of	 seemingly	 chaotic	 turbulent	

fluctuations	 towards	 a	 more	 deterministic	 one.	 The	 quest	 for	 order	 among	

chaos	 was	 thus	 driven	 by	 observations	 of	 turbulent	 motion	 within	 the	

boundary	layer.	

The	 advancement	 of	 flow	 visualisation	 techniques	 since	 the	 late	 1960’s	 has	

informed	 the	 study	of	boundary	 layers	 in	 terms	of	 structural,	 stress‐bearing	

features	within	 the	 flow,	 often	 termed	 coherent	 flow/turbulence	 structures.	

This	highlights	the	problem	of	structure	versus	statistics	which	lies	at	the	heart	

of	turbulence	theory	since	Richardson’s	cascade	which	depicted	turbulence	as	

an	assembly	of	interacting	swirls	and	eddies	exchanging	energy.	In	this	sense,	

inertia	 drives	 vortex	 stretching	 thus	 rapidly	 breaking	 up	 the	 largest	 eddies,	

created	by	instabilities	in	the	mean	flow,	cascading	into	ever	smaller	vortices	

(Tennekes	and	Lumley,	1972).	This	culminates	in	dissipation	of	energy	through	
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viscosity,	 and	 the	 process	 is	 commonly	 referred	 to	 as	 the	 “energy	 cascade”.	

Kolmogorov’s	 Theory	 (1941;	 K41)	 quantified	 this	 cascade,	 assuming	 that	 at	

very	 high	 but	 not	 infinite	 Reynolds	 numbers,	 all	 small‐scale	 statistical	

properties	are	uniquely	and	universally	determined	by	the	integral	length	scale,	

the	mean	 energy	 dissipation	 rate	 and	 the	 viscosity	 (Frisch,	 1995).	 In	 other	

words,	 the	 central	 assumption	of	 the	K41	 theory	 is	 the	 self‐similarity	of	 the	

random	 velocity	 field	 at	 inertial‐range	 scales.	 Kolmogorov	 postulated	 such	

similarity,	and	derived	the	well‐known	݇ିହ ଷ⁄ law,	where	݇	is	the	wavenumber,	

for	 the	 energy	 spectrum	 in	 Fourier	 Space,	 which	 has	 also	 been	 observed	

experimentally	(cf.	§4.2.2.2).	The	idea	itself	was	previously		realised	by	Taylor,	

who	argued	that	for	a	statistically	steady	state,	where	large	eddies	are	supplied	

at	a	given	rate	and	their	energy	fully	disappearing	due	to	viscosity,	a	definite	

spectrum	 would	 exist	 (Sreenivasan,	 2011).	 Nonetheless,	 Landau’s	 famously	

cryptic	remarks	in	1944	objected	to	the	universality	of	small‐scale	turbulence	

structure,	pointing	out	the	intermittent	nature	of	viscous	dissipation,	and	hence	

its	 dependence	 on	 the	 large	 scale,	where	 geometry	differs	 from	one	 flow	 to	

another	(Frisch,	1995;	Davidson,	2004).	Landau	foresaw	that	a	suitably	defined	

local	average	of	the	energy	flux	is	important	for	the	statistics	of	the	“turbulence	

signature/structure	 function”	 (which	 identifies	 whether	 turbulence	 is	

composed	 of	 swirling	 blobs	 of	 fluid	 or	 vortex	 rings,	 i.e.	 energy	 distribution	

across	different	eddy	sizes),	not	the	globally	averaged	dissipation	(Davidson,	

2004).		Another	issue	lies	in	the	spotty	nature	of	the	small‐scale	vorticity	field,	

which	differs	from	that	at	the	large	scale	as	a	consequence	of	vortex	stretching,	

teasing	 vorticity	 into	 finer	 and	 finer	 filaments	 rather	 than	 being	 caused	 by	

inhomogeneities	due	 to	 large‐scale	chaotic	vorticity	attempting	 to	 initiate	or	

maintain	 turbulence	 (Davidson,	 2004).	 However,	 Landau	 reconciles	 that	

Kolmogorov’s	K41	is	an	asymptotic	theory,	shown	to	work	well	in	the	limit	of	

very	 high	 Reynolds	 numbers,	 with	 a	 possibility	 that	 inertial‐range	

intermittency	may	possess	certain	universal	statistical	features.	

While	 no	 universally	 accepted	 theory	 for	 turbulence	 exits,	 attempts	 at	

reconciling	the	two	approaches,	statistical	vs.	coherent	turbulence,		emphasise	

that	the	statistical/spectral	description	of	turbulence	is	a	manifestation	of	the	
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emergence,	 growth	 and	 decay	 of	 coherent	 flow	 structures	 (Venditti	 et	 al.,	

2013).		This	leads	to	an	alternative	structural	description	of	the	boundary	layer,	

focusing	on	 the	 role	of	 these	 turbulent	 structures	 in	defining	 the	mean	 flow	

behaviour.	This	is	often	welcomed	as	a	somewhat	‘quasi‐deterministic’	attempt	

at	understanding	what	are	presumably	chaotic	turbulent	flows;	due	to	the	self‐

organisation	 and	 quasi‐periodicity	 of	 these	 coherent	 motions.	 Adrian	 and	

Marusic	(2012)	refer	to	this	as	‘neo‐classical’	scaling.	

2.4.2	Coherent	turbulence	structures	

2.4.2.1	Intermittency	and	coherence	in	turbulent	flows	

The	quest	 for	order	among	the	otherwise	chaotic	nature	of	 turbulence	came	

into	fruition	with	an	increased	interest	in	visualising	turbulence	in	the	1960s,	

following	on	 from	Prandtl’s	 (1925)	mixing	 length	 theory.	The	 first	 idea	was	

Townsends	“big	eddy”	hypothesis	in	1956,	which	postulated	a	double	structure	

with	big	eddies	in	equilibrium	while	the	turbulent	energy	is	contained	within	

the	stochastic	substructure	(Townsend,	1956).	However,	the	notion	of	coherent	

structures	was	brought	onto	prominence	by	the	dye,	hot‐wire	and	hydrogen‐

bubble	observations	and	quantitative	velocity	measurements	carried	out	in	the	

late	 1960’s	 and	 early	 1970’s,	 which	 reported	 surprisingly	 well‐organised	

intermittent	motions	in	the	boundary	layer,	which	were	self‐dependent	in	both	

space	and	time	(Kline	et	al.,	1967;	Kim	et	al.,	1971).	Such	motions	lead	to	low‐

speed	streaks	within	the	viscous	sub‐layer,	which	would	interact	with	the	outer	

portions	 of	 flow	 through	 a	 process	 of	 gradual	 ‘lift	 up’,	 sudden	 oscillation,	

bursting	 and	 ejection	 (Offen	 and	Kline,	 1974;	Offen	 and	Kline,	 1975).	 These	

parcels	 of	 low‐momentum	 fluid	 ejected	 from	 the	 viscous	 sub‐layer	 or	 the	

interstices	of	roughness	elements,	result	in	significant,	positive	contributions	

to	Reynolds	 stresses	and	hence	momentum	 transport,	potentially	across	 the	

entire	thickness	of	the	boundary	layer	(Grass,	1971).	

The	intermittent	transfer	of	momentum	by	coherent	structures	is	manifest	by	

velocity	 fluctuations,	 and	 is	 linked	 to	 short–term	 variations	 in	 near–wall	

stresses	(Heathershaw,	1974;	Laufer,	1975).	This	is	reflected	in	the	turbulent	

“bursting”	process	(Kline	et	al.,	1967;	Offen	and	Kline,	1974;	1975),	which	is	a	
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critical	mechanism	 for	 production	 of	 turbulent	 kinetic	 energy	 (Schoppa	 and	

Hussain,	2002;	Dey	et	al.,	2012).	Turbulent	bursting	may	be	explained	by	the	

advection	of	spatially	distributed	vortices	and	structural	features	past	a	fixed	

point	of	measurement	(Robinson,	1991),	although	this	may	not	detect	how	such	

vortices	evolve	in	time	(Schoppa	and	Hussain,	2002).	The	term	‘bursting”	could	

refer	 either	 to	 violent	 intermittent	 eruptions	 of	 fluid	 away	 from	 the	 wall	

implying	a	local	instability,	or	to	describe	localised	ejections	of	fluid	due	to	the	

passage	of	tilted	quasi–streamwise	vortices	which	persist	for	longer	times	than	

ejections	(Robinson,	1991).	 

There	 is	 no	 clear	 criteria	 delimiting	 what	 constitutes	 or	 characterises	 a	

coherent	 turbulent	 structure,	 however,	 and	 several	 definitions	 have	 been	

proposed.	Falco	(1977)	identified	the	so‐called		‘typical	eddies’	whose	motion	

produced	 a	 significant	 proportion	 of	 the	 Reynolds	 stress	 compared	 to	 the	

surrounding	 fluid.	Cantwell	 (1981)	 identified	bursts,	 sweeps,	streaks,	 typical	

eddies,	streamwise	and	transverse	vortices	and	large	eddies	as	being	coherent	

structures	as	they	are	produced	regularly	and	can	be	mathematically	described	

by	space	and	time	correlations.	A	more	discriminating	definition,	proposed	by	

Hussain	 (1986),	 describes	 them	 as	 	 “connected	 turbulent	 fluid	masses	with	

instantaneously	phase‐correlated	vorticity	over	their	spatial	extent”.		In	other	

words,	 turbulence	 is	 characterised	 by	 a	 component	 of	 large‐scale	 vorticity,	

which	is	spatially	coherent	at	any	given	instant,	underlying	the	random	three‐

dimensional	 vorticity	 typical	 of	 turbulent	 flows.	 These	 structures	 are	 also	

characterised	 by	 composite	 scales	 (as	 large	 as	 the	 lateral	 flow	 dimension),	

recurrent	 patterns	 (lifespan	 longer	 than	 passage	 time	 of	 structure),	 high	

organisation	 and	 quasi‐periodic	 (stochastically	 intermittent)	 appearance	

(Fiedler,	1988).	Robinson	(1991)	characterised	vortices	as	the	most	coherent	

of	turbulent	motions,	which	he	defined	as	

“three‐dimensional	regions	over	which	at	least	one	fundamental	flow	variable	

(velocity	component,	density,	temperature,	etc.)	exhibits	significant	correlation	

with	itself	or	with	another	variable	over	a	range	of	space	and/or	time	that	is	

significantly	longer	than	the	smallest	local	scales	of	the	flow”.	
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Adrian	(2007),	however,	suggests	that	spatial	coherence	is	not	sufficient	on	its	

own	to	define	a	coherent	motion	as	all	fluid	motions	are	spatially	coherent	due	

to	 the	 continuity	 equation.	 Therefore,	 he	 suggests	 that	 only	 motions	 that	

survive	 long	 enough	 to	 be	 visible	 within	 a	 flow	 visualisation	movie	 and/or	

which	 contribute	 significantly	 to	 the	 time‐averaged	 statistics	 of	 flow	 can	 be	

considered	 ‘organised’	 structures.	 A	 major	 issue	 with	 most	 of	 the	 earlier	

definitions	 is	 that	 there	 are	 other	motions	within	 the	 flow	which	 have	both	

space	and	time	coherence,	and	yet	can	be	properties	of	the	mean	flow	rather	

than	 turbulence.	 	 More	 recently,	 	 Adrian	 and	 Marusic	 (2012)	 proposed	 a	

definition	whereby	 coherent	 structures	 	 are	defined	as	 recurrent,	 persistent	

motions	 which	 have	 a	 significant	 role	 in	 characterising	 mean	 flow,	 and	

determining	 stress	 and	 other	 statistical	 properties	 of	 the	 flow.	 They	 further	

note	that		

“It	suffices	to	think	of	coherent	structures	as	building	blocks	of	flows	that	are	

recognizable,	despite	randomness,	by	their	common	topological	patterns,	and	

that	occur	over	and	over	again.”	

The	study	of	coherent	structures	in	turbulence	has	advanced	considerably	in	

recent	years,	largely	due	to	advances	in	particle	image	velocimetry	(PIV)	and	

direct	numerical	simulations	(DNS).	This	has	brought	about	deeper	insight	into	

the	development	of	 these	spatially	coherent,	stress‐bearing	structures	which	

play	 an	 important	 role	 in	 transport	 problems	 in	 turbulent	 boundary	 layers,	

particularly	 in	 the	 near‐wall	 region	 (Marusic	 et	 al.,	 2010b).	 Sustaining	wall‐

turbulence	 must	 be	 related	 to	 the	 time‐dependent	 interactions	 of	 these	

structures	 (Panton,	2001),	 and	a	number	of	 scenarios	has	been	proposed	 to	

describe	 them.	 Prominently,	 one	 view	 concentrates	 on	 the	 regeneration	

mechanisms	of	hair‐pin	vortex	structures	into	packets,	in	line	with	Townsend’s	

attached	 eddy	 hypothesis	 (Adrian,	 2007),	 while	 an	 alternative	 identifies	 a	

transient	streak	growth	mechanism	principally	in	the	inner‐region,	considered	

to	be	more	frequent	and	energetic	(Schoppa	and	Hussain,	2002).	 
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2.4.2.2	Coherent	structures	and	boundary	layer	scaling 

A	 large	 number	 of	 studies	 attempt	 to	 describe	 the	 relationship	 between	

coherent	turbulence	structures	and	the	wall‐normal	structure	of	the	turbulent	

boundary	 layer	 (cf.	 Robinson,	 1991;	 Adrian,	 2013;	 Jimenez	 and	 Kawahara,	

2013).	Fluid	motion	near	the	wall	is	characterised	by	regions	of	high	and	low	

momentum,	 with	 large	 scale,	 counter‐rotating	 vortices	 shed	 from	 the	

roughness	elements	 that	dominate	 the	structure	of	 the	boundary	 layer	 from	

both	 hydrodynamically	 smooth	 and	 rough	 beds	 (Venditti	 et	 al.,	 2013).	 The	

region	 below	 ାݖ ൎ 100	is	 dominated	 by	 coherent	 streaks	 of	 streamwise	

velocity,	caused	by	advection	of	the	mean	velocity	gradient	through	vortices,	as	

well	as	quasi‐streamwise	vortices	resulting	from	the	instability	of	these	streaks	

(Jimenez	 and	 Kawahara,	 2013).	 Streaks	 represent	 an	 array	 of	 sinuous,	

alternating	jets	imposed	on	the	mean	sheared	flow;	whereas	the	vortices	are	

tilted	away	from	the	wall.	Very	large	scale	motions	(VLSM),	or	superstructures,	

mainly	feature	within	the	logarithmic	layer	at	high	Reynolds	number,	yet	their	

influence	is	felt	at	the	wall,	with	small	fluctuations	within	that	larger	motions,	

akin	 to	 Townsend’s	model	 (Marusic	 et	 al.,	 2010a).	 These	 authors	 represent	

superstructures	 as	 elongated,	 counter‐rotating	 streamwise	 structures	 that	

occupy	the	 inner	 layer,	namely	the	viscous,	 [buffer]	and	part	of	the	 log	 layer	

(Figure	2.7).	
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Figure	2.7	 schematic	 of	 Very	 large	 scale	 organised	motions	 and	 their	 interactions	
within	the	turbulent	boundary	layer	(modified	from	Marusic	et	al.	(2010a))	

	

Robinson	 (1991)	 suggests	 that	 the	 viscous	 sublayer,	 buffer,	 log	 and	 wake	

regions	are	characterised	by	coherent	motions	of	different	structural	features,	

while	 asserting	 that	 the	 buffer	 layer	 is	 the	 most	 important	 in	 terms	 of	

generation	and	dissipation	of	energy.	Strong	shear	within	the	buffer	layer	leads	

to	 the	 generation	 of	 turbulent	 kinetic	 energy	 by	 converting	 the	 mean	 flow	

energy	 into	 longitudinal	 streaks	 and	 streamwise	 vortices.	 In	 this	 sublayer,	

production	and	dissipation	of	energy	are	at	their	peak	(Hutchins	and	Marusic,	

2007).	 	Most	of	 the	 energy	generated	at	 a	 given	distance	 from	 the	wall	 gets	

dissipated	locally	(Hoyas	and	Jiménez,	2008).		

While	 much	 research	 has	 focussed	 on	 visualising	 coherent	 turbulence	

structures,	experimentally	or	through	numerical	simulation,	a	number	of	issues	

still	 remain	 far	 from	 clear.	 Firstly,	 there	 is	 no	 clear	 definition,	 nor	 a	 clear	

topological	 description	 of	 these	 motions,	 particularly	 in	

geophysical/environmental	fluid	flows	often	with	very	high	Reynolds	numbers.	

In	 such	 environments,	 where	 the	 bed	 is	 loose	 and	 often	 permeable,	 the	

interaction	between	the	bed,	suspended	particles,	and	these	motions	is	an	area	

that	requires	significant	research	(Venditti	et	al.,	2013).	Studies	which	attempt	
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this	often	fall	short	of	describing	the	feedback	between	transported	sediment	

and	these	coherent	structures	(Shugar	et	al.,	2010;	Mohajeri	et	al.,	2016),	or	

more	conveniently	assume	little	or	no	feedback.	As	such,	recent	investigations	

have	focused	in	the	evolution	and	form	of	coherent	structures	from	roughness	

elements	or	bedforms,	particularly	in	gravel	streams	(Shvidchenko	and	Pender,	

2001;	Hardy	et	al.,	2010;	Franca	and	Lemmin,	2015;	Hardy	et	al.,	2016).		The	

role	 of	 bed	 generated	 coherent	 structures	 in	 sediment	 entrainment	 and	

transport	is	widely	acknowledged,	yet	the	exact	mechanism	is	still	unclear	(Dey	

et	al.,	2012;	Ji	et	al.,	2013).	van	Rijn	et	al.	(2013)	recently	highlighted	the	need	

for	 experimental	 research	 into	 the	 role	of	 coherent	 turbulence	 structures	 in	

sediment	 transport	 to	 inform	 process‐based	modelling	 as	 a	 major	 research	

need	in	a	vision	paper	on	future	research	needs	in	coastal	sediment	dynamics.		

For	 practical	 applications,	 time‐averaged	 or	 wave‐averaged	 formulations	 of	

eddy	viscosity	are	often	employed	 in	numerical	models	 to	predict	boundary	

layer	structure	and	empirical	formulae	are	used	to	predict	and	mode	and	rate	

of	 sediment	 transport.	 Yet,	 with	 turbulence	 research	 extending	 beyond	

classical	 scaling	 towards	 a	 more	 ‘deterministic’	 description	 of	 coherent	

structures,	 and	more	 accurate	modelling	 of	 sediment	 transport	will	 need	 to	

shift	 towards	 an	 intermittently	 stochastic	 description	 of	 the	 problem,	

accounting	 for	 the	momentum	exchanges	 imparted	by	 these	 flow	 structures	

entraining	 sediment	 particles	 and	 vice‐versa.	 Chapter	 3	 reviews	 the	 current	

state‐of‐the‐art	 understanding	 of	 the	 role	 played	 by	 coherent	 turbulence	

structures	 in	 mobilising	 and	 transporting	 sediment;	 highlighting	 the	 well‐

established	utility	of	statistical	descriptions	of	turbulence	is	studying	sediment	

transport	(averaged	values),	and	the	need	for	an	improved	understanding	of	

the	dynamic	interactions	between	coherent	turbulence	structures	and	mobile	

beds	required	for	more	accurate,	process‐based	models	of	transport.	
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Chapter 3.  

Coastal Sediment Dynamics 
	

	“‘…	this	area	of	research	[drag	reduction]	has	quite	a	lot	in	
common	with	studies	of	alleged	paranormal	phenomena,		
such	as	precognition,	telepathy	,	ghosts,	messages	from	the	
underworld,	and	so	on”		McComb	(1990)	‐	The	Physics	of	
Fluid	Turbulence.	

	

3.1	Sediment	transport	in	the	coastal	zone	

In	 coastal	 and	 estuarine	 settings,	 turbulence	 plays	 a	 fundamental	 role	

transporting	sediments	as	bed	load	or	in	suspension;	both	governed	by	shear	

stresses	at	the	bed	and	within	the	benthic	boundary	layer	(Hunt,	1954;	Bagnold,	

1966;	Soulsby,	1983;	Dyer	and	Soulsby,	1988).	 	Bed	load	(also	referred	to	as	

‘surface	 creep/	 traction’)	 refers	 to	 the	 proportion	 of	 the	 total	 load	 of	 local	

sediment	moving	in	relatively	continuous	contact	with	the	bed,	either	rolling,	

sliding	or	in	saltation	(jumping)	due	to	the	effective	bed	shear	stress	(Fredsøe	

and	Deigaard,	1992).	In	this	case,	the	weight	of	the	moving	grains	is	borne	by	

grain‐to‐grain	collisions	or	solid‐transmitted	stresses	(Bagnold,	1954;	Bagnold,	

1956).	Suspension,	on	the	other	hand,	refers	to	the	part	of	the	total	sediment	

transport	load	moving	without	continuous	contact	with	the	bed,	agitated	and	

maintained	within	the	flow	by	turbulent	eddies.	While	there	is	no	distinctive	

line	between	these	two	modes	of	transport	(rather	a	gradual	transition),	this	

distinction	is	practical	from	a	modelling	perspective.	Strictly	speaking,	the	total	

load	 also	 incorporates	 an	 additional	 component,	 known	 as	 the	 wash	 load,	

representing	 the	 advection	 of	 very	 fine	 suspended	 particles	 that	 are	 not	

represented	locally	at	the	bed.	

A	sound	understanding	of	the	physical	processes	that	govern	the	transport	of	

sediment	 in	 coastal	 environments	 is	 fundamental	 to	 define	 and	 accurately	

predict	the	dynamic	behaviour	of	such	systems,	their	morphological	evolution,	

and	 their	 biogeochemistry	 (including	 nutrient	 exchanges	 and	 contaminant	
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transport);	and	thus	their	ecological	and	economical	service	(Thompson	et	al.,	

2011;	 Aagaard	 and	 Jensen,	 2013).	 It	 is	 also	 a	 prerequisite	 to	 quantifying	

sediment	erosion	or	deposition	trends	in	beaches,	estuaries,	water	ways	and	

coastal	management	 cells.	 Hence,	 it	 has	 profound	 implications	 for	 a	 host	 of	

engineering	 applications	 including	 beach	 nourishment,	 coastal	 protection,	

maintenance	of	harbours	and	waterways,	and	aggregate	dredging,	as	well	as	

the	integrity	of	coastal	defences	and	offshore	structures,	cables	and	pipelines	

against	erosion	and	scour	(Soulsby,	1997).		While	other	processes	may	have	a	

significant	contribution	to	the	mobilisation	and/or	transport	of	sediment	in	the	

coastal	 zone,	 including	 gravity,	 Aeolian	 (wind)	 processes,	 bioturbation,	 and	

anthropogenic	activities;	this	work	is	concerned	with	the	transport	of	abiotic,	

non‐cohesive	 sediments	 (primarily	 sand)	 due	 to	 overlying	 fluid	 flow.	 	 The	

initiation	of	sediment	motion	(threshold	of	motion)	depends	upon	local	 flow	

characteristics,	as	well	as	the	nature	and	position	of	individual	grains	and	the	

bulk	properties	of	the	bed.		

3.2	The	threshold	of	incipient	motion	

3.2.1	The	balance	of	forces	on	a	stationary	grain	

A	stationary,	non‐deformable	cohesionless	grain	on	the	seabed	is	set	in	motion	

once	the	balance	between	the	drag,	uplift	and	gravitational	forces	acting	on	it	is	

disturbed;	 i.e.	 when	 the	 driving	 forces	 (horizontal	 shear	 and	 vertical	 uplift)	

exceed	the	stabilising	forces	(friction	and	gravity)	as	shown	in	Figure	3.1(a).	

The	velocity	 at	which	 this	happens	 is	 called	 the	 critical	 flow	velocity,	 or	 the	

threshold	for	incipient	motion.	The	horizontal	shear	stress	(drag)	is	induced	by	

skin	 friction	 on	 the	 surface	 of	 the	 grain,	 and	 form	 drag	 due	 to	 pressure	

differences	upstream	and	downstream	of	the	grain	owing	to	flow	separation	

(Fredsøe	 and	Deigaard,	 1992).	 The	drag	 is	 a	 function	of	 the	 boundary	 layer	

Reynolds	number	for	hydraulically	smooth	beds,	and	independent	of	it	for	high	

Reynolds	number,	turbulent	rough	flows	(Middleton	and	Southard,	1984).	The	

vertical	lift	force	is	in	part	due	to	the	curvature	of	the	streamlines	which	cause	

a	local	decrease	in	pressure	(below	the	hydrostatic)	at	the	top	of	the	grains	and	

partly	 due	 to	 flow	 separation	 (Figure	 3.1(b)).	 	 A	 thorough	 analysis	 of	 these	

forces	 is	 given	 in	 Raudkivi	 (1976)	 for	 unidirectional	 flows	 and	 in	 Nielsen	
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(1979)	 for	 wave‐induced	motion.	Whether	 a	 given	 particle	moves	 once	 the	

combined	lift	and	drag	forces	exceed	those	holding	it	in	position	will	depend	on	

the	 configuration	 of	 said	 particle	 within	 the	 bed,	 including	 bed	 slope	 and	

geometry,	 particle	 shape,	 sorting	 and	 packing	 	 and	 thus	 its	 pivoting	 angle,	

exposure,	orientation,	and	its	degree	of	armouring		(Miller	et	al.,	1977;	Dyer,	

1986;	Evans	and	Hardisty,	1989;	Carling	et	al.,	1992;	Wallbridge	et	al.,	1999).	A	

number	 of	 intrinsic	 sediment	 properties	 are	 essential	 in	 defining	 how	 a	

sediment	particle	will	respond	to	flow	conditions,	including	particle	size	(often	

defined	 by	 the	 median	 grain	 diameter,	 	;ହ଴ܦ and	 statistics	 of	 the	 grain	 size	

distribution),	the	particle’s	mineralogy	and	composition	(hence	its	density	ߩ௦	

and	specific	weight,	ݏ ൌ ௦ߩ ⁄ߩ );	as	well	as	the	particle	shape	which	dictates	its	

settling	velocity.	The	settling	(also	fall/terminal)	velocity,	ݓ௦,	is	related	to	the	

relative	balance	between	fluid	drag	forces	and	gravity,	and	thus	depends	on	the	

fluid	properties	too,	including	viscosity	and	temperature.	

	

Figure	3.1		(a)	Schematic	of	the	balance	of	forces	acting	on	an	individual	cohesionless	
grain	 resting	 on	 a	 horizontal	 bed	 of	 similar	 sediment;	 (b)	 illustration	 of	 pressure	
gradient	due	to	curving	streamlines	over	a	grain	resulting	in	the	uplift	force.	C.G.	is	the	
centre	of	gravity	of	the	grain.	Adapted	from	Middleton	and	Southard	(1984).	
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3.2.2	Deterministic	versus	stochastic	definitions	of	threshold	

Most	studies	of	the	threshold	for	incipient	motion	have	attempted	to	define	a	

relationship	between	certain	sediment	characteristics	and	a	critical	bed	shear	

stress	 (or	 shear	 velocity);	 or	 alternatively	 between	 some	 dimensionless	

parameters	 representing	 the	 sediment	 and	 flow	properties	 (Paphitis,	 2001).	

However,	the	variety	of	factors	influencing	how	a	particular	grain	of	sediment	

responds	 to	 a	 destabilising	 fluid	 force	 imply	 an	 inherent	 inadequacy	 of	 the	

deterministic	 approach,	 with	 most	 attempts	 having	 focussed	 on	 empirical	

observations.	Such	studies	are	often	marred	by	a	lack	of	unified	definition	for	

the	threshold	of	motion,	and	reconciling	the	results	often	adds	to	the	scatter	in	

established	empirical	threshold	curves	(Miller	et	al.,	1977;	Paphitis,	2001).	The	

threshold	of	motion	has	been	defined	as	the	tractive	force	required	to	move	a	

sediment	layer	(du	Boys,	1879);	or	the	stress	required	for	the	dislodging	of,	and	

beginning	 of	movement	 of	 an	 arbitrary	 number	 of	 uniform	 grains	 from	 the	

uppermost	(bed	surface)	layer	of	sediment	(Kramer,	1935).	Kramer	proposed	

four	 levels	of	 sediment	movement:	 (i)	 ‘none’;	 (ii)	 ‘weak’,	with	 several	 of	 the	

smallest	 particles	 in	 isolated	 spots	 moving	 in	 countable	 numbers;	 (iii)	

‘medium’,	where	grains	of	mean	diameter	move	all	over	the	bed	in	considerable	

numbers	that	they	cannot	be	counted	yet	do	not	alter	the	bed	configuration;	

and	 (iv)	 ‘general’	 where	 grains,	 including	 the	 largest,	 move	 in	 sufficient	

numbers	to	alter	the	bed,	with	a	significant	amount	of	material	transported.		

The	 benchmark	 study	 on	 incipient	motion	was	 presented	 in	 Shields	 (1936)	

doctoral	 thesis.	 Starting	 from	 dimensional	 similarity	 arguments	 and	 using	

laboratory	 work,	 Shields	 postulated	 the	 most	 important	 parameters	 to	

determine	 incipient	motion	 include	 the	bed	shear	stress,	߬଴;	 relative	particle	

density	(specific	or	immersed	weight;	described	by	ratio	of	sediment	particle	

density,	ߩ௦	to	fluid	density,	ߩ),		gravitational	acceleration,	݃;	the	grain	diameter	

	a	into	these	combined	thus	Shields	.ߥ	,viscosity	kinematic	fluid	the	and	,(ହ଴ܦ)

dimensionless	factor,	the	Sheilds’	entrainment	function	ߠ௖௥:	
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Shields	 demonstrated	 that	 the	 entrainment	 function	 varies	 with	 the	 grain	

Reynolds	 number,	 	ܴ݁∗,	 which	 represents	 the	 ratio	 between	 boundary	

roughness	 and	 thickness	 of	 the	 viscous	 sublayer.	 He	 thus	 presented	 the	

threshold	for	incipient	motion	as	a	narrow	curve	above	which	particles	are	set	

in	motion	 (Figure	3.2),	based	on	his	 and	previously	published	data	of	Casey	

(1935),	Kramer	 (1935),	 and	 the	US	Waterways	Experiment	Station	 (USWES,	

1933).	While	Shields	defined	the	threshold	for	uniform	grains	based	on	flume	

observations	 in	the	sense	of	Kramer’s	weak	to	general	movement,	subject	to	

being	 in	 a	 state	 of	 ‘constancy’,	 he	 is	 often	 referred	 to	 as	 having	 defined	 the	

threshold	as	the	extrapolated	value	of	bed	shear	stress	for	which	the	sediment	

flux	 is	 zero	 (Miller	 et	 al.,	 1977;	 Lavelle	 and	 Mofjeld,	 1987;	 Dey	 and	

Papanicolaou,	 2008;	 Dey,	 2011).	 This	 confusion	 stems	 from	 Shields’	 vague	

discussion	about	extrapolating	zero	bed	load	from	measured	rates	of	transport	

for	sand	mixtures,	and	there	is	no	clear	indication	of	the	approach	he	used	to	

present	 his	 results	 (Buffington,	 1999;	 2000).	A	 large	number	 of	 attempts	 to	

extends	 Shields’	 data	 have	 followed,	 resulting	 in	 a	 plethora	 of	 modified	

threshold	curves,	and	spanning	a	wide	range	of	particle	sizes,	and	going	into	

the	suspension	mode	of	transport	(Miller	et	al.,	1977;	van	Rijn,	1993;	Paphitis,	

2001;	van	Rijn,	2007a).	Alternative	formulations	have	been	proposed	to	avoid	

the	use	of	shear	stress/	shear	velocity	terms	on	both	axes	(Vanoni,	1964;	Yalin,	

1972).	Neill	and	Yalin	(1969)	and	Yalin	(1972)	presented	another	modification	

to	Shields’	diagram,	by	combining	ߠ௖௥	and	ܴ݁∗	into	a	single	Yalin’s	parameter,	

Ξ,	such	that	the	shear	(friction)	velocity	is	no	longer	on	both	axes:	

where	 	is	ߥ the	 kinematic	 viscosity	 of	 the	 fluid,	 and	 	is	ହ଴ܦ the	median	 grain	

diameter.	From	statistical	arguments,	they	presented	a	quantitative	incipient	

motion	criterion,	ߝ	,	to	define	the	number	of	grain	detachments,	݊ ,	in	time	ݐ	over	

a	given	area	ܣ,	where	the	lower	limit	is	set	to	ߝ ൌ 1.0	.ൈ 10ି଺:	

௖௥ߠ ൌ
߬଴

ሺߩ௦ െ ሻ݃ߩ ହ଴ܦ
	 (Eq.	3.1)	 	

√Ξ 	ൌ
ܴ݁∗

ඥߠ௖௥
ൌ ቈ

ሺߩ௦ െ ሻ݃ߩ ହ଴ܦ
ଷ

ߩ ଷߥ
቉
଴.ହ

	 (Eq.	3.2)	 	
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Figure	3.2	shows	an	extended	Shield’s	diagram,	compiled	by	(Paphitis,	2001),	

including	data	from	29	published	experimental	works	(in	rectangular	flumes)	

on	 cohesionless,	 uniform/well‐sorted	 natural	 and	 artificial	 grains	 of	 near	

quartz	densities,	in	uniform	steady	flow.	Paphitis	(2001)	demonstrated	that	a	

given	 particle	 size	 can	 be	 displaced	 by	 different	 critical	 shear	 stresses	 in	

repeated	experiments.	This	implies	that	the	occurrence	of	entrainment	events	

is	distributed	across	a	range,	and	thus	is	better	described	stochastically.		

	

Figure	3.2	Shields’	diagram	extended	by	Paphitis	(2001);	with	threshold	for	incipient	
motion	 of	 cohesionless	 grains	 in	 uniform	 flow,	 defined	 as	 Shields’	 entrainment	
function	as	a	function	of	the	grain	Reynolds	number.	The	envelop	defines	the	lowest	
(incipient	 motion	 of	 discrete	 particles)	 and	 highest	 (the	 onset	 of	 mass	 sediment	
transport);	with	the	bold	curve	representing	the	mean	threshold.	Shields’	identified	4	
regions:	(I)	ܴ݁∗ ൏ 	;increases	ܴ݁∗	as	maximum,	a	from	progressively	decreases	஼ߠ	;2
(II)	2 ൏ ܴ݁∗ ൏ 10;	negative	slope	with	ݑ∗	is	assumed	independent	of	grain	size	which	
are	submerged	within	the	viscous	sublayer	(hence	hydraulically	smooth);	(III),	10 ൏
ܴ݁∗ ൏ 1000;	the	envelop	approaches	a	minimum;	and	(IV)	where	ܴ݁∗ ൐ 1000;	with	
	.2001)	Paphitis,	from	(Modified	ܴ݁∗	of	independent	௖ߠ

	

ߝ ൌ
݊
ݐܣ
. ඨ

ହ଴ܦߩ
ହ

ሺߩ௦ െ ሻ݃ߩ
	

(Eq.	3.3)		 	
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Lavelle	 and	 Mofjeld	 (1987)	 also	 argued	 against	 the	 use	 of	 a	 deterministic	

approach	to	establish	the	critical	threshold	of	sediment	transport	using	a	time‐

averaged	 shear	 stress/	 velocity;	 favouring	 the	 stochastic	 approaches	 which	

advocate	 that	 instantaneous	 stresses	 in	 the	 turbulent	 flow	move	 individual	

particles	 (Einstein,	1936;	1950;	Yalin,	1972).	Turbulent	eddies	can	 influence	

entrainment	 either	 through	 increasing	 drag	 induced	 by:	 (i)	 a	 passing	 eddy	

which	moves	a	particle	(impulse	force);	(ii)	 lowering	the	local	pressure	such	

that	particles	(even	sheltered	ones)	can	be	ejected	by	hydrostatic	pressure,	or	

(iii)	by	moving	entrained	particles	directly	into	suspension	(Raudkivi,	1976).	

Several	investigators	have	in	fact	demonstrated	that	some	sediment	movement	

is	possible	 for	any	non‐zero	current	velocity,	due	 to	an	 instantaneous	stress	

that	 could	 far	 exceed	 the	mean	 shear	 stress	 (Kalinske,	 1947;	Paintal,	 1971).	

Even	 Shields	 remarked	 that	 particle	 size,	 shape	 and	 relative	 positions	 are	

distributed	 properties	 for	 which	 the	 critical	 shear	 stress	 cannot	 be	 sharply	

defined	 (Shields,	 1936).	 When	 assessing	 the	 detachment	 of	 an	 individual	

stationary	grain	from	its	position	within	the	bed,	several	authors	assume	that	

it	is	entirely	due	to	the	uplift	force	exceeding	particle	weight	(Einstein,	1936;	

1950;	Yalin,	1972).	As	such,	when	mass	movement	of	sediment	is	considered,	

both	 fluctuating	 and	 non‐fluctuating	 lift	 forces	 can	 be	 recognised,	 and	 the	

detachment	 of	 a	 grain	 is	 described	 by	 a	 probability	 of	 occurrence	 at	 any	

instance,	taking	into	account	its	geometry	(size,	shape,	position	within	the	bed).	

Einstein	(1950)	asserted	that	the	probability	of	a	given	grain	moving		depends	

upon	its	geometry	and	near	bed	flow	but	not	its	history,	hence	it	occurs	only	

when	 the	 instantaneous	 lift	 exceeds	 the	 particle	 weight.	 Therefore,	 the	

probability	can	be	defined	as	the	fraction	of	the	total	time	during	which	the	local	

flow	at	a	given	location	can	induce	a	sufficiently	large	lift	force	to	dislodge	the	

particle.	By	decomposing	the	instantaneous	velocity	above	a	cohesionless	grain	

into	the	sum	of	the	time‐mean	and	turbulent	fluctuations,	Christensen	(1965)		

argued	that	a	better	description	of	the	instantaneous	bed	shear	stress	can	be	

attained	with	a	 frequency	distribution	of	 the	 fluctuating	velocity	 component	

rather	 than	 a	 fluctuating	 lift	 force.	 This	 probability	 increases	 as	 the	 time	

interval	 considered	 increases	 due	 to	 the	 increase	 in	 number	 of	 fluctuating	

events	 (Yalin,	 1972).	 Grass	 (1970)	 represented	 these	 fluctuations	 through	 a	
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series	of	stress‐distribution	curves	where	measured	fluctuations	were	both	due	

to	 turbulence	 and	 grain	 geometry	 that	 varies	 as	 the	 grain	moves	 from	 one	

position	 to	 another.	 Through	 high‐speed	 imaging	 and	 fluid	 marking,	 Grass	

determined	 fluctuations	 in	 shear	 stress	 within	 the	 viscous	 sublayer	 due	 to	

overlying	turbulence,	and	the	variations	in	local,	instantaneous	bed	shear	stress	

at	 which	 sediment	 grains	 were	 observed	 to	 move.	 The	 distributions	 of	

instantaneous,	 local	bed	shear	stress	needed	to	move	a	group	of	particles	on	

the	 bed	 surface	 can	 then	 be	 compared	 through	 time	 to	 the	 statistical	

distribution	of	instantaneous	local	shear	stress	acting	on	a	given	area	of	the	bed	

with	comparable	particle	size.	Where	the	two	distributions	overlap,	a	number	

of	particles	which	can	move	are	thus	set	in	motion;	otherwise	the	flow	is	never	

strong	enough	to	move	any	particles	(ibid.).		

3.2.3	The	threshold	of	motion	in	oscillatory	and	combined	flows	

Studies	of	incipient	motion	under	unsteady	wave	and	combined	wave‐current	

flows	have	had	far	less	attention	than	in	the	case	of	steady,	unidirectional	flows,	

and	 commonly,	 	 Shields’	 or	 Yalin’s	 criteria	 are	 applied	 (e.g.	 Hammond	 and	

Collins,	 1979).	 This	 is	 usually	 done	 under	 the	 assumption	 that	 once	 the	

oscillating	motion	 exceeds	 the	 threshold	 as	 defined	 in	 an	 open	 channel,	 the	

particles	will	be	entrained,	with	no	regard	to	the	greater	stresses	exerted	by	

accelerating/decelerating	motion		compared	to	the	mean	current	(Komar	and	

Miller,	 1973).	 Bagnold	 and	 Taylor	 (1946)	 studied	 the	 beginning	 of	 grain	

movement	on	a	smooth	bed	oscillating	within	a	still	water	tank	(no	apparent	

turbulence),	 and	 established	 an	 empirical	 threshold	 as	 the	 critical	 angular	

speed	related	to	the	near	bed	amplitude	and	the	period	of	oscillation.		Komar	

and	Miller	(1973)	pointed	out	that	Bagnold	and	Taylor’s	results	were	obtained	

in	laminar	conditions,	and	presented	a	threshold	criterion	for		medium	to	fine	

sands	in	laminar	conditions	under	waves	with	orbital	diameter,	݀଴,	given	by:		

For	 coarse	 grain	 sediment,	 they	 presented	 an	 empirical	 threshold	 curve	

relating	݀଴ ݀ହ଴⁄ 	to	the	dimensionless	ratio	between	acceleration	and	effective	

ߩ ௪,௖௥ଶݑ

ሺߩ௦ െ ହ଴ܦ	݃	ሻߩ
ൌ 0.30 ൬

݀଴
ହ଴ܦ

൰
଴.ହ

	
(Eq.	3.4)		 	
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gravity	 forces	acting	on	a	 	 grain,	given	by	 ௪ݑ	ߩ	 ሺߩ௦ െ ⁄ܶ	ሻ݃ߩ 	;	where	ݑ௪	is	 a	

wave‐induced	 near	 bed	 velocity,	 and	 ݀଴	is	 the	 near	 bed	 orbital	 diameter	 (=	

2. 	,௪,଴ܣ i.e.	 twice	 the	 near	 bed	 orbital	 amplitude,	ܣ௪,଴).	 Madsen	 and	 Grant	

(1975),	 however,	 argued	 that	 Bagnold’s	 &	 Taylor’s	 (1946)	 data	 were	 in	

agreement	with	Shields’	curve	as	long	as	the	critical	shear	stress	is	calculated	

with	a	wave	friction	factor	calculated	following		Jonsson	(1966b).	Equation	3.4,	

was	later	revised	so	that	the	empirical	coefficient	on	the	right	hand	side	was	set	

to	0.21	for	grains	with	݀ହ଴ ൏ 	and	Madsen		.(1975	Miller,	and	Komar)	݉ߤ	500

Grant	 (1976)	 later	 presented	 [yet	 another]	modified	 Shields’	 diagram	 to	 be	

used	for	oscillatory	(unsteady)	flows,	by	replacing	the	grain	Reynolds	number	

with	 a	 dimensionless	 factor,	 ܵ∗	,	 for	 a	 sediment	 of	 relative	 density	 (specific	

gravity,	ݏ ൌ 	:(ߩ/௦ߩ

Sleath	(1984)	presented	a	list	of	26	alternative	equations	for	the	threshold	of	

motion	under	waves.	However,	whilst	noting	that	approaches	such	as	Komar	

and	 Miller’s	 (1973,	 1975)	 or	 Madsen	 and	 Grant	 (1975,	 1976)	 may	 be	

‘superficially	attractive’,	he	raised	a	concern	regarding	the	use	of	wave	friction	

factors	for	unsteady	flows	at	ranges	where	data	is	particularly	lacking.	Sleath	

(1984)	noted	that	the	relation	between	drag	and	lift	forces	in	oscillatory	flows	

differs	 from	 that	 in	 steady	 flows	 as	 the	 shear	 stress	 is	 augmented	 by	 an	

additional	horizontal	 force	 induced	by	the	pressure	gradient	within	the	fluid	

acting	on	the	grains.		

Defining	a	threshold	of	motion	in	combined	wave‐current	flows	is	even	more	

complex	than	that	of	steady	or	unsteady	forces	by	currents	or	waves	on	a	grain,	

and	the	number	of	governing	parameters	increases	further	due	to	non‐linear	

wave‐current	interactions.	Hammond	and	Collins	(1979)	conducted	threshold	

experiments	 in	 combined	 waves	 and	 currents	 on	 an	 oscillating	 bed.	 Using	

Yalin’s	 criterion	 for	 unidirectional	 flow,	 they	 showed	 that	 the	 combined	

threshold	velocity	is	dependent	on	both	grain	size	(directly	proportional)	and	

wave	 periods	 (inversely	 proportional),	 attributed	 to	 near‐bed	 stress	

ܵ∗ ൌ
ହ଴ܦ
4 ߥ

.ඥሺݏ െ 1ሻ݃ܦହ଴ 	
(Eq.	3.5)	 	
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fluctuations	 (turbulent	 bursting)	 acting	 in	 a	 forward/	 reverse	 manner.	 The	

latter	 finding	 agrees	 with	 earlier	 studies	 which	 found	 reduced	 sediment	

transport	or	reverse	in	direction	in	some	cases	with	currents	superimposed	on	

oscillating	beds	(George	and	Sleath,	1979).	Voulgaris	et	al.	 (1995)	suggested	

that	 the	 wave‐period	 dependency	 can	 be	 resolved	 through	 non‐linear	

interaction	models	for	long	period	waves	(whilst	admitting	such	models	are	not	

satisfactory),	and	linear	addition	of	individual	wave	and	current	components	at	

short	 periods.	 Lee‐Young	 and	 Sleath	 (1989)	 studied	 initial	 motion	 with	

currents	perpendicular	to	the	direction	of	oscillation;	suggesting	that	a	vector	

addition	 of	 the	 wave	 and	 current	 components	 (assuming	 no	 nonlinear	

interaction)	 provides	 a	 reasonable	 representation	 of	 threshold	 conditions.	

Comparisons	between	flume	based	studies	and	field	observations	often	show	

considerable	differences	 in	 the	values	of	 threshold,	attributed	 to	 the	greater	

bed	roughness,	 ‘relict’	nature	of	ripples,	 	and	wider	wave	spectra	in	the	field	

(Komar	and	Miller,	1975).		

Field	observations	by	Amos	et	al.	(1988)	were	collected	near	Sable	Island	Bank	

to	examine	the	applicability	of	flume	derived	thresholds	for	sand	motion	to	the	

storm	 dominated	 Canadian	 continental	 shelf.	 The	 site	 was	 dominated	 by	

combined	wave‐current	flows	with	wave	crests	generally	orthogonal	to	peak	

tidal	currents,	and	eight	distinctive	types	of	bedforms	were	observed	for	well‐

defined	combinations	of	near‐bed	orbital	velocities	and	mean	current	speeds.		

The	current‐only	bed	shear	stress,	߬଴,௖		was	defined	using	the	Quadratic	stress	

law,	with	a	constant	drag	coefficient,	ܥ஽ ൌ 2	 ௖݂,	using	velocity	measured	100	cm	

above	the	bed	( ଵܷ଴଴):	

Active	ripples,	usually	indicative	of	bedload,	were	observed	in	flow	conditions	

below	the	threshold	of	sand	transport,	defined	as	the	wave	Shields’	parameter	

with	wave‐induced	bed	shear	stress	given	by	equation	2.27;	with	the	Jonsson	

(1966b)	friction	factor.	This	was	found	to	be	applicable	for	high	wave	Reynolds	

number,	 otherwise	 a	 combined	 threshold	 was	 needed.	 In	 the	 latter	 case,	 a	

combined	 wave‐current	 friction	 factor	 given	 by	 Grant	 and	 Madsen	 (1979),	

߬଴,௖ ൌ .ߩ ஽ܥ ଵܷ଴଴
ଶ 	 (Eq.	3.6)		 	
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modified	to	account	for	the	relative	angle	between	the	direction	of	the	mean	

current	and	that	of	the	wave	propagations:	

	Based	 on	 their	 observations,	 Amos	 et	 al.	 (1988)	 suggested	 a	 Shield’s	 type	

threshold,	defined	by:		

	

3.3	The	threshold	for	sediment	suspension		

The	movement	of	sediment	along	the	bed	is	the	predominant	form	of	transport	

at	low	rates.	As	bedload	intensifies,	collisions	between	particles	become	more	

important,	and	particles	experience	short‐lived,	water‐borne	 jumps	from	the	

bed	(saltation)	due	to	the	impulse	forces	or	ballistic	momentum	(Middleton	and	

Southard,	 1984).	 Saltation	 represents	 a	 transition	 from	 traction	 bedload	

towards	 suspension	 within	 the	 water	 column	 as	 a	 result	 of	 turbulence	

associated	 with	 the	 total	 bed	 shear	 stress	 (Madsen	 and	 Wood,	 2002).	 The	

entrainment	of	a	sediment	particle	into	suspension	is	often	described	through	

pick‐up	functions	integrated	into	the	bedload	theory,	such	as	those	presented	

by	Einstein	 (1950)	and	Yalin	 (1972).	However,	van	Rijn	 (1984a)	 found	both	

such	relations	 to	be	rather	poor;	 favouring	 formulations	 that	 incorporate	an	

excess	bed	shear	stress	term	such	as	that	of	Fernandez	Luque	and	Van	Beek	

(1976).		

Bagnold	 (1966)	 argued	 that	 solid	particles	 can	only	 remain	 in	 suspension	 if	

some	 turbulent	 eddies	 had	 an	 upward,	 vertical	 velocity	 component,	

௨௣ᇱݓ 	exceeding	the	particle’s	settling	(fall)	velocity,	ݓ௦.	Bagnold	thus	defined	the	

threshold	for	suspension	at	some	critical	value	of	the	ratio	ݓ௨௣ᇱ ⁄	௦ݓ ൏ 1;	and	

full	 suspension	 at	 a	 higher	 value,	 to	 account	 for	 the	 variability	 of	 ௨௣ᇱݓ 	of	

different	eddies	within	the	flow.	Similarly,	the	settling	velocity	can	be	replaced	

by	an	effective	settling	rate	for	heterogeneous	suspensions.	By	defining	ݓ௨௣
ᇱ ≅

߬̂଴,௪ ൌ
1
2 ௪݂ ߩ ܷஶଶ 	

(Eq.	3.7)	 	

ሾߠ௪ ൅ ௖ሿ௖௥௜௧௜௖௔௟ߠ ൌ
߬଴,௖ ൅ ߬̂଴,௪

ݏሺߩ െ 1ሻ݃ . ହ଴ܦ
ൌ 0.04	

(Eq.	3.8)	 	
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௦ݓ ≅ 	;∗ݑ	0.8 a	 statistical	 approximation	 that	 ௨௣ᇱݓሺݏ݉ݎ ሻ ൌ 1.25	ඥ߬଴/ߩ	

(following	Lane	and	Kalinske	(1941))	yields	a	Shields‐like	threshold	criterion	

for	suspension	of	uniform,	quartz‐density	grains	in	clear	water,	given	by:	

This	approach	relating	the	upward	velocity	component	to	the	particle	settling	

rate	has	been	suggested	by	a	number	of	authors,	and	the	ratio	of		ݓ௨௣ᇱ ⁄	௦ݓ has	

been	referred	to	as	the	moveability	number	(Collins	and	Rigler	1982)	or	the	

inverse	Rouse	number	(Lee	et	al.,	2004).	The	exact	value	of	the	ratio	ݓ௦/ݑ∗	for	

suspension	to	be	maintained	has	been	contested	 in	the	 literature	(Engelund,	

1965;	 Komar	 and	 Clemens,	 1986;	 Samaga	 et	 al.,	 1986;	 Amos	 et	 al.,	 2010).	

According	to	van	Rijn	(1984b),	the	ratio	ݓ௦/ݑ∗	depends	on	the	dimensionless	

grain	diameter,	ܦ∗;		

and	thus	is	not	universal.	By	defining	the	relationship	of	ݓ௦/ݑ∗	and	ܦ∗	as:		

van	Rijn	(1993)	shows	that	the	threshold	for	suspension	(Shield	criterion)	can	

be	rewritten	to	incorporate	both	ݓ௦/ݑ∗	and	ܦ∗:	

Based	on	experimental	results,	van	Rijn	(1984b)	suggests	߯ ൌ 4	for	1 ൑ ∗ܦ ൑

10.	For	ܦ∗ ൒ 10;	the	ratio	ݓ௦/ݑ∗	is	assumed	constant.	Alternative	limits	have	

been	presented	in	(van	Rijn,	1993;	NiÑo	et	al.,	2003;	Amos	et	al.,	2010).	Bose	

and	Dey	(2013),	on	the	other	hand,	presented	probabilistic	Shield’s	curves	for	

entrainment	 into	 suspension;	 which	 vary	 as	 a	 function	 of	 both	 the	 grain	

Reynolds	number	and	the	Rouse	number,	a	parameter	often	used	in	modelling	

the	vertical	distribution	of	suspended	sediments	(cf.	§3.5.2).	

௦ߠ ൌ 	0.64.
௦ଶݓ

ݏହ଴ሺܦߩ െ 1ሻ
	

(Eq.	3.9)		 	

∗ܦ ൌ ቈ
݃	ሺߩ௦ െ ሻߩ

	ଶߥߩ
቉

ଵ
ଷ
. 	ହ଴ܦ

(Eq.	3.10)		 	
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(Eq.	3.11)		 	

௦ߠ ൌ
߯ଶ

ଶ∗ܦ
.

௦ଶݓ

ݏହ଴ሺܦߩ െ 1ሻ
	

(Eq.	3.12)		 	
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3.4	Coherent	flow	structures	and	sediment	suspension	

3.4.1	Sediment	entrainment	and	coherent	structures	

While	 classical	 descriptions	 of	 Shields’‐type	 criteria	 for	 the	 thresholds	 of	

motion	and	suspension	are	still	widely	accepted	and	used,	 there	remains	no	

consensus	as	to	what	actually	destabilises	the	balance	of	forces	acting	on	a	grain	

at	rest	and	mobilises	it.	As	such,	expressions	of	threshold	are	often	attributed	

to	stresses	or	flow	velocities	(instantaneous	or	time‐averaged,	local	or	spatially	

averaged),	velocity	gradients,	fluid	acceleration,	pressure	forces	and	pressure	

gradients,	 rate	 of	 energy	 transfer/stream	 power;	 shear	 instabilities,	 vortex	

structures,	and	ejections	and	sweeps	of	a	bursting	sequence,	all	of	which	have	

their	advocates	and	opponents	(Coleman	and	Nikora,	2008).	Variations	in	bed	

shear	 stress	associated	with	velocity	 fluctuations	are	clear	manifestations	of	

intermittent	momentum	 transfer	 within	 the	 near‐bed	 fluid	 due	 to	 coherent	

turbulence	 structures	 (Laufer,	 1975).	 Such	 motions	 are	 characterised	 by	

violent	 eruptions	 of	 fluid,	 resulting	 in	 the	 production	 of	 turbulent	 kinetic	

energy;	a	mechanism	knowing	as	‘bursting’	(Offen	and	Kline,	1974;	Offen	and	

Kline,	1975).		

The	role	played	by	bed–generated	coherent	bursting	structures	in	entraining	

and	 transporting	 sediment	 particles	 is	 widely	 acknowledged,	 yet	 the	 exact	

mechanism	is	still	unclear	(Dey	et	al.,	2012;	 Ji	et	al.,	2013).	 	Observations	by	

Sutherland	(1967)	reported	a	tendency	for	bed	grains	to	move	in	a	series	of	

short,	 intermittent	 bursts	 confined	 to	 small	 areas.	Many	 grains	would	move	

simultaneously	during	each	burst	before	motion	subsides	until	another	burst	

takes	 place,	 and	 with	 increased	 flow	 velocities,	 the	 motions	 became	 more	

violent	 and	 eventually	 projected	 as	 suspensions.	 For	 flat	 beds,	 Sutherland	

observed	 a	 constant	 frequency	 at	 which	 these	 bursts	 occur,	 whereas	 over	

developed	bedforms,	 intermittent	motions	 occurred	 first	 in	 the	 troughs	 and	

stagnation	 points	 with	 several	 grains	 moving	 simultaneously	 in	 no	 specific	

direction.	 Greater	 velocities	 brought	 more	 grains	 into	 suspension,	 with	

particular	 agitation	 near	 the	 trough,	 and	 sediment	 clouds	 being	 lifted	

occasionally	 over	 short	 durations.	 Sutherland’s	 observations	 describe	 two	

fundamental	 features	 of	 a	 bursting	 sequence,	 (i)	 the	 ‘sweep’	 whereby	
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downward	inrushes	of	fast‐moving	fluid	induce	significant	shear	stresses	and	

high	 velocities	 just	 above	 the	 grain	 particles;	 and	 (ii)	 the	 burst/ejection,	 in	

which	the	slower,	near‐bed	fluid	moves	higher	away	from	the	bed	with	high	

stresses	yet	slow	localised	velocities	(Dyer,	1986).	Ejections	thus	promote	the	

movement	of	sediment	into	suspension	due	to	the	increase	in	upward	velocity	

fluctuation,	whereas	sweeps	are	effective	at	moving	sediments	along	the	bed	

(ibid.).	The	particle	remains	suspended	by	the	ejection	until	the	latter	breaks	

up,	 and	 as	 the	 settling	 rate	 exceeds	 that	 upward	 fluctuation	 in	 velocity,	 the	

particle	 falls.	 During	 the	 descent,	 the	 particle	 could	 be	 caught	 by	 another	

bursting	motion,	and	hence	is	maintained	in	suspension.	The	bursting	process	

within	 coherent	 turbulence	 structures	 is	 often	 considered	 a	 plausible	

mechanism	in	light	of	Bagnold’s	argument	that	suspension	of	a	particle	can	be	

maintained	 only	 when	 upwards	 velocity	 fluctuations	 exceed	 the	 downward	

motion	(Bagnold,	1966).	Jackson	(1976)	argued	that	strong	upward	flow	in	a	

burst	 provides	 the	 vertical	 anisotropy	 in	 turbulence	 needed	 to	 suspend	

sediment,	hence	promoting	entrainment	of	more	and	coarser	 sediment	 than	

traction	 alone.	 Similarly,	 the	 contribution	 to	 entrainment	 associated	 with	

pressure	 fluctuations	 may	 also	 be	 of	 importance.	 Offen	 and	 Kline	 (1975)	

proposed	that	the	rise	of	a	particle	into	suspension	is	strongly	affected	by	the	

passage	 of	 a	 bursting	 structure	 above	 it;	 as	 it	 imposes	 a	 temporary,	 local	

adverse	 pressure	 gradient.	 Amir	 et	 al.	 (2014)	 demonstrated	 a	 link	 between	

regions	 of	 positive	 and	 negative	 high‐amplitude	 pressure	 fluctuations	

attributed	 to	 the	passage	and	dynamics	of	 coherent	 structures;	 affecting	 the	

mean	bed	shear	stress	and	thus	supporting	their	role	in	particle	entrainment	

and	 transport.	 Furthermore,	 Diplas	 et	 al.	 (2008)	 demonstrated	 that	 the	 so‐

called	 ‘impulse’,	 representing	the	product	of	 the	magnitude	of	 instantaneous	

fluctuating	forces	induced	by	flow	structures	and	the	duration	in	which	they	

are	 imparted	 on	 a	 grain,	 is	 a	 better	 criterion	 for	 describing	 sediment	

entrainment.	Many	studies	since	Sutherland’s	early	work	have	confirmed	the	

intermittent	 nature	 of	 sediment	 resuspension	 linked	 to	 the	 bursting	

phenomenon	 (Sutherland,	 1967;	 Gordon,	 1975;	 Jackson,	 1976;	 Sumer	 and	

Oguz,	1978;	Sumer	and	Deigaard,	1981;	Soulsby,	1983;	Bedford	et	al.,	1987;	

Kawanisi	and	Yokosi,	1993;	Soulsby	et	al.,	1994;	Kawanisi	and	Yokosi,	1997;	
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Nikora	and	Goring,	2002;	Cellino	and	Lemmin,	2004;	Yuan	et	al.,	2009;	Dey	et	

al.,	2012;	Liu	et	al.,	2012;	Grigoriadis	et	al.,	2013).		

3.4.2	Coherent	structures	and	intermittent	resuspension	in	unsteady	flows	

The	vast	majority	of	studies	into	coherent	turbulent	structures	are	concerned	

with	 steady	 boundary	 layers.	 Fishler	 and	 Brodkey	 (1991)	 used	 flow	

visualisation	 to	establish	 the	existence	of	 coherent	 turbulence	structures	 for	

transitional	 and	 fully	 turbulent	oscillatory	 flows,	 as	a	 series	of	deterministic	

events	occurring	randomly	 in	space,	but	only	during	decelerating	 flow.	They	

postulated	several	events,	namely	local	deceleration,	acceleration,	excitation‐

transverse	vortex,	 ejection	and	 sweep	with	 the	 local	deceleration,	 excitation	

and	 ejection	 events	 mobilising	 large	 amounts	 of	 tracer	 particles.	 Sarpkaya	

(1993)	used	laser‐induced	fluorescence	to	trace	the	emergence	and	evolution	

of	coherent	structures	within	an	oscillating,	unsteady	boundary	layer,	showing	

a	multitude	of	 structural	 forms	occurring	 from	 low	Reynolds	number	all	 the	

way	up	to	fully	turbulent	flow.	These	unevenly	spaced	streaks	were	generated	

towards	 the	 end	 of	 the	 decelerating	 phase	 and	 disappeared	 during	 the	

accelerating	phase	at	 low	Reynolds	numbers.	As	 the	wave	Reynolds	number	

increased,	 these	motions	merged	 into	more	 clearly	 defined	 structures,	 with	

intense	bursting.	However,	only	a	few	hairpin	structures	were	observed	as	their	

short‐lived	 emergence	 was	 prematurely	 terminated	 by	 flow	 reversal.	

Carstensen	 et	 al.	 (2010)	 observed	 two	 types	 of	 coherent	 structures	 in	

oscillatory	 and	 combined	 oscillatory‐current	 flow	 boundary	 layers	 within	

transitional	flow	regimes,	namely	vortex	tubes	and	turbulent	spots.	The	former	

may	 cause	 insignificant	 variations	 in	 bed	 shear	 stress	 whereas	 the	 latter	

features	bursts	with	violent	oscillations,	causing	spikes	within	the	bed	shear	

stress	signals,	with	significant	implications	for	transport.			

Nielsen	(1992)	argued	 that	 the	most	 important	 flow	structure	 in	connection	

with	suspended	sediments	 is	 that	of	a	vortex	with	a	horizontal	axis	as	 these	

vortices	 are	 able	 to	 trap	 sand	 grains	 and	 carry	 them	 along	 considerable	

distances,	as	opposed	to	the	orbital	wave	motion	which	has	no	trapping	ability.	

Nonetheless,	a	number	of	flow	structures	in	unsteady	flows	are	often	associated	
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with	 the	 entrainment	 and	 suspension	 of	 sediment	 particles.	 Nadaoka	 et	 al.	

(1988)	described	large,	three‐dimensional,	obliquely‐descending	eddies	in	the	

surf	 zone	 that	would	 lift	 considerable	amounts	of	 sediment	 into	suspension,	

forming	clouds	ejecting	from	the	bed,	advecting	horizontally,	and	settling	down.	

These	 turbulent	 coherent	 structures	 induced	 by	 wave	 breaking	 can	 inject	

surface‐generated	 turbulence	 into	 the	 seabed,	 arriving	 as	 downward	 bursts	

associated	with	counter‐rotating	vortices		(Ting,	2008).	Numerical	simulations	

of	 these	 structures	 under	 breaking	 solitary	waves	 conducted	 by	 Zhou	 et	 al.	

(2014)	suggest	that	significant	suspension	of	sediment	occurs	at	the	location	

where	such	motions	impinge	on	the	seabed,	albeit	with	some	time	lag.	At	the	

centre	of	the	impinging	region,	intense	downward	velocity	fluctuations	supress	

suspension,	yet	as	this	 is	accompanied	by	an	uprush	in	the	adjacent	regions,	

sediment	 shoots	 higher	 into	 the	water	 column	 in	 clouds.	 The	 suspension	 of	

sediment	by	downward	injected	turbulence	from	breaking	waves	is	supported	

by	 ample	 evidence	 from	 field	 measurements	 (Grasso	 and	 Ruessink,	 2012;	

Aagaard	and	Jensen,	2013).	Aagaard	and	Hughes	(2010)	showed	that	plunging	

breaker	waves	are	much	more	efficient	at	suspending	sediment	than	surface	

bores.	 The	 intermittent,	 coherent	 vortex	 structures	 impinging	 on	 the	 bed	

results	in	significant	increase	in	the	local,	instantaneous	bed	shear	stresses;	and	

are	 several	 orders	 of	 magnitude	 more	 efficient	 than	 shoaling	 waves.	 Large	

vertical	accelerations	and	pressure	differentials	under	the	plunging	breakers	

mobilise	 and	 lift	 large	 amounts	 of	 sediment	 into	 the	 water	 column.	 As	 the	

sediment	concentration	is	in	phase	with	the	wave	crest,	sediments	get	advected	

landwards.		Sumer	et	al.	(2013)	also	observed	coherent	vortices	generated	by	

plunging,	 regular	 waves	 in	 the	 lab,	 which	 they	 attributed	 to	 shear	 layer	

instability.	This	refers	to	instabilities	within	a	shear	layer	formed	between	the	

onshore‐directed	crest	and	the	offshore‐directed	rundown	being	concentrated	

in	more	defined	vortices.	These	vortices	were	shown	to	significantly	enhance	

the	 bed	 shear	 stress,	 and	 amplify	 the	 corresponding	 turbulent	 fluctuations	

significantly;	 as	 well	 as	 cause	 large,	 upward‐directed	 pressure	 gradients,	

further	contributing	to	suspended	sediment	plumes.		
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Another	 commonly	 identified	 form	 of	 coherent	 structures	 associated	 with	

sediment	resuspension	is	vortex	shedding.	The	process	of	vortex	shedding	from	

bedforms	in	wave	dominated	flows	was	first	reported	by	Bagnold	and	Taylor	

(1946)	and	has	particularly	enjoyed	wide	exposure	in	the	scientific	literature.	

Bagnold	and	Taylor	(1946)	investigated	the	interaction	between	shallow	water	

waves	and	sandy	bottoms,	describing	two	mechanisms	of	 formation:	rolling‐

grain	and	vortex	ripples.	In	vortex	type	ripples,	a	full	grown	vortex	begins	to	

over‐run	 the	 ripple,	 scooping	 sand	 grains	 from	 the	 trough,	 and	 shooting	

upwards,	 parallel	 to	 the	 surface	 of	 the	 slope,	 like	 a	 spinning	 wheel,	 before	

resting	at	the	ripple	crest.	As	flow	reverses	over	these	steep	two‐dimensional	

bedforms,	 the	 benthic	 boundary	 layer	 can	 separate	 from	 the	 bed,	 trapping	

sediments	and	ejecting	them	higher	into	the	flow	(O'Hara	Murray	et	al.,	2011).	

This	 is	 in	 essence	 a	 repeatable	 and	 hence	 coherent,	 convective	 entrainment	

process	 (Nielsen,	 1992)	 that	 is	 observed	 in	 both	 regular	 (at	 half	 cycle)	 and	

irregular	wave	 conditions	 (Thorne	 et	 al.,	 2003;	O'Hara	Murray	 et	 al.,	 2012).	

Localised	 ejections	 of	 vortices	 can	 interact	 with	 advecting	 or	 preceding	

motions,	often	laden	with	sediment,	and	thus	maximum	concentrations	tend	to	

form	above	 the	 ripple	 troughs	where	 the	horizontal	velocity	peaks,	whereas	

maximum	 concentrations	 at	 the	 crest	 lag	 due	 to	 the	 advection	 of	 coherent	

suspension	 events	 (Villard	 and	 Osborne,	 2002).	 	 The	 more	 energetic	

suspension	events	could	persist	several	wave	cycles	particularly	where	small	

waves	are	followed	by	larger	ones.	For	combined	waves	and	currents,	Fredsøe	

et	al.	(1999)	demonstrated	that	the	periodic	shedding	of	coherent	structures	

from	vortex	ripples	dominates	the	turbulence	structure	near	the	bed,	and	hence	

persists	 almost	 unchanged.	 Furthermore,	 the	 formation	 of	 these	 vortices	

depends	on	the	bed	material,	the	ripple	size	and	wave	characteristics.	In	high	

frequency	waves	one	vortex	is	formed	and	the	flow	reverses	before	another	one	

could	 be	 formed,	 and	 at	 low	 frequencies,	 it	may	 fully	 decay	 after	 shedding,	

before	another	vortex	forms	(Williams	et	al.,	2007).	Where	vortex	pairs	may	

develop,	sediments	may	be	violently	ejected	much	higher	(several	orders	of	a	

ripple	height)	than	classically	described,	reaching	distances	that	exceed	ripple	

height	by	over	an	order	of	magnitude.	Subsequently,	sediment	particles	can	be	

entrained	 within	 the	 accelerating	 (jet‐like)	 fluid	 formed	 between	 the	 two	
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vortices,	 shooting	 at	 speeds	 exceeding	 those	 of	 the	 vortex	 pair,	 until	 the	

gravitational	 forces	 are	 enough	 to	 induce	 settling	 (ibid.).	 	 For	 very	 high	

concentrations,	particle‐particle	interactions	may	modify	the	settling	rates;	and	

feedback	 by	 the	 suspended	 material	 on	 the	 turbulence	 structures	 may	 no	

longer	be	negligible.	

3.5	The	suspended	sediment	transport	problem	from	a	modelling	

perspective	

The	complexity	of	the	interactions	between	suspended	sediment	particles	and	

the	carrying	fluid	in	turbulent	flows,	as	well	as	amongst	particles	themselves,	

has	seen	the	development	of	various	theoretical,	numerical	and	experimental	

frameworks	 to	 tackle	 the	 problem	 (Zhu	 et	 al.,	 2013).	 Numerical	 models	 of	

sediment	 transport	 often	 used	 to	 guide	 engineering	 applications	 employ	

coupled	models	 for	waves,	 currents,	 sediment	 transport	and	 changes	 in	bed	

level.	 As	 such,	 they	 are	 often	 based	 on	 some	 numerical	 integration	 of	 the	

Reynolds‐averaged	Navier	Stokes	(RANS)	equations	for	conservation	of	mass	

(continuity)	and	momentum	of	the	fluid	(cf.	Appendix	1);	and	the	advection‐

diffusion	equations	to	describe	the	vertical	distribution	of	suspended	sediment	

concentrations,	 together	with	 some	empirical	 formulae	 to	estimate	bed‐load	

transport	(Vittori,	2003;	van	Rijn	et	al.,	2007).	The	RANS	equations	are	usually	

closed	by	the	Boussinesq	hypothesis	and	the	eddy	viscosity	and	diffusivity	are	

computed	by	means	of	algebraic	relationships	or	differential	equations.		Most	

of	 the	 bed‐load	 equations	 are	 derived	 from	 laboratory	 experiments	 with	

regular,	 non‐breaking	 waves;	 while	 suspended	 sediment	 profiles	 are	 often	

described	 in	a	wave‐averaged	sense,	with	no	explicit	account	 for	 intra‐wave	

phenomena	 such	 as	 turbulent	 bursting.	 The	 evolution	 of	 the	 bed	 is	 often	

derived	 from	 a	 simple	 mass	 balance,	 given	 by	 the	 Exner	 Equations	 (Exner,	

1920;	Exner,	1925;	Paola	and	Voller,	2005);	usually	assuming	that	the	erosion	

from	 the	 bed	 is	 equal	 to	 the	 entrainment	 rate	 under	 equilibrium	 conditions	

(Amoudry	and	Souza,	2011;	Villaret	et	al.,	2013).		
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3.5.1	Modelling	suspended	sediment	

The	traditional	approach	to	modelling	the	suspension	of	sediments	is	founded	

upon	the	passive	scalar	hypothesis	(Chauchat	and	Guillou,	2008),	whereby	no	

interaction	 between	 sediment	 particles	 and	 other,	 concurrent	 transport	

processes	(e.g.	thermal)	within	the	fluid	flow	is	assumed	(Combest	et	al.,	2011)	

nor	does	the	concentration	of	the	scalar	(sediment)	affect	the	dynamics	of	the	

fluid	motion	 itself	 (Warhaft,	 2000).	 Under	 such	 a	 framework,	 these	 ‘single‐

phase’	models	employ	the	gradient‐diffusion	hypothesis	which	states	that	the	

settling	of	the	grains	towards	to	bed	by	gravity	would	be	balanced	by	upwards	

diffusions	 induced	 by	 vertical	 turbulent	 motions	 in	 the	 boundary	 layer	

(Nielsen,	1992;	Zhang	et	al.,	2011).	According	to	this	hypothesis,	the	conserved	

scalar	 (e.g.	 sediment)	 flux	 is	 aligned	 with	 the	 mean	 scalar	 gradient	 (in	

magnitude	and	direction)	through	a	positive	scalar	–	the	turbulent	diffusivity		

(Pope,	2000).	The	implication	of	this	assumption	is	that	the	horizontal	velocity	

of	the	sediment	is	equal	to	that	of	the	fluid,	and	the	difference	in	true	density	

between	 solid	 particles	 and	 surrounding	 fluids	 is	 accounted	 for	 only	 in	 the	

vertical	 via	 a	 settling	 velocity	 term.	 In	 other	 words,	 sediment	 transport	 in	

suspension	 is	 described	 by	 the	 balance	 between	 the	 downward	 settling	 of	

sediment	 particles	 due	 to	 gravity	 versus	 the	 upward	mixing	 of	 sediment	 by	

turbulent	 motions.	 Similarly,	 the	 relative	 velocity	 between	 a	 non‐cohesive	

particle	and	the	surrounding	fluid	in	waves	is	also	assumed	to	be	equal	to	the	

settling	rate	of	the	particle	in	still	water;	such	that	fluid	accelerations	due	to	the	

wave	motion	 are	 considered	negligible	 compared	 to	 the	 acceleration	due	 to	

gravity	 (Nakato	 et	 al.,	 1977;	 Nielsen,	 1992).	 Molecular	 and	 turbulent	

diffusivities,	 in	analogy	to	Fourier’s	law	of	heat	conduction,	and	Fick’s	law	of	

molecular	 diffusion,	 are	 combined	 into	 an	 “effective	 diffusivity”	 used	 in	 the	

conservation	equations.	In	the	vertical	dimension	(ݖ),	the	advection	diffusion	

equation	 (ADE)	 for	 describing	 the	 volumetric	 concentration	 ,ݖሺܥ 	of	ሻݐ

suspended	sediment	at	a	given	height	(ݖ)	at	a	time,		ݐ,	is:		

,ݖሺܥ߲ ሻݐ
ݐ߲

ൌ
߲
ݖ߲

ቆݓ௦. ,ݖሺܥ ሻݐ ൅ .௦,௭ߝ
,ݖሺܥ߲ ሻݐ

ݖ߲
ቇ	

(Eq.	3.13)		 	
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where	ݓ௦	represents	the	particle	settling	velocity,	and	ߝ௦,௭	denotes	the	vertical	

component	of	sediment	mixing	coefficient	(eddy	diffusivity),	a	measure	of	the	

turbulent	diffusivity	(Chen	et	al.,	2013;	van	Rijn	et	al.,	2013).		In	a	time‐averaged	

sense,	 van	Rijn	et	 al.	 (2007)	used	ߝ௦,௖௪		to	 represent	 combined	wave‐current	

diffusivity,	giving	Equation	3.12	for	combined	flows	at	equilibrium	as:	

The	diffusivity	term,	in	line	with	the	passive	scalar	hypothesis,	is	often	related	

to	 the	 eddy	 (turbulent)	 viscosity,	 	,்ݒ of	 the	 flow,	 a	measure	 of	 deformation	

(strain)	 of	 the	 fluid	 element	 relative	 to	 the	 applied	 momentum	 (Reynolds	

stress),	 in	 analogy	 to	 molecular	 transfer,	 as	 proposed	 by	 Boussinesq	

(Boussinesq,	 1877;	 Schmitt,	 2007).	 The	 ratio	 of	 turbulent	 diffusivity	 of	

momentum	 (i.e.	 eddy	 viscosity,	 	(்ߥ to	 the	 turbulent	 diffusivity	 of	

particulates/sediment	 grains	 (sediment	 diffusivity)	 is	 known	 as	 the	 Prandtl	

number	 (Pope,	 2000),	 or	 the	 Schmidt	 number	 (Amoudry	 et	 al.,	 2005;	 Absi,	

2010;	 Buscombe	 and	 Conley,	 2012),	 or	 collectively	 the	 Prandtl‐Schmidt	

number	 (Hassan	 and	 Ribberink,	 2010).	 Despite	 both	 eddy	 and	 sediment	

diffusivities	varying	considerably,	the	ratio	is	often	taken	as	a	constant	value.	

This	 relationship	 between	 	and	்ݒ 	holds	௦ߝ true	 if	 the	 source	 of	 a	 vertical	

suspension	 “plume”	 is	 the	 ground	 (bed)	 level	 (Robins	 and	 Fackrell,	 1979).	

Nonetheless,	the	fact	that	a	proportional	relationship	given	by	Prandtl‐Schmidt	

number	between	eddy	viscosity	and	sediment	diffusivity	certainly	implies	that	

particles	do	not	necessarily	follow	the	turbulent	fluid	motions.	Yet,	this	ratio	is	

commonly	assumed	to	be	unity	for	steady	uniform	flows		(Li	and	Davies,	2001;	

Hassan	and	Ribberink,	 2010);	 although	 its	 value	has	been	 shown	 to	depend	

upon	 particle	 sizes	 (Nielsen,	 1992),	 vertical	 decay	 of	 velocity	 (Nielsen	 and	

Teakle,	2004)	and	concentration		(Amoudry	et	al.,	2005),	selective	suspension	

(Lee,	2008),	and	vortex	entrainment	(van	Rijn,	2007b;	Amoudry	et	al.,	2013).	

This	 disparity	 has	 been	 the	 foundation	 for	 the	 argument	 in	 favour	 of	 a	

convection‐diffusion	 approach	 for	 oscillatory	 flows	 (Nielsen,	 1992;	 van	Rijn,	

2007b).	Hence,	solving	advection‐diffusion	equation	is	predicated	on	how	the	

diffusivity	term	(ߝ௦	),	and	thus	how	the	eddy	viscosity	is	described/	closed.	This	

ܿ. ௦ݓ ൅	ߝ௦,௖௪	
݀ܿ
ݖ݀

ൌ 0	
(Eq.	3.14)		 	
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highlights	 a	 major	 issue	 in	 modelling	 sediment	 suspension,	 whereby	 the	

feedback	 imparted	 by	 the	 suspended	 particles	 on	 the	 flow	 is	 completely	

neglected.	 Attempts	 at	 reconciling	 intermittent	 sediment	 entrainment	 by	

coherent	structures	and	classical	models	of	suspended	sediment	transport	thus	

need	 to	 address	 the	 time‐dependent	 relationship	 between	 eddy	 viscosity	

(pertaining	to	the	flow)	and	eddy	diffusivity	(pertaining	to	the	sediment).		

3.5.2	The	classical	model:	The	Rouse	profile	of	suspended	sediment		

Perhaps	the	most	classical	model	within	the	ADE	framework	is	that	proposed	

by	 Hunter	 Rouse	 (1937).	 Rouse	 argued	 that	 if	 the	 mean	 components	 of	

streamwise	 ௜ݑ) ൌ 	,(ݑ crosswise	 ௝ݑ) ൌ 	(ݒ and	 vertical	 ௞ݑ) ൌ 		ሻݓ velocity	 (ܷ)	

(following	a	Reynolds	decomposition)	do	not	vary	in	either	space	or	time,	then	

the	 turbulent	 flow	 may	 be	 considered	 steady	 and	 uniform	 (Rouse,	 1937).	

Substituting	 these	 in	 the	 original	 RANS	 equations	 leads	 to	 an	 expression	

equivalent	 to	 the	 Newtonian	 equilibrium	 of	 force	 by	 mass‐acceleration.	 By	

introducing	 “Boussinesq’s	 turbulent	 coefficient”,	 or	 eddy	 viscosity,	 Rouse	

describes	the	effective	shear	of	momentum	transport	in	the	vertical	as	a	shear	

stress	in	the	form:	

where	ݑప	ݑఫതതതതതത	is	the	time‐averaged	velocity	covariance	of	two	orthogonal	velocity	

components	(second	moment	or	Reynolds	stress,	߬௫௭)	in	the	vertical	plane,	and	

	்ߥ is	 the	 eddy	 viscosity	 term	 which	 describes	 the	 turbulent	 diffusivity	 of	

momentum.	The	above	equation	holds	true	only	for	simple	shear	flows,	where	

the	Reynolds	 stress	 anisotropy	 is	 linearly	 related	 to	 the	mean	 rate‐of‐strain	

tensor	via	the	eddy	viscosity	(Pope,	2000).	Rouse	thus	closes	the	equations	by	

using	 a	 one‐equation	model	 (cf.	 Appendix	 2	 for	 full	 derivation);	 whereby	 a	

mixing	length,	݈	[L],	denotes	the	average	distance	in	the	logarithmic	part	of	the	

flow	over	which	a	small	 fluid	mass	 is	carried	by	turbulent	mixing	processes,	

following	 Prandtl	 (1925).	 Rouse	 (1937)	 thus	 argued	 that	 the	 difference	

between	the	original	velocity	of	the	particle	and	that	of	the	region	to	which	it	

comes	 must	 be	 proportional	 to	 the	 magnitude	 of	 the	 velocity	 fluctuations	

߬௫௭ ൌ పݑ ௞തതതതതതതݑ ൌ െ ்ߥ .
߲ ഥܷ

ݖ߲
	

(Eq.	3.15)		 	
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involved	 in	 that	 transverse	 motion,	 thus	 defining	 the	 effective	 shear	 stress	

(whilst	ignoring	molecular	viscosity)	as:		

By	comparison,	he	therefore	defines	the	‘kinematic	turbulence	factor’	(i.e.	the	

turbulent	eddy	viscosity),	as:	

Rouse	 suggested	 that	 the	 problem	 of	 suspended	 load	 (or	 temperature,	 or	

salinity)	in	a	stream	can	be	tackled	similarly,	in	a	convective	manner.	Using	the	

settling	velocity	of	a	given	particle	size,	ݓ௦,	the	temporal	rate	of	transport	of	

concentration	 per	 unit	 area	 must	 equate	 the	 number	 of	 particles	 per	 unit	

volume	multiplied	by	their	rate	of	fall.	

Thus,	by	simplifying	 the	RANS	equations	 for	 two	dimensional,	uniform	flow;	

and	applying	boundary	conditions	whereby	shear	stress	at	the	bed	is	given	by	

the	 energy	 slope	 equation,	 and	 zero	 stress	 at	 the	 water	 surface	 (Raudkivi,	

1976);	all	that	remains	is	to	describe	the	vertical	distribution	of	eddy	viscosity.	

Rouse	 thus	 opted	 for	 a	 parabolic	 distribution,	 in	 line	 with	 the	 logarithmic	

velocity	distribution,	showing	the	concentration		to	vary	in	a	parabolic	fashion	

in	the	water	column,	extending	from	a	near	bed	reference	height,	ܿ௔,	to	the	full	

water	 depth,	 ݀	,	 in	 the	 fashion	 now	 commonly	 referred	 to	 as	 a	 Roussian	

distribution	of	suspended	sediment:	

whereby	ܥ௭	and	ܥ௔	are	the	mass/volumetric	sediment	concentrations	[M/L3	or	

L3/L3]	at	heights	ݖ	and	ݖ௔	above	the	bed,	ߢ	is	von	Kármán’s	constant,	and	ݑ∗	is	

the	shear	velocity.		The	exponent	ݓ௦	/ݑߢ∗ ൌ ܴ		is	known	as	the	Rouse	exponent.	

߬௫௭ ൌ ݈	|′ݓ|	ߩ
ݓ݀
ݖ݀

	
(Eq.	3.16)		 	

்ݒ ൌ 		 |′௭ݓ| ൈ ݈.	 (Eq.	3.17)		 	

௭ܥ ൌ .௔ܥ ൤
௔ݖ
ݖ
.
ሺ݀ െ ሻݖ
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൨
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(Eq.	3.18)		 	
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The	above	relation	indicates	that	the	relative	sediment	distribution	(for	a	given	

particle	size	and	hence	a	particular	settling	velocity,	ݓ௦)	is	a	function	of	relative	

depth	 only,	 and	 can	 only	 extend	 to	 a	 given	 arbitrary	 depth	 such	 that	 the	

concentration	at	 that	depth	does	not	affect	 the	 fluid‐mixture	density	nor	 the	

velocity	distribution	(hence	the	notion	of	a	reference	concentration,	ܥ௔	at	the	

reference	height	ݖ௔).	The	vertical	distribution	of	suspended	sediments	can	only	

be	computed	for	rough	turbulent	flows	where	a	log‐law	is	valid,	and		provided	

the	log‐layer	extends	to	the	free	surface.	A	major	disadvantage	here	is	that	the	

profile	 assumes	 the	 concentration	 is	 zero	 at	 the	 surface	 (Raudkivi,	 1976).	

Einstein	(1950)	emphasised	that	the	suspended	load	theory	only	determines	

the	local	distribution	of	sediment	and	not	the	absolute	amount	of	suspended	

sediment	 in	 transport.	The	concentration	at	 the	 lower	edge	of	suspension	 in	

equilibrium	conditions	 is	extended	down	to	the	bed	layer,	 to	account	for	the	

fact	 that	 this	 theory	only	describes	 locally‐derived	bed	 sediments.	 It	 follows	

that	the	problem	is	thus	reduced	to	one	of	determining	the	concentration	at	the	

upper	boundary	of	the	bed	layer,	defined	as	the	weight	of	solids	per	unit	volume	

of	the	water	sediment	mixture.	Einstein	assumed	that	this	bed	layer	is	only	two	

diameters	thick,	and	as	such,	the	concentration	within	the	bed	layer	must	be	

constant	 (ibid.).	 Quantifying	 the	 reference	 concentration	 or	 specifying	 the	

height	at	which	it	can	be	defined	(i.e.	specifying	the	lower	boundary	condition	

of	the	problem,	or	the	reference	concertation,	ܥ௔,	at	the	reference	height,	ݖ௔)	is	

a	 rather	 contentious	problem,	particularly	 as	 the	upper	 limit	 of	 the	bedload	

cannot	 be	 strictly	 defined	 and	 arbitrarily	 chosen	 limits	 are	 commonly	 used,	

based	on	bed	 grain	properties,	 degree	of	 packing,	 bed	porosity	 and	density,	

availability	of	 local	sediment	at	the	bed,	 the	Shields’	entrainment	parameter,	

and	existing	skin	friction	and	bedform	configuration	(van	Rijn,	1984b;	Nielsen,	

1986;	Drake	and	Cacchione,	1989;	Garcia	and	Parker,	1991;	Green	and	Black,	

1999;	Agrawal	and	Traykovski,	2001;	Lee	et	al.,	2004).		

While	 still	 enjoying	 unparalleled	 utility	 in	 modelling	 suspended	 sediment	

transport,	the	Rouse	profile	can	be	scrutinised	as	it	seems	that	the	validity	of	

nearly	all	of	its	underlying	assumptions	has	been	questioned	in	the	literature,	

not	least	of	which	is	the	use	of	the	mixing	length	hypothesis.	At	the	very	heart	
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of	the	problem	lies	the	turbulence	closure	problem,	whereby	resorting	to	a	one‐

equation	 closure	model	 through	 specifying	 a	 particular	 vertical	 structure	 of	

eddy	viscosity	dictates	the	vertical	distribution	profile	of	suspended	particles.	

As	such,	many	eddy	viscosity	closures	have	been	applied	to	model	the	vertical	

distribution	 of	 suspended	 sediments	 within	 the	 RANS	 –	 ADE	 framework.	

Nielsen	 and	 Teakle	 (2004)	 presented	 a	 finite	 mixing‐length	 model	 to	 both	

momentum	 and	 sediment	 profiles	 in	 the	 ‘constant	 stress	 layer’;	 which	

described	 differential	 diffusion,	 and	 thus	 described	 the	 upward‐convex	

concentration	profiles	of	 fine	 sediment	 above	wave	 ripples,	 and	 the	upward	

concave	profile	of	coarse	sediment	concentrations.	A	similar	model	was	also	

presented	 by	Absi	 (2010).	 Camenen	 and	 Larson	 (2008)	 estimated	 sediment	

diffusivity	by	assuming	a	linear	combination	of	mixing	due	to	breaking	wave	

and	energy	dissipation	in	the	bottom	boundary	layer	due	to	the	mean	current,	

wave,	or	combination	of	both,	and	a	reference	concentration	that	varies	with	

Shields’	parameter,	yielding	satisfactory	predictions	within	a	tidal	inlet.	Huang	

et	al.	(2008)	modified	the	Rouse‐equation	to	account	for	a	stochastic	behaviour	

of	the	vertical	diffusion	flux.	Bose	and	Dey	(2009)	proposed	a	two‐parameter	

sediment	diffusivity	defined	by	a	depth	modification	factor	and	the	reciprocal	

to	the	Prandtl‐Schmidt	number.	Cheng	et	al.	(2013)	showed	that	this	type	of	

parametrisation	 yields	 improved	 predictions	 of	 suspended	 sediment	

concentration.	 Amoudry	 et	 al.	 (2013)	 suggested	 that	 a	 constant	 (height	

invariant)	 sediment	 diffusivity	 coupled	 with	 a	 Shields‐number‐dependent	

reference	concentration	was	sufficient	to	describe	the	vertical	distribution	of	

wave‐averaged	suspended	sediment	concentrations	above	steep	ripples	under	

waves	 in	 2D	RANS	models.	 Besides	 the	 plethora	 of	 profile	 realisations;	 it	 is	

crucial	to	consider	the	time‐dependent	variability	of	a	particular	eddy	viscosity	

profile;	 particularly	when	dealing	with	 unsteady	 flow.	More	 recently,	 a	 new	

class	of	so‐called	fractional	dispersion	models	have	been	proposed	to	describe	

the	 transport	 of	 sediment	 in	 turbulent	 flows,	 at	 the	 heart	 of	 which	 lies	 the	

stochastic	approach	introduced	in	the	seminal	work	of	Einstein	(1950).	These	

models	consider	both	the	random	variations	in	time	of	a	given	sediment	motion	

(particle	residence	time	and	memory)	besides	the	randomness	of	the	path	itself	

(Ganti	et	al.,	2009;	Ganti	et	al.,	2011),	to	account	for	non‐local	hydraulic	effects	
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at	a	distance	(Meerschaert	et	al.,	1999;	Benson	et	al.,	2000;	Meerschaert	et	al.,	

2002;	Baeumer	et	al.,	2005;	Yong	et	al.,	2006;	Baeumer	and	Meerschaert,	2007;	

Wheatcraft	and	Meerschaert,	2008;	Schumer	et	al.,	2009).	This	highlights	a	shift	

towards	process‐based	modelling	of	sediment	entrainment	and	suspension,	at	

the	heart	of	which	lies	a	recognition	of	the	intermittency	of	the	problem	due	to	

coherent	turbulence	structures;	and	an	appreciation	for	the	need	to	account	for	

the	 non‐linear	 interactions	 and	 feedback	 between	 these	 motions	 and	 the	

entrained	sediment.	

3.5.3	Interactions	between	coherent	structures	and	suspended	sediment	

Describing	the	suspension	of	sediment	accurately	is	intrinsically	linked	to	an	

accurate	description	of	 the	 turbulent	 fluid	 flow	 inducing	 it.	Nonetheless,	 the	

feedback	imparted	by	the	suspended	particles	on	the	flow	may	have	significant	

implications	on	the	maintenance	of	suspension	and	on	subsequent	suspension	

events.		A	crucial	assumption	of	the	ADE	framework	is	that	particles	are	passive	

scalars,	obeying	a	linear	relation	to	the	turbulent	motions.	This	particularly	is	a	

contentious	 issue	 as	 these	 suspension	 events	 display	 characteristics	 rather	

remarkably	different	from	those	of	the	advecting	velocity	field.	Warhaft	(2000)	

reviewed	the	existing	experimental	literature	and	concluded	there	exist	many	

departures	 from	 the	 expected	 behaviour	 given	 by	 the	 classical	 theory.	 The	

author	 lists	the	existence	of	an	exponential	 tail	 in	the	scalar	signal	while	the	

velocity	is	Gaussian;	a	strong	intermittency	within	the	inertial	sub‐range	at	low	

Reynolds	 numbers	 which	 is	 absent	 in	 the	 velocity	 field;	 a	 clear	 contrast	

between	the	scalar	and	velocity	spectra;	and	anisotropy	in	the	 inertial	range	

(defying	the	fundamental	notion	of	local	isotropy	in	turbulence	theory)	and	in	

the	 dissipation	 and	 inertial	 scales	 (ibid.).	 He	 also	 reports,	 inconclusively,	 a	

particular	 dependency	 on	 Schmidt’s	 number,	 and	 that	 at	 high	 Schmidt	 and	

Reynolds	 numbers,	 velocity	 dissipates	 at	 scales	 smaller	 than	 the	 scalar	

(sediment)	 fluctuations.	 This	 is	 	 inconsistent	with	Batchelor’s	 prediction	 for	

turbulence	cascades,	displaying		two	dissipation	scales,	both	Kolmogorov	and	

Batchelor’s	wave	numbers	 (Tennekes	and	Lumley,	1972).	This	disparity	has	

been	 the	 foundation	 for	 the	 argument	 in	 favour	 of	 a	 convection‐diffusion	

approach	 for	 oscillatory	 flows,	 which	 employs	 a	 convective	 distribution	
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function	and	accounts	 for	 time	dependency	and	 can	explain	 sediment	 ‘boils’	

under	 breaking	waves	 	 (Nielsen,	 1992;	Duy	 and	 Shibayama,	 1997;	 van	Rijn,	

2007b).		

Further	 complications	 are	 introduced	 by	 the	 feedback	mechanism	whereby	

sediments	 put	 into	 suspension	 by	 the	mean	 flow	 (and	 associated	 turbulent	

fluctuations	in	3	dimensions)	would	then	alter	the	structure	of	the	boundary	

layer	 through	 turbulence	 damping	 and	 stress	 reduction	 (Gust,	 1984).	 Drag	

reduction	 is	often	associated	with	cohesive	sediments	 (Gust,	1976;	Gust	and	

Walger,	 1976;	 Cloutier	 et	 al.,	 2006;	 Thompson	 et	 al.,	 2006);	 yet	 accurate	

calculation	 of	 suspended	 sediment	 profiles	 must	 account	 for	 density	

stratification	and	the	effect	of	sediment	mixtures		(McLean,	1992).	Smith	and	

McLean	 (1977)	 described	damping	due	 to	 sediment	 concentration‐gradient‐

induced	stratification	over	sand	waves,	with	reduction	of	eddy	diffusivity.	This	

has	 implications	 for	particle	settling	and	shear	stress,	particularly	 in	regions	

where	a	density	gradient	exists	such	as	vortex‐entrained	sediment,	and	thus	

these	 interactions	 cannot	 be	 neglected.	 Tooby	 et	 al.	 (1977)	 conducted	

experimental	 and	 theoretical	 investigations	 into	 the	 interaction	 between	 a	

particle	and	an	 idealised	 turbulent	eddy	core.	Their	experiments	shows	 that	

particles	 followed	 nearly	 closed,	 spiralling	 orbits	 and	 thus	 remained	 in	

suspension	for	long	times	within	the	fluid	even	when	the	flow	velocity	opposed	

the	 particle’s	 own	 motion.	 They	 suggested	 that	 for	 particles	 to	 remain	

suspended,	the	interaction	with	coherent	flow	structures	is	such	that	the	fluid	

within	an	eddy	core	preferentially	opposes	that	of	the	particles.	Therefore,	the	

time‐averaged	velocity	affecting	the	particles	in	suspension	differs	from	that	of	

the	space‐averaged	velocity	of	the	fluid.	

By	 relaxing	 the	 assumptions	 underpinning	 the	 advection–diffusion	 equation	

(ADE)	governing	 the	behaviour	of	 single	particles,	 the	 stochastic	 framework	

given	 by	 the	 fractional	 advection	 –	 dispersion	 equations	 treats	 the	 problem	

from	a	non–local	perspective	(collective	behaviour	of	particle	transport).	This	

attempts	to	describe	particle	motion	with	memory	 in	 time	based	on	particle	

residence	time	distribution,	and	account	for	variation	in	the	flow	field	over	the	

entire	spatial	domain	(Schumer	et	al.,	2009).		This	approach	has	been	motivated	
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by	 a	 need	 to	 describe	 the	 non–local	 effect	 of	 sediment	 suspension	 due	 to	

turbulent	bursting,	which	may	sweep		particles	from	the	water	column	or	eject	

them	upwards	resulting	in	a	diverse	pattern	of	dispersion	over	larger	distances	

than	 those	 described	 classically	 (Chen	 et	 al.,	 2013).	 It	 provides	 a	means	 of	

utilising	 the	 traditional	 ADE–based	 equations	 (such	 as	 the	 Rouse	 profile	

model),	 modified	 by	 a	 fractional	 derivative,	 without	 the	 passive	 scalar	

constraints.	

An	alternative	class	of	models	attempts	to	resolve	the	problem	from	a	multi–

phase	perspective,	accounting	for	differences	 in	velocities	between	sediment	

particles	 and	 the	 surrounding	 fluid,	 and	 interactions	 between	 	 sediment	

particles	and	the	fluid,	 inspired	by	similar	approaches	in	chemical,	biological	

and	 mechanical	 engineering.	 This	 formulates	 the	 problem	 either	 as	 a	 two–

phase	system	of	particulate	solids	and	the	fluid	(Crowe	et	al.,	1996;	Greimann	

et	al.,	1999;	Amoudry	et	al.,	2005;	Chauchat	and	Guillou,	2008;	Amoudry	and	

Liu,	2009;	Nguyen	et	al.,	2009;	Chauchat	et	al.,	2013),	or	as	a	combined	phase/	

mixture	treating	the	particle–laden	viscous	flow	as	a	single	fluid	(Armanini	and	

Di	 Silvio,	 1988;	 Phillips	 et	 al.,	 1992;	 Charru	 and	 Mouilleron‐Arnauld,	 2002;	

Charru	 and	Hinche,	 2006;	Mukhopadhyay	 et	 al.,	 2009;	 Ouriemi	 et	 al.,	 2009;	

Penko	et	al.,	2011;	2013).	In	the	former,	the	conservation	equations	of	mass	and	

momentum	 are	 derived	 for	 each	 of	 the	 phases	 by	 averaging	 the	 local	

instantaneous	 equations	 in	 space,	 time,	 or	 both;	 and	 introducing	 interfacial	

terms	 for	 momentum,	 stress	 and	 turbulence	 correlations	 (Chauchat	 and	

Guillou,	2008).	In	the	latter,	the	momentum	equations	for	the	fluid–sediment	

continuum	 are	 combined,	 while	 parameterising	 inter–	 and	 intra–	 phase	

interactions	 such	 as	 effective	 viscosity,	 hindered	 settling,	 shear–induced	

diffusion,	 etc.	 (Penko	 et	 al.,	 2013).	 The	 coupling	 can	 be	 two–way	 for	 dilute	

suspensions,	 accounting	 only	 for	 fluid–sediment	 interaction;	 or	 a	 four	 way	

coupling	 for	 dense	 suspensions	 adding	 the	 effects	 of	 particle–particle	

interactions	(Elghobashi,	1991;	Balachandar	and	Eaton,	2010).		
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3.6	Concluding	remarks	

Despite	 the	unceasing	efforts	 of	 practicing	 scientists	 and	 engineers,	 and	our	

ever	increasing	computational	prowess,	perhaps	a	really	universal	turbulence	

model	may	never	be	realised	notwithstanding	the	emergence	of	some	nearly	

universal	 features	 (Rotta,	 1986;	 Bradshaw,	 1994;	 Lu	 et	 al.,	 2010).	 	 The	

multiplicity	 of	 scales,	 both	 in	 time	 and	 space,	 of	 the	 eddies	 which	 define	

vorticity	 in	 the	 flow,	and	how	these	distort	and	vary	 in	response	to	external	

fluctuations	along	the	thinly	sheared	layers	of	flow	are	important	processes	to	

consider,	 in	order	 to	understand	how	entrainment	and	 fluid	 transport	occur	

(Hunt	et	al.,	2010).	A	statistical	approach	is	needed	to	describe	averaged	flow	

quantities,	 and	 hence	 time‐averaged	 sediment	 transport	 erosion	 and	

deposition	from	and	towards	the	bed,	and	advection	of	the	suspended	plume,	

and	yet	a	structural	understanding	of	coherent	flow	structures	is	necessary	for	

better	 description	 of	 sediment	 entrainment	 and	 accurate	 estimates	 of	

intermittent	 sediment	 dynamics.	 With	 increasing	 strides	 in	 modelling	

turbulence	and	sediment	suspensions,	there	remains	no	clear	resolution	of	the	

scale	of	interaction	between	these	structures	and	suspended	particles,	and	the	

feedback	imparted	by	particles	on	the	dynamics	of	turbulent	motions	in	space	

and	time.	Therefore,	shedding	light	into	the	spatial	and	temporal	relationship	

between	the	vertical	structure	of	turbulence	in	the	bottom	boundary	layer	and	

the	ensuing	suspension	of	sediments	is	be	of	immense	practical	relevance,	were	

sediment	grains	to	be	considered	passive	scalars	or	to	have	a	direct	influence	

on	the	flow	structure	 itself.	This	characterises	a	trend	towards	deterministic	

process–based	models	of	sediment	transport,	compared	to	the	more	traditional	

parameterised	 engineering	 formulae	 incorporated	 into	 (behavioural)	

morphological	models	at	larger	scales	(Amoudry	and	Souza,	2011;	van	Rijn	et	

al.,	2013).	While	process–based	models	may	require	long	computational	times	

and	be	restricted	to	specific	flow	conditions,	they	can	resolve	the	vertical	(and	

occasionally	 horizontal)	 structure	 of	 time–dependent	 velocity	 and	 sediment	

concentration.	 The	 pressing	 need	 for	 research	 focusing	 on	 sand	 transport	

processes	in	shoreface	(non–breaking	waves),	surf	and	swash	zones	employing	

field	 and	 controlled	 laboratory	 experiments,	 supporting	 process–based	
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modelling,	was	recently	highlighted	in	a	vision	paper	on	future	research	needs	

in	coastal	sediment	dynamics	(van	Rijn	et	al.,	2013).		

Advanced	 visualisation	 and	 data	 analysis	 techniques	 reveal	 complex	

interactions	between	passing	coherent	energetic	structures	and	sediments	in	

suspension,	such	as	particle	response	to	turbulent	fluctuations	in	the	frequency	

domain	(Liu	et	al.,	2012),	and	modifications	of	the	mean	velocity	profile	by	the	

dispersed	sediments	(Ji	et	al.,	2013).		Increasingly,	sediment	suspension	models	

are	 starting	 to	 account	 for	 turbulent	 bursting,	 generally	 by	 implementing	

entrainment	functions	that	theoretically	account	for	the	average	time	and	space	

scales	of	these	motions	(Cao,	1997;	Wu	and	Yang	(2004)),	Wu	and	Jiang	(2007).	

Considerable	recent	work	is	focussing	on	the	structural	form	of	these	features	

of	 flow,	 and	 their	 role	 in	 fluid	 and	 sediment	 entrainment,	 bed	 shear	 stress	

generation,	energy	transfer	and	velocity	asymmetry;	and	the	influence	of	the	

space‐time	 structure	 of	 the	 flow,	 with	 emphasis	 on	 oscillatory	 flows,	 and	

different	bed	roughnesses		(Okamoto	et	al.,	2007;	Carstensen	et	al.,	2010;	Hardy	

et	al.,	2010;	Adrian	and	Marusic,	2012;	Carstensen	et	al.	(2012);	Grigoriadis	et	

al.,	2013;	Hare	et	al.,	2014).	In	order	to	accurately	model	suspension	events,	it	

is	 necessary	 to	 understand	 the	 mechanisms	 through	 which	 large‐scale	

turbulent	 vortex	 structures	 are	generated,	 their	highly‐non‐linear	dynamics;	

and	the	processes	that	leads	to	their	breakdown	and	dissipation	(Vittori,	2003).	

Moreover,	most	studies	are	often	restricted	to	steady	flows	(current‐only)	or	

oscillatory	 flows;	 and	 very	 little	 is	 known	 about	 the	 characteristics	 and	

dynamics	of	coherent	structures	in	combined	wave	current	flows	which	often	

characterise	 fluid	motion	 in	the	coastal	zone.	 	This	work	attempts	to	 further	

investigate	 the	 complex	 interaction	 between	 bed‐generated	 coherent	

turbulence	 structures	 and	 suspended	 non‐cohesive	 sediment	 transport	 in	

unsteady	 boundary	 layers,	 under	 (non‐breaking)	 wave‐dominated	 and	

combined	wave‐current	 flows	at	prototype	scale,	 focussing	on	statistical	and	

spectral	 characteristics	 of	 these	 vortices,	 and	 the	 space‐time	 dynamics	 of	

coherent	structures	and	vortex‐entrained	suspensions.		
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Chapter 4.  

Quantifying the Dynamics of 
Coherent Structures  
	

“	Vether	it’s	worth	goin’	so	much,	to	learn	so	little,	as	the	
charity‐boy	said	ven	he	got	to	the	end	of	the	alphabet,	is	a	
matter	o’	taste	”	Charles	Dickens	(1836)	‐	The	Posthumous	
Papers	of	the	Pickwick	Club	

	

4.1	Introduction	

The	dynamics	of	coastal	sediment	transport	are	extremely	complex,	not	least	

due	to	the	unclosed	turbulence	problem	(cf.	Chapter	2,	§2.3),	but	also	due	to	the	

highly	 non‐linear	 interactions	 between	 flow	 (waves	 and/or	 currents),	

sediment	 and	 the	 seabed.	 This,	 coupled	 with	 limitations	 in	 computational	

resources	needed	to	 fully	resolve	 the	problem	in	all	 its	 temporal	and	spatial	

scales	at	high	Reynolds	numbers	typical	of	the	problem,	has	resulted	in	a	heavy	

reliance	 on	 experimental	 laboratory	 and	 field	 research.	 Prototype	 scale	

experiments	provide	controlled	reproduction	of	fluid	and	sediment	behaviour	

as	observed	in	the	field	with	minimal	scaling	artefacts.	To	achieve	the	objectives	

of	this	thesis,	results	from	two	prototype‐scale	experiments	are	reported,	with	

high‐frequency	measurements	of	velocity	 (and	 turbulence),	bed	morphology	

and	suspended	sediments.	The	first	experiment	focuses	on	coherent	structures	

and	wave‐induced	suspensions	under	irregular	erosive	and	accretive	waves	in	

the	nearshore.	The	second	experiment	focuses	on	the	space‐	time	dynamics	of	

coherent	structures	under	combined	wave‐current	flows,	with	currents	aligned	

and	 opposed	 to	 the	 direction	 of	 wave	 propagation.	 The	 details	 of	 each	

experiment	are	presented	in	the	chapters	5	and	6,	respectively.	This	chapter	

describes	 some	 of	 the	 tools	 applied	 to	 quantify	 the	 flow	 and	 turbulent	

properties,	educe	coherent	structures,	and	describe	the	interaction	(space‐time	

dynamics)	between	coherent	 turbulent	 structures	and	suspended	sediments	

over	mobile	bedforms.	
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4.2	Measuring	turbulent	structures	

Coherent	turbulence	structures	are	relatively	obvious	in	visualisation	studies,	

yet	 quantitative	 assessment	 of	 their	 dynamics	within	 the	 benthic	 boundary	

layer	remains	quite	challenging.	With	volumetric/tomographic	measurements	

of	the	flow	velocity	in	the	field	still	limited	to	small	scale	flume	experiments	(the	

technology	 is	 just	 starting	 to	 emerge	 for	 field‐deployable	 particle	 image	

velocimetry),	 pointwise	 (single	 or	 profile)	 measurements	 using	 acoustic	 or	

optical	 techniques	are	 the	predominant	 tool	 for	characterising	 turbulence	 in	

the	field;	and	inferring	the	structural	attributes	of	organised	features	within	the	

flow.	At	high	turbidity,	the	quality	of	optical	transmission	deteriorates	rapidly,	

and	as	such	acoustic	instruments	are	often	deployed	in	highly	energetic	settings	

where	 sediment	 is	 likely	 to	 be	 in	 suspension	 at	 high	 concentrations.	 	 In	

particular,	acoustic	Doppler	velocimeters	(ADVs)	have	become	the	instrument	

of	choice	for	laboratory	and	field,	high‐frequency	measurements	of	velocity	and	

its	fluctuating	components	in	three	dimensions	(Goring	and	Nikora,	2002).		

ADVs	operate	using	the	Doppler	shift	principle,	whereby	velocity	is	calculated	

as	 a	 function	 of	 the	 phase	 lag	 between	 two	 acoustic	 pulses	 of	 different	

durations,	 transmitted	 with	 some	 time	 lag;	 and	 then	 backscattered,	 due	 to	

particulates	within	the	flow,	inside	a		small	sampling	volume	situated	at	a	small	

distance	 from	 the	 probe	 head	 (MacVicar	 et	 al.,	 2007).	 This	 ensures	 that	 the	

measurements	are	relatively	non‐intrusive;	away	from	the	direct	effect	of	the	

probe.	 Nonetheless,	 raw	 ADV	measurements	 in	 highly	 dynamic	 settings	 are	

often	prone	to	electronic	contamination	related	to	the	ability	of	the	electronic	

circuit	to	resolve	phase	differences	between	pulses	(Voulgaris	and	Trowbridge,	

1998)	and	acoustic	(Doppler)	noise	influence	aliasing	the	return	signal	(Nikora	

and	Goring,	1998).	ADV	measurements	under	shoaling	and	breaking	waves	in	

the	nearshore	and	surf	zones	are	also	susceptible	to	spikes	due	to	entrained	air	

bubbles	within	the	flow	(Goring	and	Nikora,	2002).	Further	sources	of	errors	

include	lack	of	submergence	under	wave	troughs,	biofouling	and	blockage	(e.g.	

by	floating	kelp),	and	insufficient	distance	between	the	sampling	volume	and	

an	 accreting	 sea	 floor	 (Elgar	 et	 al.,	 2005),	while	 estimates	 of	 stress	may	 be	

sensitive	 to	sensor	misalignment	(Soulsby	and	Humphery,	1990;	Elgar	et	al.,	
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2001).	 Nevertheless,	 the	 inherent	 zero‐drift,	 and	 highly	 accurate	 velocity	

measurements	make	 ADVs	 suitable	 for	mean	 flow	measurement,	 as	well	 as	

accurately	estimating	turbulent	properties	 including	Reynolds	stresses,	eddy	

statistics,	production	and	dissipation	of	energy;	and	a	number	of	 techniques	

have	been	 identified	 for	detection,	quality	 control,	 and	correction	of	 corrupt	

measurements	(Nikora	and	Goring,	1998;	Trowbridge	and	Elgar,	2001;	Goring	

and	Nikora,	2002;	Elgar	et	al.,	2005;	Feddersen	and	Williams,	2007;	Mori	et	al.,	

2007;	Feddersen,	2010;	Feddersen,	2012a;	Spydell	et	al.,	2014).		

4.2.1	Extracting	turbulent	components	from	ADV	measurements	

Accurate	 estimates	 of	 velocity	 and	 turbulence	 using	 an	 acoustic	 Doppler	

velocimeter	 require	 that	 the	 strength	 of	 the	 received	 backscatter	 signal	

amplitude	exceeds	the	background	(system)	noise.	A	typical	ADV	measures	the	

three‐dimensional	flow	field,	giving	streamwise	(ݑ;	along‐flow),	cross–wise	(ݒ;	

across‐flow,	 horizontally	 orthogonal	 to	ݑ);	 and	 vertical	 	;ݓ) wall‐normal)	

components	 of	 instantaneous	 velocity,	 respectively,	 and	 reports	 the	

corresponding	signal‐to‐noise	ratios	(SNR)	and	beam	correlation	coefficients	

within	the	small,	cylindrical	sampling	volume;	often	considered	as	single	point	

measurements.	 Beam	 correlations	 account	 for	 successive	 returns	 from	

different	 scatterers	 	 within	 the	 flow	 (Cabrera	 et	 al.,	 1987).	 Measurement	

ensembles	are	thus	chosen,	often	arbitrarily,	such	that	a	compromise	is	reached	

whereby	 a	 high	 quality	 time	 series	 with	 few	 exceptional	 low	 SNR	 values	

(following	manufacturer’s	recommendation)	is	retained,	whereas	time‐series	

with	corrupted	sections	are	often	rejected.	The	size	of	statistical	fluctuations	is	

almost	 proportional	 to	 the	 square	 root	 of	 the	 sampling	 frequency.	Thus,	 for	

quality	 control	 purposes,	 Elgar	 et	 al.	 (2005)	 suggest	 a	 correlation	 threshold	

based	on	the	instrument	sampling	frequency	(ܨ௦)	,	given	by:	

݈݀݋݄ݏ݁ݎ݄ݐ	݊݋݅ݐ݈ܽ݁ݎݎ݋ܥ ൌ 0.3 ൅ 0.4	ඨ
௦ܨ
25
								

(Eq.	4.1)	



	

86	
	

Measurements	 where	 the	 correlation	 value	 falls	 below	 the	 threshold	 are	

removed,	 and	 replaced	 by	 some	 means	 of	 interpolation	 (Thompson	 et	 al.,	

2012).	Subsequently,	it	is	important	to	ensure	no	sequence	of	bad	data	exceeds	

the	 time	 scales	 of	 turbulent	 fluctuations,	 so	 as	 to	 avoid	 an	 artificially	

synthesised	data	set,	and	as	such,	interpolated	gaps	are	often	limited	to	within	

1‐	2	seconds	(Elgar	et	al.,	2001).	The	effects	of	sensor	misalignment	with	the	

mean	flow	direction	can	be	corrected	geometrically,	by	rotating	the	3D	axis	of	

measurements	 to	 eliminate	 horizontal	 velocity	 ‘leaks’	 into	 estimates	 of	 the	

vertical	velocity	component,	and	vice‐versa	due	to	relative	tilt,	ߠ	ሺ݀ݎሻ,	between	

observed	and	true	velocity	directions	in	the	main	(streamwise‐vertical)	plane	

of	motion	(X‐Z),	following	(Elgar	et	al.,	2005):	

௢௕௦௘௥௩௘ௗݓ ൌ ௧௥௨௘ݓ cosሺߠሻ ൅ ௧௥௨௘ݑ sinሺߠሻ 	 (Eq.	4.2)		

௢௕௦௘௥௩௘ௗݑ ൌ ௧௥௨௘ݑ cosሺߠሻ ൅ ௧௥௨௘ݓ sinሺߠሻ	 (Eq.	4.3)		

The	angle	ሺߠሻ	can	be	calculated	 from	the	cross‐spectra	 (CO)	of	 the	observed	

velocities	according	to	linear	wave	theory	in	shallow	water	waves:	

tanሺߠሻ ൌ
௢௕௦௘௥௩௘ௗሻݓ௢௕௦௘௥௩௘ௗݑሺܱܥ
௢௕௦௘௥௩௘ௗሻݑ௢௕௦௘௥௩௘ௗݑሺܱܥ

	
(Eq.	4.4)		

A	similar	operation	can	be	applied	 in	 the	 transverse	planes	(X‐Z	and	Y‐Z)	 to	

remove	 contamination	 of	 the	 streamwise	 and	 vertical	 components	 by	

horizontal	transverse	fluctuations.	

Following	 the	 pre‐processing	 of	 ADV	 measurements	 to	 ensure	 quality	 and	

robustness,	 turbulence	 can	 be	 extracted	 from	 the	 flow	 using	 a	 Reynolds	

decomposition	 of	 the	 time	 series;	 as	 the	 variation	 (fluctuation)	 of	 the	

instantaneous	flow	field	about	the	time‐averaged	flow.	Superimposed	currents	

can	be	removed	by	de‐trending	(removing	linear	trends)	while	a	wave‐signal	

can	 be	 extracted	 by	 applying	 a	moving	 average	 as	 a	 low	 pass	 filter,	 before	

removing	it	from	the	original	waveform	to	obtain	high–frequency	turbulence	

(Thompson	et	al.,	2012).	This	is	essentially	an	all–zero	filter,	also	known	as	a	

finite‐duration	impulse	response	(FIR)	filter	(Yong	and	Parker,	1983);	that	is	a	
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zero–phase,	digital	 filter	which	ensures	 zero–phase	distortion	by	processing	

the	input	data	both	in	forward	and	reverse	directions	(Kormylo	and	Jain,	1974).	

The	numerator	coefficients	defining	 the	 filters	window	are	often	selected	by	

trial	 and	 error,	 with	 autocorrelation	 and	 cross–correlation	 tests	 applied	 for	

validation.		The	filter	is	characterised	by	the	coefficient	vectors	(numerator(s)	

and	 denominator(s))	 implemented	 in	 the	 difference	 equation	 between	

forwarding	 and	 reversing	 the	 signal.	 To	 ensure	 an	 all‐zero	 filter,	 the	

denominator	coefficients	of	the	filter	are	set	to	1,	ensuring	a	constant	delay	of	

0	samples,	whence	zero‐phase	filtering	(MathWorks,	2016).			

Spike	detection	and	removal	 from	the	signal	 is	a	bit	more	challenging,	and	a	

number	of	 approaches	have	been	proposed	 in	 the	 literature.	We	opt	 for	 the	

technique	 developed	 by	 Goring	 and	 Nikora	 (2002)	which	 assumes	 that	 any	

point	lying	outside	of	a	cluster	of	good	data	may	be	a	spike,	and	this	is	more	

evident	in	phase‐space	where	spike	separation	from	the	cluster		is	more	evident	

in	the	derivatives	of	the	high	frequency	components.	Usually,	this	is	an	iterative	

process	 whereby	 an	 acceleration	 threshold	 is	 defined,	 or	 a	 wavelet	

thresholding	 technique	 is	 implemented	 as	 a	 universal	 criterion	 to	 identify	

locations	of	spikes	within	the	time	series.	Goring	and	Nikora	(2002)	use	a	three‐

dimensional	 Poincare’	 map	 (a	 phase‐space	 plot)	 of	 the	 variable	 and	 its	

derivatives;	 and	 points	 falling	 outside	 the	 ellipsoid	 defined	 by	 the	 universal	

criterion	are	designated	as	spikes.	These	are	then	replaced	using	a	local,	third‐

order	(cubic)	polynomial	through	several	points	at	either	end	of	the	spike.	Mori	

et	al.	(2007)	modified	the	method	to	use	the	true	3D	phase‐space	as	opposed	to	

the	original	2D	projection.	To	sum	up,	the	modified	3D	phase‐space	despiking	

method	is	given	by	the	following	algorithm:	

a‐ calculate	the	first	and	second	derivatives	of	the	velocity	component	

b‐ calculate	the	universal	threshold	(ߣ ൌ √2 lnܰ)	from	a	number	of	data	N;	

and	the	correlation	between	ݑ	and	its	second	derivative	∆ଶݑ	

c‐ plot	 the	 ellipsoid	 of	 ,ݑ 	and	ݑ∆ ∆ଶݑ	and	 calculate	 the	 angle	 from	 the	

correlation	between	ݑ െ ∆ଶݑ;	identifying	the	major	and	minor	axes	

d‐ identify	 the	 points	 outside	 the	 ellipsoid	 and	 replace	 these	 by	 cubic	

interpolation;	reiterating	until	no	further	spikes	are	recognised.		
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An	example	ADV	measurement	run	from	the	Fast	Flow	Facility	experiment	(cf.	

Chapter	6)	is	given	in	Figure	4.1	whereby	a	series	of	monochromatic	waves;	0.3	

m	high	and	with	a	peak	period	of	2	seconds;	are	super‐imposed	on	a	current	

opposing	the	direction	of	wave	propagation.	Measurements	by	a	downward‐

looking	ADV	were	collected	over	a	period	of	500	seconds	at	25	Hz,	at	a	wall‐

normal	height	of	0.181	m	above	the	bed,	 in	1.05	m	of	(still)	water.	The	time	

series	of	 the	 streamwise	velocity	 component,	ݑ,	 as	well	 as	 its	 statistical	 and	

spectral	 properties	 are	 displayed	 following	major	 data	 pre‐processing	 steps	

leading	to	the	de‐spiked	turbulence	components.	The	boxplots	show	the	25th,	

50th	(median)	and	75th	percentiles	of	the	sample	in	the	bottom,	middle	and	top	

of	the	box	respectively,	whereas	the	red	(+)	signs	indicated	outliers.	The	values	

of	mean,	skewness	(skew)	and	kurtosis	(kurt)	are	indicated	in	the	histograms	

(the	 third	 vertical	 panel)	 and	 the	 spectral	 density	 functions	 (through	 a	 Fast	

Fourier	 transform	 using	 a	 Hanning	 window	 and	 50%	 overlap)	 are	 also	

presented.	 The	 dashed,	 vertical	 red	 lines	 in	 the	 4th	 vertical	 panel	 indicate	

spectral	peaks	corresponding	to	the	peak	wave	period	and	corresponding	half‐

cycle.	The	Kolmogorov‐Obukohv	rate	of	inertial	dissipation	(‐5/3)	is	shown	in	

the	turbulence	spectra	(cf.	§4.2.2.2).		

The	effect	of	the	all	zero	FIR	filter	to	remove	the	wave	signal	is	demonstrated	

in	 Figure	 4.2	 with	 three	 arbitrary	 filter	 orders,	 defined	 by	 3	 numerator	

coefficient	 vectors	 used	 in	 the	 digital	 filter’s	 difference	 equation	 between	

forwarding	and	reversing	the	signal	through	the	filter.	The	influence	of	each	of	

the	 tested	 filter	coefficients	on	 the	signal	 is	evident	 in	 the	 time	series	of	 the	

turbulence	fluctuation,	its	statistical	distribution,	the	prominence	of	peak	wave	

periods	 observed	 in	 the	 power	 spectral	 densities	 and	 the	 spectral	 decay	

properties.	The	chosen	filter	(panel	a)	is	a	compromise	between	preserving	the	

statistical	properties	of	the	distribution	whilst	attempting	to	remove	the	wave‐

signal	aliasing	without	altering	the	spectral	properties	in	the	inertial	sub‐range.	

As	such,	a	small	wave‐imprint	is	still	observed	(in	minor	peaks	corresponding	

to	wave	 and	 half‐wave	 periods),	 and	 a	Kolmogorov‐Obukhov	 rate	 of	 energy	

transfer	(‐5/3)	is	observed	within	the	inertial	sub‐range	defined	whose	extents	

are	calculated	following	Stapleton	and	Huntley	(1995).	
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Figure	4.1	Pre‐processing	 ADV	measurements	 to	 extract	 de‐spiked	 turbulence	 components.	 The	 horizontal	 lines	 in	 the	 time	 series	

indicate	േ	1.0	ߪ	 (standard	deviation).	Boxplots	and	histograms	describe	 the	statistical	properties	of	 the	signal.	 Spectral	densities	are	

shown.	
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Figure	4.2	Effect	of	three	filter	orders	of	the	low‐pass	filter	(by	varying	numerator	of	the	differencing	equation	in	MATLAB)	used	to	extract	
the	wave	signal	from	the	velocity	time	series,	on	the	resulting	turbulence	component.	
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4.2.2	Statistical	description	of	turbulence		

While	 the	 Navier‐Stokes	 equations,	 which	 contain	 a	 full	 description	 of	

turbulence	 at	 all	 scales,	 are	 deterministic	 (conjectured	 to	 have	 a	 unique	

solution	for	all	times	given	initial	conditions);	chaotic	fluctuations	remain	the	

defining	 feature	 of	 turbulence	 despite	 the	 emergence	 of	 some	 coherent	

structures.	 If	 turbulent	 flows	 were	 set	 up	 repeatedly	 under	 the	 same	

conditions,	the	instantaneous	values	of	the	dynamic	flow	fields	will	inevitably	

be	different	each	time	(Monin	and	Yaglom,	1971).	It	follows	that	the	velocity	

field	of	the	solution	to	these	equations	can	be	considered	a	random	function,	

depending	 on	 several	 space	 and	 time	 variables	 (Frisch,	 1995).	 The	

randomness	 of	 the	 solution	 of	 such	 a	 deterministic	 system	 arises	 from	

unavoidable	 perturbations	 in	 initial	 conditions,	 boundary	 conditions	 and	

material	 properties,	 to	 which	 the	 flow	 fields	 are	 acutely	 sensitive	 (Pope,	

2000).		While	distributions	of	instantaneous	values	of	the	flow	fields	in	space	

are	similar,	they	constitute	a	disordered	set	of	three‐dimensional	fluctuations,	

thus	 lending	 themselves	 to	a	statistical	study	approach,	with	distinct	mean	

values	over	time	or	spatial	domain;	and	a	prime	example	of	that	is	Reynolds	

decomposition.	 Spectral	 estimates	 provide	 a	 suitable	 means	 of	 examining	

how	 turbulent	 fluctuations	 are	 distributed	 around	 an	 average	 from	 a	

statistical	 point	 of	 view.	 The	 time	 series	 of	 the	 fluctuating	 velocity	

(turbulence)	 components	 in	 three	 dimensions,	 extracted	 from	 the	 ADV	

records	 as	 described	 in	 §4.2.2	 are	 thus	 used	 to	 describe	 mean	 turbulent	

properties,	 including	Reynolds	stresses	and	turbulent	kinetic	energy	which	

can	then	be	related	to	suspended	sediment	transport	processes	observed	in	

the	experiments	reported	in	this	thesis.	These	are	also	analysed	spectrally	to	

describe	 the	 scales	 of	 turbulent	 motions	 and	 their	 relationship	 to	

resuspension	events	both	in	space	and	in	time.	

4.2.2.1	Mean	value	functions	

High	frequency	measurements	of	velocity	provide	information	on	the	spatial	

structure	of	 turbulence	as	 it	evolves	 in	 time.	The	application	of	a	Reynolds	

decomposition	 to	 the	 Navier	 Stokes	 equations	 (hence	 RANS	 equations)		
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results	in	‘virtual’	mean	stresses,	proportional	to	the	coefficient	of	correlation	

between	the	components	of	turbulent	velocity	at	a	given	point	(Taylor,	1935).	

Thus,	the	time‐averaged	(denoted	by	〈 〉),	Reynolds	stresses	are	defined	as	

velocity	covariance,	a	second	order	tensor,	whose	off‐diagonal	components	

are	shear	stresses:		〈ݑ௜ݑ௞〉 ൌ 〈௝ݑ௜ݑ〉	;′തതതതതݓ′ݑ ൌ 〈௞ݑ௝ݑ〉	;തതതതത′ݒ′ݑ ൌ 	diagonal	and	തതതതതത;′ݓ′ݒ

components	are	normal	stresses	〈ݑ௜
ଶ〉 ൌ ௝ݑ〉	,ᇱଶݑ

ଶ〉=ݒᇱଶ,	and	〈ݑ௞
ଶ〉 ൌ 	,(Pope		ᇱଶݓ

2000).	

The	mean	value	of	a	fluctuating	quantity	over	a	time,	T,	is	by	definition	zero:	

′௜ݑ ൌ lim
்→ஶ

1
ܶ
	න ሺݑ௜ െ ݐሻ݀ݑ

௧బା்

௧బ

≡ 0	
(Eq.	4.5)		

and	 the	product	of	 the	 two	 fluctuating	 components	 is	non‐zero	 തതതതതᇱݓᇱݑ) ് 0)	

only	when	the	two	components	are	correlated	(Tennekes	and	Lumley,	1972).	

The	autocorrelation	of	a	velocity	component	describes	 its	dependence	at	a	

given	time,	t,	on	the	values	of	another	time	with	a	time‐lag,	(∆ݐ)	is:	

ሻ൯ݐᇱሺݑᇱݑ൫	ݎݎ݋ܥ݋ݐݑܽ ൌ lim
்→ஶ

1
ܶ
න .ሻݐᇱሺݑ ݐሺ′ݑ ൅ ݐሻ݀ݐ∆
௧బା்

௧బ

	
(Eq.	4.6)		

When	 the	 time	 lag	 exceeds	 that	 required	 by	 an	 eddy	 to	 travel	 across	 the	

measuring	 volume,	 the	 velocity	 is	 statistically	 independent	 and	 the	

correlation	tends	to	zero.		

The	fluctuation	can	be	defined	as	the	root	mean	squared	(rms)	velocity	(ݑ௜
ᇱ ൌ

௜ݑ	
ଶ
଴.ହ
)	at	a	given	position	across	the	boundary	layer	(Tennekes	and	Lumley,	

1972).	The	turbulent	kinetic	energy	per	unit	mass	is	defined	as	half	the	trace	

of	 the	 Reynolds	 stress	 tensor	 (	 ଵ
ଶ
.௜ݑ〉	 	(	〈௜ݑ in	 the	 fluctuating	 velocity	 field	

(ibid.),	and	thus	the	total,	time‐averaged	kinetic	energy	(TKE)	is	given	by	root	

mean	square	turbulent	velocities	:		
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்݇௄ாതതതതതത ൌ
1
2
ቀݑᇱଶ ൅ ᇱଶݒ ൅ 	ᇱଶቁݓ

(Eq.	4.7)	

The	rate	of	change	of	the	kinetic	energy	is	due	to	work	done	by	the	pressure	

gradient,	the	transport	by	the	turbulent	velocity	fluctuations,	the	transport	by	

the	 viscous	 stresses	 and	deformation	 of	 the	 fluid	 (rate	 of	 strain);	which	 is	

evident	when	deriving	 the	energy	budget	equation	 from	 the	Navier‐Stokes	

equations	(Tennekes	and	Lumley,	1972).	

4.2.2.2	Turbulence	spectra	and	the	integral	scales	of	motion	

The	 multitude	 of	 scales	 (both	 spatial	 and	 temporal)	 of	 turbulent	 eddies	

manifest	in	the	bursting	phenomenon	comprise	a	spectrum	ranging	from	the	

macroscale	(long	period	and	spatially	limited	only	by	the	dimensions	of	the	

flow)	to	the	high	frequency	microscale	limited	by	viscosity,	with	the	energy	

transfer	 being	 driven	 by	 vortex	 stretching	 (ibid.).	 Spectral	 analysis	

decomposes	 the	measured	 turbulence	data	 into	waves	of	different	periods	

(frequencies)	and	wavelengths,	providing	a	suitable	means	of	examining	how	

these	fluctuations	are	distributed	from	a	statistical	viewpoint	(Tennekes	and	

Lumley,	1972).	The	value	of	a	spectrum	at	a	certain	frequency	or	wavelength	

equates	to	the	mean	energy	of	that	wave,	and	as	a	result,	it	provides	a	means	

of	 assessing	 how	 eddies	 of	 different	 sizes	 exchange	 energy	 and	 how	

turbulence	 evolves	 with	 time.	 The	 three	 dimensionality	 of	 the	 problem	

necessitates	construction	of	energy	spectra	in	three	dimensions	(Cebeci	and	

Smith,	1974).	 In	 fully	developed	turbulence,	 the	rate	of	exchange	of	energy	

between	 scales	must	 equate	 the	 rate	 of	 energy	 dissipation	 at	 the	 smallest	

scale.	Kolmogorov	(1941b)	argued	that	the	large	eddies	are	anisotropic,	and	

affected	by	the	flow’s	boundary	conditions,	but	as	they	chaotically	break	and	

transfer	energy	into	smaller	scales,	they	lose	their	directional	bias	and	thus,	

the	 small	 scale	 motions	 are	 isotropic,	 and	 hence	 their	 statistics	 can	 be	

described	universally.	Within	the	inertial	sub‐range	of	scales,	between	large	

energy‐containing	 scales	 and	 small	 dissipative	 scales,	 the	 spectrum	 of	 the	

turbulent	kinetic	energy,	in	wavenumber	space,	is	given	by:	
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ሺ݇ሻܧ ൌ ௄ܥ ߝ
ଶ
ଷ ݇ℓ

ିହଷ 	
(Eq.	4.8)		

where	ܥ௄	is	the	Kolmogorov	constant,	ߝ	is	the	mean	rate	of	energy	dissipation,	

and	݇ ℓ ൌ 	this	of	existence	The	ℓ.	size	the	of	scales	for	wavenumber	the	is	ℓ/ߨ2

inertial	sub‐range	depends	on	the	 full	 separation	of	scales	between	energy	

production	 and	 dissipation,	 which	 becomes	 more	 evident	 as	 the	 flow	

Reynolds	number	increases.			

In	wavenumber	 (݇)	 space,	 	 the	 spectral	 energy	 for	 all	 eddies	 of	 size	 	 ℓ	 is	

roughly	 proportional	 to	 	;ሺ݇ሻܧ the	 spectral	 energy	 distribution	 over	

wavenumbers,	multiplied	by	 the	width	of	 the	measured	 spectrum,	 and	 the	

strain	rate	of	an	eddy	of	wave	number	݇	is	given	by		(Tennekes	and	Lumley,	

1972):		

ܵሺ݇ሻ ൌ
ሺ݇ܧሻ଴.ହ

݇/ߨ2
ൌ
ሺ݇ଷܧሻ଴.ହ

ߨ2
	

(Eq.	4.9)		

The	strain	rate	of	an	eddy	is	thus	a	function	of	its	wavenumber,	which	is	often	

scaled	 by	 the	 measuring	 height,	 z,	 into	 a	 non‐dimensional	 form,	 ݇∗ ൌ 	.ݖ݇

Hence,	one	can	normalise	the	݇∗‐weighted	spectra	 into	an	energy/variance	

preserving	 form,	whereby	 an	 equal	 area	under	 the	 curve	 represents	 equal	

energy,	in	the	form		݇ܧ௨௨ሺ݇ሻ/ ׬ ௨௨ሺ݇ሻ݀݇ܧ
ஶ
଴ 	(Soulsby,	1977).	Subsequently,	it	

is	possible	to	calculate	the	dominant	(integral)	eddy	sizes	by	identifying	the	

peak	of	the	normalised,	non‐dimensional	݇∗‐weighted	spectrum,	and	backing	

out	the	relevant	length	scale,	following	(Soulsby,	1983;	Soulsby	et	al.,	1984).	

This	 approach	 can	 also	 be	 applied	 to	 passive	 scalars	 within	 the	 flow	 (e.g.	

estimating	suspension	cloud	sizes).		

In	practice,	nearly	all	turbulence	measurements	are	collected	as	a	time	series	

at	 a	 fixed	 location.	 Taylor’s	 theory	 of	 “frozen	 turbulence”	 suggests	 that	

turbulence	is	advected	by	the	mean	current	more	rapidly	than	it	is	developing	

temporally,	and	as	a	result,	the	measured	turbulence	fluctuations	at	a	fixed	

point	would	correspond	better	to	the	spatial	rather	than	temporal	changes	in	
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velocity	 (Taylor,	 1938;	 Wyngaard	 and	 Clifford,	 1977).	 Subsequently,	 this	

hypothesis	 is	 often	 invoked	 when	 evaluating	 the	 spatial	 structure	 of	

turbulence	 based	 upon	 time‐resolved	 velocity	 measurements	 at	 a	 single	

point.	Such	an	approximation	is	only	valid	when	the	turbulent	fluctuations	are	

small	 compared	 to	 the	 mean	 velocity	 (i.e.	 for	 small	 turbulent	 intensities)	

(Wilczek	et	al.,	2014).	Nonetheless,	Taylor’s	hypothesis	is	limited	by	the	fact	

that	 turbulent	 fluctuations	 also	 evolve	 in	 time,	 and	 this	 is	 particularly	

problematic	when	the	magnitude	of	these	fluctuations	is	comparable	to	that	

of	 the	 mean	 flow.	 The	 applicability	 of	 this	 hypothesis	 is	 thus	 strongly	

dependent	on	 the	 scale	of	 the	 structures	being	 investigated	 (Higgins	et	 al.,	

2012).	 Yet,	 even	 in	 the	 presence	 of	 large	 coherent	 structures,	 there	 is	

experimental	evidence	demonstrating	the	accuracy	of	such	approximation		in	

turbulent	 boundary	 layers,	 up	 to	 projections	 distances	 several	 times	 the	

thickness	of	the	boundary	layer	thickness	(Dennis	and	Nickels,	2008).		

4.2.2.3	Estimating	the	rate	of	energy	dissipation	in	the	nearshore			

Assuming	turbulent	diffusion	to	be	negligible,	the	turbulent	energy	balance	

equation	in	the	benthic	boundary	layer	under	non‐breaking	waves	(seawards	

of	the	surf	zone)	can	be	represented	as	the	balance	between	shear	production,	

ܲ,	and	dissipation,	ߝ,	as	a	steady	state	balance	(Tennekes	and	Lumley,	1972;	

Trowbridge	and	Elgar,	2001;	Feddersen,	2012a):	

ܲ ൌ ߝ 	 (Eq.	4.10)	

For	 depth‐limited	 wave	 breaking	 in	 the	 nearshore,	 the	 turbulent	 kinetic	

energy	 balance	 is	 between	 downward	 diffusion	 in	 the	 vertical	 due	 to	 the	

breaking	wave,	and	dissipation	(Feddersen,	2012b):	

݀
ݖ݀

൬ܭ௦
݀݇
ݖ݀
൰ ൌ ߝ 	

(Eq.	4.11)	

where	z	is	the	height	above	bed,	ܭ௦	is	eddy	diffusivity,	and	ߝ	is	dissipation	rate.	

The	 turbulence	 dissipation	 rate,	ߝ,	 can	 be	 estimated	 from	 the	 velocity	
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spectrum	 	 following	 (Feddersen	 and	 Williams,	 2007;	 Feddersen,	 2012a;	

Feddersen,	2012b):	

ߝ ൌ 〈቎ ௪ܲ௪ሺ݂ሻ2	ሺ2ߨሻ
ଷ
ଶ

;௪௪ሺ݂ܯ	ߙ ,ݑ ௨,௩,௪ଶߪ 	
቏

ଶ
ଷ

〉									

(Eq.	4.12)		

where	ߙ ൌ 1.4	 is	Kolmogorov’s	 constant,	ݑ	is	 the	mean	horizontal	 current,	

௨,௩,௪ଶߪ 	is	the	wave‐dominated,	three‐dimensional	velocity	variance;	ܯ௪௪	is	an	

integral	 of	 the	 3D	 wave‐number	 space	 converting	 the	 inertial	 subrange	

relation	 ݇ିହ/ଷ	,	 from	 wavenumber	 to	 frequency	 domain	 (Trowbridge	 and	

Elgar,	2001).	

4.3.	Educing	coherent	structures	and	their	dynamics	

In	 the	 absence	of	quantitative	means	of	measuring	vorticity	 fields	 in	 three	

dimensions	at	scales	encountered	in	the	field,	and	thus	identifying	coherent	

structures	as	defined	by	Hussain	(1983),	single	point	measurements	at	high	

frequencies,	such	as	those	afforded	by	an	ADV	have	proven		to	be	of	significant	

utility.	 A	 number	 of	 approaches	 have	 been	 proposed,	 including	 quadrant	

analysis,	octant	analysis,	and	pointwise	Hölder	exponents	 	(Keylock,	2008).	

Quadrant	analysis,	based	on	cross‐correlations	between	orthogonal	velocity	

components,	 is	 perhaps	 the	 most	 common	 technique	 for	 structure	

identification,	 following	 the	 leading	 work	 of	 Wallace	 et	 al.	 (1972)	 and	

Willmarth	and	Lu	(1972).	

4.3.1	Structure	identification	using	Quadrant	and	Octant	analysis		

The	first	quadrant	analysis	of	the	Reynolds	stresses	was	conceived	by	Wallace	

et	al.	(1972)	to	quantify	the	visual	observations	of	Corino	and	Brodkey	(1969)	

in	 the	 boundary	 layer,	 based	 on	 the	 sign	 (positive	 or	 negative)	 of	 the	

streamwise	and	wall‐normal	velocity	fluctuations.	Similarly,	in	an	attempt	to	

measure	the	intermittency	of	the	bursting	processes	and	support	the	claim	to	

their	 role	 in	 the	 production	 of	 turbulent	 energy	 and	 Reynolds	 stress,	
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Willmarth	and	Lu	(1972)	applied	conditional	sampling	to	the	velocity	field	in	

the	boundary	layer	of	a	smooth	flat	plate,	while	Papadimitrakis	et	al.	(1986)	

reported	similar	work	in	water	waves.	The	Reynolds	stress	in	the	main	plane	

of	motion	is	described	by	the	inverse	correlation	between	the	time–average	

streamwise	(u’)	and	vertical	(w’)	fluctuations	of	velocity	at	a	point:	

ݏ݈݀݋݊ݕܴ݁ ;ݏݏ݁ݎݐܵ ߬௫௭ ൌ െߩ ᇱതതതതതതݓᇱݑ 	 (Eq.	4.13)	

Quadrant	 analysis	 was	 employed	 as	 a	 technique	 for	 detecting	 various	

turbulence	structures.	This	consisted	of	distributing	streamwise	and	vertical	

velocity	fluctuations	into	the	four	quadrants	of	the	(u’	v’)	plane	(Deleuze	et	al.,	

1994).	 In	a	quadrant	plot	of	ݑᇱand	ݓᇱ,	Wallace	et	al.	 (1972)	 found	that	 the	

second	 and	 fourth	 quadrants	 (Q1	 and	 Q4)	 correspond	 to	 the	 ejection	 and	

sweep	motions	identified	by	Corino	and	Brodkey	(1969);	and	called	Q1	and	

Q3	motions	‘outward’	and	‘inward	interactions’.	Subsequently,	four	types	of	

event	 structures	 may	 be	 distinguished	 based	 on	 the	 simultaneous,	

instantaneous	fluctuating	velocity	components:	(a)	an	ejection	where	a	low	

speed	fluid	(ݑᇱ ൏ 0)	near	the	bed	moves	upward	(ݓᇱ ൐ 0);	(b)	a	sweep	where	

a	 high	 velocity	 fluid	 ᇱݑ) ൐ 0)	 moves	 downwards	 to	 the	 bed	 ᇱݓ) ൏ 0);	 (c)	

inward	 interactions	 (II)	 where	 ᇱݑ) ൏ 0)	 an	 ᇱݓ) ൏ 0);	 and	 (d)	 outward	

interactions	 (OI)	 where	 ᇱݑ) ൐ 0)	 an	 ᇱݓ) ൐ 0).	 “Ejections/bursts”	 and	

“sweeps”	 are	 associated	 with	 a	 negative	 value	 of	 u’w’	 and	 consequently	 a	

positive	Reynolds	stress,	and	the	largest	contributions	to	stress	often	occur	in	

the	 quadrants	 denoting	 ejections	 and	 sweeps,	 even	 though	 these	 occupy	

shorter	amounts	of	time	(Soulsby,	1983).		Wallace	(2016)	identifies	Q2	and	

Q4	events	as	gradient‐type	motions	whereby	the	vertical	momentum	fluxes	

are	 partially	 due	 to	motion	 up	 and	 down	 the	mean	 vertical	 gradient,	with	

streamwise	momentum	less	than	and	greater	than	the	local	mean	streamwise	

momentum,	respectively.	Conversely,	Q1	and	Q3	are	counter‐gradient‐type	

motions.	These	 four	event	 types	are	often	associated	with	 the	passage	of	a	

coherent	structure	which	induces	velocity	fluctuations	(Zhou	et	al.,	1999).	For	

instance,	a	low	speed	near	bed	fluid	pumped	upwards	between	the	legs	of	a	

horseshoe	vortex	encountering	high	speed	streamwise	fluid	is	manifest	by	a	
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second	 quadrant	 (Q2)	 ejection‐type	 event,	 often	 associated	 with	 vertical	

entrainment	 of	 bed	 sediment.	 Using	 a	 vortex	 detection	 criterion	 for	 DNS	

results,	 	 Jeong	 et	 al.	 (1997)	 showed	 that	 spatial	 difference	 between	 	ᇱandݑ

	ᇱwithinݓ a	 fully	 developed	 coherent	 structure	 dictate	 the	 dominance	 of	 a	

particular	motion	 (e.g.	Q4	over	Q2	events	near	 the	bed).	By	examining	 the	

spatial	 extent	 of	 these	 events,	 they	 suggest	 that	 large	 Q2	 and	 Q4	 events	

typically	 lie	 on	 either	 side	 of	 the	 vortex	 (inward	 and	 outward	 legs	 of	 the	

vortex)	 and	 Q1	 and	 Q3	 regions	 lying	 below	 and	 above	 the	 vortex	 head,	

confirming	earlier	results	by	Robinson	(1991).	More	recently,,	Lozano‐Duran	

et	al.	(2012)	DNS	results	showed	that	Q2	and	Q4	events	are	mostly	grouped	

at	 side‐by‐side	pairs	 	 and	predominant	 coherent	 structures	 are	 formed	by	

such	a	pair	being	embedded	within	the	base	of	the	Q2	motion,	and	underneath	

the	 Q4	 motion	 forming	 wall‐attached	 eddies.	 Typically,	 ejections	 (Q2	

motions)	are	associated	with	entrainment	of	mass	(sediment	particles)	into	

suspension,	while	 sweeps	 (and	 sufficiently	 frequent	 outward	 interactions)	

are	effective	at	transporting	bedload	or	sediments	in	continuous	contact	with	

the	bed	 (Heathershaw,	1979;	 Soulsby,	 1983;	Dyer	 and	Soulsby,	 1988;	Cao,	

1997;	Keylock,	2007;	Yuan	et	al.,	2009).		

Willmarth	 and	 Lu	 (1972)	 extended	 the	 quadrant	 analysis	 of	Wallace	 et	 al.	

(1972)	by	focussing	on	the	intense	Reynolds	stress	events.	Their	approach	to	

determining	 the	 fractional	contribution	of	each	of	 the	 four	aforementioned	

structural	features	was	restricted	to	values	that	lie	above	a	critical	threshold,	

H,	which	defines	the	hole	between	a	set	of	hyperbolae	defined	by:	

|ᇱݓᇱݑ| ൒ .ܪ	 หݑᇱݓᇱห 	 (Eq.	4.14)

Hence,	the	contributions	of	individual	events	in	the	(ݓ’ݑ’)	plane	are	the	ones	

which	occur	in	each	quadrant	outside	the	central	“hole”	region	bounded	by	

the	four	hyperbolae	defined	by	the	Equation	4.14.	This	is	illustrated	in	Figure	

4.3	where	the	Reynolds	stress	occurrences	are	delimited	by	two	hole	regions,	

based	 on	 a	 variation	 of	 Equation	 4.14	which	 uses	 rms	 velocity	 covariance	

rather	than	averaged	product	of	the	two	components.		The	process	outlined	
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in	Cellino	and	Lemmin	(2004);	and	Longo	et	al.	(2012)	is	used	to	calculate	the	

concentrations	within	each	quadrant	(݅)	as	follows:	

ுܥ
௜ ൌ

1
ܰ
.෍ ϕୌ,୨

௜
ே

௝ୀଵ
	

(Eq.	4.15)

ϕୌ,୨
௜

ൌ 		 ൜ 1	if	
ᇱ|௝ݓᇱݑ| ൐ .ܪ ௥௠௦ݑ

ᇱ . ௥௠௦ݓ
ᇱ 	and	belongs	to	݅௧௛quadrant

0	otherwise							 										
	

(Eq.	4.16)

There	is	no	common	definition	of	the	threshold	restricting	the	hole	size,	and	

its	 value	 is	 commonly	 chosen	 arbitrarily	 (Keylock,	 2008).	 Bogard	 and	

Tiederman	 (1986)	 determined	 ܪ ≅ 1.0	to	 be	 their	 optimal	 threshold	 for	

detecting	ejections	and	this	value	has	been	commonly	used	by	Nagano	and	

Tagawa	 (1995)	 to	 track	 quadrant	 events.	 Alternative	 definitions	 of	 the	

threshold	 detection	 criterion	 have	 been	 defined	 in	 terms	 of	 the	 standard	

deviations	 of	 the	 components,	 autocorrelation,	 variable	 interval	 time–

averaging	variance,	statistical/probability	distributions	etc.	(Blackwelder	and	

Kaplan,	 1976;	Bogard	 and	Tiederman,	 1986;	Wu	 and	Yang,	 2004;	Keylock,	

2007).		Extending	quadrant	analysis	into	three	dimensions,	known	as	Octant	

analysis,	is	less	common,	given	that	the	cross–wise	flow	component	is	often	

assumed	 less	 important	 (Gheisi	 et	 al.,	 2006;	 Ölçmen	 et	 al.,	 2006).	 In	 both	

quadrant	 and	 octant	 analysis,	 as	 the	 threshold	 increases,	 the	 number	 of	

exceedances	decreases,	biasing	the	stress	magnitude	to	be	mostly	contributed	

by	ejections	in	the	second	quadrant	(Willmarth	and	Lu,	1972;	Keylock,	2007).	
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Figure	4.3	 An	 example	 of	 quadrant	 analysis	 of	 the	 Reynolds	 stress	 in	 the	
streamwise‐vertical	plane	(taken	from	Bardex	II	experiment,	cf.	Chapter	5).	
Areas	delimited	by	hole	 sizes	defined	by	H=1	 (grey)	 and	H	=2	 (green)	 are	
highlighted.	

4.3.2	Space‐time	dynamic	using	wavelet	transforms	

Wavelets	 analysis	 has	 recently	 become	 one	 of	 the	 more	 lucrative	

mathematical	tools	for	the	evaluation	of	signals,	time	series,	images,	fields	and	

patterns,	and	are	increasingly	being	adopted	by	fluid	mechanists	to	examine	

turbulent	 flows	 (Farge,	 1992;	 Schneider	 and	 Vasilyev,	 2010).	 Wavelets	

possess	 several	 attractive	mathematical	 properties,	 the	most	 important	 of	

which	is	their	ability	to	perform	efficient	multi–scale	decomposition	(Kumar	

and	Foufoula‐Georgiou,	1997;	De	Stefano	and	Vasilyev,	2012),	 identify	and	

isolate	 localised	 structures	 such	 as	 vortices	 in	 physical	 and	wave–number	

spaces	(Farge	et	al.,	2001;	Farge	et	al.,	2003;	Khujadze	et	al.,	2011),	and	to	

analyse	localised	variations	of	power	within	a	time	series	(Daubechies,	1990;	
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Torrence	and	Compo,	1998;	Grinsted	et	al.,	2004).	 	 In	 this	respect,	wavelet	

analysis	conveniently	lends	itself	to	the	study	of	turbulence,	and	particularly	

that	concerned	with	coherent	structures.	

Traditionally,	Fourier	analysis	is	used	to	study	turbulent	flows	and	identify	

integral	scales	of	motion	(energy	containing	range),	stemming	from	a	classical	

understanding	of	the	turbulent	energy	cascade	(Frisch,	1995).	This	statistical	

view	was	quantified	by	Kolmogorov–Obukhov	into	the	well–known	݇ିହ ଷ	⁄ law	

in	 the	 inertial	 subrange,	where	wavenumbers	 are	 larger	 than	 those	 of	 the	

integral	scale	of	motion	yet	smaller	than	the	dissipative	scales,	with	݇	being	

the	 wave–number	 for	 the	 energy	 spectrum	 in	 Fourier	 Space	 (Monin	 and	

Yaglom,	1971;	Tennekes	and	Lumley,	1972;	Frisch,	1995).	The	presence	of	

coherent	 structures	 cannot	 be	 resolved	 by	 Fourier	 transforms	 which	 are	

inherently	space–filling,	and	hence	fail	to	capture	their	locality.	Conversely,	

wavelets	are	able	to	expand	time	series	into	time‐frequency	space	and	thus	

determine	 localised	 intermittent	periodicities	 (Farge,	 1992;	Grinsted	 et	 al.,	

2004).	Using	cross	wavelet	transforms,	the	causality	between	two	time	series	

can	be	scrutinized	by	examining	whether	regions	in	the	time–frequency	space	

with	 large	 common	 power	 have	 consistent	 phase	 relationships.	 Wavelet	

multi–resolution	analysis	is	capable	of	detecting	and	tracking	energetic	fine–

scale	 motions	 (Schneider	 and	 Vasilyev,	 2010).	 Wavelets	 therefore	 offer	 a	

unique	hierarchical	framework	for	modelling	and	simulating	flows,	either	by	

means	 of	 wavelet–based	 discretisation	 of	 the	 Navier–Stokes	 equations	

adapted	to	the	local	resolution	of	intermittent	flow	structures	(Okamoto	et	al.,	

2007;	 Schneider	 and	 Vasilyev,	 2010),	 or	 through	 coherent	 vortex	

extraction/simulation	(Farge	et	al.,	1999;	2001;	Farge	and	Schneider,	2001).		

4.3.2.1	Wavelets:	properties	and	characteristics	

Wavelet	 transforms	 (WT)	 originated	 from	 an	 industrial	 research	 need	 to	

analyse	 seismic	 reflection	 data	 resolving	 power,	 energy	 and	 frequency	 of	

quasi–periodic	wave	propagation	 (Morlet	 et	 al.,	 1982a;	Daubechies,	 1990).	

The	 method	 needed	 to	 separate	 the	 contributions	 of	 different	 frequency	

bands	without	 excessive	 loss	 of	 resolution,	 and	 be	 able	 to	 reconstruct	 the	
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original	 function	 robustly	 (i.e.	 stable	 under	 small	 perturbations)	 with	

arbitrary	 high	 precision	 (Goupillaud	 et	 al.,	 1984).	 Morlet	 et	 al.	 (1982b)	

showed,	both	experimentally	and	theoretically,	that	using	complex	models	of	

wave	numbers	and	physical	properties	of	a	medium,	‘wavelets’	can	preserve	

both	phases	and	amplitudes	for	a	large	range	of	frequencies.	These	wavelets	

are	 generalised	 basis	 functions	 (integration	 kernels;	 with	 zero	 mean),	

localised	 in	 both	 physical	 and	 wavenumber	 space,	 owing	 to	 their	 rapid	

decay/compact	 support	 and	 their	 vanishing	 moments	 and	 smoothness,	

respectively	 (Grinsted	 et	 al.,	 2004;	 Schneider	 and	 Vasilyev,	 2010).	 By	

comparison,	a	Fourier	transform	is	based	on	trigonometric	functions	that	are	

well–localised	 in	wave–number	space,	but	not	physically	within	a	series	as	

they	have	global	support.	

A	wavelet	 transform	 is	 in	 essence	 a	 linear	 operation	which	 decomposes	 a	

given	 signal	 into	 components	 that	 appear	 at	 different	 scales,	 based	 on	

convolution	of	the	signal	with	a	dilated	filter	(Mallat,	1991).	The	mathematical	

underpinning	of	 such	a	 technique	was	provided	by	Grossmann	and	Morlet	

(1984),	who	showed	that	the	transform	satisfies	energy	conservation,	and	the	

signal	 can	 be	 reconstructed	 from	 its	 wavelet	 transform.	 However,	 the	

uncertainty	 principle	 (of	 Heisenberg)	 dictates	 that	 one	 cannot	 obtain	

arbitrary	good	localisation	in	both	time	and	frequency,	and	a	trade–off	must	

exist	whereby	spatial	resolution	is	bad	at	large	scales	while	scale	resolution	

is	 bad	 in	 the	 small	 scales	 (Foufoula‐Georgiou	 and	 Kumar,	 1994;	 Lau	 and	

Weng,	1995;	Farge	et	al.,	1996;	Grinsted	et	al.,	2004).	Hence	wavelets	have	the	

unique	 ability	 to	 be	 scaled	 to	 match	 most	 high	 and	 low	 frequencies	 with	

minimal	number	of	base	functions,	thus	permitting	localisation	of	short–lived	

high–frequency	signals	 in	time,	yet	still	resolving	low–frequency	variability	

(Lau	 and	 Weng,	 1995).	 In	 Fourier	 space,	 one	 computes	 transfer	 between	

different	 independent	 wavenumber	 bands	 detecting	 modulations	 and	

resonances	 excited	 under	 the	 flow	 dynamics,	 while	 in	 wavelet	 space	 one	

computes	 exchanges	 between	 different	 locations	 and	 different	 scales,	

detecting	 advections	 and	 scaling	 instead	 (Farge	 et	 al.,	 1996).	 Therefore,	

comparing	transfers	calculated	by	means	of	wavelets,	wavelet	packets,	and	
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Fourier	modes	 is	deceptive,	 and	 these	 three	approaches	measure	different	

processes.	

4.3.2.2	Continuous	and	Cross	Wavelet	transforms	

Mathematically	 speaking,	 a	 wavelet	 transform	 (WT)	 decomposes	 a	 signal	

(time	 series)	 in	 terms	of	 some	elementary	 functions	derived	 from	a	 single	

‘mother’	wavelet	 by	 dilation	 (stretching	 and	 compression)	 and	 translation	

(Daubechies,	1990;	Lau	and	Weng,	1995).	The	analysing	function	has	to	be	

admissible,	 i.e.	be	an	 integrable	 function	with	a	zero	average,	and	the	scale	

decomposition	 must	 be	 obtained	 from	 only	 one	 mother	 function	 through	

translation	and	dilation.	Hence,	all	daughter	wavelets	are	mutually	 similar,	

scale	covariant	with	one	another,	and	have	a	constant	number	of	oscillations	

(Farge,	1992).		The	dilation	process	is	what	provides	an	optimal	compromise	

in	light	of	the	uncertainty	principle	discussed	above.	In	principle,	two	classes	

of	wavelet	transforms	exist,	Continuous	and	Discrete,	the	first	being	better	for	

feature	extraction	while	the	latter	being	useful	for	noise	reduction	and	data	

compression	 (Grinsted	 et	 al.,	 2004).	 The	 Continuous	 Wavelet	 transform	

(CWT)	is	commonly	used	to	analyse	local	intermittency	in	a	time	series,	and	

hence	we	only	discuss	the	CWT	here.	When	analysing	turbulence,	wavelets	

are	 also	 required	 to	 have	 vanishing	 high–order	 moments	 besides	 their	

admissibility	(the	condition	that	they	must	integrate	to	zero),	hence	allowing	

the	study	of	high–order	 fluctuations	and	singularities.	Because	 the	wavelet	

transform	measures	the	local	scaling	in	the	velocity	field,	it	can	interpret	the	

power	scaling	of	 the	energy	spectrum	relative	 to	 the	geometry	of	coherent	

structures,	 be	 they	 	 dense	 or	 isolated,	 non–oscillating	 (cusp	 vortices)	 or	

oscillating	 singularities	 (spiral	 vortices),	 implying	a	multi–fractal	nature	of	

energy	dissipation	(Farge	et	al.,	1996).		

A	continuous	wavelet	transform	(CWT),	decomposes	a	signal,	݂ሺݐሻ,	in	terms	

of	the	daughter	wavelets,	߰௕,௔ሺݐሻ,	derived	by	stretching	or	compressing		and	

shifting	(translating)	the	mother	wavelet,	߰ሺݐሻ	:	
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߰௕,௔ሺݐሻ ൌ
1

√ܽ
. ߰ ൬

ݐ െ ܾ
ܽ

൰ 	
(Eq.	4.16)		

where	ܾ	denotes	the	position	(translation),	and	ܽ ൐ 0	defines	the	scale	of	the	

wavelet	 (dilation),	 with	 the	 normalisation	 factor	 ଵ

√௔
ൌ ܽି଴.ହ	ensuring	

daughter	wavelets	share	the	same	energy	as	their	mother.		Consequently,	for	

a	real	signal	݂ሺݐሻ,	the	wavelet	transform	with	respect	to	the	analysing	wavelet	

is	the	convolution	integral:	

,ሺܾܹܶܥ ܽሻ ൌ
1

√ܽ
.න ߰∗ ൬

ݐ െ ܾ
ܽ

൰ . ݂ሺݐሻ. ݐ݀
ାஶ

ିஶ
	

(Eq.	4.17)		

where	߰∗	is	the	complex	conjugate	of		߰	defined	on	the	open	time	and	scale	

real	(b,a)	half	plane	(Lau	and	Weng,	1995).	Thus,	the	original	signal	can	be	

reconstructed	from	the	wavelet	coefficients	by	inverting	the	above	formula:		

݂ሺݐሻ ൌ
1
టܥ

. න
݀ܽ
ܽଶ

௔

. න ܾ݀
௕

	 .
1

√ܽ
. ߰ ൬

ݐ െ ܾ
ܽ

൰ . ܹܥ ௕ܶ,௔															
(Eq.	4.18)

whereby		

టܥ ൌ න
ห ෠߰ሺ߱ሻห

ଶ

߱
. ݀߱ ൏ ൅∞

ାஶ

଴
	

(Eq.	4.19)

and		 ෠߰	is	the	Fourier	transform	of		߰	,	and		߱	the	angular	frequency.	

Figure	4.4.	illustrates	the	difference	between	the	modes	of	operation	of	a(n)	

(inverse)	 Fourier	 transform	 and	wavelet	 transform	 on	 a	 signal.	 In	 the	 top	

panel,	 a	 spectral	 analysis	of	 the	 frequency	 scales	 is	described	by	a	Fourier	

transform,	ܺሺ݂ሻ	of	a	continuous	signal	ݔሺݐሻ;	given	ܾݕ:		

ܺሺ݂ሻ ൌ න .ሻݐሺݔ ݁௝ଶగ௙௧ ݐ݀

ାஶ

ିஶ

	
(Eq.	4.20)		
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Thus,	the	inverse	Fourier	transform	is:	

ሻݐሺݔ ൌ න ܺሺ݂ሻ. ݁௝ଶగ௙௧ ݂݀

ାஶ

ିஶ

	
(Eq.	4.21)	

The	Fourier	transform	is	thus	a	convolution	of	the	time	series	ݔሺݐሻ	and	a	series	

of	 sine	 and	 cosine	 functions	 (base	 functions)	 expressing	 the	 average	

frequency	information	during	the	entire	period	of	 the	analysed	signal	(Gao	

and	Yan,	2011).	In	the	lower	panel,	the	operation	of	a	wavelet	transform	is	

illustrated	 in	 the	 lower	 panel	 of	 the	 figure,	whereby	 the	 transform	 allows	

variable	 window	 sizes	 (as	 opposed	 to	 the	 entire	 period)	 in	 analysing	 the	

different	frequency	components	within	the	signal,	through	shifting	the	base	

function,	or	mother	wavelet	߰௦,௧,	along	the	time	axis	(ݐ, ݐ െ ߬,… , ݐ െ ݊߬	);	and	

scaling	the	base	wavelet	(1/ඥݏ௡	߰ ቀ
௧

௦೙
ቁ	)	from	ݏଵ	to	ݏ௡	at	each	instant	shifted	

in	time.	Here,	ݏ	stands	for	ܽ;	and	߬	for	ܾ	in	equations	4.16	to	4.19.	Realising	

the	localised	variations	in	frequency	components	is	done	by	comparing	the	

time	series	and	the	scaled	and	shifted	base	wavelet.			

A	plethora	of	analysing	wavelets	exist	(seen	both	as	a	strength	and	weakness	

of	the	approach),	and	these	are	classed	as	either	orthogonal	or	continuous,	

and	complex	or	real.	As	a	general	rule,	the	shape	of	wavelet	function	needs	to	

reflect	 the	 features	within	 the	 analysed	 time	 series	 (Torrence	 and	Compo,	

1998).	The	most	commonly	used	of	all	is	the	Morlet	wavelet,	given	by:	

߰ሺݐሻ ൌ ݁௜௞ഗ.௧. ݁ି
|௧|మ
ଶ 	

(Eq.	4.22)	

The	 Morlet	 wavelet	 is	 a	 plane	 wave	 of	 wave	 vector	 ݇ట	,	 modulated	 by	 a	

Gaussian	envelope	of	unit	width,	and	is	practically	admissible	(i.e.	has	a	finite	

Fourier	transform,	and	hence	is	invertible)		for		݇ట ൌ 6,	(Farge,	1992).		The	

continuous	and	complex	nature	of	this	wavelet	gives	it	the	advantage	of	being	

able	 to	 detect	 both	 the	 time–dependent	 amplitude	 and	 phase	 for	 different	

frequencies	 in	 the	 time	 series	 (Lau	 and	Weng,	 1995).	 This	wavelet	 is	 also	
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centred	 in	 time,	 	,ݐ and	 its	 Fourier	 transform	 is	 supported	 over	 almost	 the	

entire		frequency	spectrum	(Foufoula‐Georgiou	and	Kumar,	1994).		

The	 wavelet	 coefficients	 for	 frequency	 or	 time	 scale,	 are	 represented	 by	

octaves,	 logarithms	of	base	two	which	in	turn	may	be	further	decomposed,	

hence	 encompassing	 a	 broad	 range	 of	 scales	 (Lau	 and	 Weng,	 1995).	

Subsequently,	a	wavelet	transform	maps	a	one	dimensional	time	series	into	a	

two–dimensional	image	portraying	the	evolution	of	scales	and	frequencies	in	

time	(linear	scale	on	time	b–axis	pointing	right,	and	logarithmic	scale	on	the	

a–axis	facing	down	with	increasing	scales	in	the	octave).	To	resolve	a	localised	

signal,	 the	 mother	 wavelet	 is	 chosen	 such	 that	 it	 vanishes	 outside	 some	

interval	(ݐ௠௜௡, ,(ܾ଴	point	a	by	influenced	be	can	that	domain	the	and	௠௔௫),ݐ ܽ଴)	

which	 lies	 largely	within	 the	 “cone	 of	 influence”	 defined	 by	 |ܾ െ ܾ଴| ൌ ܽ	Λ	

where	ܽ ଴	is	the	scale	at	octave	zero,	and	Λ ൌ 2଴.ହ	for	a	Morlet	wave.		As	we	are	

dealing	with	a	time	series	of	finite	length,	errors	arise	towards	the	start	and	

end	of	the	wavelet	power	spectrum.	Computationally,	one	may	pad	the	end	of	

the	 time	 series	with	 zeroes	before	 the	 transform	 takes	place,	 then	 remove	

these	 afterwards,	 limiting	 edge	 effects	 and	 speeding	 up	 the	 transform	

(Torrence	 and	 Compo,	 1998).	 However,	 this	 may	 present	 discontinuity	 at	

larger	scales	near	the	end,	decreasing	the	amplitude	where	more	zeroes	are	

analysed.	Therefore,	the	cone	of	influence	(coi)	determines	the	region	in	the	

spectrum	where	 edge	 effects	 are	 important,	 and	 is	 often	defined	by	 the	 e‐

folding	time	for	the	autocorrelation	of	power	at	every	single	scale	(ibid.).	This	

highlights	Heisenberg’s	uncertainty	principle	which	dictates	that	one	cannot	

obtain	arbitrarily	good	localisation	in	both	time	and	frequency,	and	as	such,	a	

trade‐off	must	 be	 reached	whereby	 spatial	 (time)	 resolution	 is	 bad	 at	 the	

larger	scales,	and	scale	 (frequency)	resolution	 is	bad	at	 the	smallest	 scales	

(Foufoula‐Georgiou	 and	 Kumar,	 1994;	 Farge	 et	 al.,	 1996;	 Grinsted	 et	 al.,	

2004).	
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a) 

	

	

	

	

b)		

	

	

	

	

	

	

Figure	4.4	(a)	 Illsutration	of	 the	Fourier	Transform	of	a	continuous	signal	
	expressing	functions,	cosine	and	sine	of	series	a	with	convolution	its	as	ሻݐሺݔ
average	frequency	information	during	the	entire	period	over	which	the	signal	
is	 analysed.	 (b)	 Illustration	 of	 a	 wavelet	 transform	 of	 the	 signal,	 where	
variable	 window	 sizes	 allow	 analysing	 different	 frequency	 components	
within	the	signal	through	scaling	and	shifting	a	set	of	daughter	functions	of	
the	base	base	(Mother)	wavelet	߰.	Adapted	from	(Gao	and	Yan,	2011).	
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In	order	to	analyse	two	time	series	together,	for	example	turbulent	Reynolds	

stresses	 and	 suspended	 sediment	 concentrations,	 the	 continuous	 wavelet	

transform	needs	to	be	extended	in	bivariate	analysis.	Hudgins	et	al.	(1993)	

introduced	the	concept	of	a	wavelet	cross	spectrum	to	study	the	intermittency	

of	turbulent	fluxes	in	atmospheric	turbulence.	As	with	Fourier	analysis	of	two	

time	series,	the	cross‐wavelet	spectrum	can	be	defined	by	the	product	of	the	

corresponding	 transforms	 for	each	of	 the	 two	signals	 (Maraun	and	Kurths,	

2004).	 	 For	 two	 time	 series	 X	 and	 Y,	 with	 continuous	wavelet	 transforms	

௕ܹ
௑ሺܽሻand	 ௕ܹ

௒ሺܽሻ,	respectively,	the	cross	spectrum	is:	

௕ܹ
௑௒ሺܽሻ ൌ 	 ௕ܹ

௑ሺܽሻ	. ௕ܹ
௒∗ሺܽሻ 	 (Eq.	4.23)		

whereby	 ௕ܹ
௒∗ሺܽሻ	 is	 the	 complex	 conjugate	 of	 ௕ܹ

௒ሺܽሻ.	 The	 cross‐spectrum	

power	is	defined	as	| ௕ܹ
௑௒ሺܽሻ|	(Torrence	and	Compo,	1998).	If	the	two	series	

have	 theoretical	 Fourier	 spectra	 ௞ܲ
௑	 and	 ௞ܲ

௒	;	 then	 the	 cross‐wavelet	

distribution	is:	

ܦ ቆ
|	 ௕ܹ

௑ሺܽሻ	. ௕ܹ
௒∗ሺܽሻ	|		

௒ߪ	௑ߪ
	൏ ቇ݌ ൌ

ܼ௩ሺ݌ሻ
ݒ

.ට ௞ܲ
௑

௞ܲ
௒ 	

(Eq.	4.23)		

where	ܼ௩ሺ݌ሻ	 is	 the	 confidence	 level	 associated	with	 the	probability	݌	for	a	

probability	density	function	with	ݒ		degrees	of	freedom)	defined	by	the	square	

root	of	the	product	of	two	߯ଶ	distributions	,	and	ߪ௑	and		ߪ௒		are	the	standard	

deviations	(Grinsted	et	al.,	2004).	The	5%	significance	level	for	real	wavelets	

ݒ) ൌ 1);	ܼଵሺ95%ሻ 	ൌ 	2.182;	and	for	complex	wavelets	 ݒ) ൌ 2);	ܼଵሺ95%ሻ 	ൌ

	3.999.		

Wavelet	 coherence	 provides	 another	 useful	 parameter	 in	 assessing	 the	

relationship	 between	 two	 time	 series,	 measuring	 the	 cross‐correlation	

between	the	two	time‐series	as	a	function	of	frequency.	Wavelet	coherence	is	
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defined	 as	 the	 square	 of	 the	 cross‐spectrum	 normalised	 by	 the	 individual	

power	spectra,	thus	ranging	between	0	and	1:		

	

ܴ௕
ଶሺܽሻ ൌ

|ܵሺܾିଵ ௔ܹ
௑௒ሺܾሻሻ|ଶ

ܵሺܾିଵ | ௔ܹ
௑ሺܾሻ|ଶሻ. ܵሺܾିଵ | ௔ܹ

௒ሺܾሻ|ଶሻ
	

(Eq.	4.24)	

where	 ܵ	is	 a	 smoothing	 operator	 (Torrence	 and	 Webster,	 1999);	 which	

includes	 smoothing	 along	 the	 wavelet	 scale	 axis	 and	 smoothing	 in	 time.		

Furthermore,	if	there	is	a	causality	between	the	two	time	series,	their	cross‐

wavelet	 spectra	 would	 be	 expected	 to	 be	 phase	 locked,	 in	 regions	 with	

significant	common	power.	The	phase	difference	between	the	two	series	can	

be	 quantified	 by	 the	 mean	 of	 the	 phase	 over	 regions	 with	 common	

significance	 (higher	 than	 5%)	 outside	 the	 cone	 of	 influence.	 In	 this	 work,	

space‐time	 dynamics	 of	 turbulent	 stresses	 and	 sediment	 resuspension	 are	

assessed.	A	cross–wavelet	transform	(XWT)	analysis	is	used	to	expose	regions	

of	 high	 common	 power	 between	 the	 two	 signals	 of	 Reynolds	 stresses	 and	

suspended	sediment	 flux,	 looking	 into	the	phase	relationships	between	the	

two,	following	Grinsted	et	al.	(2004).			
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Chapter 5.  

Wave-induced coherent 
structures and nearshore 
sediment resuspension1  

	
“And	yet	relation	appears.			
A	small	relation	expanding	like	a	shade.	
Of	cloud	on	sand.	A	shape	on	the	side	of	a	Hill”	
Wallace	Stevens	(1942)	‐	Connoisseur	of	Chaos	

	

5.1	Introduction	

The	mobilisation	of	sediment	in	the	nearshore	and	shoreface	of	sandy	beaches	

is	dominated	by	wave‐induced	bed	shear	stresses	 in	moderate	and	stormy	

conditions	(Thompson	et	al.,	2012).	Our	ability	to	predict	sediment	transport	

remains	 limited	 by	 insufficient	 understanding	 of	 the	 hydrodynamic	 and	

physical	 processes	 contributing	 to	 the	mobilisation	 and	 suspension	 of	 bed	

material	into	the	water	column	(Aagaard	and	Jensen,	2013).	Over	finite	length	

scales,	the	advection‐diffusion	framework	dictates	that	the	concentration	of	

suspended	particles	under	waves	depends	on	the	balance	between	upward	

(gradient	diffusion	caused	by	small	scale	turbulence;	and	pick‐up	by	coherent	

vortices)	 and	 downward	 (settling)	 directed	 sediment	 fluxes	 (Aagaard	 and	

Hughes,	2010).	The	vertical	structure	of	the	sediment	flux	components	on	the	

shoreface	 and	 in	 the	 inner	 surf	 zone,	 as	well	 as	 the	 dynamics	 of	 sediment	

transport	under	shoaling	waves	in	the	nearshore,	are	both	considered	to	be	

insufficiently	understood	(van	Rijn	et	al.,	2013).	In	a	review	of	future	research	

needs	 in	 coastal	 sediment	 dynamics,	 van	 Rijn	 et	 al.	 (2013)	 highlight	 a	

requirement	 for	 prioritising	 research	 with	 reference	 to	 coherent	 flow	

structures	and	the	intermittent	stirring	of	sediment	by	breaking	and	shoaling	

																																																								
1	 This	 chapter	 is	 based	 on	 the	 publication:	 Kassem,	H.,	 Thompson,	 C.E.L.,	 Amos,	 C.L.,	 and	
Townend,	 I.H.	 	 (2015),	 Wave‐induced	 coherent	 turbulence	 structures	 and	 sediment	
resuspension	 in	 the	nearshore	of	a	prototype‐scale	sandy	barrier	beach,	Continental	Shelf	
Research,	109,	78‐94,	doi:	10.1016/j.csr.2015.09.007	–	Appendix	3	
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waves;	 as	 well	 as	 the	 time‐history	 effects	 of	 suspended	 sediments	 under	

irregular	wave	conditions.	Understanding	the	spatial,	temporal	and	frequency	

characteristics	 of	 sediment	 suspension	 events	 in	 relation	 to	 turbulent	

fluctuations,	 both	 in	 structural	 form	 and	 in	 temporal	 distribution,	 is	 an	

important	step	towards	providing	a	more	satisfactory	conceptual	model	for	

describing	 sediment	 entrainment	 by	 coherent	 turbulence	 structures	 and	

subsequent	accurate	predictions	of	suspended	sediment	transport.	The	aim	

of	 this	 chapter	 is	 to	 provide	 insight	 into	 the	 temporal	 and	 spatial	 scale	

relationships	 between	 wave–generated	 boundary	 layer	 turbulence	 and	

event–driven	 sediment	 transport	 in	 oscillatory	 flow	 in	 the	 nearshore	 of	 a	

prototype	sandy	barrier	beach.	In	particular,	two	aspects	are	investigated:	(a)	

the	 time–frequency	properties	 that	characterise	 turbulent	burst	cycles	and	

ensuing	 sediment	 suspension;	 and	 (b)	 the	 relationship	 between	 near–bed	

sediment	 resuspension	 events	 with	 wave–induced	 turbulent	 coherent	

structures	as	manifest	by	intermittent	Reynolds	stresses.	The	intermittency	

of	 turbulent	 structures,	 identified	 through	 traditional	 quadrant/octant	

analysis	 assessing	 covariance	 of	 stress–bearing	 events	 in	 three	 planes	 of	

motion	is	assessed.	Fourier	analysis	is	used	to	characterise	the	integral	scales	

of	motion	and	suspension	events,	while	wavelet	analysis	offers	the	ability	to	

investigate	 localised	 variations	of	power	 (variance)	within	 the	 time	 series,	

determine	 localised	 intermittent	periodicities,	 and	hence	 identify	 time	and	

frequency	 scales	 of	 turbulent	 bursts	 and	 suspension	 fluxes,	 and	 causality	

through	phase	relationships.	We	restrict	our	study	to	two	series	of	irregular,	

erosive	and	accretive,	wave	runs	on	a	prototype	sandy	barrier	beach;	carried	

out	 through	 the	EU–funded	Barrier	Dynamics	Experiments	 II	 –	BARDEX	 II	

project	 (HYDRALAB	IV	Contract	no.	261520	by	 the	European	Community’s	

Seventh	Framework	Programme).	

5.2	The	Barrier	Dynamics	Experiment	II	(BARDEX	II)	

The	 Barrier	 Dynamics	 Experiment	 II	 is	 the	 second	 of	 the	 EU‐funded	

experiments	 on	 barrier	 beach	 dynamics	 within	 the	 Hydralab	 framework,	

conducted	at	the	Delta	Flume	facility,	 the	Netherlands,	 following	the	gravel	

barrier	experiments	of	Williams	et	al.	(2012).	The	overall	aim	of	BARDEX	II	
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was	to	collect	a	near	prototype‐scale	data	set	on	a	sandy	barrier	beach	system	

subjected	 to	 energetic,	 erosive	 and	 accretive	 wave	 conditions,	 to	 improve	

quantitative	 understanding	 of,	 and	 modelling	 capability	 of	 shallow	 water	

sediment	transport	processes	 in	the	 inner	surf,	swash	and	overwash	zones	

(Masselink	et	al.,	2013;	Masselink	et	al.,	2015).	This	was	formulated	into	six	

work	packages	covering	barrier	hydrology,	 swash	and	berm	dynamics,	bar	

dynamics	and	exchanges	between	swash	and	surf	zones,	barrier	overwash,		

sediment	resuspension	and	bed	morphology	in	the	nearshore,	and	numerical	

modelling;	and	included	20	days	of	experimental	runs	during	the	period	of	the	

project	(May	–	July	2012).	The	data	presented	in	this	work	were	collected	as	

part	 of	 the	 fifth	work	package	 of	 the	 project,	which	 aimed	 to	 observe	 and	

measure	 vortex	 resuspension	 processes	 and	 bedform	 dynamics	 under	

shoaling	and	breaking	waves	in	order	to	quantify	changes	in	the	magnitude	

and	 direction	 of	 bedload	 and	 suspended	 sediment	 transport	 in	 the	 region	

outside	the	surf	zone	(Thompson	et	al.,	2013).	

5.2.1	Experimental	set‐up	

A	4.5	m	high,	75	m	wide	(cross–shore)	sandy	barrier	beach	was	constructed	

from	moderately	sorted,	coarse‐skewed	medium	fluvial	sand	with	a	median	

grain	diameter,	D50,	of	0.42mm	within	the	5	m	wide	Delta	Flume.	A	typical	

particle	 size	 distribution,	 calculated	 from	 repeated	 settling	 column	

experiments	(using	Soulsby	(1997))	on	samples	collected	in	the	nearshore	of	

the	 barrier	 is	 given	 in	 Figure	 5.1,	 showing	 a	 moderately	 sorted,	 coarsely	

skewed,	meso‐kurtic	medium	sand	following	the	classifications	of		Folk	and	

Ward	(1957)	and	Tucker	(1991).	The	sediment	in	the	flume,	with	about	1%	

gravel,	was	compacted	by	20%	before	the	experiments.	The	barrier,	backed	

by	a	lagoon	and	fronted	by	a	20	m	flat	section	(of	the	same	bed	material,	0.5	

m	 deep),	 was	 subjected	 to	 a	 JONSWAP	 spectrum	 of	 random	 waves	

(Hasselmann	et	 al.,	 1973),	 generated	by	a	 single	 stroke	wave	paddle	 fitted	

with	 an	 automated	 reflection	 compensator	 to	 supress	 reflection	 and	 low	

frequency	resonance,	situated	49	m	before	the	start	of	the	1:15	m	seaward	

slope	(Figure	5.2(a);	and	Figure	5.3).	The	entire	experimental	testing	program	

is	given	in	(Masselink	et	al.,	2015).	



	

113	
	

The	present	laboratory	experiment	was	designed	to	address	cross‐shore	sand	

transport	 across	 a	 sandy	 barrier	 beach	without	 the	 added	 complexities	 of	

alongshore	(littoral)	variations.	In	the	field,	the	dynamics	of	barrier	beaches	

represent	 an	 interplay	 of	 both	 cross‐shore	 and	 alongshore	 sediment	

transport,	and	therefore	present	a	three	dimensional	problem	(Fredsøe	and	

Deigaard,	 1992;	 Roelvink	 et	 al.,	 2009;	 Masselink	 and	 van	 Heteren,	 2014).	

Natural	sediment	was	used	to	avoid	scaling	 issues,	and	its	size	chosen	as	a	

compromise	 whereby	 resuspension	 of	 sediment	 was	 possible	 given	 the	

applied	wave	 forcing	within	 the	nearshore	 region	 (under	 shoaling	waves),	

whilst	 ensuring	 the	 required	 hydraulic	 conductivity	 for	 cross‐barrier	

groundwater	flow	(lagoon	to	sea).	Irregular	wave	forcing	provided	a	realistic	

representation	of	the	wave	field	in	the	absence	of	tidal	forcing;	and	the	use	of	

active	reflective	compensation	system	eliminated	‘artificially	reflected	waves’	

from	the	modelled	barrier	structure.	Indeed,	the	use	of	1:1	(prototype)	scaling	

in	wave	tanks	implies	no	significant	scale	effects,	and	is	well	established	for	

accurate	modelling	of	flow	processes	and	responses	in	coastal	environments	

without	distortion	(Hughes,	1993;	Oumeraci,	1999;	Frostick	et	al.,	2011).	The	

relatively	 shallow	water	 depth	 at	 the	 seaward	 side	 of	 the	 barrier	 ensured	

wave‐generated	bed	shear	stresses	which	exceed	the	threshold	 for	particle	

motion	and/or	suspension	are	attained.	For	the	purposes	of	our	study,	the	use	

of	 unidirectional	 waves	 as	 the	 hydrodynamic	 forcing	 on	 the	 barrier	 is	 a	

reasonable	 approximation	 to	 the	 case	 of	 swash‐aligned	 barrier	 beaches,	

where	 wave	 crests	 are	 parallel	 to	 the	 shoreline	 and	 onshore‐offshore	

sediment	transport	describes	the	morphological	evolution	of	the	beach	(Bird,	

2005;	Masselink	et	al.,	2011).	

As	 part	 of	 these	 experiments,	 time–synched	 acoustic	 measurements	 of	

turbulence,	 suspension,	 and	 bed	 morphology	 were	 recorded	 from	 an	

instrumented	frame	at	the	nearshore	position,	situated	just	at	the	break	of	the	

seaward	slope	of	the	barrier;	49	m	from	the	wave	paddle	(Figure	5.2	(b,	c)).	

Turbulence	estimates	from	velocity	measurements	were	collected	by	means	

of	two	coupled,	downward‐looking	10MHz	Nortek	Vectrino	Acoustic	Doppler	

Velocimeters	 (ADVs)	with	 a	 vertical	 offset	 of	 0.26	m	 and	 an	 across–flume	
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horizontal	offset	of	036	m,	 sampling	at	25	Hz.	 Sediment	 suspensions	were	

inferred	 from	 backscatter	 measured	 with	 an	 Aquatec	 Aquascat	 Acoustic	

Backscatter	Profiling	Sensor	(ABS),	with	1,	2,	and	4	MHz	channels,	measuring	

between	 5	 and	 0.95	 m	 below	 the	 instrument	 in	 0.5	 mm	 bins	 at	 64	 Hz	

(Thompson	 et	 al.,	 2013).	 Due	 to	 the	 internal	 logger’s	 limited	 disk	 storage	

capacity,	 the	 burst	 intervals	 were	 limited	 during	 each	 run	 to	 8	 minutes.	

Unfortunately,	it	was	not	possible	to	directly	calibrate	the	ABS	measurements	

(and	hence	 infer	 volume/mass	 concentrations)	due	 to	 failure	of	peristaltic	

pump	 equipment,	 so	 pre‐calibration	 procedures	 were	 used	 instead.	

Subsequently,	 concentrations	 and	 backscatter	 are	 used	 interchangeably	 in	

this	work	to	look	at	relative	change.		Three	dimensional	bed	morphology	was	

inferred	from	a	combination	of	a	Marine	Electronics	1.1	MHz	dual‐head	sand	

ripple	profiling	system	(SPRS)	recording	sequential	cross–shore	profiles	and	

a	Marine	Electronics	500	kHz	Sector	Scanning	Sonar	(SSS)	which	provided	a	

360o	plan–view	of	the	bedforms.	The	dual‐head	SRPS	performed	4	μs,	120°	

sweeps	at	a	rate	of	1	Hz	and	a	range	extending	from	0.5	‐2.5	m.	The	two	SRPS	

units	were	installed	to	face	one	another,	providing	a	cross‐shore	sonar	image	

of	the	bed	close	to	the	flume’s	centre	and	to	the	flume’s	inner	wall.	The	SSS	

performed	continuous	40	μs,	360°	sweeps	with	a	range	of	10	m.	Surface	water	

elevation	(pressure)	was	recorded	through	a	5	Hz	self‐logging	Paraoscientific	

745	pressure	transducer,	mounted	0.35	m	above	the	starting	bed	elevation.	

Although	turbulence	and	bedform	data	were	recorded	for	the	entire	length	of	

each	wave	run,	memory	limitations	in	the	ABS	instrument	mean	bursts	of	a	

maximum	 length	 of	 8	 minutes	 are	 presented.	 As	 such,	 where	 turbulence	

records	are	analysed	in	conjunction	with	suspension	data,	these	are	trimmed	

accordingly.	All	instruments	(apart	from	the	pressure	transducer)	logged	live	

to	a	set	of	computers,	time‐synched	to	precision	GPS	clock‐network.		
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Figure	5.1	Particle	size	distribution	in	the	nearshore	of	the	barrier.	

5.2.2	Data	collection,	quality	control	and	pre‐processing	

5.2.2.1	Three‐dimensional	velocity	field	and	turbulent	components	

The	 three‐dimensional	 (3D)	 flow	 velocity	 field	 (ܷ, ܸ,ܹ)	 representing	 the	

streamwise	 (along‐flume),	 cross–wise	 (across‐flume),	 and	 vertical	

components	 of	 instantaneous	 velocity,	 respectively;	 is	 given	 by	 ADVs	

measuring	 at	 two	 discrete	 7mm	 sample	 volumes	 above	 the	 bed	 (Figure	

5.1(c)).	However,	ADVs	are	inherently	contaminated	by	noise	due	to	Doppler	

signal	 aliasing,	 bubbles,	 etc.	 (Mori	 et	 al.,	 2007)	 and	 inferred	 stresses	 are	

susceptible	 to	 errors	due	 to	 sensor	misalignment	 (Soulsby	and	Humphery,	

1990).	For	quality	control	purposes,	a	threshold	of	measurement	correlation	

based	 on	 the	 instrument	 sampling	 frequency	 was	 used	 (after	 Elgar	 et	 al.	

(2005)),	giving	~70%	as	the	lower	limit.	A	limit	of	20%	corrupted	data	per	

record	was	subsequently	applied,	delimiting	sequences	where	samples	fall	
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Figure	5.2	(a)	Cross‐sectional	profile	of	the	barrier	within	the	Delta	Flume	at	the	start	of	the	experiments,	with	location	of	
the	nearshore	instrumented	rig;	(b)	plan	view	of	the	instrument	rig	with	distance	from	the	wave	paddle	on	left	hand	wall;	
and	indicating	relative	location	of	instruments	from	the	centre	of	the	flume;	(c)	cross‐section	view	of	instrument	rig	with	
heights	 above	 initial	 bed	 elevation.	 SRPS:	 sand	 ripple	 profiler	 system;	 ABS:	 Acoustic	 backscatter	 profiler	 system;	 ADV:	
acoustic	Doppler	velocimeter;	SSS:	sector	scanning	sonar;	PT:	pressure	transducer.	
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Figure	5.3	Some	photos	from	the	experiment,	showing:	(a)	barrier	setup	at	the	start	of	the	experiment;	with	the	swash/over	wash	rig	
present,	and	bed	profiling	trolley	(green)	visible;	(b)	first	week	team	photo	(for	scale);	(c)	a	plunging	wave	breaking	over	the	nearshore	
bar,	followed	by	a	shoaling	wave	at	the	location	of	the	nearshore	instrumented	rig.		
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continuously	 below	 the	 accepted	 correlation	 threshold	 for	 over	 two	

consecutive	seconds	(Elgar	et	al.,	2001;	Feddersen,	2010).	Any	8‐minute‐long	

record	which	failed	this	criterion	was	discarded		By	Comparison,	time	series	

with	up	to	40%	bad	data	per	 	 record	have	been	used	 in	 the	 literature	(e.g.	

Ruessink,	 2010).	The	 records	were	 then	patched	 (to	 replace	 contaminated	

data)	by	applying	a	moving	average	algorithm	which	interpolates	the	missing	

data	by	averaging	column–wise	along	with	the	surrounding	elements	that	fit	

on	the	column	matrix	of	size	(2Fr+1),	centred	on	it	as	well	as	smoothing	in	the	

edges,	whereby	Fr	is	the	window	semi‐length	in	rows,	following	Thompson	et	

al.	(2012).	Ideally,	the	smallest	window	size	such	that	all	missing	values	are	

replaced	 by	 an	 interpolated	 value	 is	 chosen	 for	 the	 corresponding	 record.	

Subsequently,	an	axis–rotation	algorithm	is	used	to	eliminate	 the	effects	of	

sensor	misalignment,	following	Elgar	et	al.	(2001).	This	requires	calculating	

the	angle	of	rotation	about	the	Y–axis,	given	by	the	gradient	of	a	least‐squares	

straight–line	 fitted	 through	the	scatter	of	points	 in	 the	(X,	Y)	space.	This	 is	

then	 used	 to	 construct	 a	 rotation	 matrix	 applied	 to	 the	 coordinates	 in	

the	ሺݔ– –ݕሺ	the	to	applied	is	operation	similar	A	plane.	(ݕ 	the	before	plane	ሻݖ

mean	 values	 of	 the	 rotated	 coordinates	 are	 deducted	 to	 remove	 the	

contamination	of	the	“U”	data	by	the	“V”	data	(cf.	§4.2.1).	

To	 extract	 the	 turbulence	 component	 	,(′ݑ) the	mean	 flow	 velocity	 of	 each	

component	(ݑ),	determined	by	applying	a	moving	average,	zero‐phase	digital	

filter	(in	forward	and	reverse	directions	to	ensure	no	phase	distortion)	as	a	

low	pass	filter,	then	subtracted	from	the	instantaneous	flow	field	(ݑ),	before	

the	 record	 is	 zero–meaned	 and	 de–trended	 (Thompson	 et	 al.,	 2012).	 The	

numerator	coefficients	defining	the	filter	window	were	selected	by	trial	and	

error,	with	autocorrelation	and	cross–correlation	tests	applied	for	validation.	

It	 follows	 that	 two	 fluctuating	 components	 are	 identified,	 a	 wave‐induced	

(periodic)	 component	 (denoted	 by	ݑ௪௔௩௘ᇱ )	 and	 the	 residual	 “random/high	

frequency”	component,	ݑ′.	The	signals	are	then	de‐spiked	using	the	modified	

“true”	 3	 D	 phase	 space	 method	 by	 (Goring	 and	 Nikora,	 2002;	 2003)	 as	

modified	by	(Mori	et	al.,	2007).	Notabely,	similar	power	(variance)	properties	
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and	 scales	 in	 the	 time‐frequency	 domain	 were	 observed	 before	 and	 after	

despiking,	albeit	with	smaller	magnitude	stresses.		

5.2.2.2	Spectral	properties	of	the	incident	wave	field	

The	 non‐directional	 wave	 parameters	 (peak	 wave	 periods,	 ௣ܶ	 (s)	 and	

significant	wave	heights,	ܪ௦ ൌ 	and	zero‐crossing	by	computed	were	(m))	௠଴ܪ

spectral	 analysis	 of	 the	 pressure	 variations,	 having	 compensated	 for	

transducer	 height	 above	 the	 bed,	 and	 pressure	 attenuation	 with	 depth	

following	 Tucker	 and	 Pitt	 (2001).	 	 The	 transducer	 height	 above	 bed	 level	

before	each	experimental	run	(were	possible)	was	determined	from	relative	

heights	to	the	concurrent	bed	level	determined	prior	to	each	test	run	by	flume	

morphology	 surveys	 conducted	 by	 means	 of	 a	 rolling,	 crane‐mounted	

mechanical	profiling	wheel	(50	mm	in	diameter).	

5.2.2.3	Bed	morphology	and	bedform	dynamics	

Bed	morphology	was	inferred	from	the	backscatter	intensity	of	the	SSS	and	

SRPS	records.	The	SSS	backscatter	intensity	was	used	in	raw	acoustic	form	(in	

dB)	to	assess	ripple	crest	shape	and	orientation,	providing	a	top	view	of	any	

variations	 in	 bedforms.	 Mean	 bedform	wavelengths,	 following	 slant	 range	

correction,	 and	 rotation	 of	 the	 image	 to	 align	 with	 the	 flume	 walls,	 were	

evaluated	from	the	locations	of	the	peaks	in	backscatter	along	the	central	line	

of	 the	 echograms	at	 the	 start	 and	 end	of	 each	wave	 run.	Bed	 location	was	

determined	using	the	built‐in	‘bed	detection’	function	of	the	SRPS	dual‐head	

programmer	software	(Marine	Electronics	Ltd.)	with	a	 threshold	value	 (20	

dB)	 above	 the	 average	 backscatter	 intensity,	 having	 adjusted	 for	 sound	

attenuation.	Bed	level	data	were	then	detrended	to	remove	the	bed	slope,	and	

de‐spiked	 to	 remove	 outliers	 pertaining	 to	 high	 concentration	 suspension	

events.	 A	 zero‐crossing	 algorithm	 is	 used	 to	 determine	 ripple	 heights	 and	

wavelengths.	Variations	in	bed	morphology	across	the	flume	were	examined	

through	 raw	 backscatter	 intensity	 given	 by	 the	 Sector	 Scan	 Sonar	 (SSS).	

Changes	 in	 bed	 morphology	 over	 time	 was	 inferred	 from	 the	 series	 of	

sequential	scans	within	each	run,	taken	approximately	once	a	minute.	
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5.2.2.4	Suspended	sediment	concentration	profiles	

For	 the	 ABS	 records,	 the	 mean	 grain	 size	 and	 speed	 of	 sound,	 based	 on	

measured	 temperature	 and	 salinity,	 was	 used	 to	 correct	 backscatter	 for	

attenuation	 and	 spreading,	 and	 hence	 infer	 concentration.	 Thus,	 the	 one–

dimensional	 vertical	 profiles	 of	 suspended	 sediment	 concentration	

(backscatter)	 and	 mean	 particle	 sizes	 could	 be	 calculated	 from	 sediment	

cross–section	scattering	of	the	individual	sound	frequencies.	The	attenuation	

coefficient	for	viscous	dissipation	due	to	freshwater	fluid	motion	under	the	

oscillating	 pressure,	 	,	௪ߙ was	 calculated	 following	 Fisher	 and	 Simmons	

(1977)	 using	 the	 measured	 temperature,	 and	 SIS	 beam	 frequency.	 The	

attenuation	coefficients	pertaining	to	viscous	dissipation	due	to	the	relative	

motion	 between	 particles	 and	 the	 fluid,	 	,	௦௩ߙ and	 scattering	 of	 sound	 by	

particles,	 	,	௦௦ߙ were	 estimated	 following	 	 Thorne	 and	 Hanes	 (2002),	 and	

Thosteson	 and	 Hanes	 (1998)	 as	 presented	 in	 the	 MATSCAT	 toolkit	

(Buscombe,	 2012).	 	 An	 implicit	 inversion	 method	 for	 multi‐frequency	

acoustic	measurements	of	Thorne	and	Hanes	 (2002)	was	used	 to	calculate	

suspended	sediment	 concentration	 (SSC)	and	grain	 size	profiles,	 averaging	

over	 10	 profiles	 to	 minimise	 noise,	 and	 using	 the	 grain‐size	 distribution	

properties	 of	 the	 bed	 sediment.	 Subsequently,	 the	 range‐corrected	

backscatter	 intensities	along	each	beam	of	a	given	sweep	were	normalised	

against	 the	 maximum	 intensity	 of	 that	 beam,	 and	 the	 background	 noise,	

defined	as	the	mean	backscatter	within	the	water	column	was	removed.		The	

bed	was	then	detected	as	the	range‐corrected	height	at	which	the	maximum	

normalised	backscatter	occurs.		

The	ADV	records	of	the	turbulence	components	were	eventually	trimmed	to	

match	the	ABS	records,	which,	in	turn,	are	down–sampled	from	64	Hz	to	25	

Hz	 only	 for	 the	 cross	 wavelet	 transforms	 of	 Reynolds	 stresses	 and	

synchronous	suspended	sediment	fluxes.	Given	that	the	subsampled	records	

displayed	 the	same	spatial	and	 temporal	properties	as	 their	original	 series	

through	spectral	and	continuous	wavelet	analyses,	this	is	believed	to	have	no	

significant	impact	on	the	results.		
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5.3	Results	and	Discussion	

5.3.1	Wave	hydrodynamics	

Eight	 records	 of	 erosive	 and	 accretive	wave	 conditions	 (classified	 as	 such	

following		Sunamura	and	Takeda	(1993))	are	analysed	and	presented	here:	

four	erosive	sub–records	taken	from	BARDEX	II	test	series	A301	(1st,	2nd,	3rd,	

4th),	 and	 four	 accretive	 records	 from	 test	 series	 A7	 (A705,	 A706)	 and	 A8	

(A801,	 A802).	 The	 design	 wave	 conditions,	 as	 well	 as	 calculated	 and	

measured	hydrodynamic	flow	properties	are	given	in	Table	5.1.	The	design	

wave	forcing	in	each	sub‐run	is	reproduced	systematically	by	the	paddle,	with	

measured	 significant	 wave	 heights	 (Hs	 ~	 0.75±0.03m	 in	 erosive,	 and	

~0.61±0.07m	in	accretive	runs)		and	peak	periods	(Tp	~8.12±0.5s	in	erosive;	

and	 12	 s	 in	 accretive	 runs)	 satisfying	 the	 erosion/accretion	 criteria	

(shoreward/seaward	migration	of	nearshore	bed	material)	of	Sunamura	and	

Takeda	 (1993)	 for	 the	 given	 beach	 slope	 and	 mean	 grain	 size	 (settling	

velocity).	 The	 wave	 Reynolds	 numbers	 indicate	 turbulent	 rough	 flows	

(Soulsby	 and	 Clarke,	 2005),	 with	 estimated	 near‐bed	 orbital	 velocities	 of	

0.68±0.03m/s	for	the	erosive	runs	(spilling	and	plunging	breakers	with	surf‐

similarity	parameter,	=ߦ	0.5±0.012),	and	0.67±0.07m/s	for	the	accretive	runs	

(plunging	breakers	with	ߦ	≅	0.62	(Massel,	2013)).	Turbulence	measurements	

by	both	ADVs	were	confirmed	to	be	taken	within	(ܼ୅ୈ୚ଵ ൏ δw)	and	outside	

within	(ܼ୅ୈ୚ଶ ൐ δw)	the	wave	benthic	boundary	layer.		

5.3.2	Bed	morphology	

Within	 the	 erosive	 and	 accretive	 runs	 presented,	wave‐induced	 suborbital	

vortex‐type	 ripples	 were	 observed	 in	 a	 bifurcating,	 two‐dimensional	

configuration	 across	 and	 along	 the	 flume	 (Figure	 5.4),	 following	 the	

classification	 of	 (Clifton	 and	 Dingler,	 1984).	 These	 were	 characterised	 by	

ripple	height:	ܪ௥	=	0.098	±	0.008	m;	and	wavelength,	ߣ௥=	0.45	±	0.09m	in	the	

erosive	runs;	and	ܪ௥	=	0.10	±	0.02	m;	and	ߣ௥=	0.57	±	0.06	m	in	the	accretive	

runs.	While	certain	trends	in	bedform	growth	and	relaxation	were	observed	

during	entire	experimental	runs,	only	millimetric	scale	variations	in	geometry	

were	evident	within	 the	8‐minutes	 long	sub‐records	chosen	 for	analysis	of	

stress‐suspension	co‐variation.		
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Table	5.1	Wave	test	conditions,	and	calculated/measured	hydrodynamic	properties/parameters	

Wave		Conditions	 Erosive	Runs	Design	characteristics:	݄ ൌ 2.5 ݉; ௦ܪ ൌ 0.8 ݉;	 ௣ܶ ൌ ,ݏ8 JONSWAP	

Run	
(sub‐run)	

A301‐	
1st	

A301‐	
2nd	

A301‐	
3rd	

A301‐	
4th	

mean	 ࢞ 	 St.	dev.	
࣌࢞	

Water	height, ݄ ሺ݉ሻ	 2.506	 2.512	 2.512	 2.514	 2.51	 0.0034	

Measured	 Significant	wave	 height,	ܪ௦	
(Hm0)	(m)	

0.779	 0.761	 0.734	 0.710	 0.750	 0.028	

Peak	wave	period,	 ௣ܶ	(s)	 8.0	 8.0	 8.98	 7.5	 8.12	 0.53	

Near–bed	orbital	amplitude,	(m)			
ఋܣ	 ൌ .௦/ሺ2ܪ sinhሺ݇. ݄ሻ		

0.903	 0.865	 0.998	 0.756	 0.88	 0.086	

Near–bed	 orbital	 velocity,	 ܷ௪,௢௥௕,ఋ ൌ
		(m/s)	ఋ.߱ܣ
(van	Rijn,	1993)	

0.709	 0.679	 0.698	 0.634	 0.680	 0.029	

Wave	Reynolds	number,	ܴ݁௪,ఋ		 2.53E+05	

	

2.53E+05	

	

2.38E+05	

	

2.38E+05	

	

2.45E+05	

	
0.7E+05	

Wave	 boundary	 layer	 thickness,	 	௪ߜ
(m),	calculated	from	measured	stress	

0.249	 0.140	 0.128	 0.123	 0.160	 0.052	

Wave	 friction	 factor,	 	࢝ࢌ using	 TKE	
method	(Thompson	et	al.,	2012)	

0.020	 0.032	 0.026	 0.023	 0.025	 0.004	

																																																																																																																																																																																					Continued	…	
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Wave		Conditions	 Accretive	Runs	Design	characteristics: ݄ ൌ 2.5 ݉; ௦ܪ ൌ 0.6 ݉;	 ௣ܶ ൌ ,ݏ12 JONSWAP	

Run	
(sub‐run)	 A705	 A706	 A801	 A802	 mean	 ࢞ 	 St.	dev.	

࣌࢞	
Water	height, ݄ ሺ݉ሻ	

2.507 2.509 2.509 2.509 2.508 0.0008	

Measured	 Significant	wave	 height,	ܪ௦	
(Hm0)	(m)	 0.566 0.705 0.532 0.629 0.608 0.066	

Peak	wave	period,	 ௣ܶ	(s)	
12.0 12.0 12.0 11.48 12.0 0	

Near–bed	orbital	amplitude,	(m)			
ఋܣ	 ൌ .௦/ሺ2ܪ sinhሺ݇. ݄ሻ		 1.065 1.363 1.363 1.363 1.289 0.129	

Near–bed	 orbital	 velocity,	 ܷ௪,௢௥௕,ఋ ൌ
		(m/s)	ఋ.߱ܣ
(van	Rijn,	1993)	

0.557 0.713 0.713 0.713 0.674 0.068	

Wave	Reynolds	number,	ܴ݁௪,ఋ		
2.14E+05 2.26E+05 2.40E+05 2.37E+05 2.29E+05 0.1E+05	

Wave	 boundary	 layer	 thickness,	 	௪ߜ
(m),	calculated	from	measured	stress	 0.177 0.184 0.178 0.194 0.183 0.007	

Wave	 friction	 factor,	 	࢝ࢌ using	 TKE	
method	(Thompson	et	al.,	2012)	 0.024 0.024 0.024 0.023 0.024 0.0	
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Figure	 5.4	 Typical	 2D	 ripple	 configurations	 observed	 from	 backscatter	 intensity	 along	 and	 across	 the	 flume	 in	 the	 vicinity	 of	 the	
instrumented	nearshore	 frame,	 for	a)	 erosive,	 and	b)	 accretive	wave	 runs.	Classification	of	bedform	 in	 terms	of	c)	 orbitality,	 and	d)	
vorticity	for	the	average	bedform	characteristic	lengths	is	after	Clifton	and	Dingler	(1984).	
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5.3.3	Turbulence	Intermittency	and	higher‐order	statistics		

Figure	 5.5	 shows	 the	 time	 series	 of	 the	 three	 instantaneous,	 zero‐meaned	

velocity	 (U,	 V,	 and	 W)	 and	 inherent	 turbulent	 ,’ݑ) 	,’ݒ and	ݓ’)	 fluctuations,	

measured	within	and	outside	of	the	wave	boundary	layer	(by	ADV1	and	ADV2	

respectively)	 for	 almost	 the	 entire	 length	 of	 the	 erosive	 wave	 run	 A301;	

together	with	 their	 corresponding	 probability	 distributions.	 The	 velocities	

were	zero‐meaned	to	eliminate	the	influence	of	any	net	currents	induced	by	

the	 asymmetry	 of	 the	 propagating	 waves.	 The	 four	 erosive	 sub‐records	

carried	 forward	 in	 the	 analysis	 are	 delimited	 by	 the	 vertical	 blue	 lines.	

Considering	 the	 entire	 length	 of	 this	 experimental	 run	 (180	 min),	 the	

averaged	statistical	properties	of	 the	streamwise	velocity	(ܷ)	(top	panel	of	

each	 subplot;	 green)	 exhibit	 a	 slight	 deviation	 from	 a	 normal	 distribution	

within	(subplot	a)	and	outside	(subplot	c)	the	wave	benthic	boundary	layers,	

while	their	corresponding	turbulent	fluctuations	having	sharply	leptokurtic	

distributions,	suggesting	that	while	the	data	is	heavily	clustered	around	the	

mean	(zero),	a	considerable	number	of	fluctuations	are	significant	statistical	

outliers	 despite	 the	 very	 large	 population	 (180	 minutes	 at	 25	 Hz).	 The	

crosswise	(second	panel	within	each	subplot,	gold),	and	vertical	(third	panel	

of	 each	 subplot,	 orange)	 components	 of	 velocity	 and	 turbulence	 are	 both	

characterised	by	very	high	kurtosis,	particularly	in	the	crosswise	component.		

The	four	sub‐records	analysed	below	were	randomly	selected	throughout	this	

time	 series	 and	 their	 statistical	 properties,	 despite	 much	 shorter	 lengths,	

exhibit	similar	properties.	Table	5.2	summarises	the	corresponding	averaged	

statistical	 properties	 for	 the	 turbulent	 component	 of	 the	 8‐minute	

subsampled	 records	 from	 both	 erosive	 and	 accretive	 wave	 runs.	 The	

streamwise	 velocity	 component,	ܷ,	 both	 within	 and	 outside	 the	 boundary	

layer,	exhibits	 a	 quasi‐Gaussian	 distribution	 (skewness	 ~	 0,	 kurtosis	 ~	 3)	

hinting	at	a	stochastic	process	of	independent	probabilistic	events;	while	the	

crosswise	 and	 vertical	 components	 are	 markedly	 non–Gaussian.	 The	

turbulence	components	are	anisotropic	in	all	three	dimensions	both	within	

and	outside	the	bottom	boundary	layer.		
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The	 crosswise	 component,	 commonly	 overlooked	 when	 analysing	 shear	

stresses	 in	 relation	 to	 sediment	 suspension,	 shows	 remarkably	 high	

amplitude	spikes,	comparable	in	magnitude	to	the	streamwise	flow	and	for	a	

considerable	 amount	 of	 time,	 particularly	 near	 the	 bed.	 This,	 in	 turn,	 is	

reflected	in	a	pronounced	leptokurtic	distribution	for	the	transverse	velocity	

fluctuation,	 which	 also	 appears	 to	 be	 asymmetric.	 The	 vertical	 velocity	

fluctuations	are	characterised	by	relatively	high	kurtosis	for	the	erosive	wave	

runs,	which	is	even	more	pronounced	in	the	accretive	runs.	This	is	generally	

suggestive	of	a	high	degree	of	intermittency	in	momentum	exchange.	Similar	

results	 have	 been	 reported	 (as	 unexpected	 findings)	 in	 experimental	 and	

numerical	 simulations	 of	 strong	 boundary	 layers	 and	 turbulent	 channels,	

particularly	 in	wall	 (bed)	proximity	(Kim	et	al.,	1987;	Choi	and	Guezennec,	

1990)	and	at	high	Reynolds	numbers	(Kuo	and	Corrsin,	1971);	in	obstructed	

flow	(El	Khoury	et	al.,	2010);	and	in	viscoelastic	flows	(Samanta	et	al.,	2009).	

Asymmetry	in	the	vertical	in	commonly	encountered	in	convective	boundary	

layers	 where	 it	 is	 associated	 with	 diffusion	 of	 passive	 scalars	 in	 the	 up‐

draught	(bottom–up)	direction	(Weil,	1990;	Wyngaard	and	Weil,	1991).		The	

effect	of	 the	proximity	of	measurements	to	 the	slope	of	the	barrier	may	be	

relevant	in	this	case,	however,	given	that	all	measurements	were	taken	at	the	

same	distance	relative	to	that	 ‘obstruction’,	 it	 is	not	possible	to	pursue	this	

line	of	investigation	with	the	current	dataset,	requiring	further	experimental	

work.	

The	peaked	and	asymmetric	crosswise	velocity	distribution	particularly	near	

the	 bed	 has	 been	 attributed	 to	 the	 nearly	 self–similar	 growth	 and	 self–

sustaining	 mechanisms	 of	 spanwise	 structures	 in	 close	 proximity	 to	 low	

speed	regions	of	flow.	These	are	often	speculated	to	be	generated	by	induction	

of	 the	 asymmetric	 legs	 of	 inclined,	 streamwise‐aligned,	 wall‐attached	

horseshoe	vortex	structures	(Zhou	et	al.,	1997;	Christensen	and	Adrian,	2001;	

Panton,	2001;	Tomkins	and	Adrian,	2003;	Adrian,	2007;	Lozano‐Duran	et	al.,	

2012).	 It	 has	 also	 been	 attributed	 to	 the	 more	 frequent	 occurrence,	 and	

merging,	 of	 one‐legged	 ‘cane‐like’	 elliptical	 vortices,	 at	 high	 Reynolds	

numbers	 (Tomkins	 and	 Adrian,	 2003).	 The	 highly	 three–dimensional	 fluid	
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entrainment	process	cannot	be	studied	in	the	streamwise‐vertical	plane	only,	

where	entrainment	with	vortex	structures	is	not	evident	(Robinson,	1991).	

Large	 streamwise	 vortices	 in	 wall	 bounded	 channels	 with	 moveable	 beds	

appear	 as	 secondary	 flows	 in	 the	 crosswise	 plane	 perpendicular	 to	 the	

streamwise	 flow,	 and	 affect	 the	 distribution	 of	 mean	 velocity,	 turbulence	

intensities,	and	Reynolds	and	bed	shear	stresses	through	the	channel	(Adrian	

and	Marusic,	2012).	Such	eddies	have	been	observed	with	a	spanwise	width	

up	to	1.5	times	the	water	depth,	oscillating	slowly	at	the	centre	while	forming	

stationary	 flows	 near	 the	 wall	 (Tamburrino	 and	 Gulliver,	 2007).	 	 In	 the	

absence	 of	 practical	 means	 of	 visualising	 these	 structures	 in	 the	 field,	 we	

undertake	quadrant	analysis	of	the	tangential	stresses	to	assess	the	frequency	

of	 occurrence	of	 sweep	 (Q4)–ejection	 (Q2)	pairs	 as	 it	may	 shed	additional	

light	on	the	three‐dimensional	structure	of	momentum	transfer	near	the	bed	

(Alfredsson	and	Johansson,	1984;	Kim	et	al.,	1987;	Lozano‐Duran	et	al.,	2012).	

There	is	no	consensus	as	to	whether	the	succession	of	ejections	and	sweeps	

creates	 vortices,	 or	 conversely,	 rolling	 vortices	 give	 rise	 to	 the	 bursting	

sequence,	 and	 it	 is	 plausible	 that	 both	 mechanisms	 operate	 cooperatively	

(Adrian	 and	Marusic,	 2012).	 	 Furthermore,	 while	 the	 velocities	 presented	

earlier	have	been	zero‐meaned	to	eliminate	the	influence	of	any	net	currents	

induced	 by	 the	 asymmetry	 of	 the	 propagating	 waves;	 a	 relatively	 strong	

undertow	along	 the	 flume	was	evident	 in	both	erosive	and	accretive	wave	

runs	 (magnitude	~	 0.2m/s).	 This	 offshore	 directed	 current	would	 interact	

with	 the	 on‐shore	propagating	waves.	 The	 interaction	between	waves	 and	

currents	(undertow)	is	non‐linear,	and	often	results	in	enhanced	momentum	

exchanges,	the	formation	of	paired	counter‐rotating	vortex	clusters,	and	may	

contribute	to	the	asymmetry	in	the	transverse	plane	as	suggested	earlier	(a	

detailed	discussion	in	given	in	§6.4).	The	above	results	emphasise	the	three–

dimensionality	of	 the	momentum	and	subsequent	mass	exchange	problem,	

and	 as	 such,	 the	 contributions	 of	 the	 three	 components	 of	 turbulence	 to	

momentum	 flux	need	 to	be	considered.	Quadrant	analyses	of	 the	Reynolds	

stresses	 ,ᇱݓᇱݑ) ,ᇱݒᇱݑ 	ሻ′ݓ′ݒ is	 carried	 out	 to	 identify	 active	 momentum	

exchanges	and	their	fractional	contributions	to	the	overall	stress.		



	

128	
	

	
	
	
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

129	
	

Figure	5.5	Time	series	and	probability	density	functions	of	3D	velocity	(U,	V,	and	W)	and	inherent	turbulence	(u′,	v′,	w′)	components,	in	

the	streamwise/along‐flume	(dark	green),	crosswise	(gold),	and	vertical	(orange)	for	the	entire	experimental	wave	run	A301	(Hs=0.8	m,	

Tp=8	s).	The	horizontal	dashed	lines	(red)	in	the	time	series	represent	±1	standard	deviations;	while	the	vertical	blue	lines	delimit	the	4	

sub‐records	analysed;	ߪ	is	standard	deviation,	Sk	is	skewness,	and	K	is	Kurtosis.	The	grey‐shaded	area	marks	no	wave	activity.	
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Table	5.2	Statistical	properties	of	the	three	turbulence	components	measured	within	(ADV1)	and	outside	(ADV2)	the	wave	boundary	
layer	for	the	two	types	of	wave	conditions.	These	are	averages	of	the	4	sub‐sampled	records	analysed	for	each	of	the	erosive	and	accretive	
runs.	

Wave	run	‐

subrecord
ADV	

Height	above	bed	

ሺmሻ

turbulence	

component

Standard	

deviation	
Variance Skewness Kurtosis	

Erosive	Runs	

ADV1	 0.0792

u' 0.27േ0.027	 0.07േ0.014 0.27േ0.06 2.97േ0.38	

v' 0.05േ0.005	 0.00 ‐0.78േ1.3	 37.47േ28.76	

w' 0.04േ0.005	 0.00 0.09േ0.38 6.52േ1.68	

ADV2	 0.334

u' 0.33േ0.015	 0.11േ0.01 0.26േ0.08 2.61േ0.07	

v' 0.09േ0.004	 0.00 ‐1.70േ1.10 39.22േ27.08	

w' 0.05േ0.002	 0.00 0.34േ0.22 5.99േ0.59	

Accretive	

Runs	

ADV1	 0.09േ00.1

u' 0.25േ0.025	 0.06േ0.012 0.32േ0.12 3.04േ0.0.33	

v' 0.06േ0.013	 0.00 1.10േ1.32 36.69േ23.43	

w' 0.03േ0.003	 0.00 ‐0.18൅0.54 7.94േ2.03	

ADV2	 0.337േ0.016

u' 0.28േ0.015	 0.08േ0.009 0.37േ0.039 3.08േ0.2	

v' 0.04േ0.003	 0.00 ‐0.60േ0.72 22.75േ22.28	

w' 0.04േ0.002	 0.00 0.01േ0.12 7.30േ1.04	
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5.3.4	Quadrant/Octant	analysis	and	structural	features	of	flow	

Quadrant	analysis	is	used	to	quantify	the	intermittency	of	the	instantaneous	

Reynolds	stress	signals	and	identify	turbulence	structures	within	a	turbulent	

bursting	sequence.	To	stay	 true	 to	 the	original	 formulation,	we	present	 the	

extension	 into	3	dimensions	as	 three	distinct,	 orthogonal	planes	of	motion	

(Figure	5.6).	These	are	obtained	 from	the	 four	8‐minute	ADV1	sub‐records	

measured	near	the	bed,	corresponding	to	the	ABS	sampling	periods	in	each	

case,	shown	here	without	applying	a	threshold	(Hole	size,	H=0).	The	scatter	of	

	,component	streamwise	the	of	dominance	the	highlights	(plane	ሻݖݔሺ	in)	ᇱݓᇱݑ

with	 the	 cluster	 of	 data	 of	 larger	 magnitude	 stresses	 generally	 inclined	

towards	Q2	and	Q4	type	motions	in	the	erosive	runs	(Figure	5.6	(a))	beside	a	

significant	proportion	of	Q1	type	events	(nearly	twice	as	much	as	Q4	events).	

For	the	accretive	runs	(Figure	5.6	(b)),	a	large	positive	streamwise	component	

skews	 the	 cluster	 towards	 Q1	 and	 Q4	 type	motions,	 yet	with	 a	 significant	

proportion	 of	 events	 in	Q2.	 	Hence,	 in	 the	 streamwise–vertical	 plane,	 fluid	

motions	 appear	 to	 be	 dominated	 by	 onshore	 directed	 fluctuations	 in	 the	

accretive	 runs;	 while	 prevalent	 Q1	 and	 Q2	 motions	 in	 erosive	 conditions	

entrain	low	speed	near‐bed	fluid	and	particles	upwards	to	be	transported	by	

net	currents,	such	as	the	offshore‐directed	undertow.	In	the	horizontal	plane	

	magnitude	in	(comparable	fluctuations	transverse	significant	,(ሻݕݔሺ	in	ᇱݒᇱݑ)

to	ݑ′)	result	in	a	large	number	of	high‐stress	events	lying	outside	of	the	zero‐

centred	 cloud	of	points.	Q1	 structures	 associated	with	 shoreward–directed	

motions	skewed	to	the	right	(of	the	flume)	largely	dominate.	Again,	from	a	3D	

perspective,	the	dominance	of	shoreward	directed	motions	(although	inferred	

from	a	single	point	measurement	and	in	no	way	descriptive	of	the	problem)	is	

reassuring	as	the	wave	are	accretive,	moving	sediments	from	the	nearshore	

towards	 the	 beach.	 	 In	 the	 transverse‐vertical	 plane	 	ᇱݓᇱݒ) in	 ሺݔ െ 	;(ሻݕ the	

stresses	are	closely	clustered	around	zero	in	both	erosive	and	accretive	runs,	

yet	with	notable	occurrences	of	high‐magnitude	predominantly	with	a	right‐

oriented	 transverse	 component.	 This	 cross‐wise	 skewness	 is	 particularly	

interesting	 given	 most	 rectangular	 flume	 studies	 assume	 two‐dimensional	

flow	configuration,	and	 thus	highlights	 the	 three‐dimensional	nature	of	 the	
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flow.	The	influence	of	this	transverse	motion	could	be	seen	higher	up	across	

the	barrier,	with	winnowing	and	sorting	of	larger	grain	sediment	fraction	to	

one	side	of	the	flume.	

The	averaged	statistical	results	of	the	quadrant	analysis	for	the	8	erosive	and	

accretive	 runs	are	summarised	 in	Figure	5.7.	The	 top	panel	 (Figure	5.7(a))	

highlights	the	influence	of	the	hyperbolic	hole	size,	H,	(cf.	§4.3.1)	applied	as	a	

delimiting	 plane‐specific	 threshold	 (green:	 H	 =2;	 grey:	 H=1).	 This	 is	

introduced	to	identify	(and	eventually	disregard)	small	scale	departures	from	

the	 mean	 such	 that	 only	 strong,	 stress‐bearing	 structures	 are	 considered.	

Notably,	 it	 was	 found	 that	 applying	 a	 threshold	 value	 has	 a	 far	 more	

pronounced	 impact	 in	 the	 erosive	 wave	 runs,	 reducing	 the	 fractional	

occurrence	of	all	four	types	of	structures	by	up	to	80%	for	H=2,	with	the	most	

pronounced	effect	on	the	outward	(OI)	and	inward	(II)	interactions,	but	only	

up	to	30%	for	the	accretive	runs.	The	effect	of	a	threshold	value	applied	to	the	

stresses	 of	 the	 accretive	 runs	 reduces	 the	 accounted	motions	 in	 relatively	

equal	proportions	in	any	given	plane,	with	only	a	marginal	increase	in	the	Q1	

(OI)	 and	 sweep	 motions	 at	 the	 expense	 of	 the	 accounted	 ejections.	 This	

implies	that	the	accretive	waves,	characterised	by	plunging	breakers,	features	

much	more	extreme	events	 (higher‐magnitude	stresses	 than	 the	delimiting	

threshold)	compared	with	the	erosive	conditions.	The	middle	panel	(Figure	

5.7	 (b))	 presents	 the	 averaged	 results	 (of	 4	 sub‐runs)	 for	 the	 erosive	 and	

accretive	records,	of	 the	percentage	of	occurrence	of	each	of	 the	4	types	of	

bursting	 event	 structures,	 before	 and	 after	 filtering	 out	 the	 periodic	

component	from	the	velocity	fluctuations,	in	all	three	planes.	The	lower	panel	

(Figure	5.7	(c))	shows	the	averaged	percentage	of	contribution	to	stress	by	

each	of	the	bursting	motion	types,	to	the	total	Reynolds	stress	in	the	primary	

flow	 plane	 	.(ݓݑ) Filtering	 out	 the	 periodic	 component	 appears	 to	 have	 a	

significant	impact	only	on	the	proportion	of	time	occupied	by	specific	motions	

(particularly	Q2	and	Q3)	in	the	dominant	flow	plane	(ݓݑ)	of	the	erosive	runs,	

and	 almost	 no	 effect	 for	 the	 accretive	 runs.	 It	 is	 also	 found	 that	 this	 has	 a	

negligible	impact	on	the	contribution	to	stress	by	each	type	of	structure.	For	

the	 erosive	 runs,	 Q2	 (Ejection)	 and	 Q3‐	 (Inward	 Interaction)	 motions	
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dominate	 the	 vertical	 motion	 along	 	′ݓ′ݑ) plane)	 and	 across	 	′ݓ′ݒ) plane),	

respectively,	with	 the	wave	signal	present.	These	events	entrain	 low	speed	

fluid	 (and	 particulates)	 near	 the	 bed	 upwards	 into	 the	water	 column,	 and	

highlight	 a	 prevalence	 of	 motions	 are	 directed	 offshore	 (negative	ݑ′)	

contributing	 to	 the	erosion	of	 the	barrier	 face.	However,	when	considering	

only	 the	 fluctuating	 part,	 Q2‐	 and	 Q4‐	 motions	 become	 relatively	 more	

frequent.	For	the	accretive	wave	runs,	filtering	out	the	wave	signal	appears	to	

result	 in	 nearly	 equal	 proportions	 for	 each	 of	 the	 4	 types	 of	motion	 in	 all	

planes.	In	the	horizontal	planes	(ݒ′ݑ′),	Q1	and	Q4	structures	associated	with	

shoreward–directed	motions	skewed	to	the	right	are	marginally	emphasised;	

with	 all	 motions	 of	 a	 bursting	 sequence	 represented	 relatively	 equally.	

Collectively,	 ejections	 and	 sweeps	 contribute	 slightly	 more	 to	 the	 total	

Reynolds	 stress	 (56%	 in	 erosive,	 57%	 in	 accretive)	 than	 the	Outward	 and	

Inward	 interactions	 (44%	 in	 erosive,	 and	43%	 in	 accretive).	 If	 a	 threshold	

were	applied	to	the	stresses	in	the	erosive	runs,	the	occurrence	of	Sweeps	and	

Ejections	outweighs	that	of	the	weaker	interactions	by	a	factor	of	1.6	for	H=2	

due	 to	 the	 observed	 dominance	 of	 particular	 quadrant	 events	 of	 higher	

magnitude	 in	 the	 erosive	 runs,	 compared	 to	 the	 nearly	 equal	 distribution	

(balance)	 of	 the	 four	 quadrant	 event	 motions	 in	 the	 accretive	 tests.	

Remarkably,	the	fractional	contribution	of	ejections	and	inward	interactions,	

and	hence	reduced	thresholds,	is	reportedly	enhanced	in	sediment		mixtures	

with	 high	 standard	 deviations	 in	 grain	 size	 distribution,	 like	 the	 coarsely	

skewed	 sediments	 present	 here;	while	 that	 of	 the	Q1	 events	 becomes	 less	

significant	 (Wu	 and	 Yang,	 2004;	 Wu	 and	 Jiang,	 2007).	 Furthermore,	 it	 is	

important	to	note	that	these	single	point	measures	are	limited	by		the	frozen	

turbulence	hypothesis	 in	a	 field	moving	streamwise	as	proposed	by	Taylor	

(1938),	 	 thus	 showing	 local	 anisotropy	 	 induced	 by	 convective	 velocity	

fluctuations	(Wyngaard	and	Clifford,	1977),	and	corresponding	better	to	the	

spatial	rather	than	the	temporal	changes	in	a	given	structure	(Soulsby,	1983).	

The	 large	 vertical	 and	 horizontal	 separation	 of	 the	 two	 ADVs	 in	 the	

experimental	 setup	 (compared	 to	 boundary	 layer	 thickness)	 restricts	 our	

investigation	in	this	respect.	
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Figure	5.6 Quadrant	plots	of	instantaneous	Reynolds	stresses	in	3	planes	for	(a)	erosive,	and	(b) accretive	wave	runs.
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Figure	5.7	(a)	Quadrant	analyses	of	instantaneous	Reynolds	stresses	in	three	

planes	 for	an	8	minute	sub‐record	 from	wave	series	A3‐01(Erosive).	Areas	

delimited	 by	 hole	 sizes	 defined	 by	 H=	 1	 (grey)	 and	 H=2	 (green)	 are	

highlighted.	(b)	average	percentage	of	occurrence	in	time	occupied	by	the	4	

Quadrant‐type	events	in	each	plane,	in	the	erosive	and	accretive	runs,	before	

and	after	filtering	the	periodic	signal,	with	H	=0;	and	(c)	average	contribution	

to	 total,	 time‐averaged	 Reynolds	 stress	 by	 the	 4	 types	 of	 motion	 in	 the	

primary	(vertical	streamwise)	plane	of	motion	(ݓ’ݑ’).	
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5.3.5	Spectral	properties	of	flow	

Spectral	 analysis	 decomposes	 the	measured	 turbulence	data	 into	waves	of	

different	periods	(frequencies)	and	wavelengths,	providing	a	suitable	means	

of	 examining	 how	 these	 fluctuation	 are	 distributed	 from	 a	 statistical	

viewpoint	(Tennekes	and	Lumley,	1972).	The	multitude	of	scales	(both	spatial	

and	 temporal)	 of	 turbulent	 eddies	 comprise	 a	 spectrum	 ranging	 from	 the	

macroscale	(long	period	and	spatially	limited	only	by	the	dimensions	of	the	

flume/flow)	to	the	high	frequency	microscale	 limited	by	viscosity,	with	the	

energy	 transfer	 being	 driven	 by	 vortex	 stretching	 (ibid.).	 The	 value	 of	 a	

spectrum	at	a	certain	frequency	or	wavelength	equates	to	the	mean	energy	of	

that	wave,	 and	as	 a	 result,	 it	 provides	 a	means	of	 assessing	how	eddies	of	

different	sizes	exchange	energy	and	how	turbulence	evolves	with	time.	With	

turbulence	 being	 a	 largely	 three‐dimensional	 problem,	 this	 necessitates	

construction	of	energy	spectra	in	three	dimensions	(Cebeci	and	Smith,	1974).	

Figure	 5.8	 shows	 the	 power	 spectral	 densities	 (PSD)	 of	 the	 velocity	

components	(ܷ ൌ ݑ ൅ ᇱݑ ൅ 	for	layer	boundary	the	outside	and	within	௪௔௩௘)′ݑ

the	entire	length	of	the	erosive	wave	test	(~	180	minutes).	These	have	been	

calculated	using	Welch’s	method	with	a	Hann	window	at	50%	overlap.	The	

velocity	spectra	display	a	peak	corresponding	to	a	period	of	8.19	seconds	in	

all	 three	 components,	 as	 expected	 (design	 peak	 period	 being	 Tp	 =	 8	 sec).	

Nonetheless,	 a	 striking	 feature	 is	 a	 significant	 peak	 in	 the	 crosswise	

turbulence	spectrum	at	both	elevations,	with	a	corresponding	period	of	2.64	

seconds.	This	is	also	apparent	in	the	accretive	runs	(cf.	Figure	5.9),	as	well	as	

what	seems	to	be	corresponding	higher	order	harmonics.		Chu	et	al.	(1991)	

have	 reported	 on	 unstable	 transverse	 shear	 flows	 leading	 to	 large	 scale	

turbulent	motions	across	wide	and	shallow	open	channels	(horizontal	length	

scales	significantly	larger	than	water	depth),	induced	by	the	growth	of	small	

scale	disturbances	 induced	by	bed	 friction	(critical	value	of	0.12–0.145)	or	

depth	variation.	However,	neither	of	these	appear	to	be	applicable	in	this	case,	

given	the	relatively	uniform	cross	section	of	the	flume,	and	the	lower	wave–

induced	 bed	 friction	 factors	 reported	 in	 Table	 5.1,	 and	 some	 alternative	

mechanism	must	be	at	work.		
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Standing	 cross‐waves	 (transverse	 waves)	 induced	 by	 symmetric	 wave	

makers	in	rectangular	channels	have	been	reported	to	occur	with	excitations	

at	nearly	twice	one	of	the	natural	frequencies	of	the	paddle	due	to	nonlinear	

parametric	 resonance	 (Garrett,	 1970;	 Miles,	 1988).	 The	 first	 mode	 of	

oscillation	for	a	rectangular	channel	of	width,	B	=	5m,	and	water	depth	hs	=	

2.5m	occurs	as	half	a	wave	with	a	node	point	at	the	centre	of	the	flume,	and	

two	 maxima(crests)/	 minima(troughs)	 on	 either	 end	 (the	 rigid	 walls).	

Paterson	(1983)	presented	the	equations	needed	to	calculate	the	associated	

wave	 number	 (݇ ൌ 	,(݈/ߨ and	 angular	 frequency	 ቀ߱ ൌ

൫ሺ݃ߨ ⁄ܤ ሻ. tanhሺ݄ߨ௦ ⁄ܤ ሻ൯
଴.ହ
ቁ,	 in	which	 case	 the	 corresponding	period	 in	 our	

case	 comes	 to	 exactly	 2.64	 seconds,	 matching	 perfectly	 the	 peak	 in	 the	

spectrum,	with	 	higher	order	oscillations	also	observed	 in	 the	spectra.	The	

existence	of	a	stable	transverse	standing	wave	may	also	be	a	contributor	to	

the	 observed	 asymmetry	 and	 high	 kurtosis	 of	 the	 crosswise	 velocity	

fluctuation.	 Such	 transverse	 oscillations	 are	 documented	 in	 rectangular	

harbours	 with	 constant	 bottom	 slopes,	 and	 often	 attributed	 to	 non‐linear	

wave	 transformations	 and	 harbour	 resonance	 (Wang	 et	 al.,	 2013).	 Similar	

cross	waves	have	been	generated	in	large	wave	basins,	such	as	the	recent	edge	

wave	experiments	at	 IH	Cantabria	(Coco,	pers	comm.),	but	 the	existence	of	

such	 waves	 on	 unconfined	 lengths	 of	 coast	 remains	 an	 open	 research	

question.		

Time	series	and	spectral	analysis	of	3D	fluctuating	velocity	components,	 in	

the	 streamwise/along‐flume	 (dark	 green),	 crosswise	 (gold),	 and	 vertical	

(orange)	 for	 the	entire	experimental	wave	run	A301	(Hs	=	0.8m,	Tp	=	8	s)	

measured	(a)	within;	and	(b)	outside	the	oscillatory	benthic	boundary	layer,	

	௪ߜ are	 also	 undertaken	 to	 describe	 the	 dominant	 energy‐containing	

structures.	 Power	 spectral	 densities	 are	 similarly	 calculated	 using	Welch’s	

method	with	a	Hann	window	(2^11	datapoints	in	length)	with	50%	overlap,	

and	 a	 sampling	 frequency	 of	 25	 Hz.	 Peak	wave	 frequencies	 are	 indicated.	

Thus,	the	power	spectra	of	turbulence	components	both	within	and	outside	

the	boundary	layer	are	constructed	for	each	of	the	erosive	and	accretive	sub‐

runs,	following	the	same	methodology	(Figures	5.9	and	5.10).	
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Figure	5.8	 Spectral	 analysis	 of	 3D	 fluctuating	 velocity	 components,	 in	 the	
streamwise/along‐flume	(dark	green),	crosswise	(gold),	and	vertical	(orange)	
for	the	entire	experimental	wave	run	A301	(ܪ௦	=	0.8m,	 ௣ܶ	=	8	s)	measured	(a)	
within;	 and	 (b)	 outside	 the	oscillatory	benthic	boundary	 layer,	 	௪ߜ .	 Power	
spectral	densities	calculated	using	Welch’s	method	with	a	Hann	window	(2ଵଵ		
length)	with	50%	overlap,	sampling	frequency	25	Hz).	Peak	wave	frequencies	
are	indicated.	
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The	 design	 peak	 periods	 (or	 combinations	 thereof	 used	 to	 drive	 the	wave	

maker),	are	observed	as	defined	peaks	in	the	turbulence	spectra	in	all	three	

dimensions	(prominently	in	the	streamwise	components),	in	both	erosive	and	

accretive	 wave	 runs.	 No	 significant	 peaks	 were	 apparent	 in	 the	 lower	

frequency	 range	 (periods	 longer	 than	 the	 peak	 wave	 period);	 suggesting	

limited	effect	of	wave	groups	in	the	turbulence	signal.		When	the	wave	signal	

is	filtered	out,	no	sharply‐defined	peaks	could	be	attributed	to	the	harmonics	

of	the	applied	wave	forcing	(progressive	waves	along	the	channel);	but	the	

highest	variances	lie	between	the	first	harmonics	of	the	progressive	wave	and	

the	second	harmonics	of	the	transverse	standing	wave.	This	shows	that	the	

turbulent	energy	lies	within	the	wave	frequency	range,	as	has	been	seen	in	

studies	 of	 the	 inner	 surf	 zone	 (Ting	 and	 Kirby,	 1996).	 Local	 peaks	

corresponding	to	the	second	harmonics	of	both	could	be	discerned,	indicating	

induced	 turbulence	 at	 flow	 reversal,	 often	 associated	 with	 the	 vortex	

shedding	 process.	When	 shown	 in	 wave	 number	 space,	 these	 fluctuations	

approach	 the	Kolmogorov–Obukhov	െ5/3	 relation	within	 the	 inertial	 sub‐

range	 (Frisch,	 1995;	 Stapleton	 and	 Huntley,	 1995).	 Note,	 however,	 that	

spectral	 analysis	 with	 Fourier	 transforms	 are	 limited	 by	 the	 Nyquist	

frequency,	 limiting	 detected	 frequencies	 to	 	 those	 higher	 than	 half	 the	

sampling	frequency	of	the	instruments	(Glover	et	al.,	2011),	or	12.5	Hz.	
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Figure	5.9	Power	spectral	densities	(PSD)	of	the	three	turbulence	components,	(u',	

dark	green),	crosswise	(v',	gold),	and	vertical	(w',	orange)	for	four	randomly	selected	

sub–records	of	the	erosive	wave	run	A301,	measured	within	the	benthic	boundary	

layer	(left	panels,	2	cm	above	bed)	and	outside	the	wave	boundary	thickness	(right	

panel,	30	cm	above	bed).	
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Figure	5.10	Power	spectral	densities	(PSD)	of	the	three	turbulence	components,	

(u',	dark	green),	crosswise	(v',	gold),	and	vertical	(w',	orange)	for	four	selected	sub–

records	of	the	accretive	waveruns	(A705,	A706,	A801,	and	A802),	measured	within	

the	 benthic	 bounary	 layer	 (left	 panels,	 2	 cm	 above	 bed)	 and	 outside	 the	 wave	

boundary	thickness	(right	panel,	30	cm	above	bed).		
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Taylor’s	theory	of	“frozen	turbulence”	relates	the	strain	rate	of	an	eddy	to	its	

wave	number;	and	by	plotting	the	normalised	turbulence	spectra	in	an	energy	

preserving	form	in	non‐dimensional	wave‐number	space,	following		Soulsby	

(1977);	the	dominant	scales	of	motion	can	be	discerned.	This	is	shown,	after	

smoothing	with	a	moving‐average	algorithm,	in	Figure	5.11,	where	error	bars	

represent	 standard	 deviations	 for	 the	 averaged	 four	 sub‐runs.	 	 The	 peaks	

indicate	similar	scaling	in	the	crosswise	and	vertical	components	near	the	bed	

for	both	erosive	and	accretive	runs	(~	0.05	m),	and	slightly	larger	scales	along	

the	flow	in	the	accretive	runs	(~0.18	m)	as	opposed	to	the	erosive	ones	(~0.12	

m).	Along	the	direction	of	wave	propagation,	these	vary	over	a	range	of	scales	

higher	in	the	water	column	(at	ADV2)	for	the	erosive	runs	(between	0.1	–	0.3	

m),	and	increase	substantially	in	the	accretive	ones	(~1	m	streamwise,	0.2	m	

in	 the	 crosswise	 and	 vertical).	 The	 vertical	 excursions	 scale	well	 with	 the	

wave	boundary	layer	thickness	in	both	erosive	and	accretive	runs.	Overall,	the	

wavenumbers	 contributing	 to	 horizontal	 motions	 are	 smaller	 than	 those	

contributing	the	vertical	motions.		

	

Figure	5.11	Average	non‐dimensional	number	݇∗‐weighted	turbulent	energy	
spectra	within	(a,	c);	and	outside	(b,	d)	the	wave	boundary	layer	in	erosive	
and	accretive	runs	respectively.	Colour	scheme	same	as	Figure	5.10.	
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The	power	spectral	densities	of	sediment	backscatter	at	5	elevations	above	

the	bed	are	presented	 in	Figure	5.12,	 for	 all	 of	 the	 analysed	 sub‐runs.	The	

suspension	 spectra	 in	 both	 erosive	 and	 accretive	 runs	 exhibit	 multiple	 or	

broad	peaks	near	the	bed	and	higher	in	the	water	column,	with	frequencies	

corresponding	to	the	second	harmonic	of	the	progressive	waves,	as	well	as	

that	 of	 the	 transverse	 waves.	 This	 implies	 suspension	 of	 sediment	 is	

associated	with	the	shedding	of	vortices	from	bedforms	within	the	boundary	

layer	(O'Hara	Murray	et	al.,	2011),	and	extending	much	higher	in	the	water	

column,	 potentially	 due	 to	 pairing	 of	 vortices	 (Williams	 et	 al.,	 2007).	 This	

claim	is	supported	by	the	bed	morphology:	stable,	2D	vortex	ripples	with	little	

or	 no	 migration	 over	 the	 duration	 of	 each	 8	 minute	 sub‐run.	 It	 does	 not	

appear,	 however,	 that	 wave	 groups	 play	 a	 role	 in	 this	 case,	 as	 has	 been	

reported	 in	 irregular	waves	over	 evolving	bedforms	 (O'Hara	Murray	et	 al.,	

2012).	The	peaks	corresponding	to	the	transverse	wave	properties	highlight	

the	 nonlinearity	 and	 three	 dimensionality	 of	 the	 sediment	 suspension	

process,	both	 in	terms	of	sediment	pick	up	and	maintenance	of	suspension	

higher	in	the	water	column.	While	the	spectra	in	the	lower	frequency	range	

are	steeper	near	the	bed,	and	relatively	flatter	higher	up,	these	trends	reverse	

at	the	higher	frequency	scales.	This	may	suggest	that	the	stirring	of	sediment	

near	the	bed	is	driven	by	the	mean	flow	properties,	but	the	waves	do	not	play	

a	 significant	 role	 in	 retaining	 sediment	 in	 suspension.	 Hence,	 while	 the	

immediate	resuspension	of	sediment	from	the	bed	is	controlled	by	mean	flow	

properties	 pertaining	 to	 the	 prevailing	wave	 conditions,	 the	 sustenance	 of	

suspension	 clouds	 within	 the	 water	 column	 is	 governed	 by	 turbulent	

processes,	and	the	eventual	net	transport	is	dictated	by	non‐linear	prevailing	

currents	resulting	from	non‐linear	interactions	between	the	waves	and	beach	

morphology.	Steeper	slopes	of	energy	spectra	at	higher	frequencies	are	often	

associated	with	coherent	structures	(Maltrud	and	Vallis,	1991),	and	as	such,	

higher	 frequency	 turbulence	may	 be	 the	 dominant	mechanism	 at	 work	 at	

higher	elevations	above	the	bed,	and	hence	key	to	modelling	suspension	of	

sediment	outside	the	boundary	layer.	A	distortion	of	frequency	response	near	

the	 bed	might	 be	 due	 to	 particle	 interference	 at	 high	 concentration	which	

results	in	damping	and	hence	a	frequency	shift.	Studies	of	cospectra	of	near	
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bed	and	cross–shore		velocity	have	shown	that	shoaling	waves	(seen	in	the	

accretive	runs)	produce	strong	onshore	transport	at	wave	frequency	against	

weaker	 offshore	 transport	 at	 lower	 frequencies,	 both	 on	 barred	 and	 non–

barred	 beaches,	which	may	 be	 attributed	 to	 low	 frequency	modulation	 by	

wave	groups	(Osborne	and	Greenwood,	1992a;	1992b).		The	time	dependency	

between	the	horizontal	shear	stress	and	sediment	concentration	also	varies	

with	 elevation	 (Venditti	 and	 Bennett,	 2000).	 Given	 the	 existence	 of	 an	

undertow	in	this	case	(~	0.2	m/s	offshore),	vertical	variations	are	expected	in	

spilling	breakers	(erosive	runs)	as	turbulence	gradually	spread	downwards	

as	moderate	scale	eddies	from	the	surface	roller,	but	not	in	plunging	breakers	

where	downward	generated	large	scale	vortices	create	strong	vertical	mixing	

(Ting	and	Kirby,	1994;	1996).	Plunging	breakers	 are	dominated	by	orbital	

wave	 motion	 and	 turbulence	 is	 thus	 convected	 landwards,	 favouring	

accretion	 and	 indicating	 strong	dependence	on	history	downstream,	while	

spilling	breakers	are	dominated	by	the	undertow	moving	sediments	seaward	

(ibid.).		

The	erosion	process,	 locally,	 is	 likely	 to	be	affected	by	 the	passage	of	 large	

scale	 coherent	 structures	 with	 low	 occurrence	 probabilities	 (Adrian	 and	

Marusic,	2012).	There	is	growing	evidence	that	the	concept	of	bursting	as	a	

violent	ejection	is	replaced	by	the	concept	of	“slowly	evolving”	fast	packets		of	

vortices	creating	sequences	of	ejecting/sweeping	events	each	associated	with	

one	of	the	vortices	(Christensen	and	Adrian,	2001;	 Jimenez,	2012;	Jiménez,	

2013).	We	conjecture	that	the	succession	of	convected	or	 locally	generated	

intermittent	 bursting	 or	 sweeping	 motions	 would	 dictate	 whether	 the	

entrained	 sediment	 has	 enough	 time	 to	 settle,	 is	 amplified	 by	 added	

suspensions,	or	swept	back	to	the	bed.	This	governs	the	frequency	response	

of	 suspension	events	and	 interference	with	 turbulent	 fluctuations.	Wavelet	

analysis	 may	 offer	 some	 clues	 as	 it	 provides	 information	 not	 only	 on	

frequency	 scales,	 but	 their	 spatial	 (occurrence	 in	 time)	 variability	 too.	

Whether	erosion	or	accretion	is	observed	at	the	barrier	is	then	governed	by	

the	mean	currents	which	could	transport	the	agitated	sediments	above	the	

bed.	 This	 is	 typical	 of	 a	 stochastic	 process	where	 particle	 concentration	 is	



	

146	
	

closely	related	to	that	of	the	turbulence	fluctuation	arising	from	large	eddies	

as	shown	in	the	work	of	Liu	et	al.	(2012).	Such	episodic	events	could	occur	at	

any	 location	 of	 the	 bed,	 with	 short	 periods	 of	 considerable	 sediment	

movement	intermingled	with	long	periods	of	negligible	transport	(Dey	et	al.,	

2012).		

	

Figure	 5.12	 Power	 spectral	 densities	 (PSD)	 of	 the	 suspended	 sediment	
backscatter	at	5	different	elevations	above	the	bed,	for	all	the	analysed	erosive	
(left	panel)	and	accretive	(right	panel)	wave	runs.	The	first	(1/ ௣ܶ)	and	second	
(2/ ௣ܶ)	 harmonics	 of	 the	 progressive	 wave	 forcing,	 and	 the	 transverse	
standing	waves	are	shown	by	the	dark	green	and	golden	vertical	dashed	lines	
respectively.		
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5.3.6	Wavelet	analysis	of	Reynolds	stresses	and	sediment	resuspension	

Wavelet	 transforms	 are	 carried	 out	 to	 investigate	 the	 variability	 of	 high	

frequency	turbulence	structures	and	the	ensuing	suspension	events,	as	well	

as	their	clustering	(sequential	occurrence)	in	time	for	each	of	the	8	minute	

records	presented	earlier.	These	structures	are	hereby	defined	in	terms	of	the	

Reynolds	stresses	as	the	second	moment	velocity	covariance	(product	of	the	

turbulent	 components	 in	each	of	 the	 three	planes).	The	 contours	of	power	

spectra	 are	 constructed	 from	 a	 continuous	 wavelet	 transform	 of	 the	 time	

series	 of	 Reynolds	 stresses,	 and	 of	 the	 concentration	 time	 series	 using	 a	

Morlet	wavelet	(cf.	§4.3.2.2	and	Equation	4.22),	following	the	methodology	of	

Torrence	and	Compo	(1998)		and	tools	presented	in	Grinsted	et	al.	(2004).		

Figures	5.13	and	5.14	show	the	power	spectra	highlighting	 time‐frequency	

characteristics	 of	 the	 three	 Reynolds’	 stresses	 and	 sediment	 suspension	

obtained	through	continuous	wavelet	transforms	for	two	example	sub‐runs	

from	the	erosive	and	accretive	series	respectively.	Similar	results	are	evident	

in	 the	 other	 sub‐runs	 (plots	 presented	 in	 Appendix	 4),	 and	 the	 behaviour	

reported	hereafter	is	true	for	both	erosive	and	accretive	runs.	In	these	figures,	

the	left	panels	pertain	to	measurements	at	the	level	of	ADV1	(within	the	wave	

boundary	 layer),	while	results	 from	measurements	corresponding	to	ADV2	

(outside	 the	boundary	 layer)	are	displayed	 in	 the	 right	panels.	The	 figures	

show	the	time	series	of	the	three	Reynolds’	stresses	in	3	orthogonal	planes	of	

motion:	 	(ᇱݓᇱݑ) in	 the	 streamwise‐vertical	 plane	 (bed	 normal	 along	 the	

direction	of	wave	propagation),	(ݑᇱݒᇱ)	in	the	horizontal	plane,	and	(ݒᇱݓᇱ)	in	

the	 crosswise‐vertical	 plane,	 having	 filtered	 out	 the	 wave‐signal	 from	 the	

fluctuating	turbulence	components,	as	well	as	their	energy	spectra	(obtained	

by	 Fourier	 transforms,	 as	 discussed	 in	 section	 §5.3.5).	 The	 time‐series	 of	

continuous	wavelet	 transforms	 (CWT)	 for	each	of	 the	stresses	 in	 the	 time‐

frequency	domain,	are	presented	subsequently	 in	 the	same	order,	 together	

with	their	global	spectral	power	(integrated	variance).	We	opted	to	present	

the	 inverse	 frequencies	 (i.e.	 periods)	 on	 the	 vertical	 axes,	 to	 facilitate	 the	
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discussion	when	 related	 to	wave	 properties.	 The	 global	 power	 pertains	 to	

time	averages,	if	we	were	to	take	a	vertical	slice	through	the	wavelet	plot,	and	

average	all	the	local	wavelet	spectra	(Torrence	and	Compo,	1998).		

Finally,	 the	 lower	 two	 panels	 show	 the	 time	 series	 of	 vertical	 suspension	

(logarithmic	backscatter,	higher	values	in	warmer	colours)	profiles	below	the	

ABS	 sensor	 head,	 the	 power	 spectral	 densities	 of	 suspended	 sediment	

concentration	at	the	level	of	the	corresponding	ADV	(ADV1	on	the	left,	ADV2	

on	the	right),	and	the	related	continuous	wavelet	transform	of	the	suspension	

time	series	at	that	elevation,	together	with	its	global	spectral	power.	In	these	

plots,	 warmer	 colours	 indicate	 higher	 power	 (variance),	 the	white‐shaded	

region	represents	 the	cone	of	 influence	where	edge	effects	may	distort	 the	

image,	 and	 the	 thick	 contours	 represent	 the	 95%	 confidence	 limit	 (5%	

significance	against	red	noise).	 	Note	that	at	higher	periods	(low	frequency	

events),	 the	power	 falls	within	 the	cone	of	 influence,	 limiting	our	ability	 to	

investigate	 the	 temporal	 evolution	 of	 the	 particular	 peak	 frequencies	

reported	in	section	§5.3.5.	Therefore,	we	are	restricted	to	investigating	very	

high	frequency	events	occurring	at	time	scales	up	to	2	seconds.	This	limitation	

arises	 from	 Heisenberg’s	 uncertainty	 principle,	 which	 dictates	 that	 one	

cannot	obtain	arbitrary	good	localisation	in	both	time	and	frequency,	and	a	

trade–off	must	exist	whereby	spatial	resolution	is	bad	at	 large	scales	while	

scale	(frequency)	resolution	is	bad	in	the	small	scales	(Foufoula‐Georgiou	and	

Kumar,	1994;	Lau	and	Weng,	1995;	Farge	et	al.,	1996;	Grinsted	et	al.,	2004).	

Having	said	that,	it	is	clear	that	most	of	the	power	(variance)	in	concentration	

lies	within	the	lower	frequency	range	(high	period)	associated	with	the	mean	

flow	properties	for	both	stresses	and	suspensions	near	the	bed.		

The	Fourier‐transform‐derived	spectra	of	Reynolds	stresses	show	that	they	

approach	the	universal	Kolmogorov–Obukhov	‐5/3	relation	corresponding	to	

the	 inertial	 decay	 sub‐range	 (Frisch,	 1995,	 Stapleton	 and	 Huntley,	 1995).	

While	this	is	still	true	for	stresses	measured	outside	the	boundary	layer	(by	

ADV2),	 it	 is	 interesting	 that	 a	 secondary	 peak	 appears	 within	 the	 higher	

frequency	 range,	 suggesting	 enhanced	 turbulence	 with	 smaller	 scales	 of	

motion.		The	CWT	results	show	that	‘powerful’	(i.e.	high	variance)	turbulent	
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events	 occur	 intermittently	 throughout	 the	 records,	 in	 slowly	 evolving	

clusters	 that	 persist	 over	 short	 durations	 in	 the	 dominant	 flow	 direction	

(streamwise‐vertical)	near	the	bed,	and	for	longer	durations	(significant	from	

a	 turbulence	 perspective,	 up	 to	 several	 minutes);	 higher	 up	 in	 the	 water	

column,	and	at	lower	frequencies	in	the	erosive	runs	(Figure	5.13).	The	larger	

clusters	 fall	 over	 short	 bands	 of	 frequency	 scales	 (e.g.	 specific	 periods,	

predominantly	 0.5	 and	 2	 seconds);	while	 the	 fast‐evolving	 clusters	 extend	

over	 a	 bigger	 range	 of	 frequency	 scales	 (primarily	 between	 ½	 and	 1/64	

seconds)	before	diminishing.	This	may	indicate	breakup	of	the	larger	eddies	

into	smaller	and	smaller	ones	within	the	inertial	sub‐range	(between	energy‐

containing	scales	and	small	dissipative	scales),	before	the	energy	is	consumed	

by	viscosity,	as	described	by	the	classical	turbulence	cascade	which	suggests	

that	 inertia	 results	 in	 stretching	 and	 rapid	 breakup	 of	 vortices	 into	many	

smaller,	 excited	 degrees	 of	 freedom,	 until	 energy	 is	 dissipated	 through	

viscosity	 (Tennekes	 and	 Lumley,	 1972;	 Kolmogorov,	 1991a;	 Frisch,	 1995;	

Sreenivasan	and	Antonia,	1997).	Nonetheless,	the	occurrence	of	long‐lasting	

events	outside	of	the	wave	boundary	layer	and	which	do	not	correspond	in	

time	to	those	identified	within	the	wave	boundary	layer	indicates	turbulence	

that	 is	 independent	 from	bottom	 induced	 friction.	This	are	 likely	 to	be	 the	

result	of	 free‐stream	 turbulence	 introduced	by	 the	 spilling	breakers	which	

characterise	 these	 erosive	 runs;	 and	 these	 do	 not	 result	 in	 observed	

suspensions.	 The	 turbulent	 clusters	 within	 the	 streamwise‐vertical	 plane	

(hereafter	 referred	 to	 as	 the	 dominant	 plane	 of	 motion)	 have	 the	 highest	

power,	which	appears	to	be	uniformly	distributed	across	the	aforementioned	

frequency	range.	 In	the	horizontal	plane,	such	events	are	also	considerably	

powerful,	but	tend	to	spike	(peak	sharply)	closer	to	the	lower	end	of	the	range,	

at	periods	comparable	to	the	harmonics	of	the	transverse	standing	wave.	In	

the	crosswise‐vertical	plane,	significant	clusters	of	turbulent	stresses	occur	

for	longer	times,	but	their	power	is	negligible	compared	to	those	of	the	other	

two	planes	of	motion.		

In	 the	 accretive	 runs,	 (Figure	 5.14),	 the	 streamwise–vertical	 plane	 is	

characterised	by	long	lasting,	high	variance	events		of	low	frequencies	near	
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the	 bed,	 persisting	 for	 considerable	 durations	 (several	 minutes),	 together	

with	 significant,	 small	 and	 rapidly	 evolving	 structures	 occurring	

intermittently	within	 the	 record	 at	much	higher	 frequency	 scales.	 	 From	a	

global	 (time	 averaged	 perspective),	 these	 two	 different	 structural	 scales	

contribute	nearly	equally	to	the	global	spectral	power.		Outside	the	boundary	

layer,	 only	 the	 smaller	 scale	 (between	 ½	 and	 1/64	 seconds)	 events	 are	

evident.			In	the	crosswise	and	horizontal	planes,	significant	events	(weaker/	

of	lower	variance)	are	collocated	in	time	with	those	observed	in	the	(ݔ െ 	(ݖ

plane	suggesting	they	correspond	to	the	same	structural	features	of	the	flow.	

The	 imprint	 of	 the	 transverse	 standing	wave	 is	 also	 evident	 in	 these	 runs,	

particularly	in	the	CWT	of	ݒᇱݓᇱ	at	both	elevations.	In	contrast	to	the	erosive	

runs,	 no	 free	 (boundary	 independent)	 turbulence	 is	 observed	 within	 the	

records	(events	which	do	not	correspond	to	those	seen	within	the	boundary	

layer),	Hence,	with	 the	plunging	breakers	 that	 characterise	 these	 accretive	

runs,	 any	 downward	 injected	 turbulence	 from	 breaking	waves	 is	 likely	 to	

extend	all	the	way	to	the	bottom;	and	whether	the	observed	events	in	both	

records	 are	 bed‐induced	 or	 surface‐generated	 cannot	 be	 discerned	 in	 this	

experiment.	

Under	both	erosive	and	accretive	conditions,	 the	simultaneous	presence	of	

the	 two	 scale	 of	motions	 at	 their	 intensity	maxima	 suggests	 a	modulating	

effect	of	the	larger	clusters	of	the	frequencies	of	smaller	motion	near	the	bed,	

in	agreement	with	similar	studies	in	wall	turbulence	(Ganapathisubramani	et	

al.,	 2012).	 Similarly,	 the	 simultaneous	 visualisation	 of	 cross‐correlations	

,ᇱݓᇱݑ) ,ᇱݒᇱݑ 	these	of	coherence	of	extent	the	reveals	planes	three	the	in	(′ݓ′ݒ

turbulent	fluctuations,	and	is	analogous	to	observations	of	hair‐pin	packets	

dragging	a	forward‐inclined	low‐speed	region	into	the	flow,	as	reported	by	

Christensen	 and	 Adrian	 (2001)	 in	 open	 channels,	 and	 by		

Ganapathisubramani	 et	 al.	 (2005)	 in	wind	 tunnels;	 and	would	 explain	 the	

multiple	large‐scale	ejections	and	sweeps	noted.		
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Figure	5.13	 Time‐frequency	 properties	 of	 the	 three	 instantaneous	Reynolds	 stresses	 	,′ݒ′ݑ	,′ݓ′ݑ) and	 	(′ݓ′ݒ and	 suspended	 sediment	
concentrations	(SSC),	measured	within	(left	hand	side)	and	outside	(right	hand	side)	the	wave‐induced	benthic	boundary	layer	for	Erosive	
waver	 run	 (A301‐2nd	 sub	 record).	 In	 each	panel,	 the	 top	 three	 subplots	 show	 the	 time	 series	 of	 the	 three	 aforementioned	 stresses	 ,	
respectively;	 together	with	their	 frequency	spectrum	(through	a	Fourier	 transform).	The	 following	three	sub‐panels	present	 the	time	
series	 of	 continuous	wavelet	 transforms	 (CWT)	 for	 each	of	 the	 stresses	 in	 the	 time‐frequency	domain,	 presented	 in	 the	 same	order,	
together	with	their	global	spectral	power	(integrated	variance)	across	the	various	frequency	(inverse	period)	scales.	Subsequently,	the	
lower	two	sub‐panels	show	the	time	series	of	vertical	suspension	profiles	(logarithmic	backscatter;	with	higher	values	in	warmer	colours)	
below	the	ABS	sensor	head.	The	power	spectral	densities	of	SSC	at	the	 levels	of	the	corresponding	ADV	(ADV1	on	the	 left,	within	the	
boundary	layer;	ADV2	on	the	right,	outside	the	boundary	layer)	are	also	presented,	as	well	as	the	related	continuous	wavelet	transform	
of	the	suspension	time	series	at	that	elevation.		In	the	time‐frequency	domains,	warmer	colours	indicate	high	power	(variance);	the	white‐
shaded		region	represents	the	cone	of	influence	where	edge	effects	may	distort	the	image,	and	the	thick	contour	lines	represent	the	95%	
confidence	limit	(5%	significance	against	red	noise).		
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Figure	5.14	Spectral	powers	of	Reynolds	stresses	and	Suspension	for	an	accretive	wave	run	(A706).		Refer	to	Figure	5.13.	
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Periods	associated	with	a	succession	of	powerful	 turbulent	events	are	very	

closely	 followed	 by	 periods	 of	 powerful,	 high	 frequency	 suspensions,	

extending	from	the	larger	scales	observed	in	the	low	frequency	range	(periods	

up	to	4	seconds/outside	the	cone	of	influence),	and	exponentially	extending	

over	 smaller	 and	 smaller	 scales	 (higher	 frequencies/lower	periods)	 before	

decaying	as	turbulence	clusters	cease.	This	may	be	explained	as	cumulative,	

highly‐varied	suspensions	in	response	to	the	faster	turbulent	perturbations,	

where	 continuing	 upward	 diffusion	 exceeds	 the	 settling	 velocity	 of	 the	

entrained	particles.	Figures	4.13	and	4.14	both	show	much	better	correlations	

between	 identified	 turbulent	 cluster	 events	 and	 the	 intermittent,	 high	

variance	 occurrences	 within	 the	 CWT	 of	 turbidity	 (suspended	 sediment	

concentration)	 measured	 at	 the	 corresponding	 elevation	 within	 the	 wave	

boundary	 layer	 than	 outside	 of	 it.	 Hence,	 near‐bed	 suspension	 events	 are	

directly	linked	to	local	process	within	the	wave	benthic	boundary	layer	while	

those	 measured	 outside	 the	 boundary	 layer	 are	 controlled	 by	 non‐local	

(advected)	 turbulence.	Even	 the	more	sporadic	suspension	events	of	 lower	

significance	appear	to	conform	to	the	aforementioned	behaviour,	if	the	wave	

signal	is	not	excluded	from	the	turbulent	fluctuations	(shown	in	Figure	5.15).	

Figure	 5.15	 shows	 abundant	 intermittent	 clusters	 of	 high	 power	 Reynolds	

stress	events	(oscillating	and	turbulent	components	 included)	with	defined	

frequency	scales	persisting	for	different	durations	throughout	the	wave	runs	

both	within	and	outside	the	wave	benthic	boundary	layer.		

The	 identified	 periods	 of	 high	 power	 (in	 Reynolds	 stresses)	 and	 long	

suspension	 events	 often	 appear	 directly	 following	 significantly	 large	

amplitude	variations	in	water	surface	elevation	of	up	to	1.4	m,	inferred	from	

the	pressure	gauge	in	all	erosive	and	accretive	sub‐records	(Figure	4.16).	This	

suggests	that	the	initiation	of	a	large	suspension	event	beyond	the	mean	flow	

frequency	 range	 is	 instigated	 by	 the	 passage	 of	 the	more	 energetic	waves	

within	 the	 JONSWAP	 spectrum,	 or	 with	 early	 wave	 breaking	 events.	 Its	

persistence	 in	 the	higher	 frequency	range	 is	 then	dictated	by	 the	supply	of	

fluid	 momentum;	 either	 generated	 through	 bed	 friction,	 or	 injected	

downwards	by	the	spilling	breakers	of	these	erosive	wave	runs.	Higher	in	the	
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water	column,	 few	suspension	events	are	observed	at	the	high	frequencies,	

and	where	they	do	occur,	these	are	characterised	by	a	rapid	expanse	of	the	

scales	followed	by	a	rapid	decay	(dissipation	of	energy).	In	the	accretionary	

runs,	 the	 turbulence	 events	 span	 even	wider	 scales	 and	 occur	 over	 longer	

durations,	corresponding	to	significant	fluctuations	in	the	time	series	of	the	

turbulence	 components	 (and	 water	 elevation).	 These	 clusters	 can	 be	

interpreted	as	large	scale,	uniform	momentum	regions	convected	or	formed	

near	 the	 bed	 in	 the	 low	 frequency	 range.	 As	 they	 evolve,	 they	 cause	 small	

scales	 vortices	 that	 experience	 sudden	 and	 short	 lived	 changes	 in	 velocity,	

manifest	by	short	duration	events	of	high	variance,	that	appear	to	be	‘shooting	

out’	 of	 the	 larger	 clusters	 and	 spanning	 a	 significant	 extent	 in	 the	 high	

frequency	range	in	these	plots.	This	change	can	cause	higher	shear	stresses	

compared	 with	 the	 mean	 flow	 as	 reported	 by	 (Hutchins	 et	 al.,	 2011)	 and	

Mathis	et	al.	(2011)	and,	as	such,	are	often	followed	by	significant	suspension	

clusters.		

Collectively,	 Figures	 5.13,	 5.14	 and	 5.15	 show	 that	 the	 bulk	 of	 sediment	

suspension	events	can	be	attributed	to	wave‐induced	turbulent	fluctuations	

of	low	frequency	(only	higher	order	harmonics	of	the	wave	period	(4/Tp)	are	

visible	 outside	 the	 cone	 of	 influence),	 where	 most	 of	 the	 global	 power	 is	

retained.	 Yet,	 the	 short‐lasting	 suspension	 clusters	 scale	 with	 the	 rapidly	

decaying	 high	 frequency	 turbulence.	 	 This	 perhaps	 highlights	 a	 hysteresis	

effect,	where	a	dynamic	lag	occurs	between	the	driving	mechanism	in	terms	

of	 the	 formation,	 and	 evolution	of	 a	 vortex	 structure	 and	 ensuing	bursting	

sequence,	 and	 the	 response	 in	 terms	 of	 sediment	 resuspension.	 It	 also	

confirms	 the	 distortion	 and	 shift	 in	 frequency	 response	 of	 the	 sediment	

concentrations	near	the	bed	at	high	concentrations,	reported	in	§5.3.5.		The	

attenuation	of	turbulence	by	means	of	the	suspended	particles	is	commonly	

referred	 to	 as	 drag	 reduction,	 but	 its	 investigation	 is	 often	 constrained	 to	

cohesive	sediments	(Li	and	Gust,	2000;	Cloutier	et	al.,	2006;	Thompson	et	al.,	

2006).	Evidence	of	drag	reduction	by	non‐cohesive	sediment	 is	 scarce,	and	

limited	 experimental	 work	 focusing	 on	 spherical	 particles	 has	 shown	 that	
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relatively	low	concentrations	can	reduce	turbulence	intensity	and	the	number	

of	ejection	events	(Rashidi	et	al.,	1990).		

Dyer	 and	 Soulsby	 (1988)	 and	 Soulsby	 et	 al.	 (1994)	 have	 also	 attributed	

reductions	 in	 turbulence	 intensity	 to	 sand	 clouds	 suspended	 by	 ejection	

events	in	the	field.		Zhao	et	al.	(2011)	also	observed	a	decrease	in	entrainment	

rate	as	sediment	clouds	are	advected	by	the	orbital	motion	of	waves	compared	

to	quiescent	periods,	until	the	coherency	of	sediment‐bearing	vortex‐cores	is	

eventually	diminished.	Numerical	simulations	of	two‐way	coupled	spherical	

particle‐laden	flows	(feedback	of	sediments	included	in	numerical	simulation	

of	 flow)	 have	 demonstrated	 pronounced	modulation	 of	 the	 turbulence,	 an	

enhancement	 in	turbulent	anisotropy,	and	attenuation	of	Reynolds	stresses	

typical	of	drag	reduction	(Zhao	et	al.,	2010).	Finally,	transverse	motion	of	the	

standing	wave	is	likely	to	contribute	to	the	observed	dissipation	of	the	motion,	

as	spanwise	motion	is	considered	a	relatively	efficient	reduction	technique	for	

skin‐friction	drag	in	aerodynamics	(Quadrio,	2011).	
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Figure	 5.15	 Influence	 of	 wave‐signal	 on	 the	 time–frequency	 properties	 of	 Reynolds	 stress	 in	 the	 streamwise‐vertical	 plane	 (u′w′),	
measured	near	the	bed	(left	panel),	and	outside	the	wave	boundary	layer	(right	panel).	In	each	panel,	top	sub‐plots	(a),	and	(d)	show	the	
time	series	of	Reynolds	stress	(before	and	after	filtering	out	the	wave	signal),	together	with	its	corresponding	frequency	spectrum	(by	
Fourier	transform).	The	dashed	horizontal	lines	indicate	±1.σ	(standard	deviation).	The	rate	of	inertial	dissipation	is	shown	by	the	sloping	
red	 line	 in	 the	 frequency	plot.	The	middle	 (b)	 and	 (e)	 and	bottom	 (c)	 and	 (d)	 sub‐panels	 sow	 the	 time‐series	of	 continuous	wavelet	
transform	(CWT)	of	the	Reynolds	stress	before	and	after	filtering	out	the	wave	signal,	respectively,	together	with	the	corresponding	global	
power	spectrum.	Refer	to	Figure	5.13	for	legend.	
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Figure	5.16	Water	surface	elevations	and	suspended	sediment	concentration/	backscatter	(SSC)	profiles	for	(a)	the	four	erosive	sub‐

records	(top	to	bottom,	A301‐1st,	A301‐2nd	,	A301‐3rd	,A301‐4th	);	and	(b)	the	four	accretive	sub‐records	(A705,	A706,	A801,	and	A802).	
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To	examine	the	hypothesis	thus	posited,	cross‐wavelet	transforms	(XWT)	of	

the	Reynolds	stresses	in	three	planes,	and	the	recorded	suspended	sediment	

concentrations	are	presented	in	Figure	5.17,	both	within	and	outside	the	wave	

boundary	layer	(other	runs	are	presented	in	Appendix	5).	Note	that	this	can	

only	 be	 performed	 after	 down‐sampling	 the	 64	 Hz	 suspension	 record	 to	

match	the	sampling	frequency	(25	Hz)	of	the	ADVs.	The	significance	levels	are	

tested	 against	 red	 noise	 generated	 by	 a	 first	 order	 autoregressive	 model	

following	Grinsted	et	al.	(2004),	and	denoted	by	the	thick	contours.	The	lightly	

shaded	area	represents	the	cone	of	influence.	The	XWT	has	been	applied	to	

the	turbulent	fluctuations	before	(denoted	by	the	“wave”	subscript);	and	after	

filtering	out	the	wave	signal	for	each	of	the	Reynolds’	stresses	in	every	plane.	

The	phase	relationship	between	the	two	signals	(stress	and	concentration)	is	

shown	by	the	arrows,	whereby	right	arrows	indicate	the	signals	are	in‐phase,	

left‐pointing	arrows	indicate	anti‐phase,	and	vertical	arrows	suggest	that	the	

Reynolds	stresses	 lead	concentration	by	90	degrees	phase	shift,	 testing	the	

coherence	of	the	transform	(Grinsted	et	al.,	2004).	Here	we	notice	common	

features	 observed	 earlier	where	 suspension	 events	 and	 turbulent	 stresses	

share	high	common	power	at	a	range	of	scales	in	both	erosive	(Figure	5.13)	

and	accretive	(Figure	5.14)	records.	At	all	frequency	scales,	these	regions	of	

significant	common	power	occur	for	most	of	the	time	near	the	bed	and	in	all	

three	planes	with	both	 the	oscillatory	 signal	present	 (Figure	5.16	a	 ‐	 c)	 or	

removed	to	indicated	fluctuating	turbulence	only	(d	‐	f).	This	indicated	that	

both	 the	mean	 flow	properties	and	the	 fluctuations	correlate	well	with	 the	

local	 sediment	 flux,	and	hence	 the	suspension	of	 sand	 is	governed	by	 local	

processes.	The	oscillating	component	seems	to	dominate	the	low	frequency	

scales	(higher	periods)	whereas	the	observed	small‐scale	events	are	related	

to	high‐frequency,	short	lived	turbulence	clusters	near	the	bed.	Outside	the	

wave	 boundary	 layer,	 most	 regions	 of	 high	 common	 power	 between	

suspension	and	stress	appear	to	be	dominated	by	the	fluctuating	component	

of	the	stress	(j	–l),	with	weaker	fluxes	attributed	to	the	oscillating	component,	

which	seems	most	evident	in	the	horizontal	plane	(g	–i,	and	mostly	in	h).	The	

powerful	events	at	lower	periods	of	2	–	4	seconds	are	phase	locked,	implying	

causality	between	the	wave‐induced	turbulence	and	the	ensuing	suspension,	
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but	with	no	time	lag.	However,	no	robust	measure	of	whether	this	may	be	an	

artefact	 of	 the	 dominance	 of	 one	 of	 the	 signals,	 or	 not,	 is	 carried	 out	 (e.g.	

combining	 clustered	 wavelet	 spectra	 with	 maximum	 covariance	 analysis	

presented	 by	 Rouyer	 et	 al.	 (2008)).	 The	 higher‐frequency	 ‘wave‐

contaminated’	scales	appear	to	be	 less	coherent	 in	all	planes	both	near	the	

bed	and	outside	the	boundary	layer.	However,	once	the	wave	signal	is	filtered	

out,	 the	 turbulent	 fluctuations	 outside	 the	 boundary	 layer	 appear	 to	 be	

predominant	in	driving	the	suspensions	at	this	level,	with	the	highest	power,	

although	being	phase‐locked	in	the	opposite	direction.	This	confirms	that	the	

sediment	 flux	 outside	 the	 boundary	 layer	 is	 governed	 by	 turbulence	

fluctuations,	independent	of	the	mean‐flow	induced	turbulence	at	the	bed,	as	

these	are	not	co‐located	in	time	with	the	measurements	within	the	boundary	

layer,	particularly	in	the	(x‐z)	plane.		

Collectively,	 the	 wavelet	 analyses	 presented	 collectively	 support	 the	

conjecture	 proposed,	 postulating	 a	 mechanism	 in	 which	 successive	

intermittent	 bursting	 motions	 play	 a	 significant	 role	 in	 moving	 and	

maintaining	 sediments	 in	 suspension.	 In	 time‐frequency	 space,	 it	 is	 shown	

that	most	of	the	momentum	exchange,	and	ensuing	suspension,	lies	within	the	

low	frequency	range	(high	periods)	dictated	by	the	mean	flow	properties.	The	

passage	of	 intermittent	and	relatively	 large	momentum	regions	of	uniform	

spectral	 properties	 at	 higher	 frequencies,	 plays	 a	 direct	 role	 in	 sediments	

suspensions	which	exhibits	significant	variability	within	the	higher	frequency	

range.	As	 these	 regions,	which	 signify	 the	passage	of	 a	 coherent	 structure,	

persist	 for	 a	 considerable	 amount	 of	 time,	 suspensions	 near	 the	 bed	 are	

amplified	 before	 decaying	 as	 the	 supply	 of	momentum	 by	 these	 turbulent	

structures	 ceases.	 Within	 a	 given	 cluster	 of	 turbulence,	 both	 stresses	 and	

suspensions	 span	 a	 certain	 range	 of	 frequencies,	 which	 may	 hint	 at	 a	

nonlinear	 modulation	 of	 both	 the	 amplitude	 and	 frequency	 of	 such	 small	

structures	with	the	larger	flow	structures	near	the	bed.	Such	behaviour	in	wall	

turbulence	has	been	attributed	to	local	changes	in	shear	but	not	necessarily	

the	spatial	and	temporal	structure	of	large	flow	events	(Ganapathisubramani	

et	al.,	2012).	
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Figure	5.17	Cross	wavelet	transforms	of	instantaneous	3	dimensional	Reynolds	Stresses	and	(downsampled)	suspended	sediment	
concentrations	within	(ADV1)	and	outside	(ADV2)	the	bottom	wave	boundary	layer	during	erosive	wave	run	A3‐01	(2nd),	before	and	
after	filtering	out	the	periodic	signal	from	the	turbulent	component.	The	light‐shaded	region	represents	the	cone	of	influence	where	
edge	effects	may	distort	the	image.	The	thick	contours	represent	the	95%	confidence	limit	(5%	significance	against	red	noise).	The	
relative	phase	is	shown	in	arrows	(with	right	arrow	indicating	in‐phase,	left	arrows	indicating	anti‐phase,	and	vertical	arrows	indicate	
Reynolds	stresses	leading	by	90°).



	

166	
	

5.4	Summary,	conclusions,	and	practical	implications		

The	 aim	 of	 this	 study	 was	 to	 provide	 insight	 into	 the	 temporal	 and	 scale	

relationships	between	wave–generated	boundary	layer	turbulence	and	event–

driven	sediment	transport	in	oscillatory	flow.	The	work	was	carried	out	in	the	

nearshore	of	a	prototype	sandy	barrier	beach	using	data	collected	though	the	

BARDEX	II	experiments	for	irregular,	erosive	and	accretive	wave	conditions.	

Statistical	 analysis	 of	 the	 time	 series	 of	 velocity	 fluctuations	 showed	 high	

anisotropy	 in	 the	 turbulence	 records,	 with	 strikingly	 peaky	 crosswise	

distributions	 and	 an	 intermittent	 nature	 of	 the	 momentum	 exchange	 both	

within	and	outside	the	wave	benthic	boundary	layer.	This	is	often	linked	to	the	

nearly	 self‐similar	 growth	of	 spanwise	 structures	 in	 close	proximity	 to	 low	

speed	regions	of	the	flow	through	transverse	secondary	flows	induced	by	large	

streamwise	motions,	evident	through	counter‐rotating	pairs	of	sweeping	(Q4)	

and	ejecting	(Q2)	motions.	Quadrant	analysis	was	employed	to	quantify	the	

intermittency	 of	 Reynolds	 stresses	 in	 three	 planes	 and	 the	 fractional	

contribution	 of	 quadrant	 events	 to	 stress,	 and	 to	 assess	 whether	 this	

aforementioned	behaviour	applied	to	the	tested	conditions.	In	accretive	wave	

conditions,	 a	 dominance	 of	 streamwise‐skewed	 motions	 (Q1‐Q4	 events)	

characterised	 the	 flow,	with	 the	majority	 of	 stress	 contributed	 by	 counter‐

rotating	Q2‐Q4	motions	 in	 the	 direction	 of	wave	 propagation,	 and	 hence	 a	

dominance	 of	 shore‐ward	 directed	 motion.	 Conversely,	 erosive	 conditions	

were	dominated	by	upward	motions	(Q1	and	Q2	events)	lifting	and	sweeping	

the	 bed	 sediment	 to	 be	 transport	 by	 the	 undertow	 current	 offshore.	 The	

skewness	in	the	turbulence	records	also	resulted	in	an	observed	sorting	of	the	

sediment	 in	 across	 the	 channel.	 Interestingly,	 filtering	 out	 the	 oscillating	

component	 showed	 had	 a	 significant	 impact	 on	 the	 number	 of	 identified	

quadrant	 events	 beyond	 a	 delimiting	 threshold	 for	 the	 erosive	 runs,	 and	 a	

relatively	 limited	 effect	 in	 the	 accretionary	 runs;	 implying	 the	 latter,	

characterised	by	plunging	breakers,	 features	more	extreme	events	 (higher‐

magnitude	stresses.).	Spectral	analyses	further	revealed	a	contribution	to	the	

crosswise	velocity	fluctuations	(and	hence	anisotropy	in	the	transverse	plane)	

from	a	standing	transverse	wave	across	the	flume,	resulting	from	the	unique	
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flume	geometry,	whose	signal	was	reflected	in	the	suspension	records.	These	

findings	highlight	the	non‐linear	interactions	within	the	flow	and	illustrate	the	

three‐dimensional	 nature	 of	 mass	 and	 sediment	 transport,	 even	 in	 a	

controlled	experimental	 facility	 such	as	 the	one	used.	The	 spectral	 analysis	

further	 revealed	 independence	 from	 the	 effect	 of	 wave	 groups,	 with	 the	

turbulent	energy	and	ensuing	suspensions	 lying	within	 the	wave	 frequency	

range	and	through	the	inertial	sub‐range;	with	a	significant	influence	of	flow	

reversal	 and	 hence	 vortex	 shedding	 from	 the	 bedforms.	 The	 vertical	

turbulence	excursions	scaled	with	the	boundary	layer	thickness,	with	similar	

scaling	of	ݒᇱ	and	ݓᇱ	in	the	transverse	plane	for	both	wave	conditions.	Sediment	

excursions	beyond	the	boundary	layer	could	be	attributed	to	the	formation	of	

jets	between	consecutive	vortices.	A	reversal	of	steepness	in	the	suspension	

spectra	from	near	the	bed	to	the	outer	flow	implies	that	sediment	stirring	near	

the	 bed	 is	 controlled	 by	 mean	 flow	 properties,	 but	 waves	 play	 no	 role	 in	

maintaining	 those	 particles	 in	 suspension.	 A	 distortion	 in	 the	 frequency	

response	could	be	related	to	particle	interference,	low	frequency	modulation	

and	downward	injected	turbulence	by	rollers	from	spilling	breakers,	or	early	

breaking	 of	 plunging	 waves.	 Peaks	 within	 the	 Reynolds	 stresses	 spectra	

suggested	 enhanced	 turbulence	 at	 small	 scales;	 and	 the	 sustenance	 of	

suspension	governed	by	turbulent	fluctuations	through	coherent	structures.	

The	 entrainment	 and	maintenance	 of	 sediments	 in	 suspension	 through	 the	

bursting	 sequence	 was	 conjectured	 to	 be	 associated	 with	 the	 passage	 of	

convected	 or	 locally	 formed	 packets	 of	 eddies	which	 describe	 intermittent	

large	 coherent	 structures	within	 the	 flow.	Wavelet	 analysis	 confirmed	 that	

powerful	(high	variance)	turbulence	occurred	in	slowly	evolving	clusters	over	

time,	which	were	closely	 followed	by	periods	of	powerful	suspensions	near	

the	 bed,	 emerging	 from	 the	 integral	 (dominant,	 wave/mean	 flow	 related)	

scales	 at	 low	 frequencies,	 and	 decaying	 with	 memory	 in	 time,	 after	 the	

cessation	of	the	turbulent	perturbation.	The	simultaneous	presence	of	the	two	

scale	of	motions	at	their	intensity	maxima	suggests	a	modulating	effect	of	the	

larger	clusters	of	the	frequencies	of	smaller	motion	near	the	bed,	in	agreement	

with	 similar	 studies	 in	wall	 turbulence.	 Similarly,	 distribution	 of	 a	 defined	

energetic	cluster	of	different	frequency	scale	suggests	breaking	of	larger,	slow‐
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evolving	 motions	 into	 smaller,	 high‐frequency	 events,	 backing	 up	 the	

observed	spectral	scaling	within	inertial	sub‐range	in	the	stress	records.	The	

succession	 and	 persistence	 of	 convected	 or	 locally	 generated	 intermittent	

clusters	of	energy	dictates	whether	particles	have	enough	time	to	settle	before	

being	 picked	 up	 by	 another	 eddy,	 or	whether	 they	 are	 retained	within	 the	

suspension	cloud.	The	larger	wave‐induced	motions	and	nearbed	suspensions	

are	phase‐locked	in	the	lower	frequency	range,	confirming	that	waves	act	to	

stir	up	and	initiate	entrainment	of	sediment	in	the	boundary	layer.	Outside	the	

boundary	 layer,	 turbulent	 fluctuations	 are	 dominant	 in	 driving	 and	

maintaining	high	frequency	suspensions	as	long	as	momentum	is	supplied.	In	

conclusion,	the	above	results	can	be	summarised	as	follows:	

a‐ Turbulence	 in	 irregular	 oscillatory	 flow	 is	 highly	 anisotropic,	 and	

characterised	 by	 intermittent	 momentum	 exchanges,	 describing	 a	

spatially	 varied	 bursting	 sequence	 which	 may	 be	 traced	 in	 three	

dimensions,	 and	 the	 temporal	 variability	 of	 which	 dictates	 the	 net	

direction	 of	 sediment	 transport	 under	 erosive	 and	 wave	 accretive	

conditions.	

b‐ The	 bursting	 sequence	 is	 associated	with	 the	 passage	 of	 large	 scale	

slowly	evolving	structures,	which	can	modulate	the	frequency	of	small	

scale	(higher	frequency)	events.	The	persistence	of	such	perturbations	

is	 associated	 with	 a	 cumulative	 suspension	 events	 spanning	 the	

frequency	 scales,	 which	 observe	 a	 hysteresis	 effect	 decaying	 as	 the	

motion	cease.	Wave	motion	plays	a	dominant	 role	 in	entrainment	of	

sediment	within	 the	 boundary	 layer,	 and	 high	 frequency	 turbulence	

resulting	from	momentum	transfer	into	smaller	scales	helps	maintain	

particles	in	suspension.	

Most	existing	models	of	 sediment	 transport	 rely	on	bulk	 flow	properties	 to	

describe	sediment	mobilisation	and	transport,	such	as	the	mean	duration	over	

which	the	threshold	of	incipient	motion	is	exceeded,	with	the	latter	defined	in	

terms	of	mean	(wave‐averaged)	or	maximum	(within	a	wave	cycle)	bed	shear	

stress.	The	results	presented	here	suggest	that	entrainment	and	re‐suspension	

of	sand	is	an	intermittent	process,	and	the	argument	presented	advocates	that	
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this	 is	 dictated	 by	 coherent	 flow	 structures.	 Indeed,	 while	 some	 models	

acknowledge	this,	and	calls	 for	a	stochastic	description	of	the	problem	date	

back	 to	 the	 works	 of	 Einstein	 and	 Yalin	 (cf.	 3.2.2);	 the	 problem	 lies	 in	

parametrising	this	intermittency	in	such	models.	It	is	demonstrated	here	that	

onshore‐	or	offshore‐directed	sediment	transport	can	be	linked	to	quadrant‐

defined	 vortex	 clusters.	 Furthermore,	 the	 persistence	 is	 such	 turbulent	

motions	defines	the	extent	to	which	the	wave‐mobilised	sediment	is	held	in	

suspension,	and	remains	available	for	transport	but	prevailing	net	currents.	

This	is	also	shown	that	suspension	clouds	are	to	vortex	shedding	and	hence	

depend	 on	morphology	 (through	 vortex	 shedding)	with	modulating	 effects	

between	 larger	 scale	 flow	 structures	 and	 smaller	 fluctuations	 as	 well	 as	 a	

feedback	 imparted	by	 the	 suspended	particles	 on	 the	 flow	 itself.	Modellers	

therefore	need	to	provide	practical	and	efficient	means	of	parametrising	these	

processes	when	describing	entrainment,	 and	while	 there	 is	 such	a	 trend	at	

small	scales	(Ji	et	al.,	2013),	scaling	it	up	to	field	scales	remains	a	promising	

avenue	of	research.			
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The	data	reported	in	Chapter	5	were	collected	as	part	of	the	EU‐funded	Barrier	
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morphology	and	sediment	size	and	experimental	program	was	agreed	by	the	

consortium	 led	 by	 Prof	 Gerd	 Masselink	 (University	 of	 Plymouth),	 and	 the	

instrumented	 frame	 was	 designed	 by	 Dr	 Charlie	 Thompson.	 	 The	 author	

constructed	the	instrument	frame	with	Dr	Thompson,	and	carried	out	all	of	

the	 measurement	 and	 data	 collection	 protocols,	 data	 pre‐processing,	 data	
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		Chapter 6.  

Space-time dynamics of 
turbulence structures in 
combined wave-current flows 

	
“Nothing	puzzles	me	more	than	time	and	space;	and	yet	nothing			
troubles	me	less,	as	I	never	think	about	them.”	(Charles	Lamb)																																																

6.1	Introduction	

Fluid	motion	 in	 the	coastal	zone	 is	often	characterised	by	 the	simultaneous	

presence	of	both	waves	and	currents,	extending	towards	the	bed	in	shallow	

waters	and	resulting	in	complex	dynamic	interactions	with	direct	implications	

for	 sediment	 transport	 studies	 (Grant	 and	 Madsen,	 1979).	 Indeed,	 the	

response	of	the	seabed	to	combined	wave‐current	flows	has	been	observed	in	

records	of	highly	dynamic	bedforms	and	active	sediment	transport	across	the	

inner	 continental	 shelf	during	 storm	conditions	 (Komar	et	 al.,	 1972;	Li	 and	

Amos,	 1998;	 Li	 and	 Amos,	 1999b;	 Li	 and	 Amos,	 1999a).	 The	 non‐linear	

interactions	 between	 waves	 and	 currents	 in	 combined	 flows,	 and	 ensuing	

turbulence,	 result	 in	enhanced	bed	shear	stresses	 that	are	assumed	greater	

than	what	the	bed	experiences	through	a	simple,	linear	addition	of	the	current‐

only	and	wave‐only	 stress	 components	 (Soulsby	and	Clarke,	2005).	Thus,	 a	

current	 below	 the	 transport	 threshold	 	 may	 move	 significant	 amounts	 of	

sediment	in	the	presence	of	waves	(Davies	et	al.,	1988).	The	combined	wave‐

current	 boundary	 layer	 is	 a	 result	 of	 complex	 interactions	 between	 the	

uniform	shear	due	to	the	steady	current,	and	the	time‐varying	shear	due	to	the	

oscillating	component,	as	well	as	bed	friction.	Fluid	and	sediment	entrainment	

very	close	to	the	bed	are	controlled	by	turbulence	induced	by	both	the	(non‐

breaking)	waves	and	the	current,	while	higher	in	the	water	column,	it	is	often	

assumed	 the	 only	 the	 current	 is	 at	 play	 (Yuan	 and	 Madsen,	 2015).	

Understanding	 combined	 wave‐current	 boundary	 layer	 processes	 is	

fundamental	for	accurate	prediction	of	sediment	transport	in	the	coastal	zone,	
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and	a	 large	number	of	 studies	has	been	dedicated	 to	 the	problem;	many	of	

which	 are	 concerned	 with	 estimates	 of	 bed	 friction	 factors	 that	 can	 be	

implemented	 to	 determine	 bed	 shear	 stress	 for	 a	 prescribed,	 often	 time‐

invariant,	eddy	viscosity	profile	 (cf.	§2.2.4).	However,	 the	major	problem	in	

combined	 flows	 pertains	 to	 the	 different	 time	 scales	 between	 the	 steady	

(slowly‐varying)	current	and	the	unsteady,	oscillatory	(short‐lived)	motion	of	

the	waves.	Coherent	flow	structures,	inherently	intermittent	and	stochastic	in	

nature,	 are	 generated	 within	 the	 near	 bed	 region	 where	 non‐linear	 wave‐

current	interactions	are	predominant.	While	these	motions	define	momentum	

exchanges	and	shear	stresses,	and	play	a	fundamental	role	in	entrainment	and	

transport	 of	 suspended	 particles,	 little	 is	 known	 about	 their	 spatial	 and	

temporal	scales	 in	combined	flow,	or	about	their	 interaction	with	bedforms	

and	suspended	sediment	(Hare	et	al.,	2014).	The	purpose	of	this	chapter	is	to	

present	prototype‐scale	measurements	of	the	near	bed	flow,	turbulence,	and	

stress‐bearing	coherent	structures	over	mobile	bedforms	under	the	combined	

effects	of	waves	and	currents.	Two	cases	are	considered:	collinear	currents	

aligned	with;	and	opposed	to	the	direction	of	wave	propagation.	The	spatial	

structure	 and	 temporal	 scales	 of	 turbulent	motions	 are	 resolved	 from	high	

frequency	acoustic	measurements	at	two	locations	near	the	bed	and	linked	to	

observed	sediment	transport	processes	and	bed	morphology.	

6.2	The	Fast	Flow	Facility	Sediment	Turbulence	Experiment	

6.2.1	Experimental	setup	and	hydrodynamic	forcing	

Results	are	presented	from	an	experiment	conducted	at	HR	Wallingford’s	Fast	

Flow	Facility	 (FFF),	 a	 large,	dual‐channel	 (racecourse‐shaped)	 flume	where	

combined	wave‐current‐sediment	interactions	can	be	studied	(Figure	6.1a;	cf.	

§6.2.2).	A	flat,	sandy	bed	section,	0.3m	thick,	was	constructed	in	the	main	(4	m	

wide)	channel,	starting	at	a	distance	27	m	from	the	wave	paddle	and	spanning	

a	 length	 of	 ~21	m.	 The	 bed	was	 composed	 of	well‐sorted,	 fine	 to	medium	

fluvial	silica	sand,	with	a	normal	grain	size	distribution	and	a	median	grain	

diameter,	D50,	of	0.247	±	0.008	mm	(Figure	6.2).	A	deeper	section	(1.0	m	thick,	

4x4	m	wide)	within	the	bed	allowed	the	installation	of	an	instrumented	frame,	
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equipped	to	measure	flow	hydrodynamics	and	sediment	motion	in	combined	

wave‐current	flows	at	high	frequency.		

A	set	of	42	experimental	runs,	simulating	a	range	of	hydrodynamic	 forcing,	

including	waves	(regular	and	random)	only,	currents	only	and	wave‐current	

combinations	 were	 carried	 out	 during	 the	 testing	 phase.	 Waves	 were	

generated	by	a	10‐paddle,	bottom	hinged	wave	maker	with	active	absorption	

(using	 measured	 local	 water	 levels	 to	 compensate	 for	 excessive	 energy).	

Currents	 were	 generated	 by	 two	 Bedford	 Pumps	 ltd	 SA‐80.04.08	 pumps,	

operating	alternatively	in	forward	(generating	currents	aligned	with	direction	

of	 wave	 propagation,	 counter‐clockwise	 in	 flume)	 and	 reverse	 (opposing	

progressive	waves,	clockwise)	modes.	A	foam	baffle	beach	was	installed	at	the	

end	of	 the	main	 channel	 at	1.05m	above	bed,	 to	dissipate	 energy	as	waves	

enter	 the	 bend	 towards	 the	minor	 channel.	Unfortunately,	 only	 5	 test	 runs	

passed	 the	 quality	 control	 criteria	 for	 the	 velocimetry	 and	 suspended	

sediment	 measurements;	 and	 of	 these	 the	 two	 which	 were	 comparable	 in	

experimental	layout,	forcing	and	sampling	protocols	are	presented	here.	Runs	

18	and	19,	undertaken	in	a	water	depth	of	1.05	m	above	the	initial,	mean	bed	

level	had	identical	geometry	and	wave	conditions	but	opposing	currents.	 In	

both	runs,	paddle	active	absorption	was	inactive,	resulting	in	a	spectrum	of	

waves	 that	 deviates	 from	 the	 assumed	 monochromatic	 distribution.	 The	

design	hydrodynamic	forcing	and	run	conditions	of	the	two	tests	presented	

are	given	in	Table	6.1.	The	expected,	current‐only	mean	velocities	given	the	

flow	geometry	are	0.37	m/s	and	–0.30	m/s	for	Runs	18	and	19,	respectively	

(Todd,	D.,	2016;	pers.	comm.).		

6.2.2	Instrumentation	and	data	acquisition	

A	 range	 of	 instruments	 and	 sampling	 devices	 were	 deployed	 during	 the	

experiment	 to	 collectively	 measure	 the	 three‐dimensional	 flow	 field	 (and	

turbulence);	 water	 surface	 elevation;	 temperature;	 bed	 morphology;	 and	

backscatter	 in	 the	water	 column.	 A	 triangular	 frame	 erected	 in	 the	 deeper	

section	 of	 the	 bed	 supported	multiple	 high	 frequency	 acoustic	 instruments	

that	logged	live	into	a	suite	of	time‐synched	laptops	(Figure	6.1b,	c).	The	frame	

was	designed	to	be	essentially	the	same	as	that	used	in	BARDEX	II	(Chapter	5)	
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so	 that	 measurements	 are	 consistent.	 The	 horizontal	 and	 vertical	 spacing	

between	the	two	ADVs	was	reduced	to	ensure	better	correlation	between	the	

signals,	a	problem	highlighted	in	the	Bardex	work.	The	frame	comprised	of:	

 Two	downward	looking,	Nortek	acoustic	Doppler	Velocimeters	(ADVs),	

offset	vertically	by	10	cm,	and	horizontally	by	8	cm.	The	ADVs	sample	

a	cylindrical	volume	(7	mm	in	length)	situated	50	mm	below	the	probe	

with	an	acoustic	frequency	of	10MHz,	and	a	sampling	frequency	(rate)	

set	to	25	Hz.		

 An	Aquatec	Aquascat	1000R	Acoustic	backscatter	profiler	(ABS)	with	4	

external	cabled	transducers	of	0.5,	1,	2,	and	4	MHz	acoustic	frequencies,	

flush‐mounted	 in	 a	 circular	 configuration,	 with	 10	 cm	 radial	 offsets	

(centre	to	centre).	These	were	set	to	profile	collectively	at	a	rate	of	64	

Hz	averaged	into	2	profiles	per	second,	with	a	total	of	256	bins	(of	equal	

size)	and	pulse	lengths	of	2.5	mm,	storing	approximately	1000	profiles	

upon	 each	 trigger	 (~08:20	 minutes)	 with	 start	 and	 end	 bounds	

specified	to	ensure	the	bed	is	acoustically	visible.	

 A	 single‐beam,	 horizontally‐mounted	 Marine	 Electronics	 Sediment	

Image	 Profiling	 Sonar	 (SIS)	 	with	 an	 acoustic	 frequency	 of	 1.1	MHz,	

recorded	 sequential	 echograms	 of	 backscatter	 intensity	 along	 1.8°	

pencil‐beams	(narrow	conical	beams),	swept	at	right	angles	to	the	bed	

every	 6	 seconds.	 For	 these	 runs,	 the	 instrument	was	 set	 so	 that	 its	

starting	range	was	0.3	m	below	the	sonar	head,	and	its	end	range	at	1	

m,	with	a	90°	sweep	angle,	providing	along‐flume	profiles		of	the	bed	

morphology	(~1.1	m	long)	and	acoustic	backscatter	within	the	flow.	

 A	 live‐logging	 underwater	 camera	 recorded	 the	 migration	 of	 any	

bedforms	and	the	changes	in	their	properties	and	shape	upstream	of	

the	ADVs’	location	(from	a	wave	propagation	perspective).	

 A	 Marine	 Electronics	 Sector	 Scanning	 Sonar	 (SSS)	 with	 an	 acoustic	

frequency	of	500	kHz,	and	a	4‐6	m	range,	mounted	vertically	down.	This	

provided	360°	plan‐view	images	of	bedform	backscatter	intensity;	and	

hence	 afforded	 a	 view	 of	 the	 three‐dimensional	 nature	 of	 the	 bed	

morphology	together	with	the	SIS	data	(field	of	vision	of	8	m).			
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Figure	6.1	(a)	Layout	and	dimensions	of	the	Fast	Flow	Facility,	showing	the	location	of	the	wave	paddle,	the	sandy	bed	section	and	the	

scour	pit	within	the	primary	channel,	and	the	two	pumps	in	the	secondary	channel;	(b)	cross‐sectional	view	of	the	instrumented	frame	

during	the	second	set	of	experiments	(including	Runs	18	and	19	presented	here);	(c)	plan	view	of	the	instrumented	frame	with	distances	

from	the	central	flume	wall.		ABS:	acoustic	backscatter	profiler	system,	ADV:	acoustic	Doppler	velocimeter,	SIS:	sediment	imaging	sonar;	

SSS:	sector	scanning	sonar;	PT:	pressure	transducer.	

	

	

Table	6.1.	Hydrodynamic	forcing	during	the	experimental	runs	presented	

Run	
Water	
depth,		
h	(m)	

Design	
height,		
H	(m)	

Design	
Period,	
T	(s)	

Wave	type	
Pump	
rate	
(Hz)	

Current	
direction	

beach	
elevation	
hb	(m)	

Paddle	
active	
absorption	

Run	18;	
24/11/15		 1.05	 0.2	 3	

regular	
(mono‐
chromatic)	

20	 forwards	 1.05	 off	

Run	19;	
25/11/15		 1.05	 0.2	 3	

regular	
(mono‐
chromatic)	

20	 reverse	 1.05	 off	
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 A	multiple	inlet	sampling	device	was	attached	to	the	frame	to	collected	

pumped	water	samples	for	their	sediment	content,	in	order	to	calibrate	

both	ABS	and	SIS.	The	nozzles	faced	into	the	flow	(along	direction	of	

wave	propagation).	Due	to	technical	difficulties,	it	was	only	possible	to	

collect	water	samples	at	an	elevation	of	0.8	m	below	the	ABS	sensor.	

 Finally,	 the	 incident	 wave	 field	 was	 measured	 using	 three	 HR	

Wallingford‐built	twin‐wired	wave	probes	recording	immersed	depth	

through	conductivity.	These	were	placed	in	the	approximate	distances	

of	X=	25.3	m,	33.0	m	and	46.95	m	from	the	rest	position	of	the	wave	

paddle.		

	

	

Figure	6.2				Particle	size	distribution	of	the	sediment	bed.	ܦହ଴:	median	grain	
diameter;	ܯ௭:	mean	grain	diameter	(Phi	units);	ߪଵ:		sorting;	ܵ 	:ீܭ	;skewness	ଵ:ܭ
kurtosis.	
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6.2.3	Quality	control	and	data	processing	

6.2.3.1	Spectral	properties	of	the	incident	wave	field	

The	 non‐directional	 wave	 parameters	 (peak	 wave	 periods	 and	 significant	

wave	 heights,	 cf.	 §6.3.1.)	 were	 computed	 using	 zero‐crossing	 and	 spectral	

analysis	of	the	surface	water	elevation	following	Tucker	and	Pitt	(2001).		The	

wave	heights	were	given	as	immersed	water	level	variations	around	still	water	

level	measured	at	the	start	of	each	test,	derived	from	calibrated	voltage	across	

each	of	the	three	probes	(channels).	Two	probe	channels	were	available	for	

Run	18,	while	all	 three	channels	were	available	 for	Run	19.	 It	 is	 suspected,	

however,	that	these	probes	were	not	fully	submerged	at	the	troughs	of	waves,	

potentially	underestimating	the	wave	heights.		

6.2.3.2	Bed	morphology		

The	SSS	backscatter	intensity	was	used	in	raw	acoustic	form	(in	dB)	to	assess	

ripple	crest	shape	and	orientation,	providing	a	plan	view	of	any	variations	in	

bedforms.	Mean	bedform	wavelengths,	following	slant	range	correction,	and	

rotation	of	the	image	to	align	with	the	flume	walls,	were	evaluated	from	the	

locations	of	the	peaks	in	backscatter	along	the	central	line	of	the	echograms	at	

the	start	and	end	of	each	wave	run.		

The	SIS	backscatter	intensity	(given	in	relative	integer	values	scaled	linearly	

between	 0	 ‐	 255)	was	 corrected	 for	 attenuation,	 scattering	 and	 spreading,	

following	Thorne	 and	Hanes	 (2002).	 It	was	 also	 adjusted	 to	 the	difference,	

from	 1500m/s,	 of	 the	 speed	 of	 sound	 evaluated	 for	 the	 ambient	 fluid	

properties	within	the	flume,	following	Roquet	et	al.	(2015).	The	attenuation	

coefficient	 for	viscous	dissipation	due	to	 freshwater	 fluid	motion	under	 the	

oscillating	pressure,	ߙ௪	,	was	calculated	following	Fisher	and	Simmons	(1977)	

using	the	measured	temperature,	and	the	SIS	beam	frequency.	The	attenuation	

coefficients	pertaining	to	viscous	dissipation	due	to	relative	motion	between	

sediment	 particles	 and	 the	 fluid,	 	,	௦௩ߙ and	 the	 scattering	 of	 sound	by	 these	

particles,	ߙ௦௦	,	were	estimated	following	 the	methods	outlined	 in	Thosteson	

and	Hanes	(1998),	Thorne	and	Hanes	(2002),	and	Thorne	and	Hurther	(2014)	

taking	 into	 account	 the	 departure	 from	 spherical	 spreading,	 ߰,	within	 the	

transceiver’s	near	field,	as	described	by	Downing	et	al.	(1995).	To	simplify	the	
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approach,	an	implicit	method	was	used	to	solve	the	inverse	problem	with	the	

single	 acoustic	 frequency	 of	 the	 SIS,	 using	 two	 iterations	 (to	minimise	 the	

positive	iterative	feedback	errors	as	the	solution	propagates	down	to	the	bed),	

assuming	that	no	scattering	by	sediments	occurs	at	low	concentrations	in	the	

far	 field,	 and	 using	 the	 in‐situ	 sediment	 properties	 to	 describe	 intrinsic	

scattering	cross	sections	and	form	functions	(Thorne	and	Hanes,	2002;	Thorne	

et	al.,	2011).	Subsequently,	the	range‐corrected	backscatter	intensities	along	

each	beam	of	a	given	sweep	were	normalised	against	the	maximum	intensity	

of	 that	 beam,	 and	 the	 background	 noise,	 defined	 as	 the	 mean	 backscatter	

within	 the	water	column,	was	 removed.	 	The	bed	was	 then	detected	as	 the	

range‐corrected	height	at	which	the	maximum	normalised	backscatter	occurs,	

following	a	conversion	from	polar	to	Cartesian	coordinates.	The	bedform	relief	

was	 thus	 inferred	 from	 SIS	 measurements	 after	 de‐trending	 the	 bed	 (to	

remove	slope),	smoothing	to	remove	small	scale	variability,	and	despiking	to	

remove	outliers	resulting	from	high	concentration	suspension	events.	A	zero‐

crossing	algorithm	was	then	used	to	determine	ripple	heights,	and	to	double‐

check	 wavelengths	 against	 those	 inferred	 from	 the	 SSS,	 as	 described	 in	

Doucette	and	O'Donoghue	(2006)	and	O'Donoghue	et	al.	(2006).	

6.2.3.3	Three‐dimensional	velocity	field	and	turbulent	characteristics	

The	methodology	outlined	in	Chapters	4	(§4.2.1)	and	5	(§5.2.2.1)	is	followed	

to	 extract	 turbulence	 from	 the	 3	 dimensional	 velocity	 field.	 Briefly,	 this	

encompasses	a	quality	check	such	 that	no	more	 than	20%	of	 the	data	 for	a	

given	 ensemble	 within	 a	 time	 series	 falls	 below	 the	 minimal	 accepted	

correlation	threshold,	set	at	70%	following	Elgar	et	al.	(2005).	This	criterion	

was	failed	by	37	of	the	42	tests	(the	data	very	noisy	or	the	files	corrupted).	For	

the	tests	that	passed	the	quality	check,	values	which	fall	below	the	threshold	

were	replaced	by	interpolation	through	a	moving	average	algorithm,	defined	

by	Thompson	et	al.	(2012).	Subsequently,	the	resulting	ܷ,	ܸ,	and	ܹ	vectors	

were	geometrically	rotated	to	account	for	sensor	misalignment	(Elgar	et	al.,	

2001),	 then	 zero‐meaned	 and	 detrended;	 and	 the	 mean	 velocity	 ܷ		 was	

calculated	 from	 the	 three	 components,	 with	 the	 direction	 dictated	 by	 the	

relative	angle	between	the	two	horizontal	components.		
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The	wave	signal	was	then	extracted	from	each	of	these	vectors	using	a	moving	

average	 low‐pass	digital	 filter	 (Thompson	et	 al.,	 2012).	 Several	 filters	were	

tested,	and	the	best	was	chosen	to	produce	the	lowest	wave‐induced	spectral	

peaks	with	minimal	adverse	effects	on	the	statistical	properties	of	the	signal,	

and	 the	 spectral	 properties	within	 the	 inertial	 subrange	 (cf.	 §4.2.1).	 These	

filtered	 signals	 were	 then	 de‐spiked	 using	 the	 3D	 phase‐space	 method	 of	

Goring	and	Nikora	(2002)	as	modified	by	Mori	et	al.	(2007).		

The	 three‐dimensional	 turbulence	 components	were	 then	 used	 to	 quantify	

energy	 fluxes.	Measures	 of	 energetics	 in	 the	 flow	 are	 often	 confined	 to	 the	

variance	of	vertical	velocity,	and	 the	rate	of	dissipation	 in	 turbulent	kinetic	

energy	(Gerbi	et	al.,	2009).	The	vertical	and	horizontal	offsets	between	the	two	

ADVs	were	 deemed	 close	 enough	 to	 allow	 estimates	 of	 structure	 functions	

(statistical	moments	of	the	flow	field	following	Kolmogorov’s	1941	theory)	to	

describe	energy	dissipation.		The	turbulent	kinetic	energy,	݇	(݉ଶ/ݏଶ)	per	unit	

mass,	for	each	test	run	presented,	is	defined	as:	

݇	 ൌ 	0.5		൫ݑᇱଶതതതത ൅ ᇱଶതതതതݒ ൅ ᇱଶതതതതത൯ݓ 	
(Eq.	6.1)		

in	which	the	overbar	denotes	the		time	average.	The	mean	vertical	turbulence	

flux	 is	 thus	 defined	 as	 ݇ᇱݓᇱ	തതതതതതത	ሺ݉ଷ/ݏଷሻ,	 while	 the	 Reynolds’	 stress	 turbulent	

production	ܲ ோ௘	ሺ݉ଶ/ݏଷሻ,	based	on	the	vertical	gradient	between	the	two	ADVs,	

is	given	by	Grasso	and	Ruessink	(2012)	as:		

ோܲ௘ ൌ ሾെݑᇱݓᇱതതതതതത	 ௭߲ݑത െ ᇱതതതതതതݓᇱݒ ௭߲̅ݒሿ 	 (Eq.	6.2)		

The	energy	advected	by	the	wave	motion	and	the	mean	current	past	the	ADV	

is	 dissipated	 within	 the	 inertial	 sub‐range	 (Tennekes	 and	 Lumley,	 1972),	

whereby	 the	 angular	 (radian)	 frequency	 spectrum,	 ܵଷଷሺ߱ሻ,	 and	 dissipation	

rate,	ߝ	ሺ݉ଶ/ݏଷሻ,	are	related	(Gerbi	et	al.,	2009):		

ܵଷଷሺ߱ሻ ൌ .ଷଷܬ .ߙ ߝ
ଶ
ଷ . ωିହଷ ൅ ݊ 	 (Eq.	6.3)		

whereby	 ߙ ൌ 1.5	 is	 Kolmogorov’s	 constant	 (Grant	 et	 al.,	 1962),	 ω	is	 the	

angular	 frequency	 (rad/s);	 ݊	is	 noise,	 and	 for	 unsteady	 wave	 motion,	

	both	upon	range	inertial	the	of	magnitude	the	of	dependence	the	defines	ଷଷܬ

the	mean	values	and	the	standard	deviations	of	the	three	wave‐contaminated	
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velocity	 components	 (a	 full	description	 is	given	 in	Gerbi	et	al.	 (2009)).	The	

limits	of	the	inertial	range	were	defined	according	to	Stapleton	and	Huntley	

(1995)	 and	 matched	 those	 given	 in	 Gerbi	 et	 al.	 (2009),	 while	 the	 wave	

components	were	determined	following	Feddersen	and	Williams	(2007),	and	

quality	 controlled	 according	 to	 Feddersen	 (2010).	 Finally,	 the	 vertical	

turbulent	transport,	 ௩ܶ	ሺ݉ଶ/ݏଷሻ	between	the	two	vertically	offset	ADVs,	given	

by	Grasso	and	Ruessink	(2012);	represents	the	vertical	gradient	in	turbulent	

kinetic	energy:	

௩ܶ ൌ ௭߲ ᇱതതതതതതݓ݇ 	 (Eq.	6.4)	

6.2.3.4	Suspended	sediment	concentration	profiles	

The	backscatter	intensities	collected	along	each	of	the	4	frequency	channels	of	

the	ABS	were	used	to	infer	the	vertical	distribution	of	suspended	particulate	

matter	within	the	water	column,	using	the	manufacturer’s	AQUAscat	Toolkit	

software,	 implemented	 in	 Matlab™.	 These	 were	 range	 corrected	 for	

attenuance,	spreading,	and	near‐field	effects	using	the	built‐in	function,	which	

follows	the	same	methodology	described	earlier	(Thorne	and	Hanes,	2002).	

The	bed	was	detected	using	the	3rd	channel	(frequency	of	2MHz)	for	the	1000	

profiles	measured	in	each	run,	whereby	bed	ranges	that	lie	outside	5	times	the	

standard	deviation	of	the	dataset	were	reset	to	the	mean	bed	depth	below	the	

transducer.	 The	 second	 channel	 (frequency	 of	 1MHz)	 was	 always	 heavily	

contaminated	with	noise,	and	 thus	was	excluded	 from	subsequent	analysis.	

The	 built‐in	 implicit	 inversion	 method	 for	 multi‐frequency	 acoustic	

measurements	of	Thorne	and	Hanes	(2002)	was	used	to	calculate	suspended	

sediment	 concentration	 (SSC)	 and	 grain	 size	 profiles,	 averaging	 over	 10	

profiles	to	minimise	noise,	and	using	the	grain‐size	distribution	properties	of	

the	bed	sediment.	Although	pump	samples	were	collected	at	a	specific	range	

below	 the	 sensors,	 these	 were	 not	 used	 to	 directly	 calibrate	 the	 profiles	

following	Thorne	and	Hanes	(2002)	explicit	inversion	approach	as	the	nozzles,	

oriented	 into	 the	 waves,	 were	 likely	 to	 have	 under‐sampled	 given	 the	

opposing	currents,	and	the	orbital	nature	of	oscillatory	flows.		
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6.3	Results	and	Discussion	

6.3.1	Flow	conditions	and	hydrodynamic	forcing	

The	spectral	wave	characteristics	for	the	two	test	runs,	Run	18	with	regular	

waves	(H=	0.2	m,	T	=	3	s)	running	along	a	current	generated	by	a	20Hz	pump	

rate;	and	Run19	with	the	current	opposing	the	direction	of	wave	propagation	

are	 summarised	 in	 Table	 6.2.	 These	 comprise	 the	 spectrally	 estimated	

significant	wave	height,	ܪ௠଴,	derived	from	the	integral	of	variance,		݉଴,		of	the	

wave	energy	spectrum;		the	peak	wave	period,	 ௣ܶ,	associated	with	the	largest	

wave	 energy;	 as	well	 as	wave	parameters	 computed	 through	 zero‐crossing	

which	 include	 the	 significant	wave	height,	ܪ௦,	 (average	height	 of	 the	 third‐

highest	waves),	the	mean	wave	height	ܪ௠௘௔௡,	maximum	wave	height	ܪ௠௔௫,	the	

mean	wave	period,	 ௠ܶ௘௔௡,	and	the	significant	wave	period,	 ௦ܶ	(of	the	highest	

33%	of	the	record).	

Table	6.2.	Measured	wave	characteristics	during	the	experimental	runs		

Measured 
wave 

characteristics 

Run 18; 24/11/2014 (Test 31) 
Series length = 1200 s 

Run 19b; 25/11/2014 
Series length = 1200 s 

Design Characteristics: 
h = 1.05 m; waves: monochromatic 
H = 0.20 m;  T = 3.00 s;         
current: 0.37 m/s along waves 
pump rate: 20 Hz 

Design Characteristics: 
h = 1.05 m; waves: monochromatic 
H = 0.20 m;     T = 3.00 s;         
current: 0.3 m/s against waves 
pump rate: 20 Hz 

(by zero‐
crossing and 
spectral 
analysis) 

Probe 1  Probe 2  Probe 3  Probe 1  Probe 2  Probe 3 

Water	level	
݄	ሺ݉ሻ 

‐‐  1.0564  1.0551  1.0518  1.0504  1.0554 

݉଴ 
‐‐  0.0011  1.33E‐03  0.00224  0.0025  2.80E‐03 

 ሻ࢓ሺ		૙࢓ࡴ ‐‐  0.133  0.146  0.190  0.199  0.212 

 ‐‐ ሺ࢙ሻ	࢖ࢀ 3.030  3.030  3.030  3.030  3.030 

 ‐‐  ሻ࢓ሺ	࢙ࡴ 0.0978  0.0805  0.149  0.162  0.165 

 ௠௘௔௡ ሺ݉ሻܪ ‐‐  0.0521  0.056  0.135  0.130  0.071 

	ሺ݉ሻ	௠௔௫ܪ ‐‐  0.176  0.146  0.170  0.188  0.214 

௠ܶ௘௔௡ ሺݏሻ  ‐‐  0.634  1.180  3.023  2.5821  0.935 

 ሺ࢙ሻ ࢙ࢀ ‐‐  1.665  1.781  3.0102  2.979  2.639 
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The	 results	 show	 that	 the	 wave	 paddles	 systematically	 and	 accurately	

reproduce	 the	 design	 wave	 period	 (estimated	 from	 the	 energy	 spectrum);	

with	no	effect	from	the	superposition	of	the	current	on	the	wave	whether	it	is	

aligned	with	or	opposed	to	the	direction	of	propagation.		The	significant	wave	

heights,	however,	are	significantly	lower	than	the	design	heights	programmed	

into	 the	 wave	 maker	 for	 Run	 18;	 as	 the	 wave	 probes	 were	 intermittently	

emerging	from	the	water	(particularly	under	wave	troughs),	rendering	these	

estimates	inaccurate.	Conversely,	the	design	spectrally‐estimated	significant	

wave	heights	(ܪ௠଴)	were	reproduced	experimentally	in	Run	19.	Interestingly,	

the	estimates	of	significant	wave	height	from	both	statistical	(zero‐crossing)	

and	 spectral	 approaches	 (energy	 based)	 differ	 considerably.	 For	 shallow	

water	 waves,	 Thompson	 and	 Vincent	 (1985)	 have	 shown	 that	 the	 two	

significant	 height	 estimates	 could	 differ	 by	 up	 to	 40%	 in	 some	 laboratory	

cases,	 and	 the	 relative	 change	 in	 statistical‐based	 and	 energy‐based	

parameters	 are	 often	 overestimated	 for	 monochromatic	 waves	 with	 small	

relative	heights	and	low	wave	steepnesses.	The	choice	of	which	parameter	to	

use	depends	on	the	problem	at	hand	(Thompson	and	Vincent,	1984),	and	as	

we	are	interested	in	energetic	turbulence	processes,	the	spectral	estimate	is	

used.	 Nonetheless,	 in	 the	 absence	 of	 accurate	 estimates	 of	 wave	 heights,	

particularly	 in	Run	18;	 a	 reasonable	 approximation	 can	be	 calculated	 from	

water	 surface	 elevations	 	(ߟ) inferred	 from	 measured	 streamwise	 flow	

velocities	 	(ሻݐሺݑ) by	 assuming	 linear	wave	 theory,	whereby	 rearranging	 the	

dispersion	equation	(Svendsen,	2006):	

		 ߟ ൌ
.ሻݐሺݑ ݄ . sinhሺ݇ ݄ሻ
ܿ. coshሺ݇ሺݖ ൅ ݄ሻሻ

	
(Eq.	6.5)	

where	 ݇	 is	 the	 wavenumber,	 ݄	 is	 water	 depth,	 	ݖ is	 the	 elevation	 of	

measurement,	and	ܿ	 is	 the	wave	celerity.	The	celerity	can	be	obtained	from	

direct	and	accurate	approximation	(to	within	0.1%)	of	Hunt	(1979):	

		
ܿଶ

݃	݄
ൌ ሾ	उ଴ ൅ ሺ1 ൅ 0.6522उ଴

ଶ ൅ 0.4622उ଴
ସ ൅ 0.0675उ଴

ହሻିଵሿିଵ		
(Eq.	6.5)	
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where	उ଴ ൌ ଴ܮ	;	଴ܮ/݄ߨ2	 ൌ ݃ܶଶ/2ߨ	;	and	݃	is	gravitational	acceleration.	

This	analysis	yielded	a	time	series	of	water	surface	elevations	ߟሺݐሻ	for	Run	18;	

which	were	then	spectrally	analysed	to	reveal	an	estimated	significant	wave	

height	ܪ௠଴ ൌ 0.188	݉;	about	‐6%	difference	from	the	design	value.	Notably,	

applying	 this	 approach	 to	Run	19	yielded	ܪ௠଴ ൌ 0.32	݉,	 about	60%	higher	

than	 those	 recorded	by	 the	wave	probes.	 This	 deviation	 from	design	 value	

could	be	observed	visually	during	the	experimental	run,	and	can	be	attributed	

to	 wave	 steepening	 due	 to	 the	 opposing	 current,	 whereby	 the	 opposing	

current	causes	the	wavelengths	to	shorten	and	the	wave	heights	to	become	

larger	in	order	to	maintain	their	energy	(Soulsby,	2006).		

Figure	6.3	shows	the	measured	time	series	of	the	three	velocity	components	

(U,	V,	W)	and	the	mean	velocity	(ܷ)	at	 two	elevations	 for	the	two	test	runs	

presented	(Runs	18	and	19),	with	 identical	design	wave	characteristics	but	

opposing	 currents;	 together	with	 the	 corresponding	 statistical	 and	 spectral	

attributes	 (including	 histograms,	 boxplots	 indicating,	 25th,	 50th	 and	 75th	

percentiles,	 standard	 deviations	 and	 outliers;	 and	 the	 power	 spectral	

densities).	The	superposition	of	the	current	on	the	waves	results	 in	a	mean	

velocity	of	~	0.37 േ 0.15	m/s	at	a	height	of	0.181	m	above	the	bed	(ADV1),	

which	reduces	significantly	to	~	0.15 േ 0.2	m/s	closer	to	the	bed	(ݖ	=	0.11	m;	

ADV2)	when	 the	 current	 is	 aligned	with	 the	direction	of	wave	propagation	

(Run	18).	This	is	reflected	in	histograms	and	spectral	properties	of	the	mean	

velocity,	which	reveal	the	dominance	of	the	streamwise	velocity	component	in	

the	mean	flow	signal	at	the	higher	elevation	(cross‐correlation	between	ܷ	and	

ܷ	of	0.998);	which	becomes	much	less	pronounced	closer	to	the	bed	(cross‐

correlation	 of	 0.22)	 and	 thus	 the	 mean	 velocity	 is	 governed	 by	 the	

considerable	interaction	of	the	three	dimensional	components	(clearly	not	a	

two‐dimensional	 problem).	 The	 very	 poor	 cross‐correlation	 observed	

between	the	two	ADVs	(at	0.13)	implies	these	two	positions	may	be	influenced	

by	 different	 processes.	 With	 currents	 opposing	 the	 direction	 of	 wave	

propagation	(Run	19);	the	mean	(time‐averaged)	velocity	is	~	0.30 േ 0.22	m/s	

at	a	height	of	0.17	m	above	the	bed	(ADV1)	and	~	0.26 േ 0.2	m/s	closer	to	the	

bed	 	=	ݖ) 0.12	 m;	 ADV2).	 In	 this	 run,	 the	 mean	 flow	 velocity	 is	 similarly	
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described	 predominantly	 by	 the	 streamwise	 component	 at	 the	 higher	

elevation	(cross‐correlation	of	0.994),	and	the	two	signals	share	a	significant	

cross	correlation	of	0.554.	As	a	result,	a	higher	correlation	between	the	mean	

flow	velocities	recorded	by	the	two	ADVs	is	observed	at	0.55	with	a	lag	of	0.8	

seconds,	perhaps	due	to	the	orbital	nature	of	the	wave	motion.	Notably,	Run	

19	is	also	markedly	characterised	by	considerably	fewer	statistical	outliers	at	

the	higher	ADV	than	Run	18.		

Yuan	and	Madsen	(2014)	showed	similar	vertical	variations	in	the	streamwise	

velocity	 component	within	 a	 periodic,	 turbulent	 oscillatory	 boundary	 layer	

which	 increases	 slightly	 below	 a	 well‐defined	 free	 stream	 region	 to	 an	

overshoot,	 then	 decreasing	 rapidly	 towards	 the	 bed.	 The	 second	 velocity	

component	 should	 theoretically	 be	 zero	 due	 to	 the	 symmetric	 (sinusoidal)	

wave	variations.	The	third	velocity	component	has	a	large	overshoot,	and	this	

has	 been	 shown	 to	 result	 from	 the	 interaction	 of	 the	 time‐varying	 eddy	

viscosity	with	the	time‐varying	velocity	(Trowbridge	and	Madsen,	1984).	The	

free	stream	region	of	flow	constitutes,	by	definition,	the	flow	lying	just	outside	

the	benthic	boundary	layer	(Davies,	1986).	The	measurements	by	the	higher	

ADV1	in	both	test	runs	reveal	a	time‐averaged	velocity	that	is	exactly	equal	to	

the	design	depth‐averaged	velocity	expected	for	the	current‐only	case	given	

the	flow	geometry	and	pump	rates	(0.37m/s	and	0.3m/s	for	Runs	18	and	19,	

respectively),	 whereas	 those	 given	 by	 the	 lower	 ADV	 were	 smaller.	 This	

indicates	that	while	both	ADVs	in	both	runs	can	be	confirmed	to	lie	outside	of	

the	theoretical,	combined	wave‐current	boundary	layer	(cf.	§6.3.2),	the	lower	

ADVs	still	experience	some	effects	of	drag,	potentially	 from	the	shedding	of	

vortices	 from	 bedforms.	 This	 perhaps	 highlights	 the	 need	 to	 move	 from	 a	

classical	scaling	of	boundary	layer	structure	based	on	mean	flow	properties	

(e.g.	 the	 velocity	 profile);	 towards	 one	 concerned	 with	 the	 exchanges	 of	

momentum	governing	the	mean	velocity	(cf.	§2.4.1.1).		

	In	the	power	spectral	density	sub‐plots,	the	(design)	first	and	second	(flow	

reversal)	 wave	 harmonics	 display	 obvious	 peaks,	 much	 larger	 than	 the	

residual	noise,	and	are	reproduced	systematically	in	the	velocity	spectra	of	all	

components	of	the	flow	field,	as	well	as	the	mean	velocity.	 	Trowbridge	and	



	

186	
	

Madsen	(1984)	showed	analytically	that	existing	theoretical	formulations	of	

wave	 boundary	 layers,	 assuming	 time	 invariant	 eddy	 viscosity	 often	

reproduce	the	first	harmonics	of	wave	velocity	accurately.	They	further	show	

that	temporal	variations,	owing	to	the	sinusoidal	nature	of	the	waves,	are	not	

important	and	only	a	prescribed	vertical	structure	is	needed	to	reproduce	the	

first	wave	harmonic.		Higher	order	harmonics,	however,	require	time‐varying	

models	of	both	velocity	and	eddy	viscosity	(Yuan	and	Madsen,	2014),	are	most	

likely	generated	by	turbulent	processes	within	the	boundary	layer,	related	to	

temporal	 variations	 in	 turbulent	 eddy	 viscosity.	 	 These	 peaks	 are	 also	

observed	in	the	power	spectra	of	the	extracted	turbulence	components.	
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Figure	6.3	Time	series,	probability	density	functions	(histograms),	power	spectral	densities	and	box	plots	of	the	three	velocity	

components,	ܷ	(streamwise,	dark	green);	ܸ	(cross‐wise,	gold);	and	ܹ	(vertical,	red)	and	the	mean	flow	velocity	ܷ	(grey)	measured	at	

two	elevations	above	the	bed	during	Runs	18	and	19.	The	peak	frequency	(1/ ௣ܶ)	and	the	second	harmonic	(2/ ௣ܶ)	of	the	progressive	

wave	conditions	are	highlighted	by	the	vertical	blue	lines	in	the	power	spectral	density	plots.		The	boxplots	indicate	the	25th,	50th	and	

75th	percentiles	of	the	data	(left,	centre	and	right	sides,	respectively),	with	the	whiskers	indicating	the	standard	deviation,	and	the	red	

markers	highlighting	statistical	outliers.		
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Figure	6.4	Power	spectral	densities	of	the	three	velocity	components,	ܷ	(streamwise,	dark	green);	ܸ	(cross‐wise,	gold);	and	ܹ	(vertical,	
red)	and	their	inherent	turbulent	fluctuations	(ݑᇱ, 	and	18	Runs	during	bed	the	above	elevations	two	at	measured	respectively)	ᇱ,ݓ	and	ᇱݒ
19.	The	peak	frequency	(1/ ௣ܶ)	and	the	second	harmonic	(2/ ௣ܶ)	of	the	progressive	wave	conditions	are	indicated	by	the	dashed	vertical	

lines.	
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6.3.2	Flow	properties	and	combined	boundary	layer	thickness	

Estimating	the	thickness	of	the	combined	wave‐current	boundary	layer	in	the	

absence	of	profile	measurements	is	inaccurate,	and	common	approaches	rely	

upon	 assumed	 profiles	 of	 time‐invariant	 eddy	 viscosity	 to	 define	 stress	

distributions	(cf.	§2.2.4).	The	boundary	layer	thickness	in	combined	flows,	ߜ௖௪,	

is	often	assumed	to	depend	only	on	the	oscillatory	component	of	the	velocity	

(Soulsby	 and	 Clarke,	 2005);	 and	 for	 sinusoidal	 waves,	 Yuan	 and	 Madsen	

(2015)	suggest	that	the	only	influence	of	the	current	on	the	waves	is	a	minor	

increase	 in	 turbulent	 eddy	 viscosity	 due	 to	 the	 current‐induced	 bed	 shear	

stress;	 the	 waves	 effectively	 do	 not	 feel	 the	 influence	 of	 the	 current.	 The	

oscillating	 boundary	 layer	 thickness	 in	 combined	 flow,	 however,	 is	

substantially	greater	than	with	waves	only;	while	the	opposite	is	true	for	mean	

flow	 boundary	 layer	 thickness,	 and	 both	 increase	 with	 the	 increasing	

superimposed	current	(Davies	et	al.,	1988).	To	estimate	the	thickness	of	the	

boundary	 layer,	 and	 the	 near	 bed	 orbital	 velocities,	 we	 need	 to	 solve	 the	

current‐wave	dispersion	equations	as	a	function	of	depth	to	evaluate	the	wave	

number,	݇,	needed	for	calculations	of	near	bed	orbital	velocities,	assuming	a	

depth	 uniform	 current	 speed,	 and	 hence	 estimating	 the	 combined	 wave‐

current	bed	shear	stress		and	thus	friction	(shear)	velocity.		

In	the	absence	of	profile	measurements	of	velocity,	the	mean,	combined	wave‐

current	boundary	layer	thickness	is	given	by	Grant	and	Madsen	(1986):	

௖௪,௠ߜ		 ൌ
ߢ ∗௖௪,௠ݑ

߱
	

(Eq.	6.6)		

whereby	 ߢ ൌ 0.41	is	 von	 Kármán’s	 constant,	 ∗௖௪,௠ݑ 	 is	 the	 mean,	 combined	

wave‐current	friction	velocity,	and	߱ ൌ 	.frequency	angular	wave	the	is	ܶ/ߨ	2

To	 estimate	 the	 theoretical	 bed	 shear	 stress	 (and	 hence	 friction	 velocity)	

under	combined	flow,	the	methods	of	(a)	Grant	and	Madsen	(1986)	modified	

to	include	transport	and	ripple	enhanced	shear	velocity	after	Nielsen	(1986),		

as	implemented	in	the	Numerical	Model	Sedtrans05	(Neumeier	et	al.,	2008);	

(b)	Soulsby	and	Clarke	(2005)	including	current‐modified	wave	friction	factor,	

and	 (c)	 the	 latter’s	 technique	 modified	 by	 Malarkey	 and	 Davies	 (2012)	 to	
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account	for	strong	wave‐current	interaction	assuming	a	logarithmic	velocity	

profile;	were	compared.	These	three	methods	require	accurate	estimate	of	the	

near	bed	orbital	velocity,	given	the	flow	geometry	and	wave	characteristics.	

To	this	end,	an	efficient	Newton‐Raphson	numerical	approximation	is	used	to	

solve	 the	 simplified	 wave‐current	 depth	 dispersion	 equation	 for	 the	

characteristic	wave	number,	݇,	following	Southgate	and	Oliver	(1989),	taking	

into	account	the	angle	߶	between	the	wave	and	current	directions,	the	water	

level,	 and	 the	 design	 current‐velocity	 at	 the	 pumps	 (assumed	 as	 depth	

averaged	velocity	for	a	current‐only	flow).	The	protocols	to	estimate	the	wave	

number	݇	and	the	combined	bed	shear	stress	of	Soulsby	and	Clarke	(2005),	

are	described	in	Appendix	A6.		The	near	bed	orbital	velocity	for	the	combined,	

collinear	wave‐current	 flow	 is	 estimated	 to	within	 0.1%	 following	 Soulsby	

(2006):	

		ܷ௢௥௕,௖௪ ൌ
ܪ
2
. ൬

2݄݃݇
݄ sinhሺ2݄݇ሻ

൰
଴.ହ

	
(Eq.	6.6)	

and	the	near	bed	orbital	amplitude	for	the	combined	flow:	

଴,௖௪ܣ ൌ
ܷ௢௥௕,௖௪ܶ
2 ߨ

	
(Eq.	6.6)	

The	mean	bed	shear	stress	is	estimated	from	the	quadratic	stress	law,	using	a	

combined	mean	wave‐current	drag	coefficient,	ܥ஽,௠,௥,	which	incorporates	the	

modified	wave‐current	friction	factor	 ௪݂,௥	for	rough	turbulent	flow.		Note	all	

these	 methods	 assume	 a	 two‐layer,	 discontinuous	 eddy	 viscosity	 profile,	

accounting	 for	 near‐bed	 modification	 of	 the	 wave	 orbital	 velocity	 by	 the	

current,	but	assuming	the	velocity	outside	the	combined	layer	must	equate	to	

the	 current	 only	 velocity.	 The	 estimated	 combined	 wave‐current	 flow	

properties	are	summarised	in	Table	6.3;	which	indicate	rough	turbulent	flow	

conditions,	and	shear	velocities	which	exceed	the	critical	values	for	bedload	

(>0.013m/s)	 and	 nearly	 equal	 to	 or	 exceeding	 the	 critical	 threshold	 for	

suspension	(0.022	m/s;	cf.	§3.2.3	and	§3.3).	 	The	three	approaches	result	in	

very	 small	 mean,	 combined	 boundary	 layer	 thicknesses	 with	 Sedtrans05	

estimating	 ௖௪ߜ ≅ 0.03	m,	 an	 order	 of	magnitude	 larger	 than	 the	 other	 two	
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௖௪ߜ) ≅ 0.0026);	 and	 similarly	 larger	 stresses.	 This	 can	 be	 attributed	 to	 the	

inclusion	of	the	effect	of	the	bedforms	and	the	active	transport	modifying	the	

skin‐friction	component	(hence	accounting	for	form	drag);	whereas	the	other	

two	approaches	calculate	a	skin‐friction	only	stress	(accounted	for	through	a	

roughness,	 	,଴ݖ set	 to	 D50/12).	 These	 results	 confirm	 that	 both	 ADVs	 are	

located	outside	of	the	combined	wave‐current	benthic	boundary	layer	in	both	

Runs	18	and	19.	

Table	 6.3	 Estimated	 combined	 wave‐current	 flow	 properties	 following	
Soulsby	 and	 Clarke	 (2005)	 and	 Soulsby	 (2006)(cf.	 Appendix	 6).	 Values	 in	
parentheses	are	estimated	after	Malarkey	and	Davies	(2012)	and	in	squared	
brackets	using	the	numerical	model	Sedtrans05	(Neumeier	et	al.,	2008).		
Flow	property	 Run	18	 Run	19	
߶;	 relative	 angle	 between	 wave	 and	
current	

0°	 180° ሺ2ߨ	ሺ݀ݎሻሻ

ܷ			(m/s);	depth	averaged	mean	current	 0.38	 0.30	
݇	;	wave	number	 0.6174		 0.762	
ܷ௢௥௕,௖௪	(m/s);	near	bed	orbital	velocity 0.268	[0.257]	 0.251	[0.257]	
	amplitude	orbital	bed	near	(m/s);	଴,௖௪ܣ 0.128	[0.123]	 0.120	[0.123]	
ܴ݁௖ ൌ 		number	Reynold’s	Current	;	ߥ/݄ܷ 3.18 ൈ 10ହ		 2.51 ൈ 10ହ		
ܴ݁௪ ൌ ܷ௢௥௕,௖௪ܣ଴,௖௪/ߥ		;	Wave	Reynold’s	
number		

2.72 ൈ 10ସ	 2.39 ൈ 10ସ	

Flow	regime		
(later	verified	to	be:)	

turbulent	
rough	

turbulent		
rough	

௪݂௥ ൌ 1.39	൫ܣ଴,௖௪/ݖ଴൯
ି଴.ହଶ

	;		wave‐only	
friction	actor	

0.0148	 0.0153	

	rough	for	coefficient	drag	mean	;	஽,௠,௥ܥ
turbulent	combined	wave‐current	flow	

0.005	 0.006	

	rough	for	coefficient	drag	max	஽,௠௔௫,௥;ܥ
turbulent	combined	wave‐current	flow	

0.009	 0.0103	

߬௠,௖௪,௥ ൌ ஽,௠,௥ܷܥ	ߩ
ଶ
(Pa)	;	mean,	

combined	wave‐current	bed	shear	stress		

0.73	
(0.23)	[1.35]	

0.54	
(0.23)	[1.123]	

߬௠௔௫,௖௪,௥ ൌ ஽,௠௔௫,௥ܷܥ	ߩ
ଶ
	(Pa);	max,	

combined	wave‐current	bed	shear	stress		

1.29	
(0.92)	

0.924	
(0.91)	

∗௖௪,௠ݑ		 ൌ ඥ߬௠,௖௪/ߩ		(m/s);	mean	
combined	wave‐current	shear	velocity	

0.027	
(0.048)	
[0.088]	

0.023	
(0.048)	
[0.078]	

௖௪,௠௔௫ݑ		
∗ ൌ ඥ߬௠௔௫,௖௪/ߩ		(m/s);	max	

combined	wave‐current	shear	velocity	
0.036	
(0.096)	

0.03	
(0.096)	

௖௪,௠ߜ		 ൌ ∗௖௪,௠ݑ	ߢ /߱	(m);	combined	wave‐
current	mean	boundary	layer	thickness	

0.005		
(0.01)	[0.033]	

0.0044	
(0.01)	[0.03]	
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6.3.3	Sediment	properties	and	bed	morphology	

6.3.3.1	Sediment	properties	in	the	top	‘mobile’	layer	

To	assess	changes	in	sediment	characteristics	in	the	top	layer	of	the	bed,	10	

cm	 long	 cores	 (2.7	 cm	 diameter)	 were	 collected	 (when	 the	 flume	 was	

emptied);	 with	 cores	 collected	 before	 Run	 18,	 and	 after	 Run	 19.	 Vertical	

variations	in	sediment	properties	in	the	top	10%	of	sediment	bed	within	the	

scour	pit	before	and	after	the	analysed	wave	runs	are	given	in	Figure	6.5.	The	

cores	 show	 uniform	 composition	 in	 the	 finer	 fraction	 with	 little	 variation	

before	and	after	the	test	runs	(standard	deviations:	ߪ஽ଵ଴,௕௘௙௢௥௘ ൌ േ7.8	݉ߤ	and	

஽ଵ଴,௔௙௧௘௥ߪ ൌ േ5.2	݉ߤ,	 respectively).	 The	 variance	 in	 grain	 diameter	 was	

reduced	 due	 to	 re‐working	 of	 the	 sediments	 during	 the	 wave	 runs	 (with	

஽ହ଴,௕௘௙௢௥௘ߪ ൌ േ13.7		݉ߤ	and	 ஽ହ଴,௔௙௧௘௥ߪ ൌ േ6.2	݉ߤ,	 and	 ஽ଽ଴,௕௘௙௢௥௘ߪ ൌ

േ22.1		݉ߤ	and	 ஽ଽ଴,௔௙௧௘௥ߪ ൌ േ32.2	݉ߤ).	 	 Sediment	 sorting,	 calculated	

following	Folk	and	Ward	(1957),	changed	from	~0.34	to	~0.42	in	the	top	5	cm	

before	and	after	these	two	runs,	and	was	relatively	more	pronounced	in	cores	

taken	at	the	crest	of	bedforms	(~0.37)	compared	with	the	troughs	(0.33)	–	all	

indicating	well‐sorted	sand.	Similarly,	ܦଵ଴,	ܦହ଴	and	ܦଽ଴	were	relatively	finer	at	

the	ripple	crests	compared	with	ripple	troughs.			Similarly;	the	bulk	sediment	

density	in	the	top	layer	showed	some	variation	indicating	re‐packing	of	bed	

material,	and	hence	active	sediment	mobilisation	within	the	top	layer	(hard	to	

discern	given	the	inherent	variability	within	the	method	used	for	calculation).		
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Figure	6.5				Variation	in	particle	size	distribution	and	bulk	density	of	the	top	
layer	(10	cm)	of	the	sediment	bed	before	Run	18	and	after	Run	19.	

6.3.2.2	Bedform	geometry		

The	 observed	 bed	 morphology	 in	 each	 run	 is	 both	 a	 function	 of	 the	

hydrodynamic	forcing	as	well	as	the	existing	morphology	from	the	previous	

runs,	as	the	bed	was	not	reset	to	a	flat	configuration	before	each	wave	testing	

sequence.	Examples	of	the	observed	bed	morphology	(and	partially‐corrected	

suspension	events)	observed	acoustically	by	the	SIS	for	1	minute	from	each	of	

Runs	 18	 and	 19	 are	 shown	 in	 Appendix	 A6.	 	 The	 acoustic	 images	 (and	

underwater	video	camera)	reveal	highly	mobile	ripples	and	active	sediment	

transport	 both	 as	 bedload,	 and	 in	 suspension.	 Large,	 intense	 sediment	

suspension	 clouds	 (up	 to	15	 cm	 in	height)	were	observed	 at	 flow	 reversal,	

indicating	entrainment	by	coherent	eddies	through	vortex	shedding.		Run	18	

was	 characterised	 by	more	 persistent	 suspension	 clouds,	 extending	 higher	

within	the	water	column,	whereas	Run	19	featured	more	defined,	and	shorter‐

lived	suspension	events.	During	both	runs,	small	to	intermediate	(wavelength	

~0.1‐0.25	 m)	 and	 relatively	 symmetric,	 2D	 combined	 flow	 ripples	 were	

observed,	characterised	by	rounded	crests	and	local	deep	scour	at	the	lower	
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end	of	their	stoss	sides	with	discontinuous	crest	lines	and	irregular	planforms,	

with	 very	 small,	 current	 ripples	 superimposed	 (Figure	 6.6).	 This	 bedform	

morphology	 has	 been	 described	 for	 combined	 wave	 current	 flow	

experimentally	(Dumas	et	al.,	2005)	and	in	the	field	(Amos	et	al.,	1988;	Li	and	

Amos,	1998).	The	bedforms	in	Run	18,	however,	were	observed	transitioning	

towards	 (but	not	 quite	 reaching)	 an	upper‐plane	 sheet	 flow,	with	 a	mobile	

layer	of	sediments	(several	grains	deep),	shallower	bedform	relief	and	bigger	

wavelengths.	 This	 confirms	 the	 earlier	 estimated	 results	 (Table	 6.3)	which	

indicated	shear	velocities	exceeding	the	thresholds	of	motion	(bedload)	and	

suspension;	with	maximum	shear	velocity	exceeding	the	the	critical	threshold	

of	initiation	of	sheet	flow	(upper	plane	bed	at	ݑ௖௥,௦௛௘௘௧
∗ ൌ 	is	This	.(ݏ/݉	0.054

confirmed	 by	 the	 numerical	 model	 Sedtrans05	 which	 predicts	 sediment	

transport	 ௧௢௧௔௟ݍ) ൌ 0.01	 kg/s/m)	 occurring	 for	 73%	 of	 the	 time	 in	 Run	 18	

(52%	 of	 time	 is	 suspension,	 and	 21	 %	 as	 bedload);	 with	 a	 lower	 rate	 of	

transport	 ௧௢௧௔௟ݍ) ൌ 0.004	kg/s/m)	occurring	 for	79%	of	 the	 time	 in	Run	19	

(34%	of	time	as	bedload	and	44.5%	in	suspension).		

The	SSS	scans	were	used	to	assess	planform	geometry	along	the	flume,	and	

mean	 bedform	 wavelengths	 were	 extracted	 through	 zero‐crossing	 and	

wavelet	 decomposition	 of	 the	 raw	 acoustic	 signal	 (following	 slant	 range	

correction)	along	the	centre	line	of	the	echograms.		Two	example	echograms	

(taken	midway	through	the	runs)	are	presented	in	Figure	6.7,	together	with	

the	 corresponding	 continuous	 wavelet	 decomposition	 of	 the	 centreline	

backscatter	 signal.	 The	 wavelet	 transform	 indicates	 two	 distinct	 scales	 of	

bedforms,	with	smaller	(~0.03	–	0.06	long)	ripples	imposed	upon	relatively	

large	bedforms	(ߣ௥ ൌ	~	0.2	m	for	Run	18,	and	~	0.185	m	for	Run	19),	while	

unsmoothed	zero	crossing	identified	only	the	small	scale	ripples.	

	

Figure	6.6	Observed	bedforms	in	conditions	similar	to	a)	Run	18;	b)	Run	19.	

a)                                                              b) 
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Figure	6.7	Observed	bedforms	in	flow	conditions	similar	to	a)	Run	18	and	b)	
Run	19.	The	top	panels	shows	the	SSS	echogram;	the	lower	panels	show	the	
CWT	of	bedform	wavelength	along	at	the	centreline	of	the	echograms.	

The	temporal	evolution	and	classification	of	bedform	wavelength	(ߣ௥),	height	

	wave	each	of	sub‐record	minute	10	a	for	(௥ߣ/௥ߟ)	steepness	bedform	and	,(௥ߟ)

run,	 obtained	 from	 the	 SIS	 images	 (one	 profile	 taken	 every	 6	 seconds)	 are	

shown	in	Figure	6.8	(a,	b	and	c,	respectively).	Notably,	inferring	bed	relief	from	

peak	backscatter	along	the	SIS	rays	was	harder	in	the	2D	echograms	of	Run	18	

due	to	the	mobile	sediment	layer,	explaining	the	larger	scatter	in	the	results.	

Figure	6.8	shows	larger	bedforms	(ߣ௥ ൌ 0.21 േ 0.03	m)	with	smaller	heights	

௥ߟ) ൌ 0.055 േ 0.005	m)	in	Run	18,	compared	to	Run	19	(ߣ௥ ൌ 0.19 േ 0.008	m	

and	 ௥ߟ ൌ 0.065 േ 0.006	m).	 Both	 runs	were	 characterised	 by	 similar	mean	

ripple	steepnesses	(0.3	and	0.34).	The	non‐dimensional	ripple	characteristics	

(relative	to	median	grain	diameter)	were	plotted	against	the	non‐dimensional	

near	bed	orbital	diameter	(Figure	6.8	c,	d,	and	e)	following	Clifton	and	Dingler	

(1984)	 and	Wiberg	 and	 Harris	 (1994),	 classifying	 the	 bedforms	 as	 orbital,	

vortex	ripples	for	both	runs.		
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Figure	6.8	 Temporal	 evolution	 of	 (a)	 ripple	 length,	 	;௥ߣ (b)	 ripple	 height,	 	;௥ߟ and	 (c)	 ripple	 steepness	 	;(௥ߣ/௥ߟ) and	 classification	 of	
bedforms	based	on	non‐dimensional	(d)	ripple	length;	(e)	ripple	height,	and	(f)	steepness	versus	near	bed	orbital	diameter,	݀଴	relative	to	
median	grain	diameter	(ܦହ଴),	following		Clifton	and	Dingler	(1984)	and	Wiberg	and	Harris	(1994).	The	vertical	lines	delimiting	orbital	–	
sub‐orbital	–	anorbital	are	at	݀଴/ܦହ଴	=	2000	and	5000,	respectively.		
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6.3.4	Coherent	flow	structures	and	contribution	to	stress	

In	classic	boundary	layer	theory,	exchanges	of	momentum	in	the	streamwise‐

vertical	plane	(ݖݔ),	 represented	by	 the	Reynolds’	stress	(߬௫௭ ൌ െݓ′ݑߩ′),	are	

presumed	to	be	the	predominant	turbulent	flux	acting	on	the	bed	material.	The	

intermittency	of	these	exchanges	is	often	measured	using	Quadrant	analysis,	

which	distributes	 the	momentum	transport	within	a	single	plane	of	motion	

between	four	types	of	event	structures	in	four	quadrants:	violent	‘sweeps	(S	

or	Q4)’	and	‘ejections	(E	or	Q2)’,	and	weaker	‘inward	(II	or	Q3)’	and	‘outward	

interactions	 (OI	 or	 Q1)’,	 collectively	 termed	 ‘bursting’	 (Willmarth	 and	 Lu,	

1972;	 Bogard	 and	 Tiederman,	 1986).	 This	 does	 not	 account	 for	 the	

entire/mean	turbulent	stress	as	crosswise	fluctuations	also	contribute	to	the	

mean	streamwise	momentum	(ibid.).	These	event	types	are	often	associated	

with	the	passage	of	a	coherent	structure	which	induces	velocity	fluctuations	

(Zhou	et	al.,	1999).	For	instance,	a	low	speed	near	bed	fluid	pumped	upwards	

between	the	legs	of	a	horseshoe	vortex	encountering	high	speed	streamwise	

fluid	 is	 manifest	 by	 a	 second	 quadrant	 (Q2)	 ejection‐type	 event,	 often	

associated	 with	 vertical	 entrainment	 of	 bed	 sediment.	 Considering	 shear	

stresses	 together	 with	 their	 distribution	 between	 quadrants	 and	 their	

variability	 in	 time	 provides	 a	 better	 account	 of	 sediment	 entrainment	 and	

transport	(Heathershaw,	1979;	Keylock	et	al.,	2014).	In	the	absence	of	means	

for	 visualising	 these	 coherent	 turbulence	 structures	 tomographically,	

quadrant	analysis	offers	a	means	of	 studying	 the	 intermittent	exchanges	of	

momentum	 induced	 by	 such	 structures,	 and	 their	 implications	 to	 local	

dynamics	of	sediment	entrainment,	resuspension	and	deposition.		To	account	

for	 the	 three‐dimensionality	 of	 the	 problem,	 the	 quadrant	 analysis	 is	 often	

extended	 by	 adding	 the	 cross‐wise	 (transverse)	 velocity	 fluctuations;	 and	

defining	8‐types	of	motions	prescribed	to	the	4	event	structures	of	quadrant	

analysis	with	a	sign	to	account	for	positive	or	negative	sway	in	the	transverse	

direction	(Gheisi	et	al.,	2006;	Keylock	et	al.,	2014).		
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Figure	6.9	Quadrant	plots	of	Reynolds	stresses	in	three	planes	(ݖݔ, ,ݕݔ 	.19	and	18	Runs	for	ADV2)	and	(ADV1	elevations	two	at	(ݖݕ



	

200	
	

To	stay	true	to	the	original	quadrant	formulation,	we	present	the	extension	

into	 3	 dimensions	 as	 three	 distinct,	 orthogonal	 planes	 of	 motion.	 The	

distribution	 of	 Reynolds	 stress	 intensities	,′ݓ′ݑ	ݓ′ݒ′,	 and	ݑᇱݒᇱ	 in	 the	

streamwise‐vertical	(ݖݔ),	horizontal	(ݕݔ),	and	crosswise‐vertical	(ݖݕ)	planes,	

respectively,	 across	 the	 four	 different	 types	 of	 motion	 (quadrant	 events);	

measured	by	the	two	ADVs	during	the	test	runs	18	and	19	are	presented	in	

Figure	 6.9.	 For	 each	 of	 these	 quadrant	 plots,	 the	 shape	 of	 the	 scatter	 was	

assessed	by	approximating	a	least	square	elliptical	fit	(eccentricity	1	–	1.14)	to	

the	Reynolds’	stress	data	in	each	plane.	The	inclination	of	these	ellipses	(angle	

between	their	major	axis	and	the	x‐axis)	was	often	dominated	by	streamwise	

and	horizontal	fluctuations	(angles	<	10°);	and	as	such,	the	horizontal	plane	

motions	 better	 approximated	 circular	 fits.	 Measurements	 from	 Run	 18	

featured	more	outliers	than	those	of	Run	19,	and	this	was	reflected	in	a	minute	

shift	 from	 the	 centre	 O(0,0)	 of	 the	 quadrant	 plot	 for	 the	 fitted	 ellipses	

(~0.005).	While	 it	 is	 customary	 to	 introduce	 a	 threshold	Hole	 (H)	 value	 to	

delimit	 and	 ignore	 small‐scale	 departures	 from	 the	 mean	 (cf.	 §4.3.1),	 no	

unified	 definition	 for	 the	 limiting	 criterion	 exists;	 and	 the	 choice	 is	 often	

arbitrary	and	 these	were	presented	without	a	 threshold	 (H=0).	Bogard	and	

Tiederman	 (1986)	 suggested	 that	 the	 appropriate	 threshold	 is	 one	 which	

would	yield	the	same	number	of	ejections	(Q2	events)	as	 identified	by	flow	

visualisation	 in	the	streamwise‐vertical	plane.	With	no	means	of	visualising	

the	 flow	 in	 our	 experiment,	 we	 apply	 a	 plane‐specific	 universal	 threshold	

based	on	the	cross‐correlation	of	the	root‐mean‐square	velocity	fluctuations	

(cf.	 4.3.1).	 The	 percentage	 of	 occurrence	 in	 time,	 and	 the	 sensitivity	 of	 the	

detection	 technique	 of	 the	 various	 types	 of	 quadrant	 events	 to	 the	 chosen	

threshold	Hole	size	(H)	is	demonstrated	in	Figure	6.10.	The	percentage	of	time	

spent	within	each	quadrant	as	a	 function	of	 the	hole	size	(H)	 is	normalised	

such	 that	 the	 sum	 of	 all	 quadrants	 at	 any	 H	 is	 100%.	 Notably,	 without	

normalising	 the	 total	 sum	 of	 events	 to	 100%;	 the	 detected	 events	 at	 a	

threshold	H	=4	 represent	 only	 1	 –	 2.5%	of	 the	 all	 events	without	 applying	

threshold,	and	these	are	the	most	extreme	(violent)	stress	bearing	structures.	

The	figure	shows	that	all	types	of	quadrant	event	structures	are	represented	

in	 nearly	 equal	 proportion	 for	 both	 heights,	 and	 for	 both	 test	 conditions	
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(wave‐aligned	 and	 wave‐opposed	 currents),	 with	 no	 prevalence	 of	 any	

particular	motion	when	no	threshold	is	applied	in	any	given	plane.	Increasing	

the	 threshold	 hole	 size,	 H,	 in	 the	 streamwise‐vertical	 plane	 increases	 the	

prominence	of	detected	sweep	motions	(Q4	events)	for	Run	18	significantly	

(to	just	under	50%	of	all	detected	motions)	at	both	elevations,	and	significant	

decrease	 in	 detected	 II	 (Q3)	motions.	 The	 opposite	 is	 observed	 in	 Run	 19,	

whereby	inward	interaction	(Q3)	motions	increase	against	a	decrease	in	the	

number	 of	 detected	 sweeps	 (Q4).	 This	 possibly	 highlights	 the	 role	 of	 the	

superimposed	 current,	 whose	 mean	 direction	 governs	 the	 prevalence	 of	 a	

positive	 or	 negative	 streamwise	 fluctuation	 (with	 orbital	motion	 switching	

signs	every	half	cycle);	in	defining	the	predominant	types	of	detected	events.		

Jeong	et	al.	(1997)	have	shown	Q4	(sweep)	events	to	dominate	near	the	wall	

(with	Q2	away	from	the	wall)	as	a	result	of	‘spatial	phase	difference’	between	

streamwise	and	wall‐normal	turbulent	fluctuations	caused	by	the	advection	of	

a	 large	 coherent	 structure	which	 causes	 counter‐gradient	 stresses	 (Q1	 and	

Q3)	events	above	and	below	the	structure.	This	causes	more	negative	peaks	in	

fluctuations	at	higher	wall	units	than	positive	ones,	and	thus	more	frequent	Q2	

motions	higher	up.	These	Q1	and	Q2	events	show	little	effect	in	response	to	

the	applied	Hole	size,	H,	apart	from	the	lower	measurements	(ADV2)	of	Run	

18,	 where	more	 Q1	 events	 are	 observed	 with	 increasing	 threshold,	 at	 the	

expense	of	the	Q2	motions.	

The	relative	contribution	to	total	Reynolds’	stress	of	each	type	of	the	quadrant	

structures	within	each	of	the	planes	is	quantified	and	summarised	in	Figure	

6.11.	 The	 data	 are	 presented	 without	 applying	 a	 threshold	 to	 ensure	 no	

dynamic	processes	are	arbitrarily	removed	from	the	analysis.	In	Run	18,	with	

currents	along	the	direction	of	wave	propagation,	the	violent	sweep	(Q4)	and	

ejection	 (Q2)	motions	contribute	60%	of	 the	stress	 in	 the	primary	plane	of	

motion	(ݖݔ)	at	the	higher	ADV,	and	sweeps	alone	contribute	nearly	a	third	of	

all	the	stress	at	both	heights	above	the	bed.	The	opposite	is	true	for	Run	19,	

with	 the	 current	 opposing	 progressive	 waves,	 whereby	 outward	 (Q1)	 and	

inward	 (Q3)	 interactions	 contribute	 more	 to	 the	 stress	 with	 the	 biggest	

contribution	 from	 inward	 interactions.	 Q4‐type	 motions	 are	 the	 largest	
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contributor	to	stress	in	the	horizontal	and	cross‐wise	vertical	planes	for	Run	

18.	

Lozano‐Duran	 et	 al.	 (2012)	 have	 shown	 using	 direct	 numerical	 simulation	

(DNS)	 that	 applying	 a	 higher	 threshold	 identifies	 structures	 that	 only	 fill	 a	

small	fraction	(by	volume	of	flow),	yet	contribute	significantly	to	stress	at	all	

wall	distances.	These	typically	correspond	to	larger,	wall‐attached	events	that	

carry	most	of	the	Reynolds’	stress,	compared	to	the	background	fluctuations,	

often	 regarded	 as	 imprints	 of	 detached	 objects	 which	 tend	 to	 be	 isotropic	

(directionally)	 and	 thus	 their	 contributions	 to	 the	 mean	 stress	 cancel	 out.	

Wall‐attached	structures	tend	to	be	formed	by	paired	counter‐rotating	Q2	and	

Q4	events,	often	with	an	associated	vortex	cluster	(detached	and	isotropically	

oriented)	embedded	in	the	ejection.		Using	tomographic	PIV	in	a	unidirectional	

flow,	Yang	and	Jiang	(2012)	show	stronger	similarity	of	multiple	structures	in	

the	 vertical,	 compared	 to	 the	 other	 two	 planes	 (quasi‐streamwise	 and	

spanwise),	and	a	similar	pair	of	vortices	(Q2	and	Q4)	around	a	bursting	event,	

which	 extends	 toward	 the	 wall	 (bed).	 Lozano‐Durán	 and	 Jiménez	 (2014)	

measured	 the	 streamwise	 advection	 velocity	 of	 coherent	 structures	 and	

implied	that	these	are	deformed	by	the	mean	shear	which	also	controls	their	

lifetime	 (duration	 through	 which	 they	 persist	 before	 they	 are	 completely	

consumed	by	viscosity).	 	Buchner	et	al.	(2016)	suggest	that	the	mean	strain	

rate,	which	depends	on	the	type	of	structure	considered	is	skewed	along	the	

positive	flow	direction,	amplifying	vorticity.	We	therefore	suggest	that	within	

a	 monochromatic,	 orbital	 flow	 coupled	 with	 a	 superimposed	 current,	 the	

steady	 current	 will	 dictate	 the	 mean	 direction	 of	 the	 strain,	 favouring	 the	

positive	streamwise	motions	(Q1	and	Q4)	in	the	aligned	case	(Run	18),	and	the	

negative	streamwise	events	(Q2	and	Q3)	 in	 the	opposing	current	case.	This	

agrees	with	 the	 observed	 percentages	 of	 occurrence;	 and,	with	 Q2	 and	Q4	

motions	 being	 the	 most	 violent,	 	 these	 pairs	 provide	 the	 most	 significant	

contributions	to	stress	in	the	streamwise‐vertical	plane	for	both	test	runs.	
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Figure	6.10			Effect	of	the	threshold	(hyperbolic	Hole	Size,	H)	on	the	number	of	detected	quadrant	events	in	the	three	considered	planes	
of	motion	for	both	ADV	heights	for	Runs	18	and	19.	
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Figure	6.11	 	 	 The	 relative	 contribution	 to	Reynolds’	 stress	 of	 each	 type	 of	
quadrant	 structure	 in	 three	planes	of	motion	 for	Run	18	 (left)	 and	Run	19	
(right).	

6.3.5	Space‐time	dynamics	of	coherent	structures	

6.3.5.1	Spatial	scales	of	turbulence	

The	normalised,	turbulence	power	spectra	in	three	dimensions	are	presented	

in	non‐dimensional	wave‐number	space	(݇∗ 	ൌ 	of	height	the	is		ݖ	where	,ݖ݇	

measurement)	 in	 Figure	 6.12.	 The	 spectra	 were	 constructed	 in	 energy‐

preserving	 form	 such	 that	 an	 equal	 area	 under	 the	 curve	 represents	 equal	

energy	 (variance)	 following	 Soulsby	 (1977).	 	 The	 peaks	 indicate	 similar	

scaling	 in	 the	 streamwise,	 cross‐wise	 (transverse)	 and	 vertical	 fluctuations	

with	maxima	correpsonding	to	similar	wave	numbers	 for	each	ADV	in	both	

test	 runs.	 As	 the	 strain	 rate	 of	 a	 particular	 eddy	 is	 a	 function	 of	 its	

wavenumber,	then	the	peaks	of	these	plots	correspond	to	the	dominant	spatial	

scales	of	motions	as	 they	are	advected	past	 the	 fixed	ADV	sensor	 following	

Taylor’s	frozen	turbulence	hypothesis	(cf.	4.2.2.2).	The	inferred	spatial	scales	
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correpsonding	 to	 the	 peaks	 in	 these	 spectra	 are	 listed	 in	 Table	 6.4,	 which	

confirms	scales	of	the	order	of	9‐15	cm	as	the	integral	scales	of	motion.	These	

fluctuations	approach	the	near	bed	semi‐orbital	excursion	(orbital	amplitude,	

	12.1	and	wave‐current)	(aligned	18	Run	for	cm	~12.6	be	to	calculated	଴,௖௪),ܣ

cm	for	the	opposing	wave‐current	case	(Run	19)	just	outside	the	thin	region	

of	 combined	 wave‐current	 effect	 in	 the	 boundary	 layer.	 Noteably,	 these	

horizontal	 turbulent	excursions	 in	the	streamwise	plane	are	smaller	 for	the	

opposing	current	case.	This	may	indicate	that	opposings	current	 inhibit	 the	

growth	of	a	flow	structure	induced	by	the	oscillating	motion	in	the	streamwise	

direction	(for	half	wave	cycle).		

	

Figure	6.12	Non‐dimensional	wave‐number	݇∗–weighted	energy	spectra		

Table	 6.4	 Dominant	 spatial	 scales	 of	 motion	 through	 normalised	 energy	
spectra	of	turbulent	components	(parenthesis	indicate	second	peak)	

Run	
ADV	
elevation	 L(ݑ′)	 L(ݒ′)	 L(ݓ′)	

Run	18;	
24/11/2015		

0.181	m	ab	
0.144 m 
(0.05 m )	 0.130 m	 0.137 m	

0.109	m	ab	
0.140 m 
(0.06 m )	 0.100 m	 0.105 m	

Run	19;	
25/11/2015		

0.171	m	ab	 0.092 m	 0.108 m	 0.092 m	

0.116	m	ab	 0.106 m	 0.118 m	 0.142 m	
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6.3.5.2	Temporal/frequency	scales	of	coherent	structures	

The	temporal	scales	of	turbulence	can	be	inferred	from	the	active	periods	of	

flow,	 inferred	 from	 the	 high	 variance	 regions	 within	 the	 time‐frequency	

domain	 obtained	 through	 a	 continuous	 wavelet	 transform	 (CWT)	

decomposing	 the	Reynolds’	stress	signal	 in	 three	planes.	Figures	6.13,	6.14,	

and	 6.15,	 show	 the	 local	 (instantaneous)	 and	 global	 (over	 a	 time	 period)	

spectral	 properties	 of	 the	 	,ᇱݓᇱݑ 	,′ݒ′ݑ and	 the	 	′ݓ′ݒ Reynolds’	 stresses,	

respectively;	at	the	two	measurement	points	(ADV1	and	ADV2)	for	test	runs	

18	and	19.	In	these	figures,	the	time	series	of	the	Reynolds’	stresses	at	a	given	

height	 is	 shown,	 together	 with	 its	 corresponding	 power	 spectral	 density	

obtained	through	a	fast	Fourier	transform	(FFT)	using	Welch’s	method,	with	a	

Hanning	window	of	2ଵ଴	data	points	with	50%	overlap.	The	horizontal	dashed	

red	lines	denote	the	standard	deviation	(േ	1. 	time	the	of	mean	the	about	(ߪ

series.	The	power	spectral	densities	(PSD)	are	presented	in	frequency	domain	

rather	 than	 wavenumber	 space,	 and	 are	 expected	 to	 adhere	 to	 the	 same	

scaling	 laws	 given	 ADV	 measurements	 invoke	 Taylor’s	 frozen	 turbulence	

theory,	 and	 thus	 ௜ܵ௜ሺ݇ሻ ൌ ௜ܵ௜ሺ݂ሻ. 	ߨ2/	ݑ (Stapleton	 and	 Huntley,	 1995).	 The	

time	series	of	the	continuous	wavelet	transform	(CWT)	of	the	stress	signal	is	

also	computed	and	presented	in	a	time‐frequency	domain,	together	with	its	

global	spectral	power	(integrated	variance),	represented	for	different	periods	

(inverse	frequencies)	for	intelligibility.	The	global	power	pertains	to	the	time	

average	 of	 all	 local	 wavelet	 spectra	 (i.e.	 all	 the	 vertical	 slices	 through	 the	

wavelet	plot).	In	the	CWT	time‐frequency	plot,	warmer	colours	indicate	high	

power	(variance),	 the	white	shaded	region	represents	 the	cone	of	 influence	

whereby	edge	effects	may	distort	the	image	(cf.	§4.3.2.2),	and	the	thicker,	black	

contour	lines	delimit	the	95%	confidence	limits	(5%	significance	against	red	

noise	 given	 by	 a	 Monte	 Carlo	 simulation	 following	 Torrence	 and	 Compo	

(1998)).	The	 limitation	given	by	 the	 cone	of	 influence	 is	 a	manifestation	of	

Heisenberg’s	uncertainty	principle,	which	implies	that	one	cannot	obtain	good	

localisation	in	both	time	and	frequency,	and	a	trade‐off	thus	exists	with	bad	

temporal	resolution	at	the	larger	scales,	and	bad	frequency	resolution	at	the	

smaller	 scales	 (Foufoula‐Georgiou	 and	Kumar,	 1994;	 Farge	 et	 al.,	 1996).	 In	
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what	 follows,	 the	subscripts	 ݅, ݆, ݇	are	used	 to	denote	a	component	 in	 the	ݔ	

(along	direction	of	wave	propagation),	ݕ	(lateral/crosswise),	and	ݖ	(vertical)	

directions.	

Figure	 6.13	 shows	 the	 time	 series,	 power	 spectrum	 (ܵ)	 and	 CWT	 of	 the	

streamwise	 vertical	 stress	 	(ᇱݓᇱݑ) for	Run	18,	with	 a	 current	 aligned	 to	 the	

direction	of	wave	propagation.	The	CWT	plot	 for	 the	higher	ADV	highlights	

intermittent,	active	regions	within	the	flow	through	powerful	(high	variance)	

events	that	span	a	range	of	frequency	(period)	scales.	These	events	are	often	

short	 lived	 between	 1	 and	 5	 Hz	 (periods	 of	 0.5	 –	 0.2	 seconds)	 lasting	 a	

maximum	 of	 9	 seconds	 (3	 times	 the	 period	 of	 the	 imposed	wave	 forcing).	

Nonetheless,	two	prominent	events	are	observed	to	persist	noticeably	over	a	

very	narrow	 scale	distribution,	with	 a	peak	 global	 power	 corresponding	 to	

periods	 between	 2.3 െ 	ݏ	2.6	 (lasting	 ~140	seconds);	 and	 to	 1.4	– 	ݏ	1.8	

(lasting	76	seconds).	Closer	to	the	bed,		the	CWT	time‐frequency	plot	of	ݑᇱݓᇱ	is	

also	 characterised	 by	 intermittent,	 rapidly	 decaying	 structures	 (power	

transferred	 towards	 smaller	 frequencies	 in	 short	 time)	 in	 the	 range	 of	

frequencies	between	1	and	5	Hz,	and	longer‐lasting,	slowly	evolving	structures	

that	 correspond	 to	 the	 forced	 wave	 frequency	 (peak	 frequency	 and	

harmonics)	lasting	up	to	280	seconds	for	the	peak	wave	frequency.	Spatially,	

the	rapidly	decaying	motions	correspond	accurately	in	time	to	those	observed	

higher	in	the	water	column	(ADV1).	On	the	other	hand,	the	time	series	of	the	

streamwise‐vertical	 Reynolds’	 stress	 in	 Run	 19	 displays	 much	 smaller	

excursions	beyond	 the	 standard	deviation	at	both	elevations,	 resulting	 in	 a	

relatively	flat	power	spectral	density	(PSD)	distribution	(݂ି଴.ଵ)	at	the	higher	

ADV1,	and	(݂ି଴.ଷ଺)	at	the	lower	ADV2.	The	power	spectral	densities	for	run	19	

are	an	order	of	magnitude	lower	than	those	of	Run	18.		The	CWT	plots	show	

much	weaker	 (low	 variance)	 clusters	 that	 are	 intermittent,	 and	 very	 short	

lived,	across	small	ranges	of	frequencies	(lifespan	of	~	3–9	sec)	for	fluctuations	

at	frequencies	between	1	and	5	Hz,	and	much	weaker,	longer	lasting	events	at	

frequencies	 corresponding	 to	 the	 forced	 wave	 harmonics.	 This	 is	 true	 for	

stresses	at	both	elevations,	with	events	even	more	rapidly	decaying	closer	to	

the	bed	(higher	global	variances),	and	no	particularly	dominant	scales.		
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The	CWT	for	the	ݑᇱݒᇱ	time		series	plots	shown	in	Figure	6.14	also	display	two	

different	types	of	active	(high	variance)	flows:	intermittent,	short	lived	(3	–	6	

s	long)	events	spanning	several	frequency	scales;	and,	more	persistent	(100	–	

300	seconds	long)	low	frequency	events	at	scales	corresponding	to	the	wave	

harmonics.	 At	 the	 lower	ADV,	 the	 short‐lived	 events	 are	 less	 powerful	 and	

longer	 events	 are	 even	 more	 acutely	 representative	 of	 the	 peak	 wave	

frequency.		For	the	opposing	current	case	(Run	19),	intermittent	high	power	

events	are	also	observed	in	the	CWT	plots	at	a	variety	of	rapidly	ceasing,	small	

scale	ranges	at	the	higher	ADV1,	and	even	more	so	at	the	lower	ADV2.	No	clear	

large‐scale	structures	are	identified.	Moreover,	there	is	no	dominance	of	any	

particular	 scales	or	event	 types	 in	 time	given	 the	 relatively	 constant	global	

power	distribution	across	frequency	scales	(periods)	in	each	case.	The	CWT	

plots	for	the	ݒᇱݓᇱ	time	series	(Figure	6.15)	reveal	a	similar	behaviour	to	that	

observed	 for	 the	 	ᇱandݓᇱݑ 	Reynolds	ᇱݒᇱݑ stresses,	 with	 short	 lived	 high	

variance	events	spanning	a	multitude	of	frequency	scales,	and	low	variance,	

long‐lived	events	at	frequencies	corresponding	to	the	wave	forcing.	No	active	

events	 are	 identified	 at	 the	 lower	 ADV	 location	 in	 Run	 18,	 with	 most	

fluctuations	occurring	within	േ	1. 	.(deviation	standard)	ߪ Interestingly,	Run	

19	 shows	 multiple	 long‐lived	 events	 of	 low	 variance	 at	 wave‐related	

frequencies,	with	particularly	more	active	events	closer	to	the	bed	(ADV2).		

To	aid	the	discussion	of	the	observed	behaviour,	the	turbulent	characteristics,	

comprising	 the	 turbulent	 Kinetic	 energy	 ܧܭܶ) ൌ 	,(݇ߩ three‐dimensional	

Reynolds’s	stresses,	the	vertical	turbulent	flux,	݇′ݓ′തതതതതത	,	the	rate	of	production	of	

Reynolds’	stress,	 ோܲ௘௬,	the	rate	of	dissipation	of	streamwise	turbulence,	ߝ௨௨,	

and	the	rate	of	vertical	turbulence	transport,	ܶ ௩	are	computed	(cf.	§6.2.3.3)	and	

presented	in	Figure		6.16.	The	figure	shows	relatively	similar	magnitudes	of	

turbulent	kinetic	energy	in	the	aligned	and	opposing	current‐wave	cases,	with	

more	variance	observed	in	the	aligned	flow,	particularly	closer	to	the	bed.	This	

variance	 is	 also	 apparent	 in	 the	 wider	 difference	 between	 the	 calculated	

Reynolds	stresses	at	the	two	elevations	compared	with	the	opposing	current	

run,	as	well	as	the	rate	of	production	of	Reynolds’	stress	being	several	times	

higher	 at	 the	 higher	 elevation	 in	 aligned	 flow.	 Similarly,	 while	 both	 runs	
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appear	to	have	relatively	similar	rates	of	dissipation,	the	difference	between	

both	elevations	is	more	evident	under	aligned	flows.	Moreover,	the	turbulent	

flux	appears	to	be	negligible	at	both	elevations	for	the	opposing	current	case,	

as	well	as	the	higher	ADV	in	the	aligned	flow,	and	much	more	significant	closer	

to	the	bed,	resulting	in	significant	upward‐directed	flux	in	the	aligned	case.	

Both	ADVs	were	measuring	outside	of	the	near‐bed	combined‐wave	current	

boundary	 layer	 region	where	 kinetic	 energy	 is	 generated.	 The	momentum	

exchanges	 between	 the	 combined	 wave‐current	 boundary	 layer	 and	 the	

overlying	 flow	 comprise	 of	 	ᇱݓᇱݑ stress‐bearing	 eddies	 whose	 energy	

containing	scales	seen	at	ADV2	start	breaking	up	through	inertial	forces	such	

that	they	fall	within	the	inertial	sub‐range	by	the	time	they	reach	the	elevation	

of	ADV2	(Kolmogorov’s	cascade).	This	is	shown	by	the	difference	in	turbulence	

dissipation	rate	of	the	streamwise	component,	which	is	higher	at	the	higher	

ADV	as	shown	in	Figure	6.16.	Conversely,	ݑᇱݒᇱstress‐bearing	eddies	are	yet	to	

be	fully	within	the	inertial	sub‐range	as	they	progress	towards	ADV1.		

For	the	opposing	wave‐current	case,	Run	19,	the	relatively	flat	spectra	of	the	

	ᇱstressesݓᇱݑ indicate	very	rapid	breaking	of	 the	coherent	structures	before	

they	 are	 fully	 formed,	 as	 shown	 in	 the	 CWT	 plots.	 The	 Reynolds’	 stress	

production	 rate	 and	 streamwise	 velocity	 dissipation	 rates	 vary	 less	 with	

elevation	above	bed	in	the	opposing	current	case	than	seen	in	aligned	flow,	

and	the	vertical	turbulence	transport,	 ௩ܶ	is	thus	nil	at	both	ADVs	whereas	the	

vertical	flux	and	vertical	turbulence	transport	are	more	significant	closer	to	

the	 bed	 in	 the	 aligned	 flow	 case	 (Figure	 6.16).	 We	 suspect	 this	 to	 be	 a	

manifestation	of	the	longitudinal	adverse	current	breaking	up/inhibiting	the	

	ᇱstress‐bearingݓᇱݑ motions	 generated	 within	 the	 combined	 wave‐current	

boundary	 layer	 and	 ejected	 into	 higher,	 faster	 fluid;	 whereas	 the	 lateral	

exchanges	of	momentum	of	bed	generated	motions	are	less	affected,	and	thus	

some	 energy	 within	 the	 vortices	 is	 preserved/	 forced	 laterally	 before	

decaying.		
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Figure	6.13	Time‐frequency	characteristics	of	the	instantaneous,	streamwise‐vertical	Reynolds	stress	ݑᇱݓᇱ	measured	at	two	elevations	

(ADV1	and	ADV2)	outside	the	combined	wave‐current	boundary	layer,	for	Run	18	(with	wave‐aligned	current)	and	Run	19	(with	wave‐

opposing	current).	In	each	of	the	four	panels,	the	first	subplot	shows	the	time	series	of	the	Reynolds’	stress	whereby	the	horizontal	dashed	

red	line	delimits	േ	1	standard	deviation	about	the	mean;	the	second	subplot	shows	the	power	spectral	density	of	the	time	series;	the	third	

subplot	shows	the	CWT	of	the	signal	in	time‐period	domain,	and	the	fourth	sub‐plot	indicated	the	global	spectral	power	of	the	transform	

at	different	 frequency	periods	(frequency	scales).	 In	the	CWT	plot,	warmer	colours	 indicate	higher	variance,	 the	white	shaded	region	

represents	the	cone	of	influence	and	the	thicker,	black	contour	lines	delimit	the	95%	confidence	limits	(5%	significance	against	red	noise).	
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Figure	6.14	Time‐frequency	characteristics	of	the	instantaneous,	horizontal	plane	Reynolds	stress	ݑᇱݒᇱ	measured	at	two	elevations	(ADV1	

and	ADV2)	outside	the	combined	wave‐current	boundary	layer,	for	Run	18	(with	wave‐aligned	current)	and	Run	19	(with	wave‐opposing	

current).	Legend	same	as	Figure	6.13.	
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Figure	6.15	Time‐frequency	characteristics	of	the	instantaneous,	lateral‐vertical	Reynolds	stress	ݒᇱݓᇱ	measured	at	two	elevations	(ADV1	
and	ADV2)	outside	the	combined	wave‐current	boundary	layer,	for	Run	18	(with	wave‐aligned	current)	and	Run	19	(with	wave‐opposing	
current).	Legend	same	as	Figure	6.13.	
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Figure	6.16	Mean	turbulence	properties	of	flow	at	two	elevations	for	Runs	18	and	19;	comprising:	the	turbulent	kinetic	
energy	 per	 unit	 mass	 (݇),	 three‐dimensional	 Reynolds’s	 stresses	 (െݑߩᇱݓᇱ; െݑߩᇱݒᇱ, െݓ′ݒߩ′),	 the	 vertical	 turbulent	
flux, തതതതതത′ݓ′݇ ,	the	rate	of	production	of	Reynolds’	stress,	 ோܲ௘௬,	the	rate	of	dissipation	of	streamwise	turbulence,	ߝ௨௨,	and	the	
rate	of	vertical	turbulence	transport,	 ௩ܶ.	
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6.4	Implications	to	sediment	transport	

To	first	order,	regular	waves	do	not	result	in	net	sediment	transport,	except	

for	wave‐induced	net	currents	through	boundary‐layer	streaming	(Longuet‐

Higgins,	1953)	and	velocity	asymmetry	between	wave	crest	and	 troughs	as	

they	propagate	shorewards	(Komar,	1976;	Fredsøe	and	Deigaard,	1992).	The	

oscillatory	motion,	nonetheless,	contributes	significantly	to	sediment	pick‐up,	

and	 as	 such,	 provides	 an	 effective	 stirring	mechanism,	 facilitating	 the	mass	

transport	 of	 locally	 suspended	particles	 by	 relatively	 small	 steady	 currents	

(Dyer,	1986).	Quantifying	suspended	sediment	transport	in	combined	wave‐

current	flows	requires	accurate	evaluation	of	the	shear	stress	at	the	bed	and	

within	 the	 boundary	 layer,	which	 requires	 parametrising	 an	 eddy	 viscosity	

profile	to	solve	the	hydrodynamic	equations	of	flow,	as	well	as	the	advection‐

diffusion	equations	for	sediment	suspension	(via	sediment	diffusivity).	Solving	

the	problem	numerically,	through	algebraic	eddy	viscosity	models	and	mixing	

length	arguments	(cf.	§2.3	and	Appendix	1),	requires	accurate	consideration	

of	 vorticity	 dynamics	 within	 the	 core	 region	 just	 outside	 of	 the	 combined	

wave‐current	benthic	boundary	layer	(Huang	and	Mei,	2003;	Tambroni	et	al.,	

2015).	 Higher‐order	 models	 (one	 or	 two‐equation	 linear	 eddy	 viscosity	

models)	also	prescribe	a	boundary	layer	structure	defined	by	time‐varying	or	

invariant	multi‐layered	eddy	viscosity	profiles,	and/or	focus	on	the		dynamics	

of	 turbulent	 kinetic	 energy	production	 and	dissipation	 (Davies	 et	 al.,	 1988;	

Soulsby	et	al.,	1993;	Antunes	Do	Carmo	et	al.,	2003;	Holmedal	et	al.,	2003;	Yuan	

and	Madsen,	2015).	For	instance,	Huang	and	Mei	(2003)	attributed	reductions	

in	current	speed	for	a	wave	following	current,	as	opposed	to	an	increase	in	an	

opposing	current,	in	addition	to	variations	in	stress	all	the	way	up	to	the	free	

surface	 (despite	no	wind)	 to	distortions	 in	eddy	viscosity.	 Such	accounts	of	

boundary	 layer	 structure	 are	 often	 bound	 by	 descriptions	 of	 vertical	

accelerations	and	pressure	differentials.	These	are	defined	by	coherent	vortex	

structures	which	result	in	amplified	turbulent	fluctuations	and	shear	stresses	

and,	 potentially,	 suspension	 plumes.	 To	 limit	 these	 effects	 to	 the	 near	 bed,	

region,	models	tend	to	impose	a	‘zero	flux’	condition	on	turbulent	intensities	

and	 sediment	 concentrations	 at	 the	 edge	 of	 the	 combined	 boundary	 layer	
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(Holmedal	 et	 al.,	 2003;	 Holmedal	 et	 al.,	 2013).	 With	 sediment	 likely	 to	 be	

suspended	beyond	the	near	bed	boundary	layer,	the	interaction	between	flow	

structures	induced	by	both	waves	and	currents	with	the	entrained	particles	

needs	to	be	accounted	for	throughout	the	flow,	as	is	often	done	regarding	the	

non‐linearity	 imposed	 by	 the	 currents	 on	 the	 waves	 and	 vice‐versa	 (e.g.	

apparent	 roughness,	 reduction	of	mean	velocity,	etc.).	 	 Furthermore,	 Inman	

and	 Bowen	 (1962)	 have	 shown	 that	 rippled	 beds	 generate	 vortices	whose	

asymmetry	can	lead	to	the	transport	of	sediment	even	against	the	mean	flow.	

Therefore,	 the	 structural	 attributes	 and	 time	 variations	 of	 these	 vortex	

structures	are	important	for	an	accurate	description	of	sediment	transport	in	

combined	flow.	

In	this	study,	field	measurements	of	turbulent	fluctuations	at	two	elevations	

above	the	bed	were	collected	in	two	flow	configurations	of	practical	relevance	

to	sediment	dynamics	in	coastal	areas,	with	collinear	steady	currents	aligned	

with,	and	opposed	to	the	direction	of	wave	propagation.		According	to	Soulsby	

et	 al.	 (1993),	 the	 threshold	 of	 motion	 and	 entrainment	 of	 sediment	 is	

determined	by	the	mean	combined	bed	shear	stress,	while	current	velocity	and	

the	diffusion	of	suspended	sediment	particles	into	the	upper	part	of	flow	are	

determined	 by	 the	 maximum	 combined	 shear	 stress.	 In	 calculating	 these	

combined	stresses,	most	models	employ	a	linear	vector	addition	of	the	current	

and	wave‐induced	stresses	(Grant	and	Madsen,	1979;	Grant	et	al.,	1984;	Davies	

et	 al.,	 1988;	 Fredsøe	 and	 Deigaard,	 1992;	 Soulsby	 et	 al.,	 1993;	 Yuan	 and	

Madsen,	2015).	This	implies	equal	magnitudes	of	mean	stress	for	collinear,	co‐

directional	 (߶௖௪ ൌ 0°)	 and	 opposing	 (߶௖௪ ൌ 180°)	 currents	 to	 progressive	

waves	 (Li	 and	 Amos,	 1995;	 2001).	 The	 experiments	 of	 Kemp	 and	 Simons	

(1982;	1983)	also	showed	that	maximum	turbulence	intensities	and	Reynolds	

stresses	 depend	 on	 the	 magnitude	 of	 current	 and	 wave‐induced	 velocities	

rather	 than	 the	 relative	 direction	 (current	 following	 or	 opposing	 the	

propagation	of	waves).	They	show,	nonetheless,	increased	attenuation	of	wave	

energy	in	the	opposing	current	compared	with	a	decrease	in	attenuation	for	a	

following	current;	as	well	as	changes	in	mean	velocity	profiles	and	boundary	

layer	thickness.	This	is	only	true	for	rough,	rippled	beds	where	velocities	are	
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reduced	 and	 turbulence	 intensities	 and	 mean	 stresses	 are	 enhanced	 by	

changes	 in	 vortex	 patterns	 formed	 between	 the	 roughness	 elements.	 In	

contrast,	 the	 opposite	 –	 increased	 attenuation	 in	 following	 currents	 and	

reduced	 attenuation	 in	 opposing	 currents	 –	 holds	 for	 smooth	 beds.	

Subsequently,	the	authors	imply	an	increase	in	sediment	pick‐up	to	within	7	

roughness	 heights	 (assumed	 4	 times	 for	waves	 only),	 and	 diffusion	 of	 that	

sediment	 beyond	 the	 combined	 layer.	 They	 conclude,	 therefore,	 that	 the	

relative	direction	only	 influences	 the	outer	 layer	of	 flow,	but	not	 the	wave‐

current	interaction	near	the	bed.		

The	 results	 presented	 here,	 albeit	 from	 a	 limited	 dataset	 and	 range	 of	

conditions,	show	similar	results	though	with	pronounced	vertical	variations	

within	the	outer	layer	(no	measurements	were	within	the	theoretical	region	of	

combined	interaction).	Whilst	turbulent	kinetic	energy,	Reynolds	stresses	and	

rates	 of	 production	 and	 dissipation	 of	 energy	 had	 similar	 magnitudes	 for	

currents	 aligned	 to	 and	 opposing	 the	 direction	 of	 wave	 propagation	 they	

varied	 more	 sharply	 in	 the	 opposing	 current	 case.	 With	 similar	 bed	

morphologies	in	the	two	tested	cases,	the	streamwise‐vertical	stress	imprints	

of	coherent	eddies	at	wave	and	half‐wave	frequencies	(hence	corresponding	

to	 vortex	 shedding	 from	 bedforms)	 in	 the	 aligned	wave‐current	 case	were	

longer	 lived	 lower	within	 the	 outer	 flow	 region,	 and	within	 that	 frequency	

range,	did	not	correspond	in	time	to	those	observed	higher	up.	Similarly,	t	at	

the	 lower	 level,	 their	 spectra	 indicated	 superposition	 of	 multiple	 scales	 of	

eddies	 within	 the	 energy	 cascade	 (݇ିଵ	inverse	 power	 law	 spectrum,	 cf.	

§6.3.5.2)	 compared	 to	 a	 well‐defined	 Kolmogorov‐Obukhov	 (݇ିହ/ଷ)	 rate	 of	

inertial	dissipation	higher	up.	This	implies	that	the	core	flow	(outside	the	wave	

boundary	layer,	cf.	§2.2.2)	is	not	uniform	(purely	current	dominated),	with	its	

lower	portion	comprising	eddies	that	are	both	advected	and	locally	generated;	

and,	higher	up,	only	advected	eddies	are	present.	The	vertical	excursions	of	

turbulence	(length	scale	of	ݓ′)		corresponded	well	with	the	observed	vertical	

suspension	clouds	observed	by	the	ABS	(instrument	fault	meant	data	cannot	

be	 exported	 and	 hence	 not	 shown	 here).	 This	 is	 confirmed	 by	 significant	

vertical	turbulent	fluxes	calculated	at	the	lower	ADV	location;	and	implies	that	



	

220	
	

active	momentum	exchange	and	sediment	mobilization	 take	place	well	 into	

the	 outer	 region	 of	 the	 wave‐aligned	 current	 flow.	 This	 warrants	 a	 re‐

assessment	 of	 the	 existing	models	 for	 defining	 the	 extent	 of	 the	 combined	

wave‐current	 boundary	 layer	 thickness,	 and	 the	 invalidity	 of	 the	 zero‐flux	

condition	 commonly	 imposed.	 With	 opposing	 currents,	 nonetheless,	 the	

conditions	presented	 in	 this	 study	 indicate	very	 strong	dissipation	of	 these	

coherent	eddies	(within	3	waves)	and,	in	light	of	the	findings	of	chapter	5	and	

the	proposed	conceptual	model	in	§5.4,	no	sustained	suspension	clouds	within	

the	water	columns	in	the	opposing	current	case	will	take	place.	Holmedal	et	al.	

(2013)	 have	 shown,	 numerically,	 that	 the	 net	 sediment	 transport	 is	 in	 the	

direction	of	the	current,	both	for	currents	following,	or	opposing	the	direction	

of	wave	propagation;	and,	for	linear	waves,	larger	net	transport	in	opposing	

flows.	 This	 contradicts	 observations	 presented	 here,	 with	 more	 active	

transport,	and	episodic	transitions	to	mass	layer	transport	(akin	to	sheet	flow)	

at	 flow	 reversal	 in	 aligned	 flows,	 compared	 to	 sharply	 defined	 yet	 rapidly	

decaying	suspensions	by	flow	reversal	followed	by	advection	of	these	clouds	

by	the	current	in	the	opposing	flows.	Nonetheless,	the	aforementioned	study	

acknowledge	 that	 their	 findings	 may	 be	 tied	 to	 the	 imposed	 zero‐flux	

conditions	and	linear	summation	of	current	and	near‐bed	orbital	velocities	at	

the	 edge	 of	 the	 boundary	 layer	 which	 yields	 a	 more	 current	 dominated	

situation	 for	 opposing	 currents	 compared	 with	 aligned	 wave‐current	 flow.	

This	also	raises	the	point	that	the	relative	magnitude	of	the	current	compared	

to	the	waves	will	be	important	in	dictating	the	observed	outcome.	

Finally,	 the	 interest	 in	structural	studies	 focusing	on	statistical	attributes	of	

stress	 and	 momentum	 exchange	 by	 coherent	 structures	 in	 turbulent	 fluid	

flows	 is	 commonly	 questioned.	 Lozano‐Duran	 et	 al.	 (2012)	 argued	 that	

elucidating	 how	 these	 structures	 relate	 to	 each	 other	 and	 how/why	 they	

evolve	 in	 time	 offer	 the	 most	 interesting	 results,	 and	 not	 the	 kinematic	

description	 of	 these	 motions	 in	 individual	 flow	 configurations.	 Three‐

dimensional,	 dynamical	 studies	 of	 energy	 or	 momentum	 transfer	 between	

different	flow	structures	and	across	different	scales	are	rather	recent,	limited	

by	the	need	for	time‐resolved	information	in	the	three	dimensions;	and	remain	



	

221	
	

constrained	by	the	choice	of	the	structures	to	track.	Numerically,	this	is	limited	

by	the	expensive	computational	requirements	needed	to	resolve	all	scales	of	

motion	 in	 a	 multi‐phase	 fluid.	 In	 field	 scale	 studies,	 this	 level	 of	 detailed	

measurement	 is	 still	 elusive,	 though	 emerging	 technologies	 are	 quite	

promising	(e.g.	 field	deployable	planar	particle	image	velocimetry	(Nayak	et	

al.,	2015)).	Therefore,	advanced	computational	techniques	are	relied	upon	to	

extract	temporal	and	spatial	information	on	fluid	motion	(Reynolds	stresses	

and	 quadrant	 events)	 and	 suspended	 particles,	 often	measured	 at	 discrete	

locations	with	the	flow.	This	is	warranted	given	that	quadrant	event	motions,	

often	considered	manifestations	of	the	passage	of	coherent	structures,	reside	

at	 the	top	of	 the	turbulent	energy	cascade	(ibid.),	and	are	 important	 for	 the	

transfer	of	momentum	and	generation	of	turbulent	energy.	An	assessment	of	

shear	stress	and	its	distribution	across	different	quadrant	events	as	well	as	its	

variability	 in	 time	often	provides	a	better	account	of	 sediment	entrainment	

and	transport	(Heathershaw,	1979;	Keylock	et	al.,	2014).	What	remains	to	be	

explained	is	the	feedback	of	the	suspended	particles,	once	entrained,	on	the	

vortex	structure	itself.	Unfortunately,	the	limitations	of	this	experiment	meant	

that	no	joint	analysis	of	the	temporal	and	spatial	attributes	of	the	turbulence	

and	suspension	signals	could	be	undertaken.	Advanced	visualisation	studies,	

data	 analysis	 techniques	 and	 numerical	 simulations	 	 reveal	 complex	

interactions	 between	 passing	 coherent	 energy	 structures	 and	 sediments	 in	

suspension,	 such	 as	 particle	 response	 to	 turbulent	 fluctuations	 in	 the	

frequency	domain	(Liu	et	al.,	2012),	and	modifications	of	 the	mean	velocity	

profile	by	the	dispersed	sediments	(Ji	et	al.,	2013).	 	The	results	of	Chapter	5	

suggest	that	the	maintenance	of	suspension	clouds	within	the	water	column	is	

dictated	by	the	continued	supply	of	turbulent	energy	through	vortex	clusters.	

Whether	similar	mechanisms	operated	in	combined	flow,	and	what	influence	

does	the	rapid	dissipation	in	wave‐opposing	currents	have	on	these	clusters,	

remain	 to	 be	 ascertained.	 Furthermore,	 the	 role	 of	 wave	 frequency	 on	 the	

production	and	dissipation	of	energetic	clusters	within	combined,	aligned	and	

opposing	wave‐current	flow	is	also	of	interest,	particularly	where	short	and	

long	periods	are	superimposed	(e.g.	 sea	and	swell	conditions	on	a	beach	or	

tidal	inlet	under	flooding	and	ebbing	tides.).	This,	in	turn,	raises	the	question	
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of	amplitude	and	frequency	modulation	of	different	scale	eddies,	such	as	the	

superposition	of	multiple	scales	observed	higher	within	the	core	flow	in	this	

study.	
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Chapter 7.  

Summary, Conclusions and 
Recommendations 

	
“When	dealing	with	water,	first	experiment.	Then,	use	judgement.”	

Leonardo	da	Vinci	(Price,	1978)		
																																																	

7.1	Introduction	

Turbulence	resides	at	the	‘noisy’	end	of	a	spectrum	of	drivers	of	morphological	

change,	and	as	a	sub‐grid	scale	phenomenon	presents	a	formidable	challenge	

for	 better,	 robust	 models	 of	 sediment	 transport	 in	 the	 coastal	 zone.	 The	

mobilisation	and	transport	of	non‐cohesive	sediment	in	suspension	in	coastal	

benthic	 boundary	 layers,	 whilst	 having	 received	 considerable	 scholarly	

interest,	 is	 still	 considered	 to	 be	 insufficiently	 understood	 (Aagaard	 and	

Jensen,	2013).	In	particular,	the	intermittent	stirring	of	sediment	by	coherent	

turbulence	 structures	 and	 the	 time‐history	 effects	 of	 suspended	 sediments	

under	 irregular	 wave	 conditions	 in	 the	 shoreface	 are	 often	 highlighted	 as	

pressing	research	needs	(van	Rijn	et	al.,	2013).	Furthermore,	complex	flows	in	

the	 coastal	 zone	 arise	 from	 irregular	 waves	 interacting	 with	 the	 bottom	

topography	 (hence	 shoaling	 and/or	 breaking),	 and	 non‐linear	 interactions	

between	oscillating	motions	of	the	waves,	and	steady	currents	(e.g.	tidal,	or	net	

currents	 induced	 by	 wave	 asymmetry,	 undertow,	 etc.).	 The	 complex	

interactions	and	feedback	mechanisms	between	the	fluid	motion,	the	seabed	

and	the	entrained	particles,	as	well	as	particle‐particle	interactions,	impede	a	

complete	mathematical	description	of	the	problem,	presenting	a	plethora	of	

unsettled	issues	including:	boundary	layer	structure	and	scaling	in	oscillatory	

and	 combined	 wave‐current	 flows	 (including	 velocity	 and	 eddy	 viscosity	

profiles);	 hydrodynamic	 and	 physical	 wall	 roughnesses;	 and	 momentum	

exchanges	(Reynolds’	stresses)	and	sediment	fluxes	by	intermittent,	orderly	

coherent	 structures	within	 chaotic	 turbulent	 flows;	 alongside	 the	 feedback	

imparted	 by	 entrained	 sediment	 on	 these	 coherent	 structures.	 This	 work	
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addressed	 the	 complex	 interactions	 between	 bed‐generated	 coherent	

turbulence	 structures	 and	 suspended	 non‐cohesive	 sediment	 transport	 in	

(non‐breaking)	 wave‐dominated	 environments	 and	 under	 combined	 wave‐

current	flows	through	prototype‐scale	experimental	observations,	focusing	on	

the	structural,	spatial	and	temporal	dynamics	of	these	motions	and	their	role	

in	 sediment	 entrainment.	Two	 scenarios	were	 considered:	 (a)	 shoaling	 and	

breaking	erosive	and	accretive	waves	in	the	nearshore	of	a	sandy	barrier	beach	

(spilling	 and	 plunging	 breakers);	 and	 (b)	 collinear	 steady	 currents	 aligned	

with,	and	opposing	the	direction	of	wave	propagation	over	a	rippled,	sandy	

bed.	

7.2	Summary	of	findings	

7.2.1	 Wave‐induced	 coherent	 turbulence	 structures	 and	 nearshore	

sediment	resuspension		

Measurements	 of	 flow,	 bed	 morphology	 and	 suspended	 sediment	 in	 the	

nearshore	 of	 a	 prototype‐scale	 sandy	 barrier	 beach	 collected	 within	 the	

Barrier	 Dynamics	 Experiment	 II	 were	 analysed	 for	 irregular,	 erosive	 and	

accretive	wave	 conditions.	 Statistical	 analysis	 of	 the	 time	 series	 of	 velocity	

fluctuations	 showed	 high	 anisotropy	 in	 the	 turbulence	 records	 and	 an	

intermittent	nature	of	the	momentum	exchange	both	within	and	outside	the	

wave	benthic	 boundary	 layer.	 Interestingly,	 the	 transverse	 plane	 of	motion	

was	 markedly	 anisotropic	 in	 both	 condition.	 This	 is	 commonly	 linked	 to	

transverse	 secondary	 flows	 induced	 by	 large	 streamwise	 motions	 often	

attributed	to	counter‐rotating	spanwise	vortex	pairs	near	low‐speed	regions	

of	the	flow.	Quadrant	analysis	was	employed	to	quantify	the	intermittency	of	

Reynolds	stresses	in	three	planes	and	the	fractional	contribution	of	quadrant	

events	to	stress,	and	to	assess	whether	this	aforementioned	behaviour	applied	

to	 the	 tested	 conditions.	 In	 accretive	 wave	 conditions,	 a	 dominance	 of	

streamwise‐skewed	motions	(Q1‐Q4	events)	characterised	the	flow,	with	the	

majority	 of	 stress	 contributed	 by	 counter‐rotating	 Q2‐Q4	 motions	 in	 the	

direction	of	wave	propagation,	and	hence	a	dominance	of	shore‐ward	directed	

motion.	Conversely,	erosive	conditions	were	dominated	by	upward	motions	

(Q1	and	Q2	events)	lifting	and	sweeping	the	bed	sediment	into	transport	by	
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the	 undertow	 current	 in	 the	 offshore	 direction.	 The	 accretive	 conditions,	

characterised	by	plunging	breakers	in	the	surf	zone,	 featured	more	extreme	

exchanges	of	momentum	when	the	oscillatory‐component	was	filtered	out	of	

the	turbulence	record,	compared	with	the	erosive	conditions	(characterised	

by	spilling	and	plunging	breakers).	Secondary	spanwise	flows	were	confirmed	

by	spectral	analyses	which	identified	a	standing	transverse	wave	across	the	

flume,	and	had	a	visible	impact	on	sediment	transport	along	the	beach	(across	

flow).	This	highlights	a	three‐dimensional	problem,	particularly	applicable	to	

conditions	where	 transverse	 flows	are	 significant,	 including	 tidal	 inlets	and	

embayments.	 The	 spectral	 analysis	 of	 turbulence	 further	 revealed	

independence	from	the	effect	of	wave	groups,	with	the	turbulent	energy	and	

ensuing	suspensions	lying	within	the	wave	frequency	range	and	through	the	

inertial	 sub‐range;	 with	 a	 significant	 influence	 of	 flow	 reversal	 and	 hence	

vortex	 shedding	 from	 the	 bedforms.	 Sediment	 excursions	 beyond	 the	

boundary	 layer	 could	 be	 attributed	 to	 the	 formation	 of	 jets	 between	

consecutive	vortices	shed	by	the	bedforms.	Wavelet	analysis	confirmed	that	

significant	 suspension	 events	 emerge	 from	 mean‐flow‐induced,	 near‐bed	

clouds	of	stirred	sediments,	and	are	maintained	within	the	water	column	(to	

be	transported	by	net	currents)	as	long	as	energy	is	supplied	by	convected	or	

locally	 formed	 vortex	 clusters,	 with	 some	 delay	 in	 temporal	 response.	 The	

simultaneous	presence	of	the	two	scales	of	motions	suggested	a	modulating	

effect	of	the	larger	clusters	on	smaller	motion	near	the	bed.			

7.2.2	Space‐time	dynamics	of	coherent	turbulence	structures	in	combined	

wave‐current	flows	

Similar	measurements	of	flow,	bed	morphology	and	suspended	sediment	were	

collected	under	combined	wave‐current	flows	in	the	HR	Wallingford	Fast	Flow	

Facility,	with	currents	aligned	to,	and	opposing	the	direction	of	propagation	of	

non‐breaking	regular	waves.	Statistical	analysis	of	flow	properties	measured	

at	 two	 heights	 within	 the	 core‐flow	 (outside	 the	 theoretical	 extent	 of	 the	

combined	 wave‐current	 benthic	 boundary	 layer)	 indicate	 different	

mechanisms	at	work	within	the	core	layer,	with	mean	flow	dominating	higher	

up,	and	turbulence	lower,	 in	the	aligned	flow	case.	Fewer	statistical	outliers	
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and	better	correlations	were	evident	in	the	wave‐opposing	current	core	flow.	

Wave	 steepening	 and	 reduction	 in	 kinetic	 energy	were	 also	 evident	 in	 the	

opposing	current	scenario.	Turbulence	in	wave‐aligned	and	opposing	currents	

exhibited	vertical	variations,	yet	similar	magnitudes,	of	mean	turbulent	kinetic	

energy,	Reynolds	stresses	and	rates	of	production	and	dissipation;	with	more	

pronounced	 variance	 in	 these	 variables	 in	 wave‐opposing	 currents.	

Temporally,	however,	different	mechanism	are	highlighted.			With	similar	bed	

morphologies	characterised	by	vortex	type	ripples	in	both	tested	cases,	more	

active	 sediment	 mobilisation	 and	 transport	 	 were	 observed	 in	 the	 aligned	

current	case,	with	more	persistent	sediment	clouds	generated	through	vortex	

shedding	at	flow	reversal,	and	episodic	shifts	into	mass	layer	transport	(sheet	

flow)	at	flow	reversal	 in	aligned	flows,	compared	to	defined	suspensions	by	

flow	reversal	followed	by	advection	and	rapid	dissipation	of	these	clouds	by	

the	current	in	the	opposing	flows.	Quadrant	analysis	showed	that	in	a	time‐

averaged	sense,	all	types	of	event	structures	are	equally	represented	for	both	

tested	conditions.	Nonetheless,	the	most	extreme	stresses,	which	occur	for	a	

very	 small	 fraction	 (~2.5%)	 of	 time	 were	 dictated	 by	 the	 mean	 current	

direction.	 The	 majority	 of	 stress	 is	 contributed	 by	 counter‐rotating	 vortex	

pairs	with	violent	sweeps	(Q4	events)	lower	within	the	core	flow	and	ejections	

(Q1	 events)	 higher	 up	 in	 aligned	 wave‐current	 flow	 (a	 phase‐difference	

suggests	 advection	 higher	 up);	 while	 counter‐rotating	 pairs	 of	 inward	 and	

outward	 interactions	 (Q1	 and	 Q3,	 respectively)	 are	 prominent	 in	 opposing	

flows,	again	a	sign	of	the	current	direction	dictating	the	prevalent	motions.	The	

existence	of	 counter‐rotating	pairs	often	 relates	 to	wall‐attached	 structures	

associated	with	vortex	clusters.	The	fact	that	these	were	measured	within	the	

core	 flow	 indicates	that	 these	coherent	eddies	extend	beyond	the	boundary	

layer.	 The	 streamwise‐vertical	 stress	 imprints	 of	 coherent	 eddies	

corresponding	to	vortex	shedding	from	bedforms	in	the	aligned	wave‐current	

case	were	 longer	 lived	 lower	within	 the	 outer	 flow	 region,	 and	within	 that	

frequency	 range,	 did	 not	 correspond	 in	 time	 to	 those	 observed	 higher	 up.	

Similarly,	 their	 spectra	 lower	 within	 the	 flow	 indicated	 superposition	 of	

multiple	scales	of	eddies	within	 the	energy	cascade	(݇ିଵ	inverse	power	 law	

spectrum)	compared	to	a	well‐defined	Kolmogorov‐Obukhov	(݇ିହ/ଷ)	rate	of	
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inertial	dissipation	higher	up.	This	implies	that	the	core	flow	(outside	the	wave	

boundary	 layer)	 is	 not	 uniform	 (purely	 current	 dominated),	with	 its	 lower	

portion	comprising	eddies	that	are	both	advected	and	locally	generated;	and,	

higher	 up,	 only	 advected	 eddies	 are	 present.	 This	 can	 be	 considered	 as	 a	

transition	layer	between	the	combined	wave‐current	region	and	the	core	flow.	

With	 such	 differences	 often	 attributed	 to	 eddy	 viscosity	 structure	 and	

variability	in	time,	these	findings	warrant	a	re‐assessment	of	existing	models	

describing	 combined	 wave‐current	 flows,	 particularly	 with	 regards	 to	

imposed	zero‐flux	conditions	commonly	applied	at	the	edge	of	the	boundary	

layer.	This	also	merits	a	shift	towards	a	momentum‐exchange	based	definition	

of	boundary	layer	structure,	rather	than	classical	time‐invariant	formulations.		

7.3	Recommendations	for	future	work	

Perhaps	the	major	limitation	of	the	two	studies	presented	in	this	body	of	work	

is	the	attempt	to	describe	a	complex	three‐dimensional,	time‐varying	problem	

through	 discrete	measurements	 of	 turbulent	 fluctuations	 at	 two	 elevations	

above	the	bed.	Within	this	limitation,	complex	analyses	were	applied	to	extract	

temporal	and	 frequency	properties	at	 these	 two	elevations,	but	an	accurate	

description	of	the	problem	necessitates	profile	or	tomographic	measurements	

of	flow	at	high	frequency,	so	that	it	is	comparable	with	numerical	studies.	If	

correlated	measurements	 of	 the	 three‐dimensional	 stresses	were	 recorded,	

then	tools	commonly	applied	in	numerical	simulations	can	be	employed,	such	

as	 using	 joint‐probability	 density	 functions	 in	 association	 with	 percolation	

theory,	offers	a	good	means	of	assessing	the	spatial	and	temporal	behaviour	of	

quadrant‐defined	vortex	pair	clusters,	and	their	level	of	connectivity,	following	

the	work	of	Lozano‐Duran	et	al.	(2012)	and	Lozano‐Durán	and	Jiménez	(2014).		

The	 local	 topology	 of	 these	 motions	 can	 be	 identified	 from	 invariants	 of	

velocity	 gradients	 as	 presented	 in	 Buchner	 et	 al.	 (2016).	 Non‐intrusive	

techniques	which	 can	 resolve	 turbulence	 and	 particle	 interactions,	 such	 as	

tomographic	particle	image	velocimetry,	or	computed	tomography	are	ideal	to	

eliminate	 secondary	 effects	 within	 the	 flow.	 From	 a	 practical	 perspective,	

several	variables	have	not	been	accounted	for	in	the	work	presented,	including	

the	 importance	 of	 wave	 periods	 in	 both	 experiments,	 and	 the	 relative	
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magnitude	 of	 wave	 and	 currents	 in	 the	 combined	 flow	 experiment.	

Concurrent,	collocated	measurements	of	suspension	and	turbulence	have	also	

proved	 problematic,	 and	 are	 necessary	 for	 joint	 analysis	 of	 turbulence	 and	

sediment	fluxes.	

From	 a	 theoretical	 perspective,	 the	 studies	 presented	 highlight	 the	

intermittent	nature	of	momentum	exchanges	and	sediment	suspension,	posing	

a	significant	challenge	to	classical	models	such	as	the	Rouse	theory.	The	main	

limitation,	remains	in	the	formulation	of	eddy‐viscosity	and	the	often‐assumed	

passive	 standing	 of	 sediments	 within	 the	 flow.	 	 Scaling	 mean	 flow	 and	

Reynolds	stresses	remain	one	of	the	outstanding	challenges	in	the	field,	and	

yet,	 a	 number	 of	 unresolved	 issues	 persist,	 including	 parameterising	 bed	

roughness,	 and	 the	 relationship	 between	 sediment	 diffusivity	 and	 eddy	

viscosity.	The	feedback	imparted	by	suspended	particles,	once	entrained,	on	

the	 turbulent	 structures,	 often	 termed	 drag	 reduction	 remains	 poorly	

understood,	 if	 not	 altogether	 contested	 for	 non‐cohesive	 sediments.	

Multiphase,	 continuum,	and	mixture	 theory	models	are	gaining	pace	 in	 this	

regards,	 yet	 are	 inherently	 more	 complex	 and	 limited	 by	 computational	

processing	power.	For	the	presented	studies,	a	numerical	investigation	route	

focusing	 on	 the	 hydrodynamics	 alone	may	 be	 of	 use,	 such	 as	 a	 large	 eddy	

simulation	of	 flow	over	a	rigid	bedform,	 to	compare	 the	observed	quadrant	

behaviour	and	inferred	vortex	clustering	for	both	irregular	waves	as	well	as	

combined	 wave	 current	 flows.	 This	 will	 ultimately	 be	 limited	 by	 the	

parametrisation	of	the	sub‐grid	scale	turbulence	employed,	but	will	shed	light	

on	the	production	and	dissipation	of	turbulent	kinetic	energy,	as	well	as	map	

the	 	 spatial	 and	 temporal	 evolution	 of	 these	 structures.	 Furthermore,	 the	

modulating	 effect	 of	 small	 energetic	 structures	 on	 the	 frequency	 and	

amplitude	 larger	 flow	 structures,	 so	 far	 limited	 to	 studies	 of	 high‐speed	

unidirectional	 flows	 in	 the	 literature,	 warrants	 further	 investigation	 in	

oscillatory	and	combined	wave	current	flows.	

The	 interactions	between	coherent	structures	and	bed	morphology	are	also	

poorly	understood.	Beyond	vortex	shedding,	little	is	known	about	the	role	of	

spatially	and	temporally	varying	bed	roughness	in	the	generation	of	coherent	
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eddies	and	the	roles	of	skin	friction	and	form	drag	in	defining	the	boundary	

layer	 structure.	 	 Experiments	were	 recently	 conducted	 at	 the	 CT	 Scan	 Lab	

Facility	(INRS,	University	of	Quebec)	whereby	near	bed	profiles	of	turbulence	

(using	 a	 profiling	 ADV),	 along‐flow	measurements	 of	 flow	 velocities	 (using	

planar	particle	image	velocimetry),	and	high	resolution	(sub‐millimetre	scale)	

measurements	 of	 bed	 morphology	 (through	 X‐Ray	 computed	 tomography)	

will	 be	 analysed	 to	 shed	 light	 on	 the	 interactions	 between	 flow,	 coherent	

turbulence,	 bed‐morphology	 and	 suspended	 particles	 under	 laboratory	

conditions.	 The	dataset	 collected,	 based	 on	 recommendations	 of	 this	 study,	

could	 potentially	 shed	 light	 on	 near	 bed	 sediment‐turbulence	 interactions,	

including	generation,	 evolution	and	dissipation	of	 coherent	 structures	 from	

bedforms	tracked	spatially	and	in	time;	the	influence	of	varying	bed	roughness,	

including	bed	permeability;	and	the	relationship	between	hydrodynamic	and	

physical	roughness.		

7.4	Conclusions	

The	main	conclusions	of	this	study	can	be	summarised	as	follows:	

 Turbulence	 under	 irregular	 waves	 is	 characterised	 by	 intermittent	

momentum	exchanges,	with	 large	wave‐induced	 coherent	 structures	

within	 the	 benthic	 boundary	 layer,	 corresponding	 to	 the	mean	 flow	

properties.	 These	 structures	 can	 be	 described	 by	 a	 3D	 bursting	

sequence	 which	 plays	 a	 significant	 role	 in	 moving	 and	 maintaining	

sediment	 in	 suspension.	 The	 temporal	 variability	 of	 these	 events	

dictates	the	net	onshore	and	offshore	transport	in	erosive	and	accretive	

wave	conditions	in	the	nearshore.	Periods	associated	with	a	succession	

of	powerful	turbulent	events	cause	powerful	suspension	clouds	across	

multiple	 frequency	 scales,	with	 the	 bulk	 of	 suspension	 attributed	 to	

wave‐induced	fluctuations	of	low	frequencies,	which	modulate	smaller,	

rapidly	 decaying	 high‐frequency	 turbulence	 extending	 outside	 the	

boundary	layer.	As	larger	structures	persist	for	a	considerable	amount	of	

time,	suspensions	near	the	bed	are	amplified	before	decaying	as	the	supply	

of	momentum	ceases.	Outside	the	boundary	layer,	momentum	transfer	
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via	turbulent	fluctuations	maintains	the	suspensions	until	their	energy	

is	depleted.		

 In	combined	wave‐current	flows,	the	current	plays	a	significant	role	in	

dictating	the	prevalence	of	specific	turbulent	motions	within	a	bursting	

sequence,	while	the	regular	nature	of	the	wave	implies	random	motions	

occurring	 equally	 in	 all	 directions.	 The	 current‐aligned	 structures	

contribute	 significantly	 to	 the	 stress,	 and	 display	 characteristics	 of	

wall‐attached	 eddies	 formed	 by	 paring	 of	 counter‐rotating	 vortices	

with	an	associated	detached	vortex	cluster.	 	 In	aligned	wave‐current	

flows,	the	main	plane	of	motion	(streamwise‐vertical)	is	characterised	

by	a	local	balance	between	turbulent	production	and	dissipation,	and	

hence	displays	 the	 ‘universal’	 inertial	 cascade	of	energy	well	outside	

the	boundary	layer.	Closer	to	the	bed,	however,	a	superposition	of	eddy	

cascades	 is	observed,	often	 linked	to	 intermittent	coherent	 turbulent	

structures.	From	a	3D	perspective,	there	appears	to	be	an	intermediate	

range	 between	 energy	 production	 and	 dissipation,	 with	 co‐existing	

multi‐scale	 events.	When	 the	 current	 opposes	 the	 direction	 of	wave	

propagation,	 coherent	 turbulence	 structures	appear	 to	 rapidly	break	

before	 they	 are	 fully	 formed,	 with	 a	 high	 rate	 of	 energy	 dissipation	

evident	within	the	flow.	The	adverse	current	tends	to	be	most	effective	

in	 breaking	 the	 stress‐bearing	 structures	 generated	 within	 the	

combined	boundary	layer	in	the	dominant	plane	of	motion	as	they	are	

ejected	 higher	 in	 the	water	 column,	with	 some	 of	 the	 energy	 forced	

laterally	as	they	decay.	Suspended	clouds	through	vortex	shedding	thus	

cease	 rapidly	 in	 opposing	 flows,	 compared	 to	 more	 continuous	

sediment	transport	in	aligned	flow.	

 Collectively,	 these	 results	 indicate	 that	 bed‐induced	 coherent	

turbulence	 structures	 play	 a	 significant	 role	 in	 the	 entrainment	 and	

transport	of	suspended	sediment	in	flows	typically	encountered	in	the	

coastal	 environment,	 with	 complex	 feedback	 mechanisms	 between	

fluid,	 bed	 morphology	 and	 suspended	 particles.	 This	 merits	 a	 re‐

evaluation	of	coastal	sediment	transport	models,	and	a	shift	towards	a	

stochastic	description	of	the	problem.	
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A1-1 

Appendix 1. 

Eddy viscosity closures in RANS 

models

A1.1 Linear Eddy viscosity models 

Linear eddy viscosity models close the RANS equations using a Boussinesq-type 

approximation between the Reynolds’ stress and the mean strain rate (Equation A.1). A 

model as such can be extracted  by analysing simple shear flows in local equilibrium 

(Gatski & Rumsey 2002). 

𝜏𝜏𝑖𝑖𝑖𝑖 =
2
3
𝜅𝜅𝛿𝛿𝑖𝑖𝑖𝑖 − 2𝜈𝜈𝑇𝑇𝑆𝑆𝑖𝑖𝑖𝑖 (𝐸𝐸𝐸𝐸 𝐴𝐴1.1) 

In such models, the isotropic part is integrated into the pressure term (equation 2.46 in 

Chapter 2), and the turbulence field is coupled to the mean field through eddy viscosity, 

which is a component of an effective viscosity (𝜈𝜈 + 𝜈𝜈𝑇𝑇) in the diffusive term of RANS 

equations (ibid.) This offers a numerically robust formulation compared to having an 

explicit expression of the stress gradient in the RANS equation, given (𝜈𝜈𝑇𝑇 > 𝜈𝜈).  

In other words, the role of turbulence is to boost the effective viscosity from 𝜈𝜈 to 𝜈𝜈𝑇𝑇 , 

where 𝜈𝜈𝑇𝑇 is presumed much larger than 𝜈𝜈 (Davidson 2004). Thus, combining equation 

A1.1 into the RANS equation gives: 

𝐷𝐷�𝑈𝑈𝑗𝑗
𝐷𝐷�𝑡𝑡

+
1
𝜌𝜌
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

= �(𝜈𝜈 + 𝜈𝜈𝑇𝑇) 
𝜕𝜕𝑈𝑈𝚤𝚤�
𝜕𝜕𝑥𝑥𝑗𝑗

 � 
(𝐸𝐸𝐸𝐸 𝐴𝐴1.2) 

A multitude of linear eddy viscosity models have been proposed from the simpler 

algebraic models to the more complex differential models, and as such a hierarchy exists, 

whereby linear models are classified as zero –, half –, one – and two – equation models.  



A1-2 

 

A1.1.1 Zero and half equation models 

Zero equation models are algebraic models, i.e., in which eddy viscosity is defined 

algebraically rather than differentially.  The first, and arguably simplest, of these closure 

schemes is the mixing length theory proposed by Prandtl in 1925, which noted an analogy 

between Newton’s law of viscosity and Reynolds’ stress (the exchange of momentum) 

when averaged over time, for plane shear with unidirectional mean flow (Davidson 2004, 

Gatski & Rumsey 2002, Glover et al 2011, Pope 2000). Prandtl assumed the eddy viscosity 

to have the following form: 

𝜈𝜈𝑇𝑇 = 𝜌𝜌𝑙𝑙𝑚𝑚2  . �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�            (𝐸𝐸𝐸𝐸 𝐴𝐴1.3) 

and shear stress,  

𝜏𝜏𝑥𝑥𝑥𝑥 = −𝜈𝜈𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

           (𝐸𝐸𝐸𝐸 𝐴𝐴1.4) 

where 𝑙𝑙𝑚𝑚 is the mixing length, specified as a function of position for any given flow. 

Prandtl derived the logarithmic velocity distribution near a solid surface by using the 

mixing length theory and assuming the scale of velocity fluctuations near the boundary 

approximates the shear velocity, 𝑢𝑢∗.  In the logarithmic region of the boundary layer, he 

argued that the mixing length must be proportional to  distance, hence: 𝒍𝒍𝒎𝒎 = 𝜿𝜿 𝒛𝒛,  but 

given 𝝂𝝂𝑻𝑻~ 𝒖𝒖′𝒍𝒍𝒎𝒎, it follows that 𝝂𝝂𝑻𝑻 = 𝒖𝒖∗𝜿𝜿𝒛𝒛 (Kundu et al 2008), with 𝜿𝜿 being von Karman’s 

constant .  

Despite the simplicity of these relationships, they provide useful insight into the structure 

of turbulent flows. The problem, however, lies in specifying the length scale, which 

depends on flow geometry, as an alternative to specifying the eddy viscosity. This merely 

replaces one problem with another. The mixing-length theory only works for single – 

length and single – time scales and thus another flaw lays in the intrinsic assumption that 

linear momentum is retained as the fluid moves and is suddenly given up upon arrival to 

the new layer. In turbulent flows,  there is no clear separation between scales and so the 

analogy between turbulent transport and molecular transport, which undermines the 

theory, is unrealistic (Speziale 1991). It is widely accepted that the mixing – length theory 
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derives its validity solely on the grounds of dimensional necessity (Kundu et al 2008), 

and as such has fallen into disfavour (Tennekes & Lumley 1972).   

Nonetheless, the mixing-length theory is useful for estimating the order of magnitude of 

eddy viscosity, especially where the flow geometry is well defined, (e.g. in simple one-

dimensional shear flows); hence its popularity in aeronautical and other technological 

flows.  Two famous derivatives of the mixing length theory applied to compressible flows 

are  Cebeci-Smith (Cebeci & Smith 1974) and Baldwin-Lomax  (Baldwin & Lomax 1978). 

Both models have two-layers of eddy viscosity, and inner and outer layer, where the outer 

layer mixing  length scale is described based upon displacement thickness from the edge 

in the former model, and upon vorticity in the latter; with extensions to account for 

pressure gradients, intermittency, and wakes (Gatski & Rumsey 2002, Pope 2000). 

However, this leads to an innate dependency on grid structure; and in their original form, 

the models are restricted to attached flows. However, this has not affected popularity of 

a modified version of the Baldwin-Smith approach in modelling three-dimensional 

vorticity (ibid.).  

Another two-layer model was developed by Johnson and King (Johnson & King 1985) 

specifically for strong adverse pressure gradients (hence not proposed as a universal 

model). This model, so-called half-equation as it solves ordinary (rather than partial) 

differential equations, emphasises advection effects whereas turbulent transport and 

diffusion are deemed less significant and solves for the maximum shear stress. 

A1.1.2 One – equation models 

One–equation turbulence closure models solve one transport equation, generally the 

turbulent kinetic energy, 𝑘𝑘 = 1
2

 𝑞𝑞2 = 𝑢𝑢𝚤𝚤𝑢𝑢𝚤𝚤�����, as suggested by both Kolmogorov and Prandtl, 

with the length scale, 𝑙𝑙𝑚𝑚, specified algebraically to define the turbulent viscosity: 

𝜈𝜈𝑇𝑇 = 𝑐𝑐 𝑘𝑘
1
2 𝑙𝑙𝑚𝑚               (𝐸𝐸𝐸𝐸 𝐴𝐴1.5) 

where c is a constant (Pope 2000). Subsequently, Reynolds stresses can be obtained from 

the turbulent-viscosity hypothesis (equation 1.9), and the RANS equations are solved for 

time average velocity and pressure fields. Recent one-equation models such as  Spalart–
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Allmaras (Spalart & Allmaras 1994), derived empirically using dimensional analysis and 

invariance, solve a partial differential equation of transport for eddy viscosity itself. The 

advantage of this model is being local, and hence independent of grid structure and with 

low numerical costs, making it popular in industrial applications.  The major drawback is 

that the length scale, 𝑙𝑙𝑚𝑚, must be specified (generally by guesswork), and it tends to yield 

excessive diffusivity (Pope 2000).  

A1.1.3 Two–equation models 

In contrast to previous closures which specify a mixing-length to solve for the kinetic 

energy of the flow, two-equation models attempt to solve two additional (partial-

differential) equations for two turbulence quantities pertaining to the velocity and length 

scales.  Most often, these are the turbulent kinetic energy, 𝑘𝑘, equation in association with 

an equation for the turbulent dissipation rate, 𝜀𝜀, or the specific dissipation rate (per unit 

𝑘𝑘), 𝜔𝜔; from which length (𝐿𝐿 = 𝑘𝑘
3
2/𝜀𝜀) and time (𝜏𝜏 = 𝑘𝑘/𝜀𝜀) scales can be inferred (Pope 

2000).  It follows that this approach to closure forms a complete system; with no need to 

specify flow–dependent properties such as the mixing-length. As such, two-equation 

models (𝑘𝑘 − 𝜀𝜀 𝑜𝑜𝑜𝑜 𝑘𝑘 − 𝜔𝜔 and variations thereof, including realisable models and 

renormalisation group RNG models) have become the standard models used in science 

and industry to solve/simulate engineering flow problems. Nonetheless, the founding 

cornerstone of two – equation models remains the eddy-viscosity hypothesis as proposed 

by Boussinesq. Thus, eddy viscosity is specified as: 

𝜈𝜈𝑇𝑇 = 𝐶𝐶𝜇𝜇.
𝑘𝑘2

𝜀𝜀
=  𝐶𝐶𝜇𝜇𝑘𝑘𝑘𝑘            

(𝐸𝐸𝐸𝐸 𝐴𝐴1.6) 

where 𝜏𝜏 = 𝑘𝑘/𝜀𝜀 and 𝐶𝐶𝜇𝜇 is just one of a multitude of model constants ; or, alternatively: 

𝜈𝜈𝑇𝑇 =
𝑘𝑘
𝜔𝜔

                  (𝐸𝐸𝐸𝐸 𝐴𝐴1.7) 

with 𝜀𝜀 = 𝐶𝐶𝜇𝜇𝑘𝑘𝑘𝑘 in the 𝑘𝑘 − 𝜔𝜔 formulation. 

In 𝑘𝑘 − 𝜀𝜀 models, the turbulent kinetic energy is derived from the momentum equation as: 



A1-5 

 

𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝑃𝑃 −  𝜀𝜀 + 𝐷𝐷            (𝐸𝐸𝐸𝐸 𝐴𝐴1.8) 

where 𝜀𝜀 is the “isotropic” turbulent dissipation rate; and D account for the combined 

effects of turbulent transport and viscous diffusion, and P stands for the turbulence 

production, given by: 

𝑃𝑃 =  −𝜏𝜏𝑖𝑖𝑗𝑗 .
𝜕𝜕𝑈𝑈𝑖𝑖  
𝜕𝜕𝑥𝑥𝑗𝑗

                (𝐸𝐸𝐸𝐸 𝐴𝐴1.9) 

or, as they appear in their original form, in three dimensions (Launder et al 1975): 

𝑃𝑃𝑖𝑖𝑖𝑖 =  −� 𝑢𝑢𝚤𝚤𝑢𝑢𝑘𝑘������.
𝜕𝜕𝑈𝑈𝑖𝑖  
𝜕𝜕𝑥𝑥𝑘𝑘

+  𝑢𝑢𝚥𝚥𝑢𝑢𝑘𝑘������.
𝜕𝜕𝑈𝑈𝑖𝑖  
𝜕𝜕𝑥𝑥𝑘𝑘

�              (𝐸𝐸𝐸𝐸 𝐴𝐴1.10) 

With Boussinesq’s assumption of isotropic eddy viscosity (isotropic partitioning of stress 
components), the production rate can be written as: 

𝑃𝑃 = 2𝜈𝜈𝑇𝑇(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘) = 2𝜈𝜈𝑇𝑇 . 𝜂𝜂2             (𝐸𝐸𝐸𝐸 𝐴𝐴1.11) 

 (whence, the scalar invariance of strain, 𝜂𝜂 =  �𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘 ). 

Similarly, the exact equation for the dissipation rate can be derived, but the issue here 

lies within the fact this represents a cascade of energy flow from large scale motions to 

the dissipative range. The diffusion term, on the other hand, can be defined using a 

gradient-diffusion hypothesis. Therefore the standard approach is to derive an 

expression for dissipation empirically and a multitude of model coefficients have been 

proposed, but the general expression was described by Jones and Launder (Jones & 

Launder 1972), and  can be written (using above notation) as: 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

=  ∇. �
𝜈𝜈𝑇𝑇
𝜎𝜎𝜀𝜀

.∇ε� + 𝐶𝐶ε1.
𝑃𝑃𝑃𝑃
𝑘𝑘
− 𝐶𝐶𝜀𝜀2.

𝜀𝜀2

𝑘𝑘
    

(𝐸𝐸𝐸𝐸 𝐴𝐴1.12) 
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where 𝜎𝜎𝜀𝜀 ,  𝐶𝐶ε1,  and 𝐶𝐶𝜀𝜀2 are all model constants. This expression provides satisfactory 

predictions for a diversity of high Reynolds number flows both near and away from the 

wall, and can be simplified for homogeneous shear flows, or modified for decaying 

turbulence, the destruction of dissipation, and  viscosity (damping) effects near the wall 

(Gatski & Rumsey 2002, Goto & Vassilicos 2009, Jones & Launder 1972, Launder et al 

1975, Pope 1975, Pope 2000, Smith & Yakhot 1993, Speziale 1991, Speziale et al 1991, 

Yakhot et al 1989, Yakhot & Orszag 1986, Yoshizawa 1984).  

A1.2 Non-linear and other eddy viscosity models 

Inherent in all linear eddy viscosity models is Boussinesq’s hypothesis which assumes the 

turbulent Reynolds’ stress proportional to the mean rate of strain in the flow. 

Consequently, all such models suffer an intrinsic deficiency in assuming an isotropic eddy 

viscosity and this has led to a new class of models attempting to tackle this inadequacy, 

and these are collectively referred to as non-linear eddy viscosity models (NLEVM). These 

models extend the one-term tensor representation of stress in terms of strain rate 

(Equation 2.1) into a more general form: 

𝜏𝜏𝑖𝑖𝑖𝑖 =
2
3
𝜅𝜅𝛿𝛿𝑖𝑖𝑖𝑖 + �𝛼𝛼𝑛𝑛′ .𝑇𝑇𝑖𝑖𝑖𝑖

(𝑛𝑛) 
𝑁𝑁

𝑛𝑛=1

   
(𝐸𝐸𝐸𝐸 𝐴𝐴1.13) 

where 𝛼𝛼𝑛𝑛′  is a tensorial expansion coefficient (Gatski & Rumsey 2002). The advantage is 

that the anisotropy in stress can thus be captured, and one needs to determine the tensor 

base, 𝑇𝑇𝑖𝑖𝑖𝑖
(𝑛𝑛), and its expansion coefficient  𝛼𝛼𝑛𝑛′   to define this anisotropy, 𝑏𝑏𝑖𝑖𝑖𝑖 : 

𝑏𝑏𝑖𝑖𝑖𝑖 =
𝜏𝜏𝑖𝑖𝑖𝑖
2𝑘𝑘

−
𝛿𝛿𝑖𝑖𝑖𝑖
3

       
(𝐸𝐸𝐸𝐸 𝐴𝐴1.14) 

𝑏𝑏𝑖𝑖𝑖𝑖 =  �𝛼𝛼𝑛𝑛′ .𝑇𝑇𝑖𝑖𝑖𝑖
(𝑛𝑛) 

𝑁𝑁

𝑛𝑛=1

   
(𝐸𝐸𝐸𝐸 𝐴𝐴1.15) 

This representation is the same as its linear counterpart for n =1. However, complexity 

arises when coupling this with the RANS equations, especially in terms of the diffusive 

term. In addition, 𝑏𝑏𝑖𝑖𝑖𝑖 is considered to have a functional dependency of the turbulent 
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kinetic energy (corresponding to the velocity scale) and the isotropic turbulent 

dissipation rate (corresponding to the length scale), as well as the tensors representing 

the mean rate of strain (𝑆𝑆) and mean rotation (𝑊𝑊); [ 𝑏𝑏 = 𝑏𝑏 (𝑘𝑘, 𝜀𝜀, 𝑆𝑆,𝑊𝑊)]. Associated with 

this, the expansion coefficient is dependent on the four former parameters as well as the 

turbulent Reynolds’ number. Therefore, in this class of models, the approach is to 

determine the expansion coefficient, either assuming a polynomial expansion based on 

calibration with experimental data (e.g. quadratic model assessed in Speziale (1991) or 

the cubic model of Craft et al (1996)), or using an explicit algebraic stress models. In the 

latter category, transport equations are solved for individual Reynold stresses, 〈𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗〉, and 

dissipation without the need for Boussinesq’s assumption: 

𝐷𝐷�
𝐷𝐷�𝑡𝑡

〈𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗〉 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

.𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑖𝑖       
(𝐸𝐸𝐸𝐸 𝐴𝐴1.16) 

Here, knowing 〈𝑈𝑈〉, 〈𝑝𝑝〉, 〈𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗〉, and 𝜀𝜀 in the Navier-Stokes equation, both mean-flow 

convection 𝐷𝐷
�

𝐷𝐷�𝑡𝑡
〈𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗〉, and the production tensor, 𝑃𝑃𝑖𝑖𝑖𝑖   form a closed system, and there 

remains a requirement for modelling the dissipation tensor 𝜀𝜀𝑖𝑖𝑖𝑖, the pressure rate-of-

strain tensor,  𝑅𝑅𝑖𝑖𝑖𝑖 , and the Reynolds stress flux, 𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘. For a full treatment of how this is 

done, including the underlying mathematical theories, the reader is referred to (Launder 

et al 2002, Pope 2000, Wilcox 2006). Basically speaking, 𝑅𝑅𝑖𝑖𝑖𝑖  is derived from arguments 

on isotropy and rapid-distortion (such as elliptic relaxation models (Durbin & Pettersen-

Reif 2002)), 𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘 from gradient-diffusion models, 𝑘𝑘 and  𝜀𝜀 (or 𝜔𝜔) from modified 

formulations of equation (1.25) above, with wall-function treatments and redistribution 

terms applied  to the ensuing partial differential equations. Each of the equations 

represents a balance between stress generation, transport, destruction and 

redistribution (return to isotropy). By introducing approximations to the transport 

terms, these models are reduced into algebraic equations, hence forming algebraic stress 

models (ASM) which determine local Reynolds stresses as function of 𝑘𝑘,  𝜀𝜀, and the mean 

velocity gradient.  

Another approach to closure, namely differential second-moment (Reynolds’ stress) 

models (DSM), has been proposed as fundamentally superior to any eddy viscosity model 

(Launder 1989, Leschziner & Lien 2002). DSM models provide the extra turbulent 
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momentum fluxes from the solution of the full transport equations derived from the 

Navier-Stokes equations, where history and local effects are accounted for (Gatski & 

Speziale 1993). Besides solving explicitly for each Reynolds stress component, this 

requires a length-scale supplying equation, for which the sweeping majority of models 

employ the rate of dissipation (Pope 2000). However, since near the wall, 𝑢𝑢𝑢𝑢����/𝑘𝑘 and 𝑣̅𝑣2/𝑘𝑘 

tend to zero, rather than a wall function, damping is obtained by blocking energy 

redistribution via pressure fluctuations, and the wall normal component, 𝑣̅𝑣2  is only 

sustained by pressure-terms that are severely damped as one approached the wall 

(Laurence et al 2005). In the 𝑣̅𝑣2 − 𝑓𝑓 models, 𝑣̅𝑣2 and its source term, 𝑓𝑓, are retained as 

variables in addition to the traditional 𝑘𝑘 and ε.  

DMS models describe both convection and diffusion in differential form, and comply with 

mathematical formalism, that is, they are dimensionally coherent, consistent in terms of 

tensorial order, indifferent to coordinate or material frames, and satisfy realizability 

conditions and the limiting properties of 2D turbulence (Hanjalić 1994). The models are 

also physically coherent in that turbulent correlations are modelled in terms of turbulent 

parameters instead of mean flow, and because higher-order moments have a decreasing 

effect of mean flow properties (ibid.). Nonetheless, the greatest weakness of such models 

is that all length scales are proportional to each other, and there is an inherent 

uncertainty in the equations for turbulent  diffusion (they hardly distinguish velocity and 

pressure diffusion for mathematical reasoning), and so simplifications or higher order 

terms are added (Mellor & Yamada 1982). Yet, these models are yet to realize their 

potential due to persisting numerical difficulties, as well as the need for modifications to 

resolve, at fine resolutions, thin viscous flows near the wall and at low Reynolds’ numbers 

(Hanjalic' & Jakirlic' 2002, Launder 1989, Lien & Leschziner 1994). 

A1.3 Discussion of eddy viscosity closures used in RANS models 

The above ‘brief’ review of linear and non-linear eddy viscosity models highlights the 

plethora of approaches to close the Reynolds averaged Navier Stokes equations (RANS) 

in hydrodynamic or Computational Fluid Dynamics (CFD) applications. Perhaps from a 

modelling perspective, the choice of closure scheme will depend on the level of 

description each available model affords, its cost and ease of use, its applicability and 

accuracy provided.  
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Mixing length and one-equation models merely determine the turbulent viscosity, 

providing very little information about the turbulence. On the contrary, two-equation 

models, provide quantitative description of the turbulent scales of velocity (turbulent 

kinetic energy), length and time (in one-equation models, length scale is specified not 

calculated). These models do not directly represent the Reynolds stress tensor, but model 

it as a local function of the turbulent kinetic energy  𝑘𝑘, the dissipation rate, 𝜀𝜀, and the 

mean velocity gradient 𝜕𝜕〈𝑈𝑈𝑖𝑖〉/𝜕𝜕𝑥𝑥𝑗𝑗 , either using Boussinesq assumption (isotropic eddy 

viscosity), non-linearly, or explicitly.  Thus, they all intrinsically assume that the time-

averaged stress is determined by a local velocity gradient. Conversely, Reynolds stress 

model avoid this, and consider the mean convection to be balanced by four processes, 

production, dissipation, redistribution, and turbulent transport (the latter of minor 

significance than the rest). At this level of closure, both production and isotropic 

dissipation are closed, and the principal quantity to be modelled is the redistribution due 

to the fluctuating pressure field (Pope 2000).  Near a boundary, the assumption that this 

is locally governed by mean stress, dissipation and velocity gradient is questionable due 

to the strong inhomogeneity.  Apart from the mixing-length and one-equation models, all 

the others are complete as they do not require a prior specification of the mixing length. 

The 𝑘𝑘 − 𝜀𝜀 model is the most commercially used (implemented in CFD codes) given it is 

relatively easy to implement and computationally inexpensive when wall-functions are 

employed. Comparatively, Reynolds’ stress models are more difficult and much more 

costly as there are seven turbulence equation to be solved (6 complex Reynolds stress 

equations and dissipation rate), hence requiring longer computational time. Algebraic 

stress models are equally as expensive to solve due to coupled non-linear equations. In 

terms of applicability, 𝑘𝑘 − 𝜀𝜀 and Reynolds stress models can be applied to any turbulent 

flow, providing information on both time and length scales.  Both model classes are 

commonly used in reactive and multiphase flow problems but DSM closures extend to 

atmospheric flows as they account for buoyancy.  

A1.4 Simulating turbulence and further closures: LES, DNS, two-point closures and 

hybrid approaches 

Despite the important achievements in mathematical modelling of turbulence, and the 

practical utility of such models, there remains a variety of issues yet to be resolved, simply 
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due to lack of understanding of the underlying physics and the need to employ far more 

complicated formulations and numerical schemes (Hanjalić 1994). Factors complicating 

include, but are not restricted to, three-dimensionality of the velocity field, its time 

dependence and randomness, unsteadiness and periodicity, multiplicity of time and 

length scales which is directly dependent on the Reynolds number and boundary 

geometry, straining of eddies (Kolmogorov’s kinetic energy cascade) viscosity in wall 

proximity, nonlinearity and non-locality of the convective term and more so in the 

pressure-gradient term, as well as other specific issues such as flow separation and 

reversal, buoyancy and rotation, etc. (Coleman & Sandberg 2010, Hanjalić 1994, Pope 

2000, Rogallo & Moin 1984).  

The challenge presented by the turbulent closure problem is such that Rotta expressly 

warned “a really universal turbulence model is a dream and will be a dream possibly for 

ever” (Rotta 1986); while Bradshaw famously noted that turbulence was “probably the 

invention of the Devil on the seventh day of creation (when the Good Lord wasn't 

looking)” in his article titled: The chief outstanding difficulty of our subject (Bradshaw 

1994). Progress in experimental study of turbulence has proven to be less difficult, 

however, and numerical simulations have proven a valuable means of providing insight 

into the problem. In simulating turbulent flows, the time-dependent velocity field 

(representing approximately the velocity field 𝑈𝑈(𝑥𝑥, 𝑡𝑡), is solved for; as opposed to solving 

for some mean quantity such as 〈𝑈𝑈〉;  〈𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗〉 or 𝜀𝜀.  The common approaches include Large 

Eddy Simulation (LES), Direct Numerical Simulation, and more recently, Detached Eddy 

Simulation (DES). 

Direct numerical simulations (DNS) attempt to solve the Navier-Stokes equations to 

determine the velocity field for a particular flow realisation (given initial and boundary 

conditions), resolving all time and space scales. This obviously entails a huge 

computational cost and memory storage, which increase at a cubic rate to the Reynolds 

number; hence despite today’s high performance computing prowess, DNS is still limited 

to simple geometries and low to moderate Reynolds numbers (Coleman & Sandberg 

2010, Pope 2000). Thus, there is a need for DNS codes to be efficient, and this is 

implemented via spatial (finite volume, finite element, discrete vortex, spectral schemes, 

etc.) and temporal discretisation schemes (explicit versus implicit)(Moin & Mahesh 1998, 

Rogallo & Moin 1984). DNS are commonly employed to gain insight into physical 
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mechanisms such as homogeneous versus inhomogeneous turbulence, transitional flows, 

and hydrodynamic instabilities; as well as for developing, validating and improving 

analytical models, especially in the aeronautic industry.  

Large eddy simulations (LES) bridge the gap between Reynolds stress models and DNS, 

aiming to represent the larger three-dimensional unsteady motions directly, while 

modelling the effects of smaller scale motions. Assuming Kolmogorov’s universality law 

at the smaller scales (Frisch 1995, Yakhot et al 1989), LES explicitly compute the 

dynamics of the larger-scale motions which predominantly contain the energy and 

anisotropy (and are defined by the flow geometry) and use “simple” models to represent 

sub-scale motions (Pope 2000). This philosophy has its origins in meteorological 

applications, such as the famous and widely-used Smagorinsky model (Smagorinsky 

1963). Commonly, this involves application of an appropriately chosen low-pass filter to 

eliminate fluctuations at sub-grid scale (SGS, scales with wavelength smaller than the grid 

mesh) (Lesieur & Metais 1996). The evolution of the filtered 3D and time-dependent 

velocity field is described by equations derived from the Navier-Stokes, with momentum 

containing an SGS residual stress tensor closed by a simple eddy viscosity model. A 

numerical solution to the filtered equation provides an approximation to the large scale 

motion (Fröhlich & Rodi 2002, Pope 2000). 

A very recent development in numerical simulation of turbulent flows is Detached Eddy 

Simulation  (DES) which came to address the challenge of high-Reynolds number and 

massively separated flows such as those encountered in aerospace and ground 

transportation problems and atmospheric studies (Spalart 2009). This combines LES 

with RANS, whereby the boundary layer is treated by RANS equations (originally using 

the Spalart-Allmaras model; (Spalart & Allmaras 1994)) and the regions of massive 

separation are treated with LES, often with problems in describing the space between 

these two. There are several recent proposal suggested and concise review is given in 

(Fröhlich & von Terzi 2008, Spalart 2009). Several other “hybrid models” also couple 

RANS with LES, owing to their structural similarities, with transitions achieved by 

“blending”, “interfacing”, and/or “segregating” the eddy-resolving models (Fröhlich & 

von Terzi 2008).  
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Moreover, a further class of closure schemes comprises two-point statistical closures, 

such as Direct Interaction Approximation (DIA), Eddy damped quasi-normal Markovian 

(EDQNM), and Test Field models (TFM), developed mainly for homogeneous isotropic 

turbulence but recently extended into some anisotropic and even inhomogeous flows 

(Cambon 2002, Cambon & Scott 1999).  All other schemes described previously (in this 

respect referred to as single-point closures) reduce the degrees of freedom of the spectral 

tensor to just  𝑘𝑘 and 𝜀𝜀; or 𝑘𝑘 and 𝑅𝑅𝑖𝑖𝑖𝑖; with a large number of adjustable model constants 

and heuristic assumptions. These in fact can be explicitly derived by integration from 

two-point closures, which are aimed at strongly non-linear turbulence with mathematical 

structures similar closely related to the theory of weak turbulence which has applications 

in geophysics (Godeferd et al 2001). They account for inhomogeneity using stochastic and 

rational approaches, and Langragian statistics with regards to the dispersion of particles, 

with spectral correlations to describe distortion of eddy structures  by stratification 

large-scale strains, and rotation,  especially though the cascade process upon which 

production and dissipation depend (ibid.).  Early comparisons of DNS of two-dimensional 

turbulence with two-point closures highlight the effects of intermittency of convected 

passive scalars in  a Gaussian velocity field,  as reported in section §1.3 earlier (Herring 

& Kerr 1982, Herring & McWilliams 1985).  

Finally, it is worthwhile noting that yet more closure approaches, and hybrids thereof, 

have been presented in an ever growing body of literature. These include, but not 

restricted to, statistical cross-independence closures (Tatsumi 2011) probability density 

function methods used particularly for reacting flows (Dopazo 1975, Dopazo 1994, 

Kollmann 1990, Pope 2000, Roekaerts 2002), including Langragian PDF (Pope 1994) and 

Monte Carlo methods (Dreeben & Pope 1998, Li & Modest 2001, Pope 1985, Xu & Pope 

1999) and simulations using smoothed particle hydrodynamics (Mallouppas & van 

Wachem 2013, Monaghan 2012, Welton & Pope 1997). On a note more cheerful than 

Bradshaw’s (at the start of this section), Jimenez and Moser believe  that with increasing 

computational power in the coming decades, a dynamical theory for some parts of 

turbulent flows, particularly at  the range of scales in the momentum cascade,  may 

emerge from such simulations (Jimenez & Moser 2007).
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       Figure A1.1 Schematic summary of numerical approaches for modelling turbulence 
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Appendix 2.  

Derivation of the Rouse Model for 
sediment suspension 
 

A.2 Modelling sediment suspension 

The traditional approach to modelling the suspension of sediments is founded upon the 

passive scalar hypothesis, whereby no or little interaction between sediment particles 

and fluid flow is assumed (Chauchat and Guillou, 2008). The implication of this is that the 

horizontal velocity of the sediment (𝑢𝑢𝑠𝑠) is equal to that of the fluid (𝑢𝑢), and the difference 

in true density between solid particles and surrounding fluids is accounted for only in the 

vertical via a settling velocity term (𝑤𝑤𝑠𝑠). In other words, sediment transport in suspension 

is described by the balance between the downward settling of sediment particle due to 

gravity versus the upward mixing of sediment by turbulent motions, as per the advection-

diffusion theory (ADE; Equation 3.13, §3.5.2). This assumption was also applied by 

Nakato et al. (1977) to homogenous oscillatory flows too. 

𝑢𝑢𝑠𝑠 = 𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑤𝑤𝑠𝑠 (𝐸𝐸𝐸𝐸 𝐴𝐴2.1) 

A.2.1 The Rouse Profile 

The most classical model describing the vertical distribution of sediment transport 

within the ADE framework was proposed by Hunter Rouse (1937).  Rouse argued that if 

the mean components of streamwise, crosswise and vertical velocity (following a 

Reynolds decomposition) do not vary in either space or time, then the turbulent flow may 

be considered steady and uniform (Rouse, 1937). Substituting these in the original Navier 

Stokes equations leads to an expression equivalent to the Newtonian equilibrium of force 

by mass-acceleration. By introducing “Boussinesq’s turbulent coefficient, 𝑣𝑣𝑇𝑇”, Rouse 

describes the effective shear of momentum transport (the stress) in a form similar to 

equation A1.4.  Rouse then assumes a mixing length, 𝑙𝑙,  to denote the average transverse 
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distance in the region of flow over which a small fluid mass is carried by the turbulent 

mixing process (as per Prandtl’s definition), such that:  

𝜏𝜏 =  𝜌𝜌𝑙𝑙2. �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧
�
2

   (𝐸𝐸𝐸𝐸 𝐴𝐴2.1) 

The mixing length, is classically defined by von Kármán as: 

𝑙𝑙 = 𝜅𝜅,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑧𝑧2

  (𝐸𝐸𝐸𝐸 𝐴𝐴2.2) 

Arguing that the difference between the original average velocity of the particle and that 

of the region into which it comes must be proportional to the magnitude of the velocity 

fluctuations involved in the transverse motion (ibid.), Rouse postulates:  

|𝑤𝑤𝑥𝑥′ | = 𝑙𝑙.
𝑑𝑑𝑤𝑤�  
𝑑𝑑𝑑𝑑

  (𝐸𝐸𝐸𝐸 𝐴𝐴2.3) 

Hence, he defines the effective shearing stress (ignoring molecular viscosity in turbulent 

flow) as: 

𝜏𝜏̅ = 𝜌𝜌|𝑤𝑤′| 𝑙𝑙.
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑑𝑑

       (𝐸𝐸𝐸𝐸 𝐴𝐴2.4) 

By comparison, Rouse defines the “kinematic turbulence factor”, (i.e. the turbulent eddy 

viscosity), as: 

𝜈𝜈𝑇𝑇 = |𝑤𝑤𝑧𝑧′|. 𝑙𝑙        (𝐸𝐸𝐸𝐸 𝐴𝐴2.5) 

Rouse suggested that the problem of suspended load (or temperature, or salinity) in a 

stream can be tackled similarly, in a convective manner. Using the settling velocity of a 

given particle size, 𝑤𝑤𝑠𝑠, the temporal rate of transport, 𝑁𝑁, of concentration per unit area 

must equate the number of particles, 𝑛𝑛, per unit volume multiplied by their rate of fall.  

𝑁𝑁 = 𝑤𝑤𝑠𝑠𝑛𝑛 =  −|𝑤𝑤𝑧𝑧′|𝑙𝑙.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

            (𝐸𝐸𝐸𝐸 𝐴𝐴2.6) 
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This can be integrated into: 

ln
𝑛𝑛
𝑛𝑛𝑎𝑎

=  −𝑤𝑤𝑠𝑠.�
𝑑𝑑𝑑𝑑

|𝑤𝑤𝑧𝑧′|. 𝑙𝑙

𝑧𝑧

𝑎𝑎
         

(𝐸𝐸𝐸𝐸 𝐴𝐴2.7) 

in which 𝑛𝑛/𝑛𝑛𝑎𝑎  is the relative concentration at any point, referred to some arbitrary 

elevation, 𝑎𝑎, above the bottom. If follows that knowledge of the variation of the eddy 

viscosity with depth becomes a requirement to evaluate the last term in Equation A2.6, 

and hence to describe the concentration profile.  From the equation A2.3, Rouse then 

quotes von Kármán as having presented, in a discussion of the same transaction, the 

integrable expression (this was originally derived for a pipeline by Rouse assuming static 

pressure variation balanced by non-viscous shear): 

𝑑𝑑𝑑𝑑
|𝑤𝑤𝑧𝑧′|𝑙𝑙

=
𝑑𝑑𝑑𝑑
𝜏𝜏

𝜌𝜌.𝑑𝑑 𝑤𝑤�
𝑑𝑑𝑑𝑑

 
=
𝜌𝜌.𝑑𝑑 𝑤𝑤�
𝑑𝑑𝑑𝑑
𝜏𝜏

.𝑑𝑑𝑑𝑑 =
𝜌𝜌.𝑑𝑑 𝑤𝑤�
𝑑𝑑𝑑𝑑

𝜏𝜏0 �1 − 𝑧𝑧
𝑑𝑑�

 𝑑𝑑𝑑𝑑         (𝐸𝐸𝐸𝐸 𝐴𝐴2.8) 

This relationship can be verified by simplifying the RANS equation for two-dimensional 

uniform flow, and applying boundary conditions whereby shear stress at bed is given by 

the energy slope equation, and zero stress at the water surface (Raudkivi, 1976). 

Subsequently, by using von Kármán’s law of the wall, the logarithmic profile of the mean 

velocity gradient for rough conditions is: 

𝑑𝑑 𝑤𝑤�
𝑑𝑑𝑑𝑑

=
1
𝜅𝜅

.�
𝜏𝜏0
𝜌𝜌

 .
1
𝑧𝑧

            (𝐸𝐸𝐸𝐸 𝐴𝐴2.9) 

Therefore, assuming a parabolic distribution of eddy viscosity in the vertical, in line with 

the logarithmic velocity distribution, equation A2.7 becomes: 

ln
𝑛𝑛
𝑛𝑛𝑎𝑎

=  −𝑤𝑤𝑠𝑠.�
𝜌𝜌. 𝑑𝑑𝑤𝑤�𝑑𝑑𝑑𝑑

𝜏𝜏0 �1 − 𝑧𝑧
𝑑𝑑�

𝑧𝑧

𝑎𝑎
. 𝑑𝑑𝑑𝑑            (𝐸𝐸𝐸𝐸 𝐴𝐴2.10) 

By considering the settling velocity of sediment, 𝑤𝑤𝑠𝑠, the fluid density 𝜌𝜌, and the bed shear 

stress, 𝜏𝜏0 = 𝜌𝜌.𝑢𝑢∗2, are constants, then the profile for suspended sediments can be shown 

to vary in a parabolic fashion in the water column, extending from a near bed reference 

height, a, to the full water depth, d, as follows: 
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(𝐸𝐸𝐸𝐸 𝐴𝐴2.11) 

in which the power, R, is what is commonly now called the Rouse Exponent, defined as:  

𝑅𝑅 =
𝑤𝑤𝑠𝑠

𝜅𝜅.�𝜏𝜏0𝜌𝜌

=
𝑤𝑤𝑠𝑠
𝜅𝜅.𝑢𝑢∗

             (𝐸𝐸𝐸𝐸 𝐴𝐴2.12) 

and where 𝑑𝑑′ = 𝑑𝑑 − 𝑎𝑎;  with d being the total water depth, and 𝑎𝑎 the reference height. 

Replacing 𝑛𝑛 with concentration, 𝐶𝐶, this is the Rouse model for sediments in suspension: 

𝐶𝐶 = 𝐶𝐶𝑎𝑎. �
𝑎𝑎
𝑧𝑧

.
(𝑑𝑑 − 𝑧𝑧)
(𝑑𝑑 − 𝑎𝑎)
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𝑑𝑑′

1 + 𝑧𝑧′
𝑎𝑎
�

𝑅𝑅

               

(𝐸𝐸𝐸𝐸 𝐴𝐴2.13) 

The above relation indicates that the relative sediment distribution (for a given particle 

size and hence a particular settling velocity) is a function of relative depth only, and can 

only extend to a given arbitrary depth, 𝑑𝑑’, such that the concentration at that depth does 

not affect the fluid-mixture density nor the velocity distribution (hence the notion of a 

reference concentration, 𝐶𝐶𝑎𝑎 at the reference height).  

The integrity of the Rouse profile can be scrutinised as it seems that the validity of nearly 

all of its underlying assumptions has been questioned in the literature. For instance, 

(Bagnold, 1966)first assumption that 𝑤𝑤𝑠𝑠 = 𝑤𝑤𝑢𝑢𝑢𝑢′  for deriving the suspension threshold has 

been contested by field measurements (Al-Ragum et al., 2014; Amos et al., 2010). This 

would require a new definition of the “pick up” function used in modelling. Moreover, the 

form of the Rouse profile depends on the chosen model for representing the vertical 

distribution of eddy viscosity. The latter may take on any form in a plethora of realisations 

(from negative and infinity constant values, to linearly increasing models, parabolic 

profiles, etc…); and it is crucial to consider its time-dependent variability as well (Fredsøe 

and Deigaard, 1992; Grant and Madsen, 1986). Alternative solutions of the steady one 

dimensional and two-dimensional SSC profiles for arbitrary velocity and eddy viscosity 

distributions are given in Liu and Nayamatullah (2014) and Liu (2016), respectively. 
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a b s t r a c t

The suspension of sediments by oscillatory flows is a complex case of fluid–particle interaction. The aim
of this study is to provide insight into the spatial (time) and scale (frequency) relationships between
wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular
shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected
through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses re-
veal the anisotropic and intermittent nature of Reynolds’ stresses (momentum exchange) in the wave
boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent tur-
bulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling
breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and
hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume,
contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions
are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and
maintenance of sediment in suspension through a cluster of bursting sequence is associated with the
passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller
motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The
extent to which these spatially varied perturbation clusters persist is associated with suspension events
in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an
observed hysteresis effect.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The suspension of sediment in turbulent flows is a complex
case of fluid–particle interaction, governed by shear stresses
(momentum exchanges) at the bed and within the benthic
boundary layer (BBL). Defining the physical processes which dic-
tate the resuspension of sediments in coastal and estuarine set-
tings is fundamental for accurate predictions of bed morphology
evolution (van Rijn et al., 2007), and has profound implications for
the biogeochemical processes that shape their local ecology
(Thompson et al., 2011). It is also a prerequisite to quantifying
erosion and deposition trends, and hence guiding engineering
applications such as beach nourishment, defence schemes against
erosion and flooding, maintenance of marine infrastructure and
. Kassem),
ton.ac.uk (C.L. Amos),
waterways, and aggregate dredging. There is a genuine need for
better, robust models of suspended sediment transport in the
coastal zone (Aagaard and Jensen, 2013). In a vision paper on fu-
ture research needs in coastal dynamics, van Rijn et al., (2013)
highlighted the pressing need for research to support such models,
focusing in particular on sand transport in the shoreface (non-
breaking waves), surf and swash zones; employing field and
controlled laboratory experiments.

The mobilisation of sediments in the nearshore and shoreface is
dominated by wave-induced bed shear stresses in moderate and
stormy conditions (Thompson et al., 2012). The vertical structure
of sediment flux components on the shoreface and in the inner
surf zone, as well as the dynamics of sediment transport under
shoaling waves in the nearshore, are both considered to be in-
sufficiently understood (van Rijn et al., 2013). This requires prior-
itising research with reference to coherent flow structures and the
intermittent stirring of sediments by breaking and shoaling waves,
and the time-history effects of suspended sediments under irre-
gular wave conditions [ibid.]. Understanding the spatial, temporal,
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and frequency characteristics of sediment suspension events in
relation to turbulent fluctuations, both in structural form and in
temporal distribution, is an important step towards providing a
more satisfactory conceptual model for describing suspended se-
diment transport.

The role played by bed-generated coherent eddy structures in
entraining and transporting sediment particles is widely ac-
knowledged, yet the exact mechanism is still unclear (Dey et al.,
2012; Ji et al., 2013). Coherent turbulence structures have been
defined, albeit reluctantly, as “connected turbulent fluid masses
with instantaneously phase-correlated vorticity over their spatial
extent” (Hussain, 1983, 1986). Fiedler (1988) added several criteria
to the definition, namely; composite scales, recurrent patterns
(lifespan longer than the passage time of the structure), high or-
ganisation and quasi-periodic appearance. Besides the “conven-
tional” bursting events which describe the intermittent, energetic
process resulting from the passage of near-wall vortices as per-
ceived by passive markers and/or visualisation studies (Schoppa
and Hussain, 2002); one may identify vortices induced by wave
breaking (Aagaard and Hughes, 2010), or by flow separation from
vortex ripples upon reversal in an oscillatory flow, i.e. vortex en-
trainment/shedding (Amoudry et al., 2013). Vortex shedding from
bedforms in wave dominated flows was first reported by Bagnold
and Taylor (1946). As flow reverses over steep two-dimensional
bedforms, the benthic boundary layer can separate from the bed,
trapping sediments and ejecting them higher into the flow (O’Hara
Murray et al., 2011). This is in essence a repeatable and hence
coherent convective entrainment process (Nielsen, 1992) that is
observed in both regular (at half cycle) and irregular wave con-
ditions (O’Hara Murray et al., 2012; O’Hara Murray et al., 2011;
Thorne et al., 2003). Where vortex pairs may develop, sediments
may be violently ejected much higher (several orders of a ripple
height) than classically described (Williams et al., 2007).

The intermittent transfer of momentum by coherent structures
of turbulence is manifest by velocity fluctuations, and is linked to
short-term variations in near-bed stresses (Heathershaw, 1974;
Laufer, 1975). This is evident in the turbulent “bursting” process
(Kline et al., 1967; Offen and Kline, 1974, 1975), which is a critical
mechanism for production of turbulent kinetic energy (Dey et al.,
2012; Schoppa and Hussain, 2002). Turbulent bursting may be
explained by the advection of spatially distributed vortices and
structural features past a fixed point of measurement (Robinson,
1991), although this may not detect how such vortices evolve in
time (Schoppa and Hussain, 2002). The largest contributions to
stress often occur through ejecting or sweeping motions (Soulsby,
1983). Typically, ejections are associated with entrainment of mass
(sediment particles) into suspension, while sweeps are effective at
transporting bedload (Cao, 1997; Dyer and Soulsby, 1988; Hea-
thershaw, 1979; Keylock, 2007; Soulsby, 1983; Yuan et al., 2009).
While ejections and sweeps reportedly occur in relatively equal
proportions near the bed, the former type dominates higher in the
water column (Cellino and Lemmin, 2004). Suspension of sedi-
ments is often related to large scale turbulence structures asso-
ciated with clusters of ejections (Bennett et al., 1998; Kawanisi and
Yokosi, 1993).

Recent sediment suspension models attempt to account for
turbulent bursting by implementing entrainment functions that
theoretically account for the average time and space scales of
these motions (e.g. Cao, 1997; Wu and Yang, 2004; Wu and Jiang,
2007). Considerable recent work therefore focusses on the struc-
tural form of these features of flow, their role in fluid and sediment
entrainment, bed shear stress generation, energy transfer and
velocity asymmetry; and the influence of the space-time structure
of the flow, with emphasis on oscillatory flows, and different bed
roughnesses (Adrian and Marusic, 2012; Carstensen et al., 2010,
2012; Grigoriadis et al., 2013; Hardy et al., 2010; Hare et al., 2014;
Okamoto et al., 2007). Advanced visualisation and data analysis
techniques reveal complex interactions between passing coherent
energetic structures and sediments in suspension, such as particle
response to turbulent fluctuations in the frequency domain (e.g.
Liu et al., 2012), and modifications of the mean velocity profile by
the dispersed sediments (e.g. Ji et al., 2013). The aim of this study
is to describe the temporal and scale relationships between wave-
generated boundary layer turbulence and event-driven sediment
suspension in oscillatory flow in the nearshore of a prototype
sandy barrier beach. In particular, two aspects are investigated:
(a) the time–frequency characteristics that describe the relation-
ship between turbulent burst cycles and ensuing sediment sus-
pension; and (b) the scale of covariance of near-bed sediment
resuspension events with wave-induced turbulent coherent
structures as manifest by the intermittent Reynolds’ Stresses.
2. Methodology

2.1. Experimental setup and wave conditions

The results presented here arise from the analysis of two wave
data sets collected within the European HYDRALAB IV Barrier
Dynamics Experiment II (BARDEX II) carried out at the Delta
Flume facility/Deltares, the Netherlands, between June and July
2012 (Masselink et al., 2013). A barrier beach, 75 m wide (cross-
shore), 5 m alongshore, was constructed from moderately sorted,
medium fluvial sand with a median grain diameter, D50, of
0.42 mm. The barrier, backed by a lagoon and fronted by a 20 m
flat section (of same bed material, 0.5 m deep), was subjected to a
JONSWAP spectrum of waves, generated by a single-stroke wave
paddle fitted with an automated reflection compensator to supress
reflection and low frequency resonance, situated 49 m before the
start of the 1:15 m seaward slope.

As part of these experiments, time-synched acoustic mea-
surements of turbulence, suspension, and bed morphology were
recorded from an instrumented frame at the nearshore position,
situated just at the break of the seaward slope of the barrier (49 m
from wave paddle). A schematic sketch of the frame and the bar-
rier design is given in Fig. 1. Turbulence data were collected by
means of two coupled, downward-looking Nortek Vectrino
Acoustic Doppler Velocimeters (ADVs) with a vertical offset of
26 cm and an across-flume horizontal offset of 36 cm, sampling at
25 Hz. Sediment suspensions were inferred from backscatter
measured with an Aquatec Aquascat Acoustic Backscatter Profiling
Sensor (ABS), with 1, 2, and 4 MHz channels, measuring between
5 and 95 cm below the instrument in 0.5 mm bins at 64 Hz
(Thompson et al., 2013). Unfortunately, it was not possible to ca-
librate the ABS measurements (and hence infer volume/mass
concentrations) due to failure of pump equipment. Subsequently,
concentrations and backscatter are used interchangeably in this
work. Three dimensional bed morphology was inferred from a
combination of a Marine Electronics 1.1 MHz dual sand ripple
profiling system (SPRS) recording sequential cross-shore profiles
and a 500 kHz Sector Scanning Sonar (SSS) which provided a 360°
plan-view of the bedforms. Surface water elevation (pressure) was
recorded through a 5 Hz self-logging Paraoscientific 745 pressure
transducer, mounted 0.35 m above the bed. Although turbulence
and bedform data were recorded for the entire length of each
wave run, memory limitations in the ABS instrument mean bursts
of a maximum length of 8 min are presented. As such, where
turbulence records are analysed in conjunction with suspension
data, these are trimmed accordingly.



Fig. 1. (a) Cross-sectional profile of the barrier within the Delta Flume at the start of the BARDEX II experiments, with location of the nearshore instrument frame; (b) plan
view of instrument rig with distance from the wave paddle on left hand wall, and indicating relative location of instruments from the centre of the flume; and (c) cross-
section view of instrument rig with heights above initial bed elevation. SRPS: sand ripple profiler system; ABS: acoustic backscatter profiler system, ADV: acoustic Doppler
velocimetre, SSS: sector scanning sonar, PT: pressure transducer.
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2.2. Data collection, quality and pre-processing

The 3D instantaneous flow velocity field U V W, ,( ) representing
the streamwise (along-flume), cross-wise (across-flume); and
vertical components of instantaneous velocity, respectively; is gi-
ven by ADVs measuring at two discrete 7 mm sample volumes
above the bed (Fig. 1c). However, ADVs are inherently con-
taminated by noise due to Doppler signal aliasing, bubbles, etc.
(Mori et al., 2007) and inferred stresses are susceptible to errors
due to sensor misalignment (Soulsby and Humphery, 1990). For
quality control purposes, a threshold of measurement correlation
based on the instrument sampling frequency was used (after Elgar
et al., 2005), giving ∼70% as the lower limit. A limit of 20% cor-
rupted data per record was subsequently applied, delimiting se-
quences where samples fall continuously below the accepted
correlation threshold for 42 s (Elgar et al., 2001; Feddersen,
2010). The records were then patched by applying a moving
average algorithm interpolating the missing data, following
Thompson et al. (2012). Subsequently, an axis-rotation algorithm
is used to eliminate effects of sensor misalignment, following Elgar
et al. (2001). A similar operation is applied to the y–z plane before
the mean values of the rotated coordinates are deducted to re-
move the contamination of the “U” data by the “V” data.

To extract the turbulence component u( ′), the mean flow ve-
locity of each component u( ), determined by applying a moving
average as a low pass filter, is subtracted from the instantaneous
flow field u( ), before the record is zero-meaned and de-trended
(Thompson et al., 2012). The numerator coefficients defining the
filter window were selected by trial and error, with autocorrela-
tion and cross-correlation tests applied for validation. It follows
that two fluctuating components are identified, a wave-induced
(periodic) component (denoted by u wave′ ) and the residual “ran-
dom/high frequency” component, u′. The signals are then de-
spiked using the modified “true” 3 D phase space method by
(Goring and Nikora, 2002, 2003) as modified by (Mori et al., 2007).
It is to be noted that similar power (variance) properties and scales
in the time–frequency domain were observed before and after
despiking, albeit with smaller magnitude stresses.

The non-directional wave parameters (peak wave periods and
significant wave heights) were computed by zero-crossing and
spectral analysis of the pressure variations, having compensated
for transducer height above bed, and pressure attenuation with
depth following Tucker and Pitt (2001). Bed morphology was in-
ferred from the backscatter intensity of the SSS and SRPS records.
Bed location was determined using the built-in ‘bed detection’
function of the SRPS dual-head programmer software (Marine
Electronics Ltd.) with a threshold value (20 dB) above the average
backscatter intensity, having adjusted for sound attenuation. Bed
level data were then detrended to remove the bed slope, and de-
spiked to remove outliers pertaining to high concentration sus-
pension events. A zero-crossing algorithm is used to determine
ripple heights and wavelengths. Variations in bed morphology
across the flume was examined through raw backscatter intensity
given by the Sector Scan Sonar (SSS). Changes in bed morphology
over time was inferred from the series of sequential scans within
each run, taken approximately once a minute.

For the ABS records, the mean grain size and speed of sound,
based on measured temperature and salinity, was used to correct
backscatter for attenuation and spreading, and hence infer con-
centration. Thus, the one-dimensional vertical profiles of sus-
pended sediment concentration (backscatter) and mean particle
sizes could be calculated from sediment cross-section scattering of
the individual sound frequencies following the methodology of
(and Thorne and Hanes, 2002; Thosteson and Hanes, 1998), as
presented in the MATSCAT toolkit (Buscombe, 2012). The ADV
records of the turbulence components are sub-sampled to match
the ABS records, which, in turn, are down-sampled from 64 Hz to
25 Hz only for the cross wavelet transforms of Reynolds’ stresses
and synchronous suspended sediment fluxes. Given that the sub-
sampled records displayed the same spatial and temporal prop-
erties as their original series through spectral and continuous
wavelet analyses, this is believed to have no significant impact on
the results.

2.3. Quadrant analysis

In a three-dimensional orthogonal system x y z, ,( ) [where

x x x x x y

x x z

: along flow; : across flow;

: vertical

i j

k

1 2

3

= = = =

= =

], a Reynolds’
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decomposition of the instantaneous velocities Ui( ) is given by:

U u u u 1i l i wave= + ′ + ′ ( )

whereby the over-bar denotes a time-average, the prime indicates
a fluctuation about the mean, and the ‘wave’ subscript refers to the
periodic/oscillatory (wave) component. The Reynolds’ stress is
described by the inverse correlation between the time-average
fluctuations of streamwise (uʹ) and vertical (wʹ) velocity compo-
nents at a point:

u wReynolds Stress; 2xzτ ρ= − ′ ′¯ ( )

Quadrant analysis, a technique for detecting various turbulence
structures, consists of distributing streamwise and vertical velocity
fluctuations into the four quadrants of the plane (Deleuze et al.,
1994). Four types of structures may be distinguished: (a) an
ejection/burst (E, Quadrant 2) where a low speed fluid u 0( ′< ) near
the bed moves upward w 0( ′ > ); (b) a sweep (S, Quadrant 4) where
a high velocity fluid u 0( ′ > ) moves downwards to the bed w 0( ′ < );
(c) inward interactions (II, Quadrant 3) where an ; and (d) outward
interactions (OI, Quadrant I) where an . Determining the fractional
contribution of each of these structural features is commonly re-
stricted to values that lie above a critical threshold, H, whereby:

u w H u w. . 3rms rms| ′ ′| > ′ ′ ( )

Hence, the contributions of individual events in the u w( ′ ′) plane
are the ones which occur in each quadrant outside the central
“hole” region bounded by the four hyperbolae defined by the
above inequality. However, there is no agreed definition for the
threshold criterion (Blackwelder and Kaplan, 1976; Bogard and
Tiederman, 1986; Keylock, 2007; Wu and Yang, 2004), and its
value is chosen arbitrarily (Keylock, 2008) or ignored altogether
(Keylock et al., 2014). As the threshold increases, the number of
exceedances decreases, biasing the stress magnitude to be mostly
contributed by ejections within the second quadrant (Keylock,
2007; Willmarth and Lu, 1972). The process outlined in Cellino and
Lemmin (2004), Longo et al. (2012), Lu and Willmarth (1973) is
used to calculate the concentrations within each quadrant. Ex-
tending quadrant analysis into three dimensions, known as Octant
analysis, is less common, given that the cross-wise flow compo-
nent is often assumed less important in classical flows (Gheisi
et al., 2006; Keylock et al., 2014; Ölçmen et al., 2006). Quadrant/
octant analysis provide a relatively simple means of characterising
dominant flow structures, which can be linked to the entrainment
of sediment from the bed and into suspension, and whose fre-
quencies would dominate the velocity spectra and contribute the
majority of the total shear stress (Keylock et al., 2014).

2.4. Spectral properties: Fourier and wavelet transforms

Fourier analysis is used to study turbulent flows and identify
integral scales of motion, stemming from a classical understanding
of the turbulent energy cascade. This statistical view was quanti-

fied by Kolmogorov–Obukhov into the well-known k
5

3
−

law in the
inertial subrange, with k denoting the wave-number for the en-
ergy spectrum in Fourier Space (Frisch, 1995; Monin and Yaglom,
1971; Tennekes and Lumley, 1972). However, the existence of or-
ganised yet stochastically intermittent eddy structures of multiple
scales, varying in space and time, cannot be resolved by Fourier
transforms as these transforms are inherently space-filling (Berry
and Greenwood, 1975). Wavelets, on the other hand, are able to
expand a time series into time–frequency space and thus de-
termine localised intermittent periodicities (Farge, 1992; Grinsted
et al., 2004), and are capable of performing efficient multi-scale
decomposition (De Stefano and Vasilyev, 2012; Kumar and Fou-
foula-Georgiou, 1997), identifying and isolating localised
structures such as vortices in physical and wave-number spaces
(Farge et al., 2001, 2003; Khujadze et al., 2011), as well as ana-
lysing localised variations of power within a time series (Daube-
chies, 1990; Grinsted et al., 2004; Torrence and Compo, 1998).

A wavelet transform is in essence a linear operation which
decomposes a given signal into components that appear at dif-
ferent scales, based on convolution of the signal with a dilated
filter (Mallat, 1991). A continuous wavelet transform (CWT) de-
composes a signal, f(t), in terms of the ‘daughter’ wavelets, ψb,a(t),
derived by stretching or compressing and shifting (translating) the
‘mother’ wavelet, ψ(t) function (Lau and Weng, 1995; Torrence and
Compo, 1998). The most common mother function is the Morlet
wavelet (Morlet, 1983; Morlet et al., 1982a, b), of wave vector,
kψ¼6, used in this work, and defined by

t e e. 4ik t t. 2
2

ψ ( ) = ( )ψ −| |

The continuous and complex nature of this wavelet gives it the
advantage of being able to detect both the time-dependant am-
plitude and phase for different frequencies in the time series (Lau
and Weng, 1995). The transform maps a one dimensional time
series into a two-dimensional image portraying the evolution of
scales and frequencies in time (linear scale on time b-axis, and
logarithmic scale on the a-axis). To speed up the transform and
limit edge effects, we pad the time series with zeros, then remove
these afterwards, and represent the region of spectrum where the
effects may be important (near large scales) by a ‘cone of influence’
following (Torrence and Compo, 1998). Wavelet transforms are
carried out to investigate the variability of high frequency turbu-
lence structures and the ensuing suspension events, as well as
their clustering (sequential occurrence) in time. These structures
are hereby defined in terms of the Reynolds stresses as the second
moment velocity covariance (product of the turbulent components
in each of the three planes). The contours of power spectra are
constructed from a continuous wavelet transform of the time
series of Reynolds stresses, and of the concentration time series,
following the methodology of Torrence and Compo (1998) and
tools presented in Grinsted et al. (2004). Finally, using cross wa-
velet transforms, the causality between two time-series can be
scrutinised by examining whether regions in the time–frequency
space with large common power have consistent phase relation-
ships. Wavelet multi-resolution analysis is capable of detecting
and tracking energetic fine-scale motions (Schneider and Vasilyev,
2010). A cross-wavelet transform (XWT) is therefore used to ex-
pose regions of high common power between the two signals of
Reynolds’ stresses and suspended sediment flux, looking into the
phase relationships between the two (Grinsted et al., 2004).
3. Results and discussions

3.1. Wave hydrodynamics and bed morphology

Eight records of erosive and accretive wave conditions (from
the barrier’s perspective) are analysed and presented here (four
erosive sub-records taken from BARDEX II test series A3, and four
accretive records from series A7 and A8). The design wave con-
ditions, as well as calculated and measured hydrodynamic flow
properties are given in Table 1. The design wave forcing in each
sub-run is reproduced systematically by the paddle, with mea-
sured significant wave heights (Hs∼0.75 70.03 m in erosive, and
∼0.61 70.07 m in accretive runs) and peak periods (Tp
∼8.1270.5 s in erosive; and 12 s in accretive runs) satisfying the
erosion/accretion criteria (shoreward/seaward migration of near-
shore bed material) of Sunamura and Takeda (1993) for the given
beach slope and mean grain size. The wave Reynolds numbers
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indicate turbulent rough flows (Soulsby and Clarke, 2005b), with
estimated near-bed orbital velocities of 0.68 0.03 m/s± for the
erosive runs (spilling and plunging breakers with surf-similarity
parameter, 0.5 , 0.012ξ = ± ), and 0.67 0.07 m/s± for the accre-
tive runs (plunging breakers with ξ ≅ 0.62 (Massel, 2013)). Tur-
bulence measurements by the two ADV’s were confirmed to be
taken within and outside the wave benthic boundary layer.

Within the erosive and accretive runs presented, wave-induced
suborbital vortex-type ripples were observed in a bifurcating, two-
dimensional configuration across and along the flume (Fig. 2),
following the classification of (Clifton and Dingler, 1984). These
were characterised by ripple height: Hr ¼0.09870.008 m; and
wavelength, rλ ¼ 0.4570.09 m in the erosive runs; and Hr ¼0.107
0.02 m; and rλ ¼0.5770.06 m in the accretive runs. While certain
trends in bedform growth and relaxation were observed during
entire experimental runs, only millimetric scale variations in
geometry were evident within the 8-minutes long sub-records
chosen for analysis of stress-suspension co-variation.

3.2. Turbulence intermittency and Higher order statistics

Fig. 3 shows the time series of the three instantaneous, zero-
meaned velocity (U, V, andW) and inherent turbulent u v w, , and( ′ ′ ′)
fluctuations, measured within and outside of the wave boundary
layer (by ADV1 and ADV2 respectively) for almost the entire length of
the erosive wave run A301; together with their corresponding
probability distributions. The four erosive sub-records carried for-
ward in the analysis are delimited by the vertical blue lines. Table 2
summarises the corresponding averaged statistical properties for the
turbulent component of the 8-minute subsampled records from both
erosive and accretive wave runs. The streamwise velocity compo-
nent, U , both within and outside the boundary layer, exhibits a quasi-
Gaussian distribution (skewness∼0, kurtosis∼3) hinting at a sto-
chastic process of independent probabilistic events; while the
crosswise and vertical components are markedly non-Gaussian. The
turbulence components are anisotropic in all three dimensions both
within and outside the bottom boundary layer.

The crosswise component, commonly overlooked when analys-
ing shear stresses in relation to sediment suspension, shows re-
markably high amplitude spikes, comparable in magnitude to the
streamwise flow and for a considerable amount of time, particularly
near the bed. This, in turn, is reflected in a pronounced leptokurtic
distribution for the transverse velocity fluctuation, which also ap-
pears to be asymmetric. The vertical velocity fluctuations are
characterised by relatively high kurtosis for the erosive wave runs,
and even more pronounced in the accretive runs. The is generally
suggestive of a high degree of intermittency in momentum ex-
change. Similar results have been reported (as unexpected findings)
in experimental and numerical simulations of strong boundary
layers and turbulent channels, particularly in wall (bed) proximity
(Choi and Guezennec, 1990; Kim et al., 1987) and at high Reynolds
numbers (Kuo and Corrsin, 1971); in obstructed flow (El Khoury
et al., 2010), and in viscoelastic flows (Samanta et al., 2009).

The peaked and asymmetric crosswise velocity distribution par-
ticularly near the bed has been attributed to the nearly self-similar
growth and self-sustaining mechanisms of spanwise structures in
close proximity to low speed regions of flow. These are often
speculated to be generated by induction of the asymmetric legs of an
inclined, streamwise-aligned, wall-attached horseshoe vortex struc-
tures (Adrian, 2007; Christensen and Adrian, 2001; Lozano-Duran
et al., 2012; Panton, 2001; Tomkins and Adrian, 2003; Zhou et al.,
1997). It has also been attributed to the more frequent occurrence,
and merging, of one-legged ‘cane-like’ elliptical vortices, at high
Reynolds numbers (Tomkins and Adrian, 2003). The highly three-
dimensional fluid entrainment process cannot be studied in the
streamwise-vertical plane only, where entrainment with vortex



Fig. 2. Typical 2D ripple configurations observed via backscatter intensity along and across the flume in the vicinity of the instrumented offshore frame, for (a) erosive, and
(b) accretive wave runs. Classification of bedform in terms of (c) orbitality, and (d) vorticity for the average bedform characteristic lengths is after Clifton and Dingler (1984).
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structures is not evident (Robinson, 1991). Large streamwise vortices
in wall bounded channels with moveable beds appear as secondary
flows in the crosswise plane perpendicular to the streamwise flow,
and affect the distribution of mean velocity, turbulence intensities,
and Reynolds and bed shear stresses through the channel (Adrian
and Marusic, 2012). Such eddies have been observed with a spanwise
width up to 1.5 times the water depth, which oscillate slowly at the
centre while forming stationary flows near the wall (Tamburrino and
Gulliver, 2007). In the absence of practical means of visualising these
structures in the field, we undertake quadrant analysis of the tan-
gential stresses to assess the frequency of occurrence of sweep (Q4)-
ejection (Q2) pairs as it may shed additional light on the three di-
mensional structure of momentum transfer near the bed (Alfredsson
and Johansson, 1984; Kim et al., 1987; Lozano-Duran et al., 2012).
Notably, there is no consensus as to whether the succession of
ejections and sweeps creates vortices, or conversely, rolling vortices
give rise to the bursting sequence, and it is plausible that both me-
chanisms operate cooperatively (Adrian and Marusic, 2012).

The above results emphasise the three-dimensionality of the
momentum and subsequent mass exchange problem, and as such,
the contributions of the three components of turbulence to mo-
mentum flux need to be considered. Subsequently, octant analyses
of the three dimensional Reynolds stresses (u w u v v w, ,′ ′ ′ ′ ′ ′) is car-
ried out to identify the ‘active’ times where momentum exchanges
occur, and their fractional contributions to the overall stress.
However, to remain true to the original formulation, we have
opted to perform this in three distinct orthogonal planes.

3.3. Quadrant/octant analysis and dominant structural features of
flow

Quadrant analysis is used to quantify the intermittency of the
instantaneous Reynolds stress signals and identify turbulence
structures within a turbulent bursting sequence. Fig. 4 summarises
the averaged results of the quadrant analysis, performed in three
planes of motion (streamwise-vertical plane uw( ), crosswise-ver-
tical vw( ), horizontal uv( )) for the erosive and accretive runs
analysed. These are obtained from the four 8 min ADV1 sub-re-
cords measured near the bed, corresponding to the ABS sampling
periods in each case, without applying a threshold (Hole size,
H¼0). The top panel (Fig. 4.a); highlights the influence of the
hyperbolic hole size, H, applied as a delimiting threshold (green:
H¼2; grey: H¼1). Notably, it was found that applying a threshold
value has a far more pronounced impact in the erosive wave runs,
reducing the fractional occurrence of all four types of structures by
up to 80% for H¼2 (most pronounced effect is on the outward (OI)
and inward (II) interactions), but only up to 30% for the accretive
runs. The effect of a threshold value applied to the stresses of the
accretive runs reduces the accounted motions in relatively equal
proportions in any given plane (only marginal increase in the Q1
OI and sweep motions at the expense of the accounted ejections).
The middle panel (Fig. 4.b) presents the averaged results (of 4 sub-
runs) for the erosive and accretive records, of the percentage of
occurrence of each of the 4 types of bursting event structures,
before and after filtering out the periodic component from the
velocity fluctuations, in all three planes. The lower panel (Fig. 4.c)
shows the averaged percentage of contribution to stress by each of
the bursting motion types, to the total Reynolds stress in the pri-
mary flow plane (uw). Filtering out the periodic component ap-
pears to have a significant impact only on the proportion of time
occupied by specific motions (particularly Q2 and Q3) in the
dominant flow plane (uw) of the erosive runs, and almost no effect
in the accretive runs. It is also found that this has a negligible
impact on the contribution to stress by each type of structure. For
the erosive runs, Q2 (Ejection) and Q3- (Inward Interaction) mo-
tions dominate the vertical motion along (u w′ ′ plane) and across
( v w′ ′ plane), respectively, with the wave signal present. These
events entrain low speed fluid (and particulates) near the bed



Fig. 3. Time series and probability density functions of 3D velocity (U, V, and W) and inherent turbulence (u′, v′, w′) components, in the streamwise/along-flume (dark
green), crosswise (gold), and vertical (orange) for the entire experimental wave run A301 (Hs¼0.8 m, Tp¼8 s). The horizontal dashed lines (red) in the time series re-
present71 standard deviations; while the vertical blue lines delimit the 4 sub-records analysed; σ is standard deviation, Sk is skewness, and K is Kurtosis (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.).

Table 2
Statistical properties of the three turbulence components measured within (ADV1) and outside (ADV2) the wave boundary layer for the two types of wave conditions. These
are averages of the 4 sub-sampled records analysed for each of the erosive and accretive runs.

Wave run-subrecord ADV Height above bed (m) Turbulence component Standard deviation Variance Skewness Kurtosis

Erosive runs ADV1 0.0792 u′ 0.2770.027 0.0770.014 0.2770.06 2.9770.38
v′ 0.0570.005 0.00 �0.7871.3 37.47728.76
w' 0.0470.005 0.00 0.0970.38 6.5271.68

ADV2 0.334 u′ 0.3370.015 0.1170.01 0.2670.08 2.6170.07
v′ 0.0970.004 0.00 �1.7071.10 39.22727.08
w′ 0.0570.002 0.00 0.3470.22 5.9970.59

Erosive runs ADV1 0.09700.1 u′ 0.2570.025 0.0670.012 0.3270.12 3.0470.0.33
v′ 0.0670.013 0.00 1.1071.32 36.69723.43
w′ 0.0370.003 0.00 �0.1870.54 7.9472.03

ADV2 0.33770.016 u′ 0.2870.015 0.0870.009 0.3770.039 3.0870.2
v′ 0.0470.003 0.00 �0.6070.72 22.75722.28
w′ 0.0470.002 0.00 0.0170.12 7.3071.04
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upwards into the water column, and highlight a prevalence of
motions are directed offshore (negative u′) contributing to the
erosion of the barrier face. However, when considering only the
fluctuating part, Q2- and Q4- motions become relatively more
frequent. For the accretive wave runs, filtering out the wave signal
appears to result in nearly equal proportions for each of the
4 types of motion in all planes. In the horizontal planes (u v′ ′), Q1
and Q4 structures associated with shoreward-directed motions
skewed to the right are marginally emphasised; with all motions
of a bursting sequence represented relatively equally. Collectively,
ejections and sweeps contribute slightly more to the total Rey-
nolds stress (56% in erosive, 57% in accretive) than the Outward
and Inward interactions. If a threshold were applied to the stresses
in the erosive runs, the occurrence of Sweeps and Ejections out-
weighs that of the weaker interactions by a factor of 1.6 for H¼2
due to the observed dominance of particular quadrant events of
higher magnitude in the erosive runs, compared to the nearly
equal distribution (balance) of the four quadrant event motion in
the accretive tests. Remarkably, the fractional contribution of
ejections and inward interactions, and hence reduced thresholds,



Fig. 4. (a) Quadrant analyses of instantaneous Reynolds’ stresses in three planes for an example 8 min sub-record from wave series A3-01(Erosive). Areas delimited by hole
sizes defined by H¼1 (grey) and H¼2 (green) are highlighted. (b) Average percentage of occurrence in time occupied by the 4 Quadrant-type events in each plane, in the
erosive and accretive runs, before and after filtering the periodic signal, with H ¼0; and (c) average contribution to Reynolds’ stress by the 4 types of motion in (u′w′) (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

Fig. 5. Time series and spectral analysis of 3D fluctuating velocity components, in the streamwise/along-flume (dark green), crosswise (gold), and vertical (orange) for the
entire experimental wave run A301 (Hs¼0.8 m, Tp¼8 s) measured (a) within; and (b) outside the oscillatory benthic boundary layer, wδ . Power spectral densities calculated
using Welch’s method with a Hann window (211 length) with 50% overlap, sampling frequency 25 Hz). Peak wave frequencies are indicated (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.).
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is reportedly enhanced in sediment mixtures with high standard
deviations in grain size distribution, like the coarsely skewed se-
diments present here; while that of the Q1 events becomes less
significant (Wu and Jiang, 2007; Wu and Yang, 2004).

3.4. Spectral analysis of turbulence and suspension

Spectral analysis decomposes the measured turbulence data
into waves of different periods (frequencies) and wavelengths,
providing a suitable means of examining how these fluctuation are
distributed from a statistical viewpoint (Tennekes and Lumley,
1972). The multitude of scales (both spatial and temporal) of tur-
bulent eddies comprise a spectrum ranging from the macroscale
(long period and spatially limited only by the dimensions of the
flume/flow) to the high frequency microscale limited by viscosity,
with the energy transfer being driven by vortex stretching (ibid.).
The value of a spectrum at a certain frequency or wavelength
equates to the mean energy of that wave, and as a result, it pro-
vides a means of assessing how eddies of different sizes exchange
energy and how turbulence evolves with time. With turbulence
being a largely three-dimensional problem, this necessitates con-
struction of energy spectra in three dimensions (Cebeci and Smith,
1974). Fig. 5 shows the power spectral densities (PSD) of the three
fluctuating velocity components (u′wave) within and outside the
boundary layer for the entire length of the erosive wave test (∼
180 min). These have been calculated using Welch’s method with a
Hann window with 50% overlap. The velocity spectra display a
peak corresponding to a period of 8.19 s in all three components,
as expected (design peak period being Tp¼8 s). Nonetheless, a
striking feature is a significant peak in the crosswise turbulence
spectrum at both elevations, with a corresponding period of 2.64 s.
This is also apparent in the accretive runs, as well as what seems to
be higher order harmonics. Chu et al. (1991) have reported on
unstable transverse shear flows leading to large scale turbulent
motions across wide and shallow open channels (horizontal length
scales significantly larger than water depth), induced by the
growth of small scale disturbances induced by bed friction (critical
value of 0.12–0.145) or depth variation. However, neither of these
appear to be applicable in this case, given the relatively uniform
cross section of the flume, and the lower wave-induced bed fric-
tion factors reported in Table 1, and some alternative mechanism
must be at work.

Standing cross-waves (transverse waves) induced by sym-
metric wave makers in rectangular channels have been reported to
occur with excitations at nearly twice one of the natural fre-
quencies of the paddle due to nonlinear parametric resonance
(Garrett, 1970; Miles, 1988). The first mode of oscillation for a
rectangular channel of width, B¼5 m, and water depth hs¼2.5 m,
occurs as half a wave with a node point at the centre of the flume,
and two maxima(crests)/ minima(troughs) on either end (the rigid
walls). Paterson (1983) presented the equations needed to calcu-
late the associated wave number (k l/π= ), and angular frequency

h. tang
B

h
B

0.5sω( = (( ) ( )) )π π , in which case the corresponding period in
our case comes to exactly 2.64 s, matching perfectly the peak in
the spectrum, with higher order oscillations also observed in the
spectra. The existence of a stable transverse standing wave may
also be a contributor to the observed asymmetry and high kurtosis
of the crosswise velocity fluctuation. Similar cross waves have
been generated in much larger wave basins, such as the recent
edge wave experiments at IH Cantabria (Coco, per comm.), but the
existence of such waves on unconfined lengths of coast remains an
open research question.

The spectra of turbulence components both within and outside
the boundary layer were also constructed for each of the erosive
and accretive sub-runs, following the same methodology. No
significant peaks were apparent in the lower frequency range
(periods longer than the peak wave period); suggesting limited
effect of wave groups in the turbulence signal. When the wave
signal is filtered out, no sharply-defined peaks could be attributed
to the harmonics of the applied wave forcing (progressive waves
along the channel); but the highest variances lie between the first
harmonics of the progressive wave and the second harmonics of
the transverse standing wave. This shows that the turbulent en-
ergy lies within the wave frequency range, as has been seen in
studies of the inner surf zone (Ting and Kirby, 1996). Local peaks
corresponding to the second harmonics of both could be dis-
cerned, indicating induced turbulence at flow reversal, often as-
sociated with the vortex shedding process. When shown in wave
number space, these fluctuations approach the Kolmogorov–
Obukhov 5/3− relation within the inertial dissipation sub-range
(Frisch, 1995; Stapleton and Huntley, 1995). Note, however, that
spectral analysis with Fourier transforms are limited by the Ny-
quist frequency, limiting detected frequencies to those higher than
half the sampling frequency of the instruments (Glover et al.,
2011), in this case, 12.5 Hz.

Taylor’s theory of “frozen turbulence” suggests that turbulence
is advected by the mean current more rapidly than it is developing
temporally, and as a result, the measured turbulence fluctuations
at a fixed point would correspond better to the spatial rather than
temporal changes in velocity (Taylor, 1938; Wyngaard and Clifford,
1977). In wavenumber ( k) space, where k f U2 /π= ¯ , the spectral
energy for all eddies of size

k
2π is roughly proportional to E k( ) times

the width of the spectrum (Tennekes and Lumley, 1972). The strain
rate of an eddy is thus a function of its wavenumber, which is often
scaled by the measuring height, z, into a non-dimensional form, k*.
Hence, by normalising the k*-weighted spectra into an energy/
variance preserving form, whereby an equal area under the cur-
ve¼equal energy, it is possible to calculate the dominant eddy
sizes, following (Soulsby, 1977, 1983; Soulsby et al., 1984).This was
applied to the turbulence spectra, before smoothing with a mov-
ing-average algorithm, as shown in Fig. 6, where error bars re-
present standard deviation for the averaged sub-runs. The peaks
indicate similar scaling in the crosswise and vertical components
near the bed for both erosive and accretive runs (�0.05 m), and
slightly larger scales along the flow in the accretive runs (∼0.18 m)
as opposed to the erosive ones (∼0.12 m). Along the direction of
wave propagation, these vary over a range of scales higher in the
water column (at ADV2) for the erosive runs (between 0.1–0.3 m),
and increase substantially in the accretive ones (∼1 m streamwise,
0.2 m in the crosswise and vertical). The vertical excursions scale
well with the wave boundary layer thickness in both erosive and
accretive runs. Overall, the wavenumbers contributing to hor-
izontal motions are smaller than those contributing the vertical
motions.

The power spectral densities of sediment backscatter at 5 ele-
vations above the bed are presented in Fig. 7, for all of the analysed
sub-runs. The suspension spectra in both erosive and accretive
runs exhibit multiple or broad peaks near the bed and higher in
the water column, with frequencies corresponding to the second
harmonics of the progressive waves, as well those of the trans-
verse waves. This implies suspension of sediment is associated
with the shedding of vortices from bedforms within the boundary
layer (O’Hara Murray et al., 2011), and extending much higher in
the water column, potentially due to pairing of vortices (Williams
et al., 2007). This claim is supported by the bed morphology,
stable, 2D vortex ripples with no considerable migration over the
duration of each 8 min sub-run. It does not appear, however, that
wave groups play a role in this case, as has been reported in ir-
regular waves over evolving bedforms (O’Hara Murray et al., 2012).
The peaks corresponding to the transverse wave properties
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Fig. 6. Average normalised non-dimensional wavenumber (K*)-weighted turbulent energy spectra of the three turbulence components, (u′, dark green), crosswise (v′, gold),
and vertical (w′, orange) turbulence components; measured within the benthic boundary layer (a), and (c) and outside the wave boundary (b), and (e), for the erosive and
accretive wave runs, respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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highlight the nonlinearity and three dimensionality of the sedi-
ment suspension process, both in terms of sediment pick up and
maintenance of suspension higher in the water column. While the
spectra in the lower frequency range are steeper near the bed, and
relatively flatter higher up, these trends reverse at the higher
frequency scales. This may suggest that the stirring of sediment
near the bed is driven by the mean flow properties, but the waves
do not play a significant role in retaining sediment in suspension.
Steeper slopes of energy spectra at higher frequencies are often
associated with coherent structures (Maltrud and Vallis, 1991), and
as such, higher frequency turbulence may be the dominant me-
chanism at work at higher elevations above the bed, and hence
key to modelling suspension of sediment outside the boundary
layer.

The time dependency between the horizontal shear stress and
sediment concentration also varies with elevation (Venditti and
Bennett, 2000). Given the existence of an undertow in this case (∼
0.2 m/s offshore), vertical variations are expected in spilling
breakers (erosive runs) as turbulence gradually spread downwards
by moderate scale eddies from the surface roller, but not in
plunging breakers where downward generated large scale vortices
create strong vertical mixing (Ting and Kirby, 1994, 1996). Plun-
ging breakers are dominated by orbital wave motion and turbu-
lence is thus convected landwards, favouring accretion and in-
dicating strong dependence on history downstream, while spilling
breakers are dominated by the undertow moving sediments sea-
ward (ibid.).

The erosion process, locally, is likely to be affected by the
passage of large scale coherent structures with low occurrence
probability (Adrian and Marusic, 2012), and there is growing evi-
dence that the concept of bursting as a violent ejection is replaced
by the concept of “slowly evolving” fast packets of vortices creat-
ing sequences of ejecting/sweeping events each associated with
one of the vortices (Christensen and Adrian, 2001; Jimenez, 2012;
Jiménez, 2013). We conjecture that the succession of convected or
locally generated intermittent bursting or sweeping motions
would dictate whether the entrained sediment has enough time to
settle, is amplified by added suspensions, or swept back to the bed.
This governs the frequency response of suspension events and
how they interfere with turbulent fluctuations. Wavelet analysis
may offer some clues as it provides information not only on fre-
quency scales, but their spatial (occurrence in time) variability too.
Whether erosion or accretion is observed at the barrier is then
governed by the mean currents which could transport the agitated
sediments above the bed. This is typical of a stochastic process
where particle concentration is closely related to that of the tur-
bulence fluctuation arising from large eddies as shown in the work
of (Liu et al., 2012). Such episodic events could occur at any loca-
tion of the bed, with short periods of considerable sediment
movement intermingled with long periods of negligible transport
(Dey et al., 2012).

3.5. Wavelet analysis of Reynolds’ stresses and sediment
resuspension

Fig. 8 shows the power spectra highlighting time–frequency



Fig. 7. Power spectral densities (PSD) of the suspended sediment backscatter at 5 different elevations above the bed, for all the analysed erosive (left panel), and accretive
(right panel) wave runs. The first (1/Tp) and second (2/Tp) harmonics of the progressive wave forcing, and the transverse standing waves are shown by the green and golden
dashed lines, respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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characteristics of the three Reynolds’ stresses and sediment sus-
pension obtained through continuous wavelet transforms for an
example sub-run from the erosive series. Matching results are
evident in the other runs (not shown for brevity), and the beha-
viour reported hereafter is true for both erosive and accretive runs.
In this figure, the left panels pertain to measurements at the level
of ADV1 (within the wave boundary layer), while results from
measurements corresponding to ADV2 (outside the boundary
layer) are displayed on the right panels. The figure shows the time
series of the three Reynolds’ stresses in 3 orthogonal planes of
motion: (u w′ ′) in the streamwise-vertical plane (bed normal along
the direction of wave propagation), (u v′ ′) in the horizontal plane,
and (v w′ ′) in the crosswise-vertical plane, having filtered out the
wave-signal from the fluctuating turbulence components, as well
as their energy spectra (obtained by Fourier transforms, as dis-
cussed in Section 2.4. The time-series of continuous wavelet
transforms (CWT) for each of the stresses in the time–frequency
domain, are presented subsequently in the same order, together
with their global spectral power (integrated variance). We opted to
present the inverse frequencies (i.e. periods) on the vertical axes,
to facilitate the discussion when related to wave properties. The
global power pertains to time averages, if we were to take a ver-
tical slice through the wavelet plot, and average all the local wa-
velet spectra (Torrence and Compo, 1998).

Finally, the lower two panels show the time series of vertical
suspension (logarithmic backscatter, higher values in warmer
colours) profiles below the ABS sensor head, the power spectral
densities of suspended sediment concentration at the level of the
corresponding ADV (ADV1 on the left, ADV2 on the right), and the
related continuous wavelet transform of the suspension time
series at that elevation, together with its global spectral power. In
these plots, warmer colours indicate higher power (variance), the
white-shaded region represents the cone of influence where edge
effects may distort the image, and the thick contours represent the
95% confidence limit (5% significance against red noise). Note that
at higher periods (low frequency events), the power falls within
the cone of influence, limiting our ability to investigate the tem-
poral evolution of the particular peak frequencies reported in
Section 2.4. Therefore, we are restricted to investigating very high
frequency events occurring at time scales up to 2 s. This limitation



Fig. 8. Time–frequency properties of the three instantaneous Reynolds stresses u w u w, , andυ υ( ‵ ‵ ‵ ‵ ‵ ‵) and suspended sediment concetrations, measured within (left handside),
and outside (right handside) the benthic wave boudnary layer. In each panel, the top three subplots show the time series of the three aforementioned stresses, respectively,
together with their frequency spectrum (through a Fourier transform) in which universal Kolmogorov–Obukhov rate of inertial dissipation (̂-5/3) is represented by the red
line. The following three sub-panels present the time-series of continuous wavelet transforms (CWT) for each of the stresses in the time–frequency domain, presented in the
same order, together with their global spectral power (integrated variance) across the various frequency scales (inverse period). Subsequently, the lower two sub-panels
show the time series of vertical suspension (logarithmic backscatter, higher values in warmer colours) profiles below the ABS sensor head, the power spectral densities of
suspended sediment concentration at the level of the corresponding ADV (ADV1 on the left, ADV2 on the right), and the related continuous wavelet transform of the
suspension time series at that elevation, together with its global spectral power. In the time–frequency domains, warmer colours indicate higher power (variance), the
white-shaded region represents the cone of influence where edge effects may distort the image, and the thick contours represent the 95% confidence limit (5% significance
against red noise) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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arises from Heisenberg’s uncertainty principle, which dictates that
one cannot obtain arbitrary good localisation in both time and
frequency, and a trade–off must exist whereby spatial resolution is
bad at large scales while scale (frequency) resolution is bad in the
small scales (Farge et al., 1996; Foufoula-Georgiou and Kumar,
1994; Grinsted et al., 2004; Lau and Weng, 1995). Having said that,
it is clear that most of the power (variance) in concentration lies
within the lower frequency range (high period) associated with
the mean flow properties for both stresses and suspensions near
the bed.

The Fourier-transform-derived spectra of Reynolds stresses
show that they approach the universal Kolmogorov–Obukhov -5/3
relation corresponding to the inertial dissipation sub-range
(Frisch, 1995, Stapleton and Huntley, 1995). While this is still true
for stresses measured outside the boundary layer (by ADV2), it is
interesting that a secondary peak appears within the higher fre-
quency range, suggesting enhanced turbulence with smaller scales
of motion. The CWT results show that ‘powerful’ (i.e. high var-
iance) turbulent events occur intermittently throughout the re-
cords, in slowly evolving clusters that persist over short times in
the dominant flow direction (streamwise-vertical) near the bed,
and for longer times (significant from a turbulence perspective, up
to several minutes), higher up in the water column, and at lower
frequencies. The larger clusters fall over short bands of frequency
scales (specific periods, predominantly 0.5 and 2 s); while the fast-
evolving clusters extend over a bigger range of frequency scales
(primarily between 1/2 and 1/64 s) before diminishing. This may
indicate breakup of the larger eddies into smaller and smaller ones
within the inertial dissipation range, before the energy is con-
sumed by viscosity, as described by the classical turbulence cas-
cade which suggests that inertia results in stretching and rapid
breakup of vortices into many smaller, excited degrees of freedom,
until energy is dissipated through viscosity (Frisch, 1995; Kolmo-
gorov, 1991; Sreenivasan and Antonia, 1997; Tennekes and Lumley,
1972). The turbulent clusters within the streamwise-vertical plane
(hereafter referred to as the dominant plane of motion) have the
highest power, which appears to be uniformly distributed across
the aforementioned frequency range. In the horizontal plane, such
events are also considerably powerful, but tend to spike closer to
the lower end of the range, at periods comparable to the harmo-
nics of the transverse standing wave. In the crosswise-vertical
plane, significant clusters of turbulent stresses occur for longer
times, but their power is negligible compared to those of the other
two planes of motion.

Periods associated with a succession of powerful turbulent
events are very closely followed by periods of powerful, high fre-
quency suspensions, extending from the larger scales observed in
the low frequency range (periods up to 4 s/outside the cone of
influence), and exponentially extending over smaller and smaller
scales (higher frequencies/lower periods) before decaying as



Fig. 9. Influence of wave-signal on the time–frequency properties of Reynolds stress in the streamwise-vertical plane (u′w′), measured near the bed (left panel), and putside
the wave boundary layer (right panel). In each panel, top sub-plots (a), and (d) show the time series of Reynolds stress (before and after filtering out the wave signal),
together with its corresponding frequency spectrum (by Fourier transform). The dashed horizontal lines indicate 71.s (standard deviation). The rate of inertial dissipation is
shown by the sloping red line in the frequency plot. The middle (b) and (e) and bottom (c) and (d) sub-panels sow the time-series of continuous wavelet transform (CWT) of
the Reynolds stress before and after filtering out the wave signal, respectively, together with the corresponding global power spectrum. In the time–frequency domains,
warmer colours indicate higher power (variance), the white-shaded region represents the cone of influence where edge effects may distort the image, and the thick contours
represent the 95% confidence limit (5% significance against red noise).
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turbulence clusters cease. This may be explained as cumulative,
highly-varied suspensions in response to the faster turbulent
perturbations, where continuing upward diffusions exceeds the
settling velocity of the entrained particles. Even the more sporadic
suspension events of lower significance appear to conform to the
aforementioned behaviour, if the wave signal is not excluded from
the turbulent fluctuation (shown in Fig. 9). Comparing the two
figures shows that the bulk of sediment suspension events can be
attributed to wave-induced turbulent fluctuations of low fre-
quency (only higher order harmonics of the wave period (4/Tp) are
visible outside the cone), where most of the global power is re-
tained. Yet, the short-lasting suspension clusters scale with the
rapidly decaying high frequency turbulence. This perhaps high-
lights a hysteresis effect, where a dynamic lag occurs between the
driving mechanism in terms of the formation, and evolution of a
vortex structure and ensuing bursting sequence, and the response
in terms of sediment resuspension. These periods of high power
and long suspension events often appear directly following sig-
nificantly large amplitude variations in water surface elevation of
up to 1.4 m, inferred from the pressure gauge (not shown here).
This suggests that the initiation of a large suspension event be-
yond the mean flow frequency range is instigated by the passage
of the more energetic waves within the JONSWAP spectrum, or
with early wave breaking events. Its persistence in the higher
frequency range is then dictated by the supply of fluid mo-
mentum; either generated through bed friction, or injected
downwards by the spilling breakers of these erosive wave runs.
Higher in the water column, few suspension events are observed
at the high frequencies, and where they do occur, these are char-
acterised by a rapid expanse of the scales followed by rapid decay
(dissipation of energy). In the accretionary runs, the turbulence
events span even wider scales and occur over longer times, cor-
responding to significant fluctuations in the time series of the
turbulence components (and water elevation). These clusters can
be interpreted as large scale, uniform momentum regions con-
vected or formed near the bed in the low frequency range. As they
evolve, they cause small scales vortices that experience sudden
and short lived changes in velocity, manifest by short duration
events of high variance, that appear to be ‘shooting out’ of the
larger clusters and spanning a significant extent in the high fre-
quency range in these plots. This change can cause higher shear
stresses compared with the mean flow, as reported by (Hutchins
et al., 2011; Mathis et al., 2011), and as such, are often followed by
significant suspension clusters.

To examine the hypothesis thus posited, cross-wavelet trans-
forms (XWT) of the Reynolds stresses in three planes, and the
recorded suspended sediment concentrations are presented in
Fig. 10, both within and outside the wave boundary layer. Note that



Fig. 10. Cross wavelet transforms of instantaneous 3 dimensional Reynolds Stresses and (downsampled) Sediment Concentrations within (ADV1) and outside (ADV2) the
bottom wave boundary layer during erosive wave run A3-01 (2nd), before and after filtering out the periodic signal from the turbulent component. The light-shaded region
represents the cone of influence where edge effects may distort the image. The thick contours represent the 95% confidence limit (5% significance against red noise). The
relative phase is shown in arrows (with right arrow indicating inphase, left arrows indicating anti-phase, and vertical arrows indicate Reynolds stresses leading by 90°.
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this can only be done after down-sampling the 64 Hz suspension
record to match the sampling frequency (25 Hz) of the ADVs. The
significance levels are tested against red noise generated by a first
order autoregressive model following Grinsted et al. (2004), and
denoted by the thick contours. The lightly shaded area represents
the cone of influence. The XWT has been applied to the turbulent
fluctuations before (denoted by the “wave” subscript); and after
filtering out the wave signal for each of the Reynolds’ stresses in
every plane. The phase relationship between the two signals
(stress and concentration) is shown by the arrows, whereby right
arrows indicate signals are in-phase, left-pointing arrows indicate
anti-phase, and vertical arrows suggest that the Reynolds stresses
lead concentration by 90 degrees phase shift, testing the co-
herence of the transform (Grinsted et al., 2004). Here we notice
common features as observed in Figs. 8 and 9, where suspension
events and turbulent stresses share high common power at a
range of scales. At the smaller frequency scales, these regions of
significant common power occur for most of the time near the bed
and in all three planes, particularly when the wave signal is pre-
sent, albeit falling within the cone of influence. The powerful
events at lower periods of 2–4 s are phase locked, implying
causality between the wave-induced turbulence and the ensuing
suspension, but with no notion of time lag. However, no robust
measure of whether this may be an artefact of the dominance of
one of the signals, or not, is carried out (e.g. combining clustered
wavelet spectra with maximum covariance analysis presented by
Rouyer et al. (2008)). The higher-frequency ‘wave-contaminated’
scales appear to be less coherent in all planes both near the bed
and outside the boundary layer. However, once the wave signal is
filtered out, the turbulent fluctuations outside the boundary layer
appear to be predominant in driving the suspensions at this level,
with the highest power, although being phase-locked in the
opposite direction.
Nonetheless, the wavelet analyses presented collectively sup-

port the conjecture proposed, postulating a mechanism in which
successive intermittent bursting motions play a significant role in
moving and maintaining sediments in suspension. In time–fre-
quency space, it is shown how most of the momentum exchange,
and ensuing suspension, lies within the low frequency range (high
periods) dictated by the mean flow properties. The passage of
intermittent and relatively large momentum regions of uniform
spectral properties at higher frequencies, plays a direct role in
sediments suspensions which exhibit significant variability within
the higher frequency range. As these regions, which signify the
passage of a coherent structures, persist for a considerable amount
of time, suspensions near the bed are amplified before decaying as
the supply of momentum by these turbulent structures ceases.
Within a given cluster of turbulence, both stresses and suspen-
sions span a certain range of frequencies, which may hint at a
nonlinear modulation of both the amplitude and frequency of such
small structures with the larger flow structures near the bed. Such
behaviour in wall turbulence has been attributed to local changes
in shear but not necessarily the spatial and temporal structure of
large flow events (Ganapathisubramani et al., 2012).
4. Conclusions

The aim of this study was to provide insight into the temporal
and scale relationships between wave-generated boundary layer
turbulence and event-driven sediment transport in oscillatory
flow. The work was carried out in the nearshore of a prototype
sandy barrier beach using data collected though the BARDEX II
experiments for irregular erosive and accretive wave conditions.
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Statistical analysis of the time series of velocity fluctuations show
high anisotropy in the turbulence records, with strikingly peaky
crosswise distributions and an intermittent nature of the mo-
mentum exchange. Quadrant analysis quantified the intermittency
of Reynolds stresses in three planes. The fractional contribution to
stress in terms of occurrence times reveal the dominance of
shoreward directed motions in accretionary waves, and sweeping
motion seawards under erosive conditions; as well as a tendency
to move sediments to one side of the channel, as observed in the
skewness in the turbulence records. Spectral analysis further re-
veal a contribution to the crosswise velocity fluctuations from a
standing transverse waves across the flume, resulting from the
unique flume geometry, whose signal was reflected in the sus-
pension records. The entrainment and maintenance of sediments
in suspension through the bursting sequence is conjectured to be
associated with the passage of convected or locally formed packets
of eddies which describe intermittent large coherent structures
within the flow. Wavelet analysis further confirmed that powerful
(high variance) turbulence occurred in slowly evolving clusters
over time, which were closely followed by periods of powerful
suspensions near the bed, emerging from the integral (dominant)
scales at low frequencies, and decaying with memory in time, after
the cessation of the turbulent perturbation. The larger wave-in-
duced motions and nearbed suspension are phase-locked in the
lower frequency range, suggesting that waves acts to stir up and
initiate entrainment of sediment in the boundary layer. Outside
the boundary layer, turbulent fluctuations are dominant in driving
and maintaining high frequency suspensions as long as mo-
mentum is supplied. In summary:

(a) Turbulence in irregular oscillatory flow is highly anisotropic,
and characterised by intermittent momentum exchanges, de-
scribing a spatially varied bursting sequence which may be
traced in three dimensions, and the temporal variability of
which dictates the net direction of sediment transport in
erosive and accretive runs.

(b) The bursting sequence is associated with the passage of large
scale slowly evolving structures, which can modulate the fre-
quency of small scale (higher frequency) events. The persis-
tence of such perturbations is associated with a cumulative
suspension events spanning the frequency scales, which ob-
serve a hysteresis effect decaying as the motion cease. Wave
motion plays a dominant role in entrainment of sediment
within the boundary layer, and high frequency turbulence
resulting from momentum transfer into smaller scales helps
maintain particles in suspension.

(c) Flume studies of turbulence and sediment transport must
consider the effect of flow geometry which may induce arte-
fact hydrodynamics that can significantly have an influence on
the processes being investigated. The transverse standing
wave reported in this study is a case in point, whereby a
secondary process at work was evident in the statistical and
spectral properties of turbulence and suspension events
observed.
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A4-1 

Appendix 4.  

Continuous Wavelet transforms of 3D Reynolds 

stresses and Sediment resuspension 

The following images present the  time-frequency properties of the three instantaneous Reynolds stresses (𝑢𝑢′𝑤𝑤′, 𝑢𝑢′𝑣𝑣′, and 𝑣𝑣′𝑤𝑤′) and 
suspended sediment concentrations (SSC), measured within (left hand side) and outside (right hand side) the wave-induced benthic 
boundary layer for the corresponding wave run turbulence records, from the Barrier Dynamics Experiment. In each panel, the top three 
subplots show the time series of the three aforementioned stresses , respectively; together with their frequency spectrum (through a 

Fourier transform) in which the “universal” Kolmogorov-Obukhov rate of inertial dissipation (𝑘𝑘−
5
3) is displayed by the red line. The

following three sub-panels present the time series of continuous wavelet transforms (CWT) for each of the stresses in the time-frequency 
domain, presented in the same order, together with their global spectral power (integrated variance) across the various frequency 
(inverse period) scales. Subsequently, the lower two sub-panels show the time series of vertical suspension profiles (logarithmic 
backscatter; with higher values in warmer colours) below the ABS sensor head. The power spectral densities of SSC at the levels of the 
corresponding ADV (ADV1 on the left, within the boundary layer; ADV2 on the right, outside the boundary layer) are also presented, as 
well as the related continuous wavelet transform of the suspension time series at that elevation.  In the time-frequency domains, warmer 
colours indicate high power (variance); the white- shaded region represents the cone of influence where edge effects may distort the 
image, and the thick contour lines represent the 95% confidence limit (5% significance against red noise). 
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Appendix 5.  

Continuous Wavelet transforms of 3D Reynolds 

stresses and Sediment resuspension 

The following images present the  Cross wavelet transforms of instantaneous 3 dimensional Reynolds Stresses and (downsampled) 

suspended sediment concentrations within (ADV1) and outside (ADV2) the bottom wave boundary layer for the corresponding wave test 

run. The light-shaded region represents the cone of influence where edge effects may distort the image. The thick contours represent the 

95% confidence limit (5% significance against red noise). The relative phase is shown in arrows (with right arrow indicating in-phase, 

left arrows indicating anti-phase, and vertical arrows indicate Reynolds stresses leading by 90°). 
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Appendix 6.  

SIS scans for 1 minute of the aligned and opposing 

wave-current cases

The following images present 1 minute scans of the SIS showing acoustic backscatter and bed morphology measured every 6 seconds for 

a duration of 1 minute within the sediment-turbulent experiment conducted at the HR Wallingford Fast Flow Facility; with collinear 

currents aligned with, and opposing the direction of wave propagation, respectively. 
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