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of the predictive regression and is straightforward to implement. The distributions of the
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1 Introduction

Models where quantities such as stock returns are regressed on lagged values of predictors such

as valuation ratios, interest rates, investor sentiment or other economic and financial variables

have been at the core of a vast body of applied and theoretical research in financial economics.

The key goal of such specifications is the detection of stock return predictability with important

implications for asset pricing theories and the use of conditional asset pricing models which rely

on the existence of such predictors. Inferences in the context of these predictive regressions are

complicated due to the joint interaction of the highly persistent nature of the commonly used

predictors (e.g. dividend yields, price to earnings ratios) with endogeneity problems arising from

the correlation of the innovations of the predictors with the predictive regression errors. This

has typically led to nonstandard inferences and a growing literature aiming to develop valid and

reliable inferences in such settings (see Valkanov (2003), Lewellen (2004), Campbell and Yogo

(2006), Jansson and Moreira (2006), Kasparis, Andreou and Phillips (2015) and more recently

Kostakis et al. (2015) amongst numerous others).

In parallel to this methodological literature on inferences in predictive regressions it has also

been recognised that predictability itself may be a time varying phenomenon and that the impact

of predictors such as dividend yields, interest rates and others may be evolving over time. In their

comprehensive study on the predictability of the equity premium for instance Welch and Goyal

(2008) have documented significant instabilities in predictability as also highlighted in Rapach and

Wohar (2006), Timmermann (2008), Lettau and Van Nieuwerburgh (2008) and numerous others.

The sensitivity analysis conducted in Kostakis et al. (2015) also highlighted significant variations

in test conclusions depending on whether one considers pre or post 50s data.

Most existing methods used to assess time variation and breaks in the parameters of regression

models are typically designed for purely stationary or purely nonstationary settings and are not

necessarily suitable for the specificities of predictive regressions. The Brownian Bridge type of

asymptotics of the most commonly used SupWald and related tests of Andrews (1993) would no

longer be valid for instance when considering nearly integrated predictors. In Rapach and Wohar

(2006) the authors used the standard SupWald based test together with bootstrap approximations

to infer predictability on US return data. Even with methods specifically designed to address

the econometric difficulties characterising predictive regressions instabilities have been mainly

highlighted through ad-hoc sub-period analyses. In Kostakis et al. (2015) the authors developed

a method for testing predictability designed to be immune to the degree of persistence of the

predictors and through an ad-hoc sub-period implementation of their methodology documented

significant changes in predictability over particular periods.

The goal of this paper is to propose a formal method for uncovering instability in predictive

regressions that is specifically designed to handle the presence of nearly integrated predictors in
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addition to accommodating conditional heteroskedasticity and possible endogeneity in the form

of contemporaneous correlations between the innovations driving the predictors and the errors of

the predictive regressions. Our method is simple to implement and relies on a simple construct

that uses the cumulated squared residuals of a linear predictive regression. More importantly and

unlike most of the literature that models persistence via nearly integrated processes the limiting

distributions of our proposed test statistics are free of nuisance parameters, already tabulated

and do not depend on the unknown non-centrality parameter driving the degree of persistence of

the predictors. We view this robustness of our inferences to the noncentrality parameter tuning

the persistence of the predictor as a particularly noteworthy and unique feature. In summary

our methods offer a straightforward and easy to implement diagnostic tool for exploring potential

instabilities prior to conducting further inferences. When applied to the detection of instabilities

in the context of the predictability of aggregate US stock market returns over the 1927-2013 period

parameter stability is strongly rejected across all considered predictors.

The plan of the paper is as follows. Section 2 introduces our operating model, assumptions and

test statistics and obtains its large sample properties. Section 3 focuses on the finite sample size

and power porperties of our tests in addition to establishing their consistency. Section 4 applies

our methodology to the predictability of aggregate US returns using the recently extended Goyal

and Welch (2013) dataset. Section 5 concludes.

2 Cumulative Squared Residuals Based Tests

Our operating model is given by the following predictive regression

yt+1 = α + βxt + ut+1 (1)

with the predictor xt modelled as the nearly integrated process

xt =
(

1− c

T

)
xt−1 + vt (2)

with c > 0 and ut and vt denoting stationary disturbances. Our key goal is to develop inferences

for detecting the presence of a structural break in the conditional mean parameters of (1) that are

immune to the unknown non-centrality parameter c and valid under sufficiently weak assumptions

on the random disturbance terms and their interactions. The probabilistic properties of our

specification are collected in the following set of assumptions.

Assumptions (i) vt = Ψ(L)εt with Ψ(L) =
∑∞

j=0 ψjL
j such that Ψ(1) 6= 0, Ψ0 = 1 and abso-

lutely summable coefficients. (ii) wt = (ut, εt)
′ is a martingale difference sequence with respect

to the natural filtration Ft = σ(wt, wt−1, . . .) such that E||wt||4 < ∞ and E[wtw
′
t] = Σw ≡

{{σ2
u, σuε}, {σuε, σ2

ε}} > 0. (iii) The sequence ηt = u2t − σ2
u has autocovariances γηj such that
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∑∞
j=1 |γ

η
j | <∞ and satisfies the invariance principle T−

1
2

∑[Tr]
t=1 ηt ⇒ φ W (r) with W (r) denoting

a standard Brownian Motion and φ2 = γη0 + 2
∑∞

j=1 γ
η
j .

Assumptions (i)-(ii) are the norm in the linear predictive regression literature. They allow vt

to be a very general short memory linear process. They require wt to be a martingale difference se-

quence with finite fourth order moments allowing it to be conditionally heteroskedastic with a pos-

sibly time varying conditional variance E[wtw
′
t|Ft−1] (see for instance Campbell and Yogo (2006,

pp. 57-58), Kostakis et al. (2015) and references therein). The unconditional variance-covariance

matrix Σw may be non-diagonal allowing the shocks to yt and xt to be contemporaneously corre-

lated, a fundamental feature in predictive regressions linking stock returns to valuation ratios such

as dividend yields and price-to-earnings ratios. Although it is possible to relax assumption (ii) to

also allow ut to be serially correlated via a strong mixing or β mixing setting the specific predictive

regression environment and the fact that the most common choice for yt involves asset returns

makes the m.d.s setting with possible conditional heteroskedasticity a natural choice, unlike for

instance in single equation cointegrating relationships.

Assumption (iii) is presented as a high level assumption that takes the form of an invariance

principle for variances which is needed for establishing the distributional properties of our test

statistics formed using the squared residuals obtained from (1). The absolute summability of

the autocovariances of ηt ensures in turn that φ2 the limit of V [
∑T

t=1 ηt/T ] exists. Examples

of processes and primitive assumptions satisfying the above involve a rich set of conditionally

heteroskedastic ARCH/GARCH and related specifications under suitable conditions on their pa-

rameterisations (e.g. existence of moments restrictions). For a broad range of primitive settings

ensuring that (iii) holds see Giraitis, Kokoszka and Leipus (2000, Theorem 5.1), Giraitis, Kokoszka

and Leipus (2001, Example 2.2 and Theorem 2.1), Berkes, Hörmann and Horvàth (2008), Lindner

(2009) and references therein.

We next introduce our test statistics for testing the null model in (1) against departures

from parameter stability as in (5) below. Our proposed inferences will rely on the fluctuations

of the squared residuals and more specifically on functionals of the quantity Ck =
∑k

t=1 û
2
t −

(k/T )
∑T

t=1 û
2
t . We consider two such functionals. The first one given by the well known CUSUM

of squares statistic formulated as

CSQ = max
1≤k≤T

1

φ̂

∣∣∣∣ Ck√T
∣∣∣∣ (3)

and the second one given by

ASQ =
1

T φ̂2

T∑
k=1

C2
k

T
(4)

where φ̂2 denotes an estimator of the long run variance φ2.
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Since the early work of Brown, Durbin and Evans (1975) the use of CUSUM and CUSUM

of squares types of test statistics have had a long history in the changepoint literature and both

statistics and their multiple variants have been extensively used in applications in virtually all

scientific fields. In Xiao and Phillips (2002) the authors used the CUSUM principle to develop a

test for detecting the presence of cointegration within a single equation setting. In Deng and Perron

(2008a, 2008b) the authors developed a comprehensive analysis of the power properties of CUSUM

and related statistics in the context of detecting parameter shifts in regression models under

stationarity. Kasparis (2008) and more recently Berenguer-Rico and Nielsen (2016) introduced a

CUSUM based approach for detecting misspecification in nonlinear models with non-stationary

regressors. The idea behind a test statistic such as (3) or (4) is that any omitted time variation

within the predictive regression will contaminate the standard least squares residuals and their

squares and hence should be detectable by analysing how ût and û2t fluctuate.

Test statistics such as CSQ and ASQ were originally developed as exploratory tools for detecting

departures from the null of parameter stability with no particular alternative in mind, nevertheless

such tests can be shown to be consistent against a broad range of alternatives including single and

multiple changepoint scenarios (see Deng and Perron (2008a, 2008b)). The recent changepoint

literature is also rich in examples where CUSUM type statistics have been fine-tuned to capture

specific departures from the null (see Xu (2013a, 2013b), Kejriwal (2012), Juhl and Xiao (2009))

via the formulation of long run variance estimators that use features from the alternative model

(e.g. residuals under the alternative of interest or residulas under a nonparametrically specified

alternative). In this paper the particular alternative we will consider when focusing on the power

properties of CSQ and ASQ is the single changepoint predictive regression given by

yt+1 = (α1 + β1xt)I(t ≤ k) + (α2 + β2xt)I(t > k) + ut+1 (5)

with k = [Tπ] referring to the location of the break-point in the slopes, intercepts or both and

π ∈ (0, 1) the break fraction.

Letting η̂t = û2t − σ̂2
u and γ̂` =

∑T
t=`+1 η̂tη̂t−`/T the long run variance estimator of φ2 used in

(3)-(4) is given by

φ̂2 = γ̂η0 + 2
T−1∑
`=1

k(`/MT )γ̂η` (6)

with k(.) denoting a kernel function and MT the bandwidth. Under the maintained null model

in (1) and assumptions (i)-(iii) consistency of φ̂2 for φ2 is ensured provided that MT → ∞ and

MT/T → 0 together with some mild conditions on the kernel function (see Newey and West (1987),

Andrews (1991)). Our formulation of the long run variance also parallels the setting in Deng and

Perron (2008a, 2008b). Throughout the remainder of this paper we will follow the recent literature

and use the Bartlett kernel k(x) = (1 − |x|)I(|x| ≤ 1) when estimating φ2. Bandwidths can be

selected to be fixed as in Kostakis et al. (2015) (e.g. MT = T 1/3) or data dependent along the lines
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of Andrews (1991) with MT = 1.1447((4λ̂/(1 − λ̂2)2) T )1/3 and λ̂ denoting the AR(1) parameter

estimate from regressing η̂t on η̂t−1. If one wishes to restrict the presence of dependence in the η′ts

by forcing the u′ts to be conditionally homoskedastic then the estimator of the long run variance

φ2 = E[η2t ] is given by γ̂η0 ≡ φ̂2
hom.

Proposition 1. Under Assumptions (i)-(iii), model (1)-(2) and as T →∞ we have

CSQ ⇒ sup
π∈[0,1]

|W 0(π)| (7)

ASQ ⇒
∫ 1

0

W 0(π)2dπ (8)

with W 0(π) = W (π)− πW (1) a standard Brownian Bridge.

A fundamental feature of our limiting results in Proposition 1 is that the unknown noncentrality

parameter c characterising the degree of persistence of xt does not enter into their expression in

(7)-(8) making the practical implementation of our approach particularly straightforward. Note

also that these limiting distributions are unaffected by the presence or absence of endogeneity as

captured by a possibly nonzero off-diagonal element of Σw and are valid regardless of whether a

fixed or data dependent bandwidth has been used in the formulation of φ̂2.

Another convenient aspect of these distributions is the wide availability of their quantiles for

inference purposes. From Billingsley (1986) we also have

P

(
sup
π∈[0,1]

|W 0(π)| > u

)
= 2

∞∑
j=1

(−1)j+1e−2j
2u2 (9)

which can easily be used to construct suitable p-values. Alternatively, the 1%, 5% and 10% critical

values of the distribution are given by 1.628, 1.358 and 1.224 respectively. The random variable

in the right hand side of (8) is commonly known as the Cramer Von Mises distribution and is also

widely tabulated in the literature. In this instance we have

P

(∫ 1

0

W 0(π)2dπ > u

)
=

1

π

∞∑
j=1

(−1)j+1

∫ 4j2π2

(2j−1)2π2

√
−√y

sin(
√
y)

e−xy

y
dy (10)

with the 10%, 5%, 2.5% and 1% critical values given by 0.347, 0.461, 0.581 and 0.744.

Before proceeding with the size, consistency and finite sample power properties of our two

test statistics it is useful to assess the finite sample adequacy of the above asymptotic quantiles

via a simulation exercise. Our chosen DGP (DGP1 thereafter) is given by (1) with ut set to

follow the ARCH(1) process ut = ζt
√
ht with ht = ω + δu2t−1. We also let the shocks to the

predictor variable xt follow the AR(1) process vt = ρvvt−1 + εt. The shocks (ζt, εt)
′ are modelled

as a bivariate normal random variable with covariance {{1, σζε}, {σζε, 1}}. Table 1 below presents

5



the 5% cutoffs across three non-centrality parameter configurations c = 1, c = 10 and c = 40

using {α, β} = {0.025, 0.01}, ρv = 0, σζε = 0, δ ∈ {0.0, 0.2, 0.4}, ω = 1 and 5000 replications.

Alternative parameterisations imposing ρv = 0.5, σζε ∈ {−0.5,−0.9} and alternative magnitudes

for {α, β} led to virtually identical outcomes as expected by the asymptotic distribution theory.

Table 1 about here

Our experiments have been conducted using two alternative estimators of the long run variance

φ̂2 in addition to considering the standard homoskedastic version φ̂2
hom when operating under known

δ = 0. Using the Bartlett kernel we considered both a fixed bandwidth given by M = T 1/3 with

the associated long run variance referred to as φ̂2
hac1 and a data dependent bandwidth obtained as

in Andrews (1991) and with the associated long run variance denoted φ̂2
hac2.

The first important point to infer from Table 1 is the robustness of the finite sample critical

values to various magnitudes of the non-centrality parameter c regardless of the sample size. A

second important observation under this null setting is the robustness of critical values to the

bandwidth choice regardless of whether the DGP includes (δ = 0.2, δ = 0.4) or excludes ARCH

effects (δ = 0). Despite these desirable robustness features we also note that under small to

moderate sample sizes the finite sample critical values of CSQ tend to lie mildly to the left of

their asymptotic counterparts (e.g. 1.287 versus 1.358 under T = 200 and δ = 0) suggesting a

potentially undersized test for such sample sizes. The same is not true for the ASQ statistic which

is characterised by an excellent match between its asymptotic and finite sample critical values

even for sample sizes as small as T = 100.

Our next objective is to comprehensively explore the finite sample size properties of our tests

followed by a formal evaluation of their consistency and finite sample power.

3 Empirical Size, Test Consistency and Finite Sample Power

Properties of CSQ and ASQ

Finite Sample Size Properties

We operate within the same DGP as above (DGP1) and evaluate the sensitivity of empirical sizes

to the magnitudes of c, σζ,ε and ρv with a particular emphasis on the ability of our long run

variance estimators φ̂hac1 (fixed bandwidth) and φ̂hac2 (data dependent bandwidth) to annihilate

and correct for the presence of ARCH effects. Our experiments are based on a 5% nominal size.

To highlight potential distortions induced by the use of φ̂2
hac1 and φ̂2

hac2 we initially conduct our

size experiments under conditional homoskedasticity (δ = 0) using φ̂2
hom with results presented
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in Table 2 while Tables 3-4 present size estimates obtained using the two alternative long run

variance estimators across c = 1 and c = 40 respectively.

Tables 2-4 about here

Under conditional homoskedasticity (Table 2) we note that the empirical sizes of both CSQ

and ASQ remain highly robust to alternative parameterisations involving ρv, σζε and c. With sizes

in the vicinity of 4%-4.5% under moderately sized samples CSQ is mildly undersized while ASQ

displays empirical sizes very close to the nominal 5%. For both the CSQ and ASQ statistics, a

given choice of the long run variance estimator and sample size we can note that the resulting

empirical sizes continue to show only mild variations across alternative parameterisations including

magnitudes of c, strength of endogeneity and persistence of the error process driving the predictor.

Across all scenarios CSQ based inferences are typically undersized for small to moderate sample

sizes (e.g. in the region of 4%-4.5% under a 5% nominal size for T=600 but closer to 3% for

T=200) while ASQ based size estimates appear to match closely their nominal counterparts even

under very small sample sizes.

Next, focusing on the specific role played by the long run variance estimators under ARCH

errors (δ = 0.2 and δ = 0.4) in Tables 3-4 we note that both φ̂hac1 and φ̂hac2 are able to correct for

dependence and lead to test statistics whose size properties parallel the conditionally homoskedas-

tic case. Test statistics constructed using long run variances with a fixed bandwidth (i.e. φ̂hac1) do

occasionally display mildly smaller empirical sizes compared with the use of φ̂hac2 but our overall

results suggest no particular advantage of using one over the other in terms of their behaviour

under the null hypothesis.

In summary, ASQ based inferences offer good size properties in both small and moderately

large sample sizes across all scenarios considered while CSQ based inferences may suffer from mild

undersizeness for small to moderately sized samples. This also makes it important to assess the

finite sample power of CSQ using the finite sample critical values of Table 1 rather than their

asymptotic counterparts.

Test Consistency and Finite Sample Power Properties

We next evaluate the ability of the CSQ and ASQ statistics to detect departures from (1) towards

models characterised by the presence of a structural break in their intercept and/or slope param-

eters as in (5). Power properties are particularly important to explore in this context as tests

statistics such as the ones considered here have both their numerators and denominators diverge

with the sample size. Within a conditionally homoskedastic environment and the use of φ̂2
hom

it is straightforward to establish that the normalised numerators of both CSQ and ASQ diverge

faster than φ̂hom and φ̂2
hom respectively, ensuring test consistency. When using long run variance
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estimators as in (6) however the particular choice of bandwidth may impact the speed of diver-

gence of φ̂2 possibly leading to inconsistent tests or tests with non-monotonic power - in the case

of data dependent bandwidths in particular (see Crainiceanu and Vogelsang (2007), Deng and

Perron (2008b), Juhl and Xiao (2009) amongst others).

In the following Proposition we initially characterise the large sample behaviour of CSQ and

ASQ under the alternative model of interest with the understanding that the bandwidth of the

long run variance estimators is fixed and of the type MT ≡ M = T κ as considered in Kostakis et

al. (2015), Xiao and Phillips (2002) amongst others. It is also understood that in the alternative

specification in (5) we may have both the intercept and slope shift at the same time or each shifting

individually with the other remaining constant.

Proposition 2. (a) Under model (5), assumptions (i)-(iii), E[wtw
′
t|Ft−1] = Σw and φ̂2 =

∑T
t=1 η̂

2
t /T

we have CSQ = Op(
√
T ) and ASQ = Op(

√
T ). (b) Under model (5), assumptions (i)-(iii) and φ̂2

obtained from (6) we have CSQ = Op(
√
T/M) and ASQ = Op(

√
T/M).

Proposition 2 establishes the large sample behaviour of our tests under the breakpoint al-

ternative and highlights the important influence the bandwidth parameter plays on their power

properties when using HAC type long run variance estimators. Under conditional homoskedastic-

ity (assumed known) and using φ̂2
hom our tests are consistent because their normalised numerator

Ck/
√
T diverges at a faster speed than φ̂hom. HAC type long run variance estimators on the other

hand diverge at a faster rate leading to overall test statistics that diverge at a slower rate than

the benchmark scenario of conditional homoskedasticity and use of φ̂2
hom. Under the fixed band-

width M = T 1/3 for instance we note that both ASQ and CSQ diverge at a rate T 1/3 compared

to T 1/2 under conditional homoskedasticity. Similarly with M = T 1/2 both test statistics diverge

as Op(T
1/4). Nevertheless tests are consistent provided that T/M → ∞. The above rates of

divergence of our test statistics under the alternative also coincide with the behaviour of CUSUM

type tests in the context of cointegrated regressions as documented in Xiao and Phillips (2002).

The use of a data dependent bandwidth in the above context is more problematic raising

the well known phenomenon of non-monotonic power. Intuitively MT constructed as in Andrews

(1991) grows too fast, potentially making the denominator of the test statistics grow faster than

their numerator with the trade-off depending on how far away the alternative model is from the

null (i.e. on the size of the parameter shifts). The impact of this issue within the context of a

predictive regression is explored and discussed in greater depth below.

Our finite sample power experiments proceed as in Deng and Perron (2008b) with a focus

on non-local to zero breaks. We consider breaks that occur early on (π0 = 0.3), at the middle

(π0 = 0.5) and towards the end of the sample (π0 = 0.7). We set {α10, β10} = {0.025, 0.01} and

vary {α20, β20} across a broad range of magnitudes away from the null. The nominal size is set

to 5% and T = 200. For our inferences based on CSQ we use the T = 200 based finite sample

critical values of Table 1 while ASQ based inferences are conducted using their asymptotic critical
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values. For a broad range of scenarios and a given intercept/slope jump size we have also repeated

our experiments across growing sample sizes with T ∈ {100, 200, 600, 1000}. Those results are

compiled within a supplementary appendix accompanying the paper and further corroborate our

empirical findings below.

Table 5 below considers a conditionally homoskedastic scenario with a shift in both the intercept

and slope parameters and evaluates performance under σζε = 0, ρv ∈ {0.0, 0.5} and c ∈ {1, 10} for

both CSQ and ASQ using φ̂2
hom. Across all experiments power is clearly monotonic and both CSQ

and ASQ display qualitatively and quantitatively similar patterns. The two factors significantly

affecting power when both the intercept and slope shift are ρv and c.

Table 5 about here

For both test statistics power is larger under ρv = 0.5 compared with the case ρv = 0.0 (i.e.

stronger persistence in the shocks driving the predictor xt leads to greater power). Similarly, power

is also substantially larger under c = 1 than c = 10 i.e. the near integratedness of the predictor

leads to significantly more favourable power outcomes than in a purely stationary context (note

that under c = 10 and T = 200 the AR(1) coefficient driving xt is equal to 0.950 compared

with 0.995 under c = 1). This latter point is particularly important in our context as predictive

regressions typically involve highly persistent predictors such as dividend yields or other valuation

ratios with autocorrelation coefficients in the vicinity of 1. The drop in power for purely stationary

as opposed to a near unit root context can be substantial (e.g. as large as 50%) and highlights

the usefulness and particular suitability of CUSUM type inferences in our predictive regression

context. The location of the true break-point also appears to influence power differently depending

on whether c = 1 or c = 10. In the latter case power drops considerably under π0 = 0.5 when the

true break point is located in the middle of the sample whereas locating the break in the middle

of the sample has a much milder impact on power when c = 1. Finally, for large enough shifts in

α and β power is close to 1 regardless of the magnitudes of c and ρv .

Our supplementary appendix provides further sensitivity analyses surrounding the above ex-

periments. We note for instance the robustness of the above outcomes to alternative magnitudes

of σζ,ε (e.g. σζ,ε = −0.9). We have also repeated the same analysis by considering solely intercept

shifts. In this latter case the drop in power throughout all parameterisations is considerable. Both

CSQ and ASQ are unable to detect intercept shifts unless the latter are very large. Power drops even

further under π0 = 0.5 when the intercept shift is located in the middle of the sample regardless

of whether c = 1 or c = 10. Nevertheless power does increase monotonically as we move further

away from the null setting. Further intuition about the π0 = 0.5 case under intercept shifts can

be gained from equation (15) in the appendix. Although both CSQ and ASQ diverge, the first and

last terms in the right hand side of (15) vanish when π0 = 0.5 resulting in a substantially smaller

statistic. Unlike the scenario where both the intercept and slope parameters shift it is here also
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interesting to point out that different magnitudes of ρv or c do not appear to lead to any distinctive

power patterns (e.g. lower power under ρv = 0) when only the intercept is allowed to shift. This

further supports the view that the predictive regression environment is particularly suitable for

CUSUM type test statistics when interest lies in inferring the time varying predictability induced

by a persistent predictor as opposed to say being driven by intercept shifts.

We next focus on the power properties of CSQ and ASQ when evaluated using φ̂hac1 and φ̂hac2

under conditional heteroskedasticity. Tables 6-7 present results for the case of a joint intercept

and slope shift under ρv = 0 and σζ,ε = −0.9. Our results clearly illustrate the negative impact

the choice of bandwidth may have on inferences that rely on HAC type long run variances. Under

a joint intercept and slope shift inferences based on a data dependent bandwidth via the use of

φ̂hac2 exhibit non-monotonic power across all parameterisations.

Tables 6-7 about here

This is due to the fact that the misspecified η̂t = û2t − σ̂2 sequence obtained from (1) and which

is contaminated with the omitted parameter shifts leads to a data dependent bandwidth MT =

1.1447((4λ̂/(1 − λ̂2)2)T )1/3 with λ̂ =
∑
η̂tη̂t−1/

∑
η̂2t−1 that is too large. It is straightforward

to show for instance that under a joint intercept and slope shift and with c = 1, λ̂ → 1 as

T → ∞ making MT very large even under a sample size such as T = 200 considered here. For

a given T , the larger the intercept and slope jump the closer λ̂ is to 1. Within the context

of the simulations in Table 6 under δ = 0.4 for instance the configuration {α10, α20, β10, β20} =

{0.025, 0.73, 0.01, 0.72} led to an average across replication of 8.50 for MT sharply increasing to

17.58 under {α10, α20, β10, β20} = {0.025, 2.15, 0.01, 2.13}.

Inferences based on φ̂hac1 on the other hand lead to significantly more favourable power profiles

and do not suffer from the same power non-monotonicity problem. The case δ = 0 does however

illustrate a clear drop in power compared to the use of φ̂hom suitable solely under conditional

homoskedasticity.

In supplementary simulations presented in our online appendix we have also reconsidered the

scenarios of Tables 6-7 under ρv = 0.5 across σζ,ε = 0 and σζ,ε = −0.9 and additional DGPs

with intercept shifts only. Our findings continue to highlight the detrimental impact that large

magnitudes of ρv have on power while the magnitude of σζ,ε continues to have little influence.

Interestingly the power non-monotonicity problem characterising the use of φ̂hac2 does not arise

when the alternative model has an intercept shift only. In such instances inferences based on either

φ̂hac1 or φ̂hac2 lead to quantitatively similar but poor empirical power magnitudes especially under

π0 = 0.5.
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4 Time Varying Return Predictability

We apply our methodology to the predictability of US equity returns with valuation ratios as

recently explored in Kostakis et al. (2015) where the authors developed a novel methodology

designed to test the presence of predictability via a Wald type test of the hypothesis β = 0 in

(1). Their key contribution was to propose an IV based Wald statistic whose limiting distribu-

tion remains unaffected by the noncentrality parameter c driving the degree of persistence of the

predictor. Using monthly data spanning the period 1927-2011 the authors documented a sta-

tistically and economically significant predictability of excess returns using the dividend yield,

earnings-price, dividend-price and book-to-market value ratios. At the same time and through a

sub-period analysis using the same methodology the authors highlighted the sensitivity of their

results to particular time periods and more specifically showed that virtually all of the convention-

ally used predictors lose their predictive ability in a post 50s sample. The robustness of our CSQ

and ASQ statistics to the magnitude of the noncentrality parameter c makes them particularly

suitable for diagnosing predictive instability in a simple way.

The source of our data is an updated version of the monthly dataset used in Welch and Goyal

(2008) (see Goyal and Welch (2013)) as also considered in Kostakis et al. (2015) and covers

the period 1927:1-2013:12. US market returns are proxied by the CRSP value-weighted returns in

excess of the 1-month T-bill rate. The predictors we consider are the dividend yield (DY) expressed

as the natural log of dividends over lagged prices, the earnings price ratio (EP) expressed as the

natural log of earnings over prices, the dividend price ratio (DP) expressed as the natural log of

dividends over prices, the dividend payout ratio (DPO) expressed as the natural log of dividends

over earnings and finally the book-to-market ratio (BM) expressed as the natural log of book value

over market value. For each of the above predictors we have estimated a simple linear predictive

regression as in (1) and calculated the magnitude of CSQ and ASQ as expressed in (3) and (4) across

alternative choices of long run variance estimators including a homoskedasticity based variance.

Results are presented in Table 8.

Table 8 about here

Our empirical results highlight a strong presence of instability in all five of the predictive

regressions when considering the full sample period of 1927-2013. This outcome is robust to the

use of alternative variance estimators and holds across both CSQ and ASQ. It is also clear however

that this instability vanishes as we exclude pre-mid 40s data or beyond. Looking at the 1940-2013

outcomes for instance we note that across all five predictors the ASQ based inferences are unable

to reject the null of parameter stability at any reasonable significance level using either φ̂hom, φ̂hac1

or φ̂hac2. The same conclusions continue to hold as the sample is moved further ahead and using

φ̂hac1 based inferences in particular. Interestingly a standard least squares based estimator of the

location of the breakpoint also led to k̂ = 1940 : 05 using the full sample. Our results are in line
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with the sensitivity analysis conducted in Kostakis et al. (2015) and highlight the usefulness of

our procedures for uncovering instability in predictive regressions. They are trivial to implement,

they rely on existing tabulated distributions and are robust to the nearly integrated nature of

predictors. Furthermore, they have non trivial power provided that the predictors are sufficiently

persistent.

5 Conclusions

We have introduced a method for uncovering time variation in the parameters of a predictive

regression that relies on two functionals of their squared least squares residuals. Besides the

simplicity of their implementation an important feature of our two test statistics is the convenience

of their limiting distributions that do not depend on the unknown noncentrality parameter used to

parameterise the persistent nature of predictors driving the predictive regression and their readily

available quantiles.

Numerous extensions to this research are currently under investigation. A particularly inter-

esting avenue is the generalisation of our specification in (1) to a setting that includes multiple

predictors with possibly different degrees of persistence. A second extension involves modelling

the coexistence of instabilities in both the conditional mean and error variances along the lines

studied in the earlier work of Pitarakis (2004).
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TABLES

TABLE 1

5% Finite sample critical values of CSQ and ASQ under conditional

homoskedasticity (δ = 0) and conditional heteroskedasticity (δ ∈ {0.2, 0.4})

δ = 0 δ = 0.2 δ = 0.4

φ̂hom φ̂hac1 φ̂hac2 φ̂hac1 φ̂hac2 φ̂hac1 φ̂hac2

CSQ c = 1

T=100 1.274 1.262 1.280 1.273 1.309 1.252 1.281

T=200 1.287 1.274 1.286 1.279 1.322 1.279 1.300

T=600 1.334 1.327 1.332 1.309 1.340 1.300 1.304

T=1000 1.340 1.328 1.342 1.350 1.369 1.309 1.307

ASQ

T=100 0.468 0.456 0.467 0.477 0.501 0.472 0.491

T=200 0.448 0.450 0.453 0.450 0.474 0.484 0.486

T=600 0.456 0.454 0.459 0.462 0.483 0.482 0.486

T=1000 0.463 0.464 0.459 0.468 0.487 0.481 0.482

CSQ c = 10

T=100 1.264 1.254 1.265 1.249 1.288 1.245 1.273

T=200 1.306 1.280 1.298 1.288 1.315 1.260 1.277

T=600 1.328 1.326 1.332 1.334 1.355 1.310 1.317

T=1000 1.336 1.320 1.335 1.313 1.331 1.322 1.322

ASQ

T=100 0.460 0.451 0.461 0.463 0.493 0.453 0.467

T=200 0.447 0.449 0.451 0.467 0.485 0.461 0.472

T=600 0.458 0.460 0.462 0.478 0.493 0.474 0.478

T=1000 0.471 0.461 0.470 0.458 0.470 0.480 0.481

CSQ c = 40

T=100 1.249 1.238 1.253 1.241 1.281 1.249 1.273

T=200 1.297 1.282 1.292 1.293 1.318 1.269 1.278

T=600 1.318 1.303 1.324 1.318 1.352 1.310 1.316

T=1000 1.337 1.330 1.334 1.335 1.353 1.294 1.296

ASQ

T=100 0.457 0.447 0.457 0.441 0.467 0.462 0.479

T=200 0.463 0.451 0.464 0.477 0.491 0.475 0.479

T=600 0.450 0.448 0.445 0.470 0.486 0.478 0.485

T=1000 0.453 0.452 0.454 0.470 0.477 0.462 0.463
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TABLE 2

Empirical size under conditional homoskedasticity (5% Nominal)

CSQ ρv = 0 ρv = 0.5

σζε = 0.0 c = 1 c = 10 c = 40 c = 1 c = 10 c = 40

T=100 2.5% 2.6% 3.0% 2.5% 2.8% 3.2%

T=200 3.4% 3.6% 3.4% 3.3% 3.3% 3.5%

T=600 3.6% 4.1% 4.4% 4.1% 4.1% 4.1%

T=1000 4.2% 4.0% 4.4% 4.1% 4.2% 4.0%

σζε = −0.5

T=100 2.9% 2.8% 3.0% 2.8% 2.9% 2.7%

T=200 3.3% 3.4% 3.1% 3.4% 3.4% 3.4%

T=600 3.9% 4.3% 4.5% 4.0% 4.4% 4.3%

T=1000 4.2% 4.6% 4.4% 4.5% 4.8% 4.5%

σζε = −0.9

T=100 2.6% 2.7% 2.7% 2.7% 2.7% 2.7%

T=200 3.5% 3.4% 3.5% 3.3% 3.6% 2.9%

T=600 4.4% 3.8% 3.9% 4.1% 4.2% 4.0%

T=1000 4.1% 4.4% 4.2% 4.4% 4.3% 4.4%

ASQ ρv = 0 ρv = 0.5

σζε = 0.0 c = 1 c = 10 c = 40 c = 1 c = 10 c = 40

T=100 4.5% 4.5% 4.7% 4.1% 5.0% 4.9%

T=200 4.7% 4.9% 4.9% 4.7% 4.8% 4.9%

T=600 4.6% 5.0% 5.0% 5.0% 4.7% 5.3%

T=1000 4.8% 4.6% 5.2% 4.7% 4.8% 5.0%

σζε = −0.5

T=100 4.7% 4.6% 5.0% 4.3% 4.9% 4.5%

T=200 4.4% 4.8% 4.6% 4.6% 4.8% 4.7%

T=600 4.5% 5.0% 5.1% 4.9% 5.2% 4.9%

T=1000 4.9% 5.3% 5.1% 5.2% 5.2% 5.1%

σζε = −0.9

T=100 4.6% 4.3% 4.5% 4.5% 4.2% 4.6%

T=200 4.8% 4.6% 4.7% 4.7% 5.1% 4.3%

T=600 5.3% 4.7% 4.9% 5.0% 5.1% 5.0%

T=1000 5.0% 4.9% 5.1% 4.7% 5.3% 4.9%

14



TABLE 3

Empirical size under conditional heteroskedasticity (5% Nominal) and c = 1

c = 1 ρv = 0.0 ρv = 0.5

φ̂hac1 φ̂hac2 φ̂hac1 φ̂hac2

CSQ δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4

σζε = 0.0

T = 100 1.97% 2.06% 1.77% 2.52% 3.15% 2.58% 1.87% 2.01% 1.99% 2.41% 2.92% 2.65%

T = 200 2.86% 2.66% 2.82% 3.23% 3.57% 3.27% 2.88% 3.06% 2.70% 3.15% 3.89% 3.16%

T = 600 3.35% 3.78% 3.71% 3.58% 4.40% 4.00% 3.96% 3.96% 3.59% 4.19% 4.66% 3.83%

T = 1000 3.80% 4.37% 4.29% 4.27% 4.85% 4.29% 3.94% 4.31% 4.09% 4.03% 4.89% 4.16%

σζε = −0.5

T = 100 2.09% 1.96% 2.12% 2.76% 2.91% 2.88% 1.89% 2.10% 1.87% 2.71% 3.07% 2.69%

T = 200 2.96% 2.83% 3.01% 3.18% 3.79% 3.41% 2.61% 3.07% 2.57% 3.34% 3.75% 2.89%

T = 600 3.48% 3.97% 3.36% 3.85% 4.52% 3.67% 3.73% 3.70% 3.41% 3.88% 4.38% 3.66%

T = 1000 4.03% 4.44% 3.78% 4.19% 5.07% 3.81% 4.25% 4.16% 4.11% 4.44% 4.66% 4.07%

σζε = −0.9

T = 100 1.98% 2.13% 2.11% 2.48% 3.12% 2.93% 1.89% 1.92% 1.84% 2.40% 2.82% 2.65%

T = 200 2.91% 2.97% 2.62% 3.22% 3.82% 2.90% 2.79% 2.98% 2.96% 3.16% 3.77% 3.30%

T = 600 4.48% 4.04% 3.52% 4.51% 4.88% 3.84% 3.71% 3.98% 3.74% 4.13% 4.74% 3.90%

T = 1000 3.96% 3.97% 3.84% 4.20% 4.60% 3.87% 4.12% 4.03% 4.20% 4.26% 4.71% 4.11%

ASQ δ = 0.0 δ = 0.2 δ = 03 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4

σζε = 0.0

T = 100 4.42% 4.73% 4.93% 4.55% 5.68% 5.45% 4.09% 4.71% 5.11% 4.20% 5.51% 5.52%

T = 200 4.60% 5.08% 5.74% 4.78% 5.77% 5.92% 4.70% 5.22% 5.54% 4.77% 5.97% 5.67%

T = 600 4.63% 5.31% 5.54% 4.60% 5.71% 5.71% 4.72% 5.13% 5.32% 4.91% 5.73% 5.39%

T = 1000 4.77% 5.37% 5.63% 4.82% 5.78% 5.59% 4.71% 5.47% 5.65% 4.61% 5.85% 5.56%

σζε = −0.5

T = 100 4.42% 4.56% 5.47% 4.63% 5.50% 5.95% 4.04% 4.83% 5.26% 4.26% 5.57% 5.62%

T = 200 4.30% 4.84% 5.56% 4.44% 5.75% 5.85% 4.34% 5.15% 5.12% 4.75% 5.81% 5.32%

T = 600 4.55% 5.46% 5.16% 4.52% 6.02% 5.26% 4.77% 5.24% 5.13% 4.91% 5.80% 5.23%

T = 1000 4.80% 5.47% 5.67% 4.83% 5.81% 5.65% 5.12% 5.47% 5.73% 5.21% 5.92% 5.63%

σζε = −0.9

T = 100 4.18% 4.91% 5.27% 4.57% 5.58% 5.65% 4.34% 4.33% 4.99% 4.53% 5.24% 5.61%

T = 200 4.57% 5.21% 5.12% 4.80% 5.81% 5.33% 4.40% 4.90% 5.91% 4.66% 5.67% 6.26%

T = 600 5.27% 5.39% 5.35% 5.31% 6.05% 5.44% 4.80% 5.42% 5.77% 4.88% 5.88% 5.89%

T = 1000 4.76% 5.05% 5.30% 4.89% 5.43% 5.30% 4.66% 5.11% 5.64% 4.78% 5.46% 5.56%
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TABLE 4

Empirical size under conditional heteroskedasticity (5% Nominal) and

c = 40

c = 40 ρv = 0.0 ρv = 0.5

φ̂hac1 φ̂hac2 φ̂hac1 φ̂hac2

CSQ δ = 0.0 δ = 0.2 δ = 03 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4

σζε = 0.0

T = 100 2.00% 2.30% 1.79% 2.75% 3.25% 2.54% 2.37% 2.09% 1.84% 3.09% 3.07% 2.66%

T = 200 3.03% 2.98% 2.85% 3.32% 3.77% 3.41% 2.84% 3.08% 2.75% 3.35% 4.07% 3.19%

T = 600 4.07% 3.83% 3.86% 4.33% 4.48% 4.00% 3.77% 3.74% 3.89% 4.14% 4.52% 4.18%

T = 1000 4.22% 4.25% 3.99% 4.44% 4.88% 4.07% 3.99% 4.08% 4.15% 3.99% 4.58% 4.17%

σζε = −0.5

T = 100 2.47% 2.17% 1.88% 2.93% 3.19% 2.61% 2.02% 2.38% 2.11% 2.59% 3.55% 2.85%

T = 200 2.67% 3.11% 2.86% 3.13% 4.09% 3.34% 2.98% 2.83% 2.81% 3.36% 3.68% 3.27%

T = 600 4.16% 3.99% 3.76% 4.43% 4.72% 3.91% 3.66% 4.15% 3.53% 4.29% 4.97% 3.74%

T = 1000 4.14% 4.35% 4.08% 4.42% 4.83% 4.13% 4.26% 4.05% 3.67% 4.55% 4.65% 3.74%

σζε = −0.9

T = 100 2.05% 2.16% 2.06% 2.42% 3.34% 2.77% 1.95% 2.13% 1.82% 2.51% 3.11% 2.58%

T = 200 2.79% 3.29% 2.92% 3.31% 4.04% 3.40% 2.63% 2.98% 2.66% 2.87% 4.10% 2.89%

T = 600 3.85% 3.69% 3.31% 3.87% 4.33% 3.49% 3.80% 3.92% 3.62% 4.11% 4.67% 3.91%

T = 1000 3.97% 4.08% 3.83% 4.31% 4.70% 3.85% 3.95% 4.15% 4.03% 4.35% 4.71% 4.13%

ASQ δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.0 δ = 0.2 δ = 0.4

σζε = 0.0

T = 100 4.28% 4.68% 5.10% 4.77% 5.65% 5.73% 4.25% 4.64% 4.94% 4.76% 5.48% 5.67%

T = 200 4.73% 5.37% 5.63% 4.88% 6.14% 5.87% 4.53% 5.26% 5.48% 4.82% 5.97% 5.87%

T = 600 4.73% 5.12% 5.80% 4.85% 5.67% 5.94% 5.08% 5.06% 5.82% 5.27% 5.70% 5.94%

T = 1000 5.08% 5.37% 5.77% 5.21% 5.79% 5.70% 5.02% 5.29% 5.90% 4.96% 5.60% 5.88%

σζε = −0.5

T = 100 4.70% 4.77% 4.72% 4.96% 5.44% 5.41% 4.36% 5.39% 5.36% 4.46% 6.18% 5.97%

T = 200 4.35% 5.03% 5.31% 4.41% 5.75% 5.53% 4.72% 5.29% 5.61% 4.77% 6.09% 5.87%

T = 600 5.12% 4.99% 6.03% 5.16% 5.55% 6.13% 4.73% 5.20% 5.64% 4.87% 5.73% 5.75%

T = 1000 5.04% 5.29% 5.71% 5.16% 5.63% 5.73% 4.89% 5.16% 5.38% 5.09% 5.49% 5.41%

σζε = −0.9

T = 100 4.27% 4.88% 5.06% 4.53% 5.89% 5.74% 4.18% 4.54% 5.02% 4.48% 5.23% 5.70%

T = 200 4.42% 5.44% 5.89% 4.58% 6.11% 6.07% 4.18% 5.28% 5.31% 4.38% 6.04% 5.72%

T = 600 4.72% 5.09% 5.59% 4.87% 5.65% 5.66% 4.90% 4.97% 5.18% 5.02% 5.53% 5.30%

T = 1000 4.96% 5.23% 5.46% 5.09% 5.63% 5.42% 4.74% 5.46% 5.80% 4.93% 5.86% 5.76%
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TABLE 5

Empirical power under conditional homoskedasticity - Intercept and Slope

Shift: {α10, β10} = {0.025, 0.01}, σζε = 0.0

α20 0.17 0.31 0.45 0.59 0.73 0.87 1.01 1.16 1.30 1.44 1.58 1.72 1.86 2.00 2.15

β20 0.15 0.29 0.43 0.58 0.72 0.86 1.00 1.14 1.28 1.42 1.57 1.71 1.85 1.99 2.13

CSQ c = 1 (ρv = 0)

π0 = 0.3 13.8 45.9 73.2 88.0 94.7 97.6 98.6 99.0 99.4 99.5 99.5 99.6 99.6 99.7 99.8

π0 = 0.5 9.3 36.7 62.8 78.0 86.0 91.1 93.6 95.5 96.5 97.0 97.4 97.8 98.1 98.1 98.2

π0 = 0.7 20.0 51.9 73.9 85.5 91.2 94.3 96.0 96.8 97.6 98.1 98.2 98.3 98.4 98.8 98.8

ASQ

π0 = 0.3 13.2 44.5 71.2 86.9 93.8 96.8 98.2 98.7 99.1 99.2 99.2 99.4 99.4 99.6 99.6

π0 = 0.5 8.0 32.8 59.1 73.7 82.3 87.4 90.9 93.1 94.2 95.3 95.6 95.9 96.6 96.5 96.6

π0 = 0.7 19.3 50.2 71.2 82.9 89.1 91.9 94.0 94.9 95.7 96.5 96.9 97.0 97.1 97.4 97.6

CSQ c = 1 (ρv = 0.5)

π0 = 0.3 43.7 84.8 96.5 98.9 99.6 99.7 99.7 99.9 99.8 99.8 99.9 99.9 99.9 99.8 99.9

π0 = 0.5 35.6 77.3 90.8 95.6 97.3 98.1 98.6 99.0 99.1 99.1 99.4 99.3 99.5 99.6 99.5

π0 = 0.7 51.3 83.9 94.0 96.9 98.1 98.5 98.9 99.1 99.3 99.3 99.5 99.4 99.5 99.4 99.5

ASQ

π0 = 0.3 42.0 83.6 95.8 98.4 99.4 99.6 99.5 99.7 99.7 99.7 99.8 99.8 99.8 99.7 99.8

π0 = 0.5 31.4 72.8 87.7 93.3 95.8 96.8 97.6 97.9 98.0 98.2 98.4 98.5 98.6 98.8 98.6

π0 = 0.7 49.1 81.1 91.8 95.1 96.6 97.2 97.8 98.1 98.2 98.4 98.7 98.5 98.6 98.4 98.6

CSQ c = 10 (ρv = 0)

π0 = 0.3 5.5 13.2 35.5 62.3 81.3 90.5 94.9 96.7 97.6 98.2 98.5 98.7 98.9 99.1 99.0

π0 = 0.5 4.7 6.6 15.1 29.0 45.0 57.6 67.1 73.9 78.3 81.8 84.7 86.4 88.1 89.4 90.3

π0 = 0.7 5.6 13.8 35.7 60.6 77.5 88.1 92.1 94.4 95.7 96.5 96.9 97.4 97.6 98.3 98.3

ASQ

π0 = 0.3 5.3 13.0 33.9 59.3 78.4 88.3 93.2 95.3 96.5 97.2 97.5 97.9 98.3 98.3 98.5

π0 = 0.5 4.7 6.0 12.5 24.2 38.6 50.1 58.9 66.6 70.8 74.8 77.8 79.7 81.7 82.6 84.3

π0 = 0.7 5.7 13.8 34.5 58.0 75.2 86.0 90.0 92.5 94.0 95.2 95.6 96.1 96.3 97.2 97.0

CSQ c = 10 (ρv = 0.5)

π0 = 0.3 10.4 52.8 85.3 94.8 97.5 98.3 98.9 99.3 99.3 99.4 99.3 99.4 99.5 99.5 99.5

π0 = 0.5 5.7 25.8 55.0 73.5 82.8 87.3 91.0 93.0 93.8 94.7 95.3 95.3 95.9 95.7 95.9

π0 = 0.7 10.7 52.1 82.8 92.8 95.9 97.3 97.9 98.3 98.4 98.8 98.6 99.0 99.0 98.9 99.0

ASQ

π0 = 0.3 10.1 50.1 82.7 93.0 96.2 97.5 98.2 98.6 98.7 98.9 98.8 98.9 99.0 99.0 99.0

π0 = 0.5 5.3 21.6 47.8 65.4 75.3 80.7 84.9 87.2 89.1 90.2 91.2 91.1 92.1 91.5 92.3

π0 = 0.7 10.8 49.5 79.8 90.6 94.0 95.8 96.5 97.2 97.4 97.7 97.5 97.9 98.1 98.0 98.0
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TABLE 6

Empirical power of CSQ with long run variance estimators - Intercept and

Slope shift: {α10, β10} = {0.025, 0.01}, σζε = −0.9, ρv = 0.0, c = 1

α20 0.17 0.31 0.45 0.59 0.73 0.87 1.01 1.16 1.30 1.44 1.58 1.72 1.86 2.00 2.15

β20 0.15 0.29 0.43 0.58 0.72 0.86 1.00 1.14 1.28 1.42 1.57 1.71 1.85 1.99 2.13

π0 = 0.3 δ = 0

φ̂hom 13.9 42.0 66.7 82.7 91.8 95.5 97.4 98.7 99.2 99.2 99.6 99.5 99.5 99.6 99.6

φ̂hac1 9.4 27.4 45.1 59.7 69.5 76.0 80.8 83.9 86.5 87.7 88.1 88.2 89.4 90.0 89.8

φ̂hac2 12.1 31.5 42.8 47.3 45.5 41.7 38.6 34.4 31.8 29.7 26.6 25.4 24.7 23.4 22.4

δ = 0.2

φ̂hac1 8.2 22.1 37.3 51.9 63.2 70.0 76.5 80.7 83.5 84.9 86.9 87.7 88.7 89.0 88.8

φ̂hac2 10.3 24.5 35.1 41.7 42.1 39.9 38.5 36.6 32.3 31.2 28.6 26.8 26.0 23.3 22.7

δ = 0.4

φ̂hac1 6.4 15.8 29.1 41.8 52.7 62.5 68.5 73.8 78.0 81.7 83.9 84.8 86.0 87.4 88.0

φ̂hac2 7.3 16.9 27.0 33.3 36.6 38.7 36.8 36.0 35.0 32.9 31.2 29.8 27.9 26.6 26.0

π0 = 0.5 δ = 0

φ̂hom 10.0 37.2 61.2 75.9 86.2 91.0 93.7 95.7 96.3 97.0 97.3 97.7 98.1 98.3 98.6

φ̂hac1 5.0 11.2 19.3 26.0 30.5 33.3 36.4 37.4 38.4 39.2 40.3 41.1 40.8 41.6 41.6

φ̂hac2 7.6 17.7 22.3 21.6 18.9 15.4 13.8 12.0 10.7 9.9 9.3 8.1 7.5 7.8 7.2

δ = 0.2

φ̂hac1 4.2 9.2 16.0 22.5 28.0 31.4 34.0 35.4 36.5 38.3 40.0 40.1 39.5 40.3 41.0

φ̂hac2 6.4 13.8 18.6 19.2 18.8 16.6 14.9 13.3 11.7 10.1 10.0 9.5 8.8 7.9 7.9

δ = 0.4

φ̂hac1 4.6 7.2 13.0 18.0 23.8 27.7 30.5 33.5 35.1 36.7 37.7 38.5 39.6 39.0 40.3

φ̂hac2 5.7 9.9 14.5 16.7 17.3 16.4 15.4 14.1 13.3 12.0 11.0 10.3 9.6 8.8 8.5

π0 = 0.7 δ = 0

φ̂hom 25.1 59.7 80.4 90.1 94.3 96.7 97.6 98.1 98.6 98.8 98.9 99.1 98.9 99.1 99.2

φ̂hac1 21.2 49.3 65.6 73.7 77.4 79.0 80.3 80.4 80.3 80.5 80.7 80.3 80.4 81.0 80.5

φ̂hac2 23.8 53.6 66.9 69.1 65.0 59.8 53.9 48.2 43.0 39.2 34.5 32.6 30.6 28.4 26.6

δ = 0.2

φ̂hac1 15.8 41.3 58.7 68.2 74.2 76.9 78.4 79.4 80.2 80.2 80.6 80.5 81.1 80.6 81.0

φ̂hac2 18.3 45.3 59.9 65.8 64.9 61.9 56.5 51.8 46.7 42.5 39.1 36.0 33.4 32.0 29.0

δ = 0.4

φ̂hac1 11.6 31.4 47.7 59.5 67.7 72.1 75.6 77.3 78.3 79.3 79.5 79.6 80.4 80.2 81.4

φ̂hac2 12.9 33.9 49.4 57.9 61.3 60.6 59.1 54.6 51.1 47.7 44.2 41.1 38.0 35.6 33.2
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TABLE 7

Empirical power of ASQ with long run variance estimators - Intercept and

Slope shift: {α10, β10} = {0.025, 0.01}, σζε = −0.9, ρv = 0.0, c = 1

α20 0.17 0.31 0.45 0.59 0.73 0.87 1.01 1.16 1.30 1.44 1.58 1.72 1.86 2.00 2.15

β20 0.15 0.29 0.43 0.58 0.72 0.86 1.00 1.14 1.28 1.42 1.57 1.71 1.85 1.99 2.13

π0 = 0.3 δ = 0

φ̂hom 13.1 40.4 64.9 81.4 90.8 94.8 96.9 98.3 98.7 98.9 99.3 99.2 99.2 99.4 99.3

φ̂hac1 9.6 27.5 45.7 61.3 71.3 77.7 81.9 84.9 87.2 88.2 88.4 88.9 89.9 90.2 90.1

φ̂hac2 11.6 30.5 43.6 50.4 51.3 49.8 47.5 45.0 43.1 41.5 38.8 37.2 37.4 35.7 35.3

δ = 0.2

φ̂hac1 8.4 22.1 37.8 52.9 64.1 71.3 77.7 82.2 84.0 85.6 87.3 88.5 88.9 89.3 89.3

φ̂hac2 9.9 23.9 36.1 43.8 46.6 46.5 47.1 45.6 42.6 42.3 39.8 39.5 37.6 36.0 35.2

δ = 0.4

φ̂hac1 7.5 16.2 29.3 42.6 53.8 63.2 69.1 75.0 79.6 82.5 84.6 85.6 86.4 87.9 88.3

φ̂hac2 8.0 17.2 27.7 35.6 40.2 43.7 43.5 44.6 44.4 43.0 42.3 41.4 39.1 38.2 37.9

π0 = 0.5 δ = 0

φ̂hom 7.7 31.8 55.3 71.1 82.1 87.7 90.7 93.4 94.1 94.8 95.3 96.3 96.6 96.9 97.0

φ̂hac1 3.9 9.3 17.3 24.4 29.8 33.1 35.7 37.0 38.3 39.0 40.0 41.4 41.2 41.9 42.0

φ̂hac2 5.4 14.0 18.9 19.1 18.1 15.7 14.6 13.7 12.5 12.2 12.2 11.4 11.0 11.0 10.4

δ = 0.2

φ̂hac1 4.2 7.6 14.2 20.9 26.1 30.3 33.7 35.1 37.3 38.1 39.9 40.2 40.2 40.7 41.4

φ̂hac2 5.7 10.6 15.5 17.1 16.9 15.8 14.9 14.3 13.6 12.5 13.0 12.5 11.4 11.0 11.0

δ = 0.4

φ̂hac1 5.8 6.6 11.6 16.7 22.1 27.0 29.4 33.2 34.9 36.8 37.3 39.0 40.0 39.5 41.3

φ̂hac2 6.4 8.5 13.0 14.6 15.6 15.5 15.1 14.9 13.8 13.4 12.3 12.5 11.7 11.6 11.6

π0 = 0.7 δ = 0

φ̂hom 23.8 57.6 77.7 87.8 92.2 94.7 95.8 96.4 97.1 97.5 97.7 98.0 97.8 98.0 98.2

φ̂hac1 20.8 48.0 64.2 72.1 76.2 77.6 78.9 79.2 79.3 79.6 79.6 79.4 79.2 79.7 79.4

φ̂hac2 23.0 51.7 65.4 68.8 67.5 64.2 61.2 57.5 53.5 51.5 48.8 46.5 45.1 42.9 41.5

δ = 0.2

φ̂hac1 16.3 40.7 58.0 66.6 73.0 76.2 77.1 78.2 79.1 79.2 79.5 79.5 80.2 79.6 79.9

φ̂hac2 18.4 43.4 58.6 64.8 65.9 65.3 61.6 60.0 56.7 53.5 52.0 49.2 48.1 46.3 44.6

δ = 0.4

φ̂hac1 13.0 32.2 47.9 59.2 66.8 71.2 74.8 76.1 77.0 78.4 78.7 78.6 79.2 79.1 80.1

φ̂hac2 14.0 34.1 48.9 57.8 61.8 62.6 62.7 60.7 58.7 56.6 54.7 52.1 50.4 49.4 46.9
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TABLE 8

Return Predictability

CSQ ASQ

φ̂hom φ̂hac1 φ̂hac2 φ̂hom φ̂hac1 φ̂hac2

1927-2013 1927-2013

DY 3.538*** 1.994*** 2.192*** 3.807*** 1.210*** 1.461***

EP 3.458*** 1.976*** 2.154*** 3.636*** 1.187*** 1.411***

DP 3.521*** 1.988*** 2.179*** 3.780*** 1.205*** 1.447***

DPO 3.480*** 1.982*** 2.165*** 3.726*** 1.209*** 1.442***

BM 3.538*** 1.997*** 2.202*** 3.878*** 1.205*** 1.465***

1940-2013 1940-2013

DY 1.069 0.869 0.940 0.201 0.133 0.155

EP 1.069 0.862 0.936 0.200 0.130 0.153

DP 1.067 0.866 0.937 0.201 0.132 0.155

DPO 1.005 1.816 0.879 0.175 0.115 0.133

BM 1.066 0.861 0.932 0.198 0.129 0.151

1950-2013 1950-2013

DY 1.528** 1.136 1.244* 0.515** 0.285 0.341

EP 1.503** 1.112 1.223 0.494** 0.270 0.327

DP 1.521** 1.129 1.234* 0.512** 0.282 0.337

DPO 1.431** 1.072 1.171 0.441 * 0.248 0.295

BM 1.479** 1.098 1.206 0.477** 0.263 0.317

1960-2013 1960-2013

DY 1.037 0.786 0.854 0.187 0.107 0.127

EP 1.032 0.780 0.851 0.187 0.107 0.128

DP 1.034 0.782 0.850 0.187 0.107 0.126

DPO 1.011 0.771 0.836 0.177 0.103 0.121

BM 1.027 0.778 0.849 0.187 0.107 0.128
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APPENDIX

In what follows we make extensive use of existing results on the large sample properties of sample moments of

highly persistent processes as in (2) without explicitly appealing to first principles. From Phillips (1987) for instance∑[Tπ]
t=1 x

2
t−1/T

2 ⇒
∫ π
0
J2
c (r)dr,

∑[Tπ]
t=1 xt−1/T

√
T ⇒

∫ π
0
Jc(r)dr (see also Sandberg (2009)) and

∑[Tπ]
t=1 xt−1ut/T =

Op(1). Here Jc(r) is a diffusion process such that dJc(r) = cJc(r)dr + dBv(r) with Bv(r) denoting the Brownian

Motion associated with vt. More generally, using the continuous mapping theorem and our assumptions on the

finiteness of moments in (i)-(iii) we also have
∑[Tπ]
t=1 x

m
t−1/T

1+m
2 = Op(1),

∑[Tπ]
t=1 x

m
t−1ut/T

(1+m)/2 = Op(1) for

m = 1, 2, 3, 4,
∑[Tπ]
t=1 x

2
t−1u

2
t/T

2 = Op(1) and
∑[Tπ]
t=1 xt−1u

3
t/T

3/2 = Op(1) also leading to T (β̂ − β) = Op(1) and√
T (α̂−α) = Op(1) under the null model in (1) and α̂ and β̂ denoting the least squares estimators of α and β (see

Valkanov (2003) for explicit expressions for these limiting distributions). The above large sample properties also

directly imply that under model (1)-(2) we have
∑T
t=1 û

4
t/T =

∑T
t=1 u

4
t + op(1) and

∑T
t=1 û

2
t/T =

∑T
t=1 u

2
t + op(1)

ensuring that φ̂2hom
p→ φ2 ≡ [η2t ]. Provided that the bandwidth MT is such that MT →∞ and MT /T → 0 it follows

from Andrews (1991) and the above that we also have φ̂2hac1
p→ φ2 and φ̂2hac2

p→ φ2.

Proof of Proposition 1. Letting x̃t = (1, xt)
′ and θ = (α, β)′ we can write

∑k
t=1 û

2
t =

∑k
t=1 u

2
t + (θ̂ −

θ)′
∑k
t=1 x̃t−1x̃

′
t−1(θ̂ − θ) − 2

∑k
t=1 utx̃

′
t−1(θ̂ − θ). It is also convenient to introduce the normalising matrix DT =

diag(
√
T , T ) so that∑k

t=1 û
2
t√

T
=

∑k
t=1 u

2
t√

T
+

1√
T

[DT (θ̂ − θ)]′
(
D−1T

k∑
t=1

x̃t−1x̃
′
t−1D

−1
T

)
DT (θ̂ − θ)−

2
1√
T

k∑
t=1

utx̃
′
t−1D

−1
T (DT (θ̂ − θ)) (11)

also noting that∑k
t=1 û

2
t√

T
− k

T

∑T
t=1 û

2
t√

T
=

(∑k
t=1 u

2
t√

T
− k

T

∑T
t=1 u

2
t√

T

)

+

(∑k
t=1 û

2
t√

T
−
∑T
t=1 u

2
t√

T

)
− k

T

(∑T
t=1 û

2
t√

T
−
∑T
t=1 u

2
t√

T

)
(12)

Given our chosen process in (2) and the results stated above it is clear that DT (θ̂ − θ) = Op(1) leading to∑T
t=1 û

2
t/
√
T =

∑T
t=1 u

2
t/
√
T+op(1). Next, the boundedness of maxkD

−1
T

∑k
t=1 x̃t−1x̃

′
t−1D

−1
T together withDT (θ̂−

θ) = Op(1) also ensures that T−1/2(DT (θ̂ − θ))′(maxkD
−1
T

∑
x̃t−1x̃

′
t−1D

−1
T )(DT (θ̂ − θ)) p→ 0. Finally combining

with T−1/2 maxk |
∑k
t=1 utx

′
t−1(θ̂ − θ)DT |

p→ 0 we have maxk |
∑k
t=1 û

2
t/
√
T −

∑k
t=1 u

2
t/
√
T | p→ 0 leading to

max
k

∣∣∣∣∣
∑k
t=1 û

2
t√

T
− k

T

∑T
t=1 û

2
t√

T

∣∣∣∣∣ =

∣∣∣∣∣
∑k
t=1 u

2
t√

T
− k

T

∑T
t=1 u

2
t√

T

∣∣∣∣∣+ op(1) (13)

Assumptions (iii), the continuous mapping theorem combined with the consistency of the long run variance esti-

mators leads to the desired result in (7) and similarly for (8). �

Proof of Proposition 2. We initially treat scenario (i) under conditional homoskedasticity allowing both the

intercept and slope parameters to shift jointly. The alternative model is given by (5) and we let k0 = [Tπ0] denote

the true break point location and π0 the associated break fraction. Defining µ0 ≡ (α20−α10) and λ0 ≡ (β20−β10)

it is also convenient to rewrite the specification in (5) as yt = α10 + µ0I(t > k0) + β10xt−1 + λ0xt−1I(t > k0) + ut.

Letting Ck0 =
∑k0
t=1 û

2
t − (k0/T )

∑T
t=1 û

2
t and using ût = α10 +β10xt−1 +µ0I(t > k0)+λ0xt−1I(t > k0)− α̂− β̂xt−1

lengthy but standard algebra combined with successive uses of the continuous mapping theorem leads to |Ck0/T 2| ⇒
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|Z1∞(Jc, π0, λ0)| where

Z1∞(Jc, π0, λ0) = λ20

(
Q2

1∞(1− π0)

∫ π0

0

Jc(r)
2 − (1−Q1∞)2π0

∫ 1

π0

Jc(r)
2

)
+

2λ20

(
Q1∞(1− π0)

∫ π0

0

Jc(r)− (1−Q1∞)π0

∫ 1

π0

Jc(r)

)
×(∫ 1

π0

Jc(r)−Q1∞

∫ 1

0

Jc(r)

)
(14)

with Q1∞ ≡ [
∫ 1

π0
Jc(r)

2 −
∫ 1

0
Jc(r)

∫ 1

π0
Jc(r)]/

∫ 1

0
J∗c (r)2 and J∗c (r) = Jc(r)−

∫ 1

0
Jc(r) establishing that |Ck0/

√
T | =

Op(T
√
T ). Proceeding similarly for φ̂2hom =

∑T
t=1 η̂

2
t /T we also obtain φ̂2hom = Op(T

2) so that |Ck0/
√
T |/φ̂hom =

Op(
√
T ). As maxk |Ck/

√
T |/φ̂hom ≥ |Ck0/

√
T |/φ̂hom the required result follows. The case of an intercept shift

only follows identical lines. In this instance we have |Ck0/T | ⇒ |Z2∞(Jc, π0, µ0)| with

Z2∞(Jc, π0, µ0) = µ2
0π0(1− π0)(1− 2π0) + µ2

0Q
2
2∞

(∫ π0

0

J∗c (r)2 − π0
∫ 1

0

J∗c (r)2
)

+ 2µ2
0(1− 2π0)Q2∞

∫ π0

0

J∗c (r) (15)

Q2∞ ≡
∫ 1

π0
J∗c /

∫ 1

0
J∗c (r)2 and φ̂2hom = Op(1) so that |Ck0/

√
T |/φ̂hom = Op(

√
T ) as stated. (ii) Under conditional

heteroskedasticity we continue to have |Ck0/
√
T | = Op(T

√
T ) when both the intercept and slope parameters

shift and |Ck0/
√
T | = Op(

√
T ) when only the intercept is allowed to shift. Operating with a fixed (non data

dependent) bandwidth such that M → ∞ the result follows by noting that 1 + 2
∑M
`=1(1 − `/(M + 1)) = M and∑

η̂2t /T
2 ≈

∑
η̂tη̂t−`/T

2 leading to φ̂2hac1 = Op(T
2M). The intercept only case follows from φ̂2hac1/M = Op(1). �
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