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Abstract—Low-Density Parity Check (LDPC) error correction
decoders have become popular in diverse communications sys-
tems, owing to their strong error correction performance and
their suitability to parallel hardware implementation. A great
deal of research effort has been invested into the implementation
of LDPC decoder designs on Field-Programmable Gate Array
(FPGA) devices, in order to exploit their high processing speed,
parallelism and re-programmability. Meanwhile, a variety of
Application-Specific Integrated Circuit (ASIC) implementations
of multi-mode LDPC decoders exhibiting both inter-standard
and intra-standard reconfiguration flexibility are available in the
open literature. However, the high complexity of the adaptable
routing and processing elements that are required by a flexible
LDPC decoder has resulted in a lack of viable FPGA-based
implementations. Hence in this work, we propose a parameter-
isable FPGA-based LDPC decoder architecture, which supports
run-time flexibility over any set of one or more Quasi-Cyclic
(QC) LDPC codes. Additionally, we propose an offline design
flow, which may be used to automatically generate an optimised
HDL description of our decoder, having support for a chosen
selection of codes. Our implementation results show that the
proposed architecture achieves a high level of design-time and
run-time flexibility, whilst maintaining a reasonable processing
throughput, hardware resource requirement and error correction
performance.

Index Terms—Digital communication, error correction codes,
low-density parity check (LDPC) codes, field-programmable gate
array, iterative decoding

GLOSSARY

AWGN Additive White Gaussian Noise
BER Bit Error Rate

BPSK  Binary Phase-Shift Keying
BRAM Block RAM

BS Barrel Shifter

CMEM CND Memory

CN Check Node

CND Check Node Decoder

CNPU  Check Node Processing Unit
ELB Equivalent Logic Block

FEC Forward Error Correction

FF Flip-Flop

FPGA  Field-Programmable Gate Array
HDL Hardware Description Language
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Informed Dynamic Scheduling
Intrinsic Message Memory Bank
Layered Belief Propagation
Low-Density Parity Check
Logarithmic-Likelihood Ratio
Node Processing Unit
Parity-Check Matrix
Quasi-Cyclic

VMEM VND Memory

Variable Node
Variable Node Decoder
Variable Node Processing Unit

NOMENCLATURE

Full PCM

QC base PCM

Number of CNs/rows in H

Largest value of m in supported PCM set
Number of rows in Hy

Largest value of m; in supported PCM set
Number of VNs/columns in H

Largest value of n in supported PCM set
Number of columns in Hy

Largest value of n; in supported PCM set
CN/row degree

Largest value of d. in supported PCM set
VN/column degree

Largest value of d,, in supported PCM set
QC block expansion factor

Largest value of z in supported PCM set
Coding rate

Circular shift value

Number of parallel VNPUs

Number of parallel CNPUs

Parallelism reduction factor

Ratio of VNs to CNs

Smallest value of G in supported PCM set
Bit-width of LLRs

Employment of linked CNs for the current PCM
Requirement for linked CNs for the PCM set
Maximum clock frequency

Clock cycles per VN

Clock cycles per P VNs

Clock cycles per Z VNs

Clock cycles per CN
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tep  Clock cycles per P CNs

tew Clock cycles per Z CNs

t; Clock cycles per iteration

1, Average number of iterations required

I. INTRODUCTION

LDPC codes [1] constitute a class of Forward Error Cor-
rection (FEC) block codes that have been the focus of much
research in the communications community over the past two
decades. The parametrisation of a particular LDPC code is
completely defined by its Parity-Check Matrix (PCM), which
describes the specific logical combination of the transmitted
message bits into parity checks. These PCMs are sparse matri-
ces having far more zero entries than non-zero, which allows
LDPC codes to be iteratively decoded using a distributed
low-complexity message-passing algorithm [2]. This iterative
decoding process has been shown to facilitate information rates
very close to the Shannon limit [3], which has motivated the
inclusion of LDPC codes in many modern communications
standards such as IEEE 802.11 (WiFi) [4], IEEE 802.16
(WiMAX) [5], and DVB-S2 [6]. Owing to this, hundreds of
FPGA-based LDPC decoder designs have been published over
the last two decades, which are comprehensively surveyed
and compared in [7]. Of the many conclusions drawn by this
survey, one of the most compelling is the absence of a fully
flexible FPGA-based LDPC decoder architecture, which can
be designed to support run-time switching between any given
set of one or more LDPC codes, having diverse PCMs.

Run-time flexibility is particularly advantageous for com-
mercial applications, since it is a requirement for a decoder
to dynamically support the variety of different PCMs within
a targeted communications standard [8], without requiring the
extra time and technical intervention that is involved in re-
programming an FPGA. Furthermore, commercial devices typ-
ically support more than one standard and run-time flexibility
can allow the corresponding LDPC codes to be supported on
the same FPGA [9]. Further to this, flexible decoders can adapt
automatically depending on the channel conditions [10], allow-
ing reliable communications to be maintained by dynamically
adapting the code rate. Run-time flexibility can also be useful
for research purposes [11], eliminating the requirement for
an FPGA to be re-synthesised when testing multiple different
LDPC PCMs. It is therefore desirable to have a decoder design
that exhibits run-time flexibility over a selection of PCMs,
within one code family or among several different families.
A variety of Application-Specific Integrated Circuit (ASIC)
implementations of multi-mode LDPC decoders are available
in the open literature [9], [12]-[14], however, the high com-
plexity of the adaptable routing and processing elements that
are required by a flexible LDPC decoder has resulted in a lack
of viable FPGA-based implementations.

The survey presented in [7] characterises the complex
interactions amongst the numerous parameters that must be
selected for an FPGA-based LDPC decoder design, as well as
with the characteristics that are manifested for the resultant
implementation. These interactions complicate the process
of designing an FPGA-based LDPC decoder [15], which is

exacerbated when the decoder must be designed to flexibly
support multiple PCMs at run-time. However, in this paper
we show that if the architecture of the decoder design is
proposed in a generalised form that is not specific to any
one PCM, much of this design process may be automated.
In this work, we demonstrate this concept by presenting a
novel generalised FPGA-based LDPC decoder architecture
that can flexibly support any set of one or more Quasi-Cyclic
(QC) PCMs [16] at design time, with the ability to switch
between them within a single clock cycle at run time. We
also present a novel offline design flow, which automates the
design of a decoder that adopts the proposed architecture,
without requiring the user to have in-depth knowledge of
the architectural decisions involved. The chosen PCMs may
originate from one family or several different families, and
may vary in terms of any of their parameters.

The structure of this paper is as follows. We commence in
Section II by providing the required background information
regarding both general and QC LDPC codes, along with some
of the key features of LDPC decoder designs. Section III
then presents our novel flexible FPGA-based LDPC decoder
architecture, paying particular attention to the features that
enable run-time switching of PCMs. Following this, Section IV
then describes our novel offline design process, which grants
automated design-time flexibility and generates an efficient de-
coder design with minimal user input. Section V then presents
the characteristics of several implementations of the proposed
architecture, comparing their performance with benchmarkers,
where possible. Finally, Section VI provides some concluding
remarks. This structure is depicted in Fig. 1.

II. BACKGROUND

Before commencing the discussion of our flexible FPGA-
based LDPC decoder architecture and design flow, this section
presents a brief introduction to the key concepts that motivate
some of the design decisions. We begin in Section II-A with
a brief description of general LDPC codes, including their
characteristics and the manner in which they are decoded,
before Section II-B discusses the QC codes targeted in this
work. Following this, Section II-C provides a discussion of
some of the key features of LDPC decoders, including the
optimisations that can be achieved by targeting QC codes.

A. LDPC codes

The parametrisation of any LDPC code can be completely
defined by its sparse PCM H. The number of rows in a PCM is
denoted by m, which also represents the number of parity bits
employed by the code. Meanwhile, the number of columns in
a PCM is denoted by n, which quantifies the encoded frame
length in bits, where n > m. The coding rate R of the PCM
is given by R = 1 — m/n, where 0 < R < 1. Each row and
column contains a number of non-zero elements, where that
number is referred to as the degree of the row or column. If the
row degree d.. is the same for every row, and the column degree
d, is the same for every column, then the PCM is said to be
regular. Otherwise, the PCM is irregular and the notations d.
and d, may be used to represent the average row and column
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Fig. 1. Structure of this paper.

degrees, respectively. Since the number of non-zero elements
must be the same when viewed from the perspective of the
columns or rows, we have m x d. = n X d,,, giving d. > d,,.
To illustrate the above, an example PCM H associated with
n = 18 and m = 9 is given in Fig. 2a. Note that H in Fig. 2a
is irregular, with an average row degree of d. = 4.33 and an
average column degree of d,, = 2.17.

During the LDPC decoding process, computations are
formed on the basis of the rows and columns of the PCM. The
computations for the i-th row ¢; take inputs from the results of
the computations performed previously by the set of columns
v; for which H;; = 1, and vice versa. In this way, the rows
and columns are processed in an iterative manner in an order
dictated by a particular schedule, examples of which include
flooding [17], Layered Belief Propagation (LBP) [18], and
Informed Dynamic Scheduling (IDS) [19]. The results of the
row and column calculations are extrinsic messages, which are
commonly represented in the form of Logarithmic-Likelihood
Ratios (LLRs) [20], which provide soft information regarding
the likelihood of the corresponding bit being a 0 or 1. When
using the factor graph representation of a PCM proposed by
Tanner [21], each row is represented by a Check Node (CN)
and each column is represented by a Variable Node (VN), with
an edge linking the i-th CN to the j-th VN wherever H;; = 1.
The decoding process can therefore be pictured as the iterative
exchange of extrinsic LLRs along the edges between VNs and
CNs, where new extrinsic LLRs are calculated within the VNs

(which perform the PCM column calculations) and the CNs
(which perform the PCM row calculations). Fig. 3 presents the
factor graph representation of the PCM given in Fig. 2a, where
v; represents the j-th VN, and c¢; represents the i-th CN. The
connections labelled Pj above the VNs in Fig. 3 pertain to the
intrinsic LLR associated with the j-th codeword bit.

B. Quasi-cyclic codes

The majority of LDPC codes employed in communica-
tions standards adopt a Quasi-Cyclic (QC) construction [22],
which possesses several properties that facilitate the design of
hardware-efficient decoder architectures, as will be discussed
in Section II-C.

The PCM of a QC LDPC code is a specially structured
realisation of the generalised unstructured PCM H, which
is defined by a base matrix Hj, where each element of H,
represents a square submatrix in H of dimensions z x z [23].
Accordingly, H;, contains n; columns and m; rows, where
ny X 2 =n and mp X z = m. Similarly to the expanded PCM
H, the coding rate is given by R = 1—"m/n,, where ny, > my,.
Each of the submatrices formed from the elements of H,
are either null matrices, containing all zeroes, or circularly-
shifted identity matrices, having precisely one non-zero entry
in each row and column. It can hence be seen that the PCM
H presented in Fig. 2a is quasi-cyclic, since it is composed
of a 3 x 6 grid of 3 x 3 submatrices, which are all either
null matrices or circularly-shifted identity matrices. Fig. 2b
presents the corresponding QC base matrix Hy, having z = 3,
n, = 6, and mpy = 3. Note that a value of —1 in H,
corresponds to a null submatrix, whereas a non-negative value
represents the number of positions s that the elements of
the identity matrix are circularly shifted to the right in the
corresponding submatrix. Groups of z rows or z columns of
H corresponding to one row or column of H;, are henceforth
referred to as block-rows or block-columns, respectively.

C. LDPC decoder architectures

One of the many LDPC decoder parameters discussed in [7]
is the level of processing parallelism, which is defined by
the number of parallel Node Processing Units (NPUs) that
are utilised to simultaneously process rows or columns of
the PCM. The level of parallelism employed can have a
large effect on the decoder’s hardware resource requirement,
processing throughput, as well as its potential to have run-time
flexibility [9]. A decoder’s level of parallelism may broadly
be categorised as fully-parallel, partially-parallel or serial.

Fully-parallel decoders [24]-[26] implement every CN and
VN within an LDPC code’s factor graph separately in dedi-
cated hardware units. This extremely high level of parallelism
can facilitate a high processing throughput and low processing
latency, though this is achieved at the cost of a high hard-
ware resource requirement [27]. Furthermore, the connections
between each processing unit must either be fixed, thereby
rendering the decoder only suitable for a single PCM, or
require significant further hardware resources to implement
flexible routing, for example by utilising a Benes network [12].
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Fig. 2. Example parity-check matrices. (a) Expanded binary PCM exhibiting QC construction. (b) QC base matrix representation.

Fig. 3. Factor graph for the example QC LDPC code of Fig. 2a

These factors render the concept of a fully-parallel decoder
architecture featuring run-time flexibility highly impractical.

Conversely, serial decoders [11], [28] implement only a
single Check Node Processing Unit (CNPU) and a single
Variable Node Processing Unit (VNPU) in hardware, thereby
requiring a small amount of hardware resources. These NPUs
must be used multiple times per decoding iteration in a time-
multiplexed manner, where internal memories are utilised
to temporarily store the extrinsic LLRs for each row and
column calculated by the NPUs over the course of the it-
erative decoding process [24]. In an FPGA-based decoder
implementation, it is common to use the FPGA’s built-in Block
RAMs (BRAMs) to store these messages [29], using addresses
dictated by the positions of the non-zero entries in the PCM
H and stored in lookup tables. Accordingly, serial decoders
can naturally offer full run-time flexibility simply by changing
the stored memory address values. However, due to the large
number of operations required for each decoding iteration,
serial decoders suffer from very low processing throughputs,
which typically do not meet the requirements of modern
communication standards.

Partially-parallel decoder architectures strike a compromise
between serial and fully-parallel architectures by implement-
ing a number P of parallel NPUs, where 1 < P < n. Each
decoding iteration is then split into several stages, wherein
P VNs or CNs are processed simultaneously. This facilitates
higher processing throughputs than are possible with serial
architectures, while avoiding the excessive hardware resource
requirements of fully-parallel architectures. Similarly to serial

architectures, FPGA-based partially-parallel decoders utilise
BRAMs to store interim calculation results, facilitating run-
time flexibility through changing address lookup tables. How-
ever, the increased level of parallelism means that the distri-
bution of values into BRAMs must be chosen carefully, such
that when processing P rows (or columns) simultaneously, no
more than one location within each column (or row) BRAM
is required [30]. For unstructured codes there is no way of
guaranteeing that it will be possible to avoid contention for
the BRAMs in this way [31].

The semi-structured nature of QC codes described in Sec-
tion II-B above may be used to optimise the design of a
partially-parallel decoder in a number of ways, particularly
when the parallelism P of the decoder is chosen to match
the width z of the block-rows and block-columns of the
PCM. Firstly, the in-memory representation of each PCM
is substantially simplified by using the reduced PCM H,,
rather than the full PCM H. In particular, the position of all
non-zero entries in the full PCM H can be calculated from
the locations and values of the shift values in the reduced
PCM H,, [23]. Secondly, by processing block-rows or block-
columns in parallel, every row or column that is processed
simultaneously will always have the same degree. For irregular
codes, this reduces the total number of degrees that must
be stored by a factor of z, while permitting the sharing of
control signals for each NPU. Additionally, since every non-
zero element within a submatrix is situated on its own row and
column, it can be ensured that there will never be an occasion
in which more than one location of any BRAM is contended
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for at the same time. These properties form the basis of the
proposed flexible partially-parallel LDPC decoder architecture
to be detailed in Section III.

III. THE PROPOSED FLEXIBLE LDPC DECODER
ARCHITECTURE

In this section, we detail the proposed FPGA-based LDPC
decoder architecture, which has both run-time and design-time
flexibility. More specifically, the architecture proposed here
represents a framework for a decoder capable of decoding
any chosen set of one or more QC LDPC PCMs, as outlined
in Section I. Owing to this, the discussion of this section is
presented in generalised terms, where the number of block-
columns and block-rows n; and my, the expansion factor z and
the regularity and node degrees d. and d,, are considered as
variable parameters. Section IV will present a design flow that
takes this general architecture and a set of one or more PCMs
as inputs, in order to generate a specific LDPC decoder design
by selecting desirable values for the parameters described in
this section.

For the reasons stated in Section II, the architecture pro-
posed in this section is partially-parallel in nature. This facil-
itates a great deal of design-time flexibility in terms of the
trade-off between the processing throughput and the hardware
resource requirements.

A top-level block diagram of the proposed architecture
is presented in Fig. 4. The decisions motivating the vari-
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Fig. 4. Block diagram of the proposed flexible LDPC decoder architecture.

ous aspects of this design are discussed in the following
subsections. More specifically, the parallelism and decoding
schedule are discussed in Section III-A, while the memory
organisation is discussed in Section III-B. Following this, the
datapath, programmable barrel shifters, node processing units,
and controller are discussed in Sections III-C, III-D, III-E,
and III-F, respectively.

A. Parallelism and decoding schedule

In order to strike a favourable trade-off between the pro-
cessing throughput and the hardware resource requirements,
the proposed architecture is designed to minimise the amount
of time that any processing element spends in a state where

it is not producing usable results. Accordingly, the proposed
decoder implements a modified flooding schedule, in which
every VN and CN is processed once per iteration. However,
unlike traditional flooding [17], groups of VNs and CNs are
processed simultaneously, with adjacent groups within the
PCM processed sequentially. In order to do so, as shown in
Fig. 4, the decoder has a separate Variable Node Decoder
(VND) and Check Node Decoder (CND). These may be oper-
ated in parallel, using the separate datapaths of Section III-C,
along with the separate memories VMEM and CMEM of
Section III-B.

The VND contains P VNPUs, each of which processes one
column of the PCM in ¢,, = 1 clock cycle, with the result that
P VNPUs can process P columns of the PCM in t,,, = 1 clock
cycle. Each VNPU has a number of inputs and outputs equal
to Dy + 1, where Dy is the largest column degree within
the set of supported PCMs, while the additional input and
output are used for intrinsic messages from the channel and the
estimation of the decoded bit, respectively [32]. Implementing
this maximum number of inputs and outputs is essential to
ensure that each VNPU can be used to decode any column
in the set of supported PCMs. Similarly, the CND contains
P. CNPUs, where P. < P as explained below. Each CNPU
has D¢ inputs and outputs, where D¢ is the maximum row
degree within the set of supported PCMs. This allows each
CNPU to process any one row of any of the supported PCMs
in t. = 1 clock cycle.

Motivated by the discussion in Section II, the parallelism
of the proposed partially-parallel architecture reflects the di-
mension z of the submatrices within the target QC PCMs.
Accordingly, the parallelism factor P is given by

Z
P: —
[CQW ’ @

where Z represents the maximum submatrix dimension z from
the set of supported PCMs. Here, () is an optional integer
parallelism reduction factor, where 1 < ) < Z. The value of
@ can be chosen at design-time, allowing the decoder’s trade-
off between processing throughput and hardware resource
usage to be controlled. When Q = 1, we have P = Z,
allowing the decoder to process an entire block-column in
typ = typ = 1 clock cycle. Decoders having larger values of
@ require a higher number of clock cycles per block-column,
according to t,;, = ). Note that selecting a value of Q = Z
leads to a parallelism factor of P = 1, which results in a
fully-serial decoder architecture.

The value of P, is calculated as a factor of P, according
to the relative numbers of rows and columns in the PCM
within the supported set having the lowest ratio of 7o/m,,.
Note that each block-column is processed using t,, = @
clock cycles as described above. Since the number of block-
columns n; is larger than the number of block-rows my,
the minimum number of clock cycles required for an entire
decoding iteration t; is given by t; = n, X . Since the
block-rows and block-columns are processed simultaneously,
the total number of clock cycles t., available for the processing
of each block-row is equal to t., = Q X Gipin. Here, G 18
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the minimum value of G within the set of supported PCMs,
where

G = |7 /ms)- 2)

In cases where G,,;, > 2, the required number P, of CNPUs

within the CND may be reduced according to

P
P = [ GW_J ; 3)

without increasing the number ¢; of clock cycles required per
iteration. More explicitly, when using P. CNPUs, a group of
P rows of the PCM may be calculated in t., = G clock
cycles. This reduction in the required number of CNPUs is
particularly valuable, since the average row degree d. of a
PCM is always larger than the average column degree d,,
meaning that the maximum row degree Do within a set of
PCMs is typically larger than the maximum column degree
Dy, . Since CNPUs have D¢ inputs and outputs while VNPUs
have Dy +1 inputs and outputs, the typical hardware resource
requirement of a CNPU is much larger than that of a VNPU.
Due to this, a reduction in P, can lead to a significant reduction
in a decoder’s overall hardware resource usage.

B. Memory organisation

As discussed in Section II-C, FPGA-based partially-parallel
LDPC decoders may take advantage of the FPGA’s built-in
BRAMs, in order to store the extrinsic LLRs calculated by the
VND until they are needed by the CND, and vice versa. The
diagram seen in Fig. 4 shows that the proposed architecture
splits this extrinsic memory into two sections, named VMEM
and CMEM. During each clock cycle, the VND will read up
to P x Dy number of W-bit values from the VMEM and write
the same number back into the CMEM. At the same time, the
CMEM will read up to P, X D¢ number of W-bit values from
the CMEM and write the same number back into the VMEM.
This implies the requirement for a large memory bandwidth,
which would restrict the achievable degree of parallelism
without the careful attention to the memory management, to be
described below. Note that the proposed architecture represents
all LLRs using W = 4-bit two’s complement integers, as
recommended in [33].

In the proposed architecture, we denote the maximum value
of n; within the set of supported PCMs as Np, while the
maximum value of m; within the set of supported PCMs is
denoted as Mpg. Note that the values of N and Mp do
not necessarily have to originate from the same PCM. The
VMEM and CMEM both then comprise Np distinct BRAMs,
each having Mp x () address locations of width P x W.
The rationale for this is as follows. The number of available
BRAMs on an FPGA is typically smaller than the number of
rows and columns within a typical PCM H, necessitating the
grouping of extrinsic LLRs from multiple rows or columns
into each BRAM word [29]. In the simplified case where
P, = P, it may be observed that the P extrinsic LLRs in a
PCM submatrix will always be read or written simultaneously,
whenever that submatrix is in the active block-row or block-
column. This motivates the concatenation of P adjacent LLRs

into one BRAM word, so that each set of Q words within a
BRAM stores the LLRs of one complete submatrix of H.

Using this approach, the number of BRAMs required is
equal to the maximum number of PCM submatrices that
may be required at once, namely D,,,.. Here, the maximum
possible column degree Dy ., Would occur when a column
in the base PCM H,, contains entirely non-null values, giving
Dy par = Mp. By the same logic, we have Doy = Np.
Since Ng > Mp, we have D,,,, = Npg, which results in
both the VMEM and CMEM requiring Ng BRAMs, as stated
previously. This ensures compatibility with any QC PCM,
since the CND requires the ability to simultaneously read Np
submatrices from the CMEM and write N submatrices to the
VMEM. Note that this arrangement assumes the availability
of dual-port BRAMs, which support simultaneous read and
write operations at two separate memory addresses, as can be
found on most modern FPGAs [34].

Since the PCM is read in a row-centric manner by the CND
and in a column-centric manner by the VND, the extrinsic
LLRs must be stored within the BRAMs in a non-linear
fashion, to avoid situations in which more than one address of
any BRAM is required at any one time. In order to address
this, we propose the layout of Fig. 5, which exemplifies
one of the memories for a decoder designed to support the
example PCM of Fig. 2. Here, the notation for each submatrix
B4 indicates that the extrinsic LLRs associated with that
submatrix are stored at address A of BRAM B. In this example
we have () = 1, which results in each BRAM containing
Mp x Q@ = 3 locations, each storing Z x W bits. For @) > 1,
the distribution of submatrices and BRAMs would remain
unchanged, although each submatrix would be split into @
adjacent memory locations.

Block-columns

7 N

1 2 3 4 5 6

Block-J o | o 13, | 4, | 55 | 65 | 1o

rows

333 43| 53| 63| 13 | 23

Fig. 5. VMEM and CMEM locations of the submatrices of an example QC
PCM.

C. Datapath

In the following discussions, we detail the VND and CND
datapaths.

VND: The input to the VND datapath is provided by the
Np groups of P W-bit LLRs gleaned from the VMEM, as
described in Section III-B. These must be routed into the P
VNPUs, which each have Dy inputs. The datapath must then
take the P groups of Dy outputs from the VND and route
them back into Np groups of P messages for writing into
the CMEM. The proposed VND datapath is exemplified in
Fig. 6, for the case of a decoder designed to support a single
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example code, having parameters of Q =1, P =8, Np =7,
and Dy = 4. The flow of data is from the VMEM on the left,
through the VND in the middle, to the CMEM on the right.
The eight different colours each represent the P = 8 columns
of the active block-column, with each line representing one
LLR. The total number of W-bit LLRs passed by each stage
is displayed at the top of Fig. 6. Note that the intrinsic LLR
inputs and the decoded bit outputs for each VNPU have
been omitted for simplicity. These will be detailed during the
discussion of the VNPU architecture in Section III-E.

Using the memory organisation system of Section III-B, it
can be seen that the third block-column within the PCM is
being processed in Fig. 6, since BRAMs 3, 4, 5, and 6 of
the VMEM and CMEM contain the active submatrices. The
programmable multiplexer, labelled Mux in Fig. 6, ensures
that only these Dy groups are passed to the next stage.
Additionally, it can be seen that the degree of the active block-
column is 3, since a null submatrix is stored in BRAM 35,
as represented by the dashed lines at its output. Instead of
forwarding the unwanted BRAM contents to the VND, the
multiplexer instead provides the corresponding wires with a
value that represents the input LLRs being “turned off”. For a
VNPU, this “off” value is equal to LLR values of 0, as will be
explained further in Section III-E. In Fig. 6, this is represented
by the black lines emanating from the third output group of
the multiplexer.

Subsequently, the Dy groups of P LLRs output from
the multiplexer are distributed into P groups of Dy LLRs
on a per-VNPU basis by the Distributor. Note that the
action of the Distributor is only shown in Fig. 6 for three
VNPUs, for the sake of avoiding obfuscation. Due to the
action of the multiplexer described above, this distributor unit
does not require any run-time programmability in the VND
datapath. These messages are then processed by the VNPUs,
as described in more detail in Section III-E.

Once processed by the VNPUs, the messages are re-
distributed to their original Dy, groups by the Re-distributor,
which performs the inverse operation of the Distributor.
They are then cyclically-shifted by Dy, programmable Barrel
Shifters (BSs) in the Interleaver, as will be described in
Section III-D. Finally, a programmable de-multiplexer (la-
belled De-mux) then performs the inverse operation to the
multiplexer at the start of the datapath, to place the output
values at the input ports for the correct Dy BRAMs within
the CMEM.

CND: The datapath for the CND performs largely the same
functions as the VND datapath, albeit with some additional
complexities. As described in Section III-A, P, CNPUs are
employed to process P rows over t., = Gy clock cycles,
where G, and P, are defined in (2) and (3), respectively.
The spread of the operation over t., = G, clock cycles is
achieved through the use of Flip-Flops (FFs) and additional
multiplexers embedded in the datapath between the CMEM
and the CND, in order to ensure the CND is only presented
with P, inputs at a time. De-multiplexers and additional FFs
are then employed between the CND and the VMEM so that
all P messages are available during the same clock cycle for
writing back into the VMEM.

An additional optimisation is performed in the proposed
architecture to reduce the hardware resource usage of decoders
designed to have run-time flexibility over a set of PCMs
having a wide variety of coding rates . The reasoning behind
this is as follows. Many standardised LDPC code families
(such as those in WiFi [4], WIMAX [5], and WiGig [35])
vary the coding rates R = 1 — ™ms/n, of different related
codes by changing mj, while leaving n; unchanged. Since
myp X d. = ny X d,,, PCMs with lower values of m; will hence
typically have larger row degrees d.. More specifically, high-
rate codes tend to have a low number of rows, each having
high degrees; by contrast, low-rate codes tend to have a high
number of rows, each having low degrees. In order to address
this, the proposed architecture allows two low-degree CNPUs
to be combined to process one high-degree row. Doing so
doubles the number of clock cycles t., required per block-
row, although this cost is offset by the smaller number m; of
block-rows present in these high-rate PCMs. This optimisation
halves the number of inputs and outputs that may be required
by each CNPU within the proposed architecture. The internal
operation of two low-degree CNPUs that have been linked in
order to provide the functionality of one high-degree CNPU
is detailed in Section III-E.

In order to support this functionality in the CND datapath,
an additional Boolean parameter L is introduced for each
supported PCM, as well as an additional Boolean decoder
parameter F'. For each PCM i, the parameter L’ = 1 indicates
that each row should be processed using two linked CNPUs.
It is calculated according to

if G7 > Goin X 2
B ) “4)

otherwise

where G,y is defined in Section III-A as the minimum value
of G* for all PCMs i within the chosen set. However, as will be
shown in Section III-E, the hardware required to facilitate the
linking of two CNPUs slightly increases the hardware resource
requirement and the critical path length of the CNPU. For this
reason, these flexible CNPUs should not be synthesised unless
the chosen PCM set necessitates it. More specifically, flexible
CNPUs are only synthesised at design-time if at least one of
the PCMs has a value L* = 1, in which case we set the
Boolean decoder parameter F' = 1.

An example of these optimisations is presented in the
flexible CND datapath of Fig. 7 for a decoder with F' = 1,
when used to implement both a low-rate and a high-rate code.
Here, both codes have n;, = 7 and the minimum value of G
is calculated from the low-rate code, giving G, = 2. The
selection of @ = 1 leads to P = Z = 8, and thus P, = 4,
according to (3). Fig. 7a represents the lower R = 1/2-rate
code where L = 0, meaning that P, = 4 CNPUs of degree
Do /2 = 3 are employed to process the P = 8 rows within
tev = tep = G = 2 clock cycles. Conversely, Fig. 7b represents
the higher R = 3/4-rate code, where Li=1, meaning that the
P. = 4 CNPUs are combined to form £-/2 = 2 linked CNPUs
of degree Do = 6, requiring to, = 2t,, = 2G' = 4 clock
cycles to process the block-row. However, as this high-rate
code also has half the number of block-rows m; of the low-
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Fig. 6. Example of a VND datapath.

rate code, this does not produce any change in the number of
clock cycles t; required per decoding iteration.

Looking firstly at the low-rate configuration of Fig. 7a, it
may be observed that only Pc/2 = 3 of the Ng = 7 BRAMs in
the CMEM contain non-null submatrices for the active block-
row, namely those representing block-columns 2, 5, and 6.
In this configuration, the first multiplexer, labelled Mux in
Fig. 7, must ensure that these inputs form the top half of
its Do = 6 outputs, while its bottom Dc/2 = 3 outputs are
effectively “don’t care” values, represented by dashed grey
lines in Fig. 7a. Similarly to the VND datapath explained
previously, when the active block-row has a degree less than
Dc /2 this multiplexer would also “turn off” the outputs from
the extra null submatrices. For a CNPU, this “off” wvalue
corresponds to an output LLR value equal to (2W =1 — 1),
as will be explained further in Section III-E.

In this configuration, the operation of the Distributor is
the same as that in the VND datapath, with each of its P
output groups of Do = 6 LLRs comprised of Dc/2 = 3
extrinsic messages (or “off” values) followed by DPc/2 “don’t
care” values. Note that the action of the Distributor is only
shown in Fig. 7 for two CNPUs, for the sake of avoiding
obfuscation. The first FFs and multiplexer after the distributor
perform the function of reducing the P = 8 groups by a factor
of Gpin = 2 to form P. = P/a,,,, = 4 groups. It can be
seen that in the first clock cycle, the multiplexer will select
the top P. = 4 rows (red, light green, orange, and blue),
which will be processed and then latched by the FFs before the
re-distributor. In the second clock cycle, the multiplexer will
select the latched values of the following P, = 4 rows (dark
green, purple, yellow, and pink), which will then be processed
and re-distributed alongside the top values. The multiplexers at
the input and output of the CND select the top Pc /2 lines from
each P, group, presenting P, groups of Dc/2 values to each

CNPU as required. The rest of the datapath operates identically
to the VND datapath described previously, including the D¢ =
6 programmable BSs that rotate the messages, and the de-
multiplexer to provide the VMEM inputs.

The high-rate configuration shown in Fig. 7b behaves
slightly differently in several distinctive ways. Firstly, due to
the fact that up to D¢ = 6 input submatrices contain non-
zero elements, the initial multiplexer no longer provides “don’t
care” data on any of its outputs (although it may still provide
“off” values, when the active row degree is less than D). The
action of the distributor also changes to divide each group of
D¢ = 6 messages across two outputs, in order to simplify the
routing and control later in the datapath. The first set of FFs
and multiplexer after the distributor perform the equivalent
function to their counterparts in Fig. 7a, namely reducing the
P = 8 groups to P. = 4 groups. The following FFs and
multiplexer act in a similar way to route the top Pc/2 = 3
messages to the top half of the merged CNPU, while routing
the bottom Dc /2 = 3 messages of the same row to the bottom
half of the merged CNPU. It can therefore be seen that the
first and third rows (red and orange) will be processed in
the first clock cycle, followed by the second and fourth rows
(light green and blue) in the second clock cycle, and so on.
These FFs are avoided in the low-rate configuration using extra
multiplexers, which are not shown in Fig. 7 for simplicity.

D. Programmable barrel shifters

Once a group of P messages has been processed by the
VND (or CND), they must be converted from a column- (or
row-) centric representation to a row- (or column-) centric rep-
resentation, before being written into the CMEM (or VMEM).
This ensures that the messages are in the correct order to
be read by the CND (or VND). This may be performed by
cyclically shifting the messages for each submatrix by the
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Fig. 7. Example of a CND datapath with conditional CNPU sharing. (a) Low-rate codes with L = 0, (b) High-rate codes with L = 1.

corresponding shift value s in Hy, which is performed by
the programmable BSs in the interleaver, as mentioned in
Section III-C.

Since the shift value s may be any integer 0 < s < Z,
each BS must have Z inputs and outputs. This means that
when the parallelism reduction factor ) is utilised to employ
a reduced number P < Z of NPUs, additional FFs must
be used at the BS inputs to hold each group of P NPU
outputs until all z outputs have arrived and the shifting can
be completed. Similarly, additional FFs are employed to hold
the Z BS outputs after they have been shifted, so that groups

of P outputs may be presented to the memories in each clock
cycle.

The design of a BS that supports only a single submatrix
size z = Z 1is trivial compared to that of one which can
programmatically adapt to multiple submatrix sizes at run-
time [9]. Accordingly, several competing designs have been
proposed in the literature [14], [36]-[40], each with their own
strengths and weaknesses. The design proposed in [39] offers
a straightforward solution with a short critical path length,
although its ability to support any value of z < Z at run-time
results in a significantly higher hardware resource requirement
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than is necessary, when the fixed subset of supported z values
is known at design time. Accordingly, this work employs a
modified version of the fine cyclic shift network proposed
in [40], whereby each BS is optimally designed for the specific
set of z values it is intended to support. In this design, the Z
inputs are cyclically shifted by s, regardless of the current
value of z. Each output B,, 0 < e < Z, may then be
selected from this shifted input according to the current value
of 2, using a u-to-1 multiplexer, where u is the number of
supported z values greater than e. In order to optimise the
synthesis for FPGA implementation, the specific Hardware
Description Language (HDL) description of the BSs employed
in the proposed decoder is automatically tailored for the PCM
set specified at design time, using the software described in
Section IV.

E. NPU designs

The design of the VNPUs and CNPUs can also have a sig-
nificant effect on the overall hardware resource requirements
of an LDPC decoder, as well as its critical path, and hence
maximum clock frequency (f,,q2), processing throughput, and
latency. In addition, this effect may be influenced further by
the manner in which the HDL description of each NPU is
written and inferred into hardware. In order to investigate
this, various structures and implementations of VNPUs and
CNPUs were synthesised and compared in order to find a
design with an optimised combination of low critical path
length and low hardware resource requirements. The chosen
designs are summarised in this section.

VNPU design: The VNPU has Dy a priori LLR inputs and
one intrinsic LLR input provided by the channel. It also has
Dy extrinsic LLR outputs and one a posteriori LLR output
used as the basis of a decision for the corresponding LDPC-
encoded bit. Each of the Dy a priori LLR inputs to the
VNPU architecture corresponds to one of the Dy extrinsic
LLR outputs, which is vertically aligned in Fig. 8. For each
of its Dy extrinsic LLR outputs, the VNPU is required to
calculate the sum of the intrinsic LLR input and all a priori
LLR inputs besides the corresponding one. The a posteriori
LLR output is obtained as the sum of the intrinsic LLR input
and all a priori LLR inputs. As described in Section III-C,
when a VNPU is used to calculate a PCM column having a
degree less than Dy, the unused inputs can be “turned off” by
supplying an input LLR value of 0, since this does not affect
the above-mentioned summations.

uvH
u'+2
T
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Fig. 8. The chosen VNPU structure, shown with Dy = 12.

Channel

As shown in Fig. 8, the chosen architecture generates the
total sum of all Dy +1 WW-bit LLR inputs using a tree structure
of additions in order to ensure the shortest critical path, as will
be described in more detail in Section IV-C. Once this has been
calculated, the inverse (minus) operation is used to calculate
each output as the total sum without its corresponding input.
Note that the result of each addition requires the expansion of
the bit width by one bit in order to avoid overflow, although
each output is saturated back down to W bits following the
subtraction.

Through extensive simulations, it was found that manually
defining each internal addition in the HDL code yielded an
NPU associated with a lower critical path than that of a
functionally-identical design that was specified using high-
level coding structures (i.e. nested “for” loops). The method
conceived for automatically generating this HDL code for
VNPUs having any number of inputs and outputs is discussed
in Section IV.

CNPU design: The CNPU has D¢ a priori LLR inputs,
each of which correspond to one of its D¢ extrinsic LLR
outputs. In order to simplify the decoding hardware, the CN
operation from the min-sum algorithm [41] is employed in the
proposed decoder. More specifically, this algorithm calculates
each of the D¢ extrinsic LLR outputs as the minimum of all
a priori LLR inputs besides the corresponding one, multiplied
by the sign of their cumulative product. Similarly to the
VNPU, when using a CNPU to process a PCM column having
a degree that is lower than D¢, the extra LLR inputs can
be “turned off” by supplying an LLR value of (2" ~1 — 1),
which is the maximum positive value that can be represented
by a W-bit two’s complement integer. These inputs will not
affect the outputs, since their magnitude will not uniquely
represent a minimum, while their positive sign will not affect
the cumulative sign product.

sign| |mag sign| |mag sign| |mag sign
1

mag

wH

*
* [ L
. re-use . re-use . re-use .
min H---> min K§---= min §---> min
W [ [
1 Ix ] [x]

"y ! ! !

Fig. 9. The chosen CNPU structure, shown with Do = 4.

The function of a CNPU is more complex than that of a
VNPU, since the min operation cannot be inverted. Owing
to this, the chosen CNPU architecture of Fig. 9 calculates
each output separately, employing D¢ tree structures to find
the minimum of the magnitudes of each combination of
D¢ —1 inputs. However, to reduce the total hardware resource
requirements, these tree structures are linked together to make
the maximum possible re-use of the already calculated minima
between trees, as in [42]. At the same time, the total cumu-
lative sign of all D¢ inputs is calculated. Each output is then
calculated as its corresponding minimum value multiplied both
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by the total sign and by the sign of its original input. Note
that in Fig. 9 the mag operation returns the magnitude of the
input, while a bus width of W* represents W unsigned bits
having a range 0 to (2" — 1). The signed W-bit outputs are
saturated in the range (—2"~1) to (2"~ — 1) as normal.

Flexible CNPUs: Section III-C demonstrates the need for
two low-degree CNPUs to have the capability to optionally
link together, in order to form one high-degree CNPU. This
functionality may be added to the chosen CNPU architecture
by including additional outputs representing the minimum
magnitude of all D¢ inputs, along with their cumulative sign.
These outputs are then used in an optional additional stage
within the linked node, such that each output is based on the
minimum of its own D¢ —1 inputs and the D¢ inputs from the
paired node. This arrangement is shown in Fig. 10, which is
similar to Fig. 9 but with the additional stages listed here. The
additional inputs from the linked node are shown in red, while
the additional outputs are shown in blue. The value of L for
the current PCM is used as a control signal to dictate whether
the CNPU is operating as part of a pair or not. Note that
these additions slightly increase both the hardware resource
usage and the critical path of each CNPU, hence they are
only synthesised in the proposed architecture if the decoder
parameter of F' = 1 indicates that they are needed by at least
one of the supported PCMs, as detailed in Section III-C.
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Fig. 10. Flexible CNPU structure, shown with Do = 4. Inputs from a paired
CNPU are shown in red, while outputs to the paired CNPU are shown in blue.

E Controller

The controller, depicted in the bottom-left of Fig. 4, controls
the progress of the overall iterative decoding process. This
must provide external control signals for starting, stopping,
and reseting the decoding process, as well as for selecting
which of the supported PCMs to use. The controller also has to
determine whether the decoding process has led to a legitimate
codeword. These aspects are described in turn in the following
discussions.

Control signals: The load input signal may be used to
indicate that a new set of input intrinsic LLRs should be loaded
into the Intrinsic Message Memory Bank (IMMB). Once this
has been performed, the reset input signal may be used to reset
all internal components to their initial values, before asserting
the start input signal to commence the iterative decoding
process.

Early stopping detection: The proposed architecture in-
cludes an early stopping detection unit for determining when
a valid codeword has been found. This module comprises
M parity-check registers, which are reset at the beginning of
each decoding iteration. During the iterative decoding process,
the i-th register is exclusive-OR’d with the decision provided
by the VNPU that processes column j if H;; = 1. At the
end of each decoding iteration, if the first m parity check
registers (where m < M relates to the number of parity
checks in the currently active PCM) all contain 0, the decoding
process is deemed to have been successful and the success
output is set. Otherwise, the parity check registers are reset
and another decoding iteration begins. The total number of
decoding iterations performed is recorded and output on the
iterations signal of Fig. 4. This allows the operator of the
decoder to determine at run-time when to terminate a decoding
process, using the start and reset control signals described
previously.

PCM selection: One of the key features of the proposed
decoder design is its ability to switch the specific PCM it is
currently using to decode the message stored in the IMMB
within a single clock cycle. In order to implement this level
of flexibility, the supported PCMs are fully characterised in
a hardware-optimised form at compile-time, and written into
ROMs. These PCM ROMs are used extensively within the
datapaths for the VND and CND described in Section III-C to
control the routing and shifting of a priori and extrinsic LLRs
between memory banks and NPUs. The value of the multi-bit
PCM input signal is used to select which ROMs are currently
in use at any given time. For each PCM, there are two parallel
sets of PCM ROMs, namely one for the VND, which views
the base PCM H,, as n; columns of d, values, as well as one
for the CND, which views the base PCM as m; rows of d.
values. Within each set, there are multiple ROMs, which are
used to store the values and locations of the non-null entries
of Hb.

IV. THE PROPOSED OFFLINE DESIGN FLOW

In this section, we detail the proposed design flow, which
facilitates the automated design-time flexibility of the proposed
LDPC decoder architecture. Our design flow automatically
generates all of the HDL files required to implement an LDPC
decoder having run-time flexibility over a set of one or more
QC PCMs selected by the user. This design flow involves
extracting the key parameters and values from the set of
PCMs, generating optimised NPU structures and automatically
producing a robust HDL description from which we can then
synthesise the hardware. A flowchart depicting this design flow
is presented in Fig. 11.

We begin in Section IV-A with a discussion of how the
parameters may be extracted from a user-specified set of
PCMs, before Section IV-B discusses the generation of a cor-
respondingly optimised HDL description for the architecture
of Section III. A particular aspect of this process is described
in Section IV-C, namely the NPU tree generation.
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Fig. 11. The design and implementation stages involved in the generation of
an FPGA-based LDPC decoder having run-time flexibility.

A. PCM interpretation

Before the HDL of the proposed design can be generated, a
small amount of offline computation is required to extract the
required data from the PCM(s) chosen by the user, as well as
to convert the elements within each PCM into an optimised
format for storage in the decoder’s ROMs.

As depicted at the top of Fig. 11, the first role of our PCM
interpretation software is to calculate the decoder’s parameters
based on the characteristics of the user-specified PCM set and
the selected parallelism reduction factor (). These parameters,
along with their derivations, were enumerated throughout
the description of the proposed architecture in Section III.
Specifically, these are: the parallelism factors P and P.; the
maxima of the various PCM parameters Np, Mp, Z, D¢,
and Dy ; the ratio of VNPUs to CNPUs G,y ; the flexibility

parameter F'; and an additional per-PCM flexibility parameter
L.

The second task of the PCM interpretation software depicted
in Fig. 11 is to extract the locations and shift values of the
non-null submatrices in each PCM H;, and arrange them in a
format compatible with the ROMs introduced in Section III-F.
Here, each row r;, where ¢ € [1,my], in each H, must be
cyclic-shifted to the right by 7+ — 1 places, to ensure that
all addresses reflect the manner in which the extrinsic LLRs
associated with each submatrix are stored in the VMEM and
CMEM, as described in Section III-B. The ROMs are then
populated with values regarding the presence, location, and
value of the non-null entries in the shifted Hj.

B. HDL generation

In order to programmatically generate SystemVerilog code
within a custom application, a complete SystemVerilog genera-
tion library has been written in C++. In this way, the offline de-
sign flow can generate the complete SystemVerilog description
of an LDPC decoder having the proposed architecture, using
the parameters and values calculated in the previous stage, as
depicted in Fig. 11. In addition to automatically generating
robust code using the appropriate parameters, this approach
permits the optional inclusion of certain elements which may
not be required in all applications. These elements include the
PCM selection input signal, which is not required when the
decoder is designed to only support a single PCM, as well as
the flexible CNPUs, which are not required when the decoder
flexibility parameter has the value F' = 0. Additionally, as
described in Section III-D, the design of the programmable
BSs employed by the decoder may be optimised for the
specific set of supported submatrix sizes z. The output files
generated by this library may be read and edited manually if
desired, before being used by any synthesis tool that supports
SystemVerilog HDL. As shown in Fig. 11, synthesis of these
files by an appropriate tool will produce a measurement of
the hardware requirements of the resultant decoder, while its
processing throughput and error correction performance may
be characterised through Bit Error Rate (BER) simulations on
an FPGA test device. These characteristics may be used to
guide the selection of a different value for the parallelism
reduction factor @ if desired, which will then require the
design-flow to be repeated, as depicted in Fig. 11.

C. NPU tree generation

It was observed in Section III-E that fully specifying the
desired tree structures within the nodes resulted in hardware
with a preferred combination of resource usage and operating
frequency, when compared to structures determined entirely
by the synthesis tool. However, in order to implement this in
the proposed automated design flow, the design of this tree
structure must be algorithmically defined.

A minimum-depth tree structure may be formed by exploit-
ing the observation that any positive integer y can be calculated
as the sum of two positive integers x; and xo, where x1 is
the highest power of two less than y. This process may then
be applied recursively by using x; or zo as y, generating a
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tree of 2-input functions having a critical path containing at
most [log, (y)] additions. In this manner, the internal structure
of the VNPUs can be programmatically defined by setting
y = Dy 4+ 1, yielding the result depicted in Fig. 8 for
Dy = 12. This structure may also be used repeatedly in the
CNPUs, where the min function is used instead of additions.
However, rather than creating a single tree for the combination
of D¢ elements, instead D¢ trees of (Do — 1) elements
are required. In order to reduce excessive hardware usage,
the nodes are designed to re-use calculated results as many
times as possible, using the method described in [42]. The
HDL generation application mentioned previously uses this
technique to generate the complete precise description of the
required hardware for NPUs of any degree, without relying
on the variable results which may be produced by synthesis
tools.

Note that an alternative structure proposed in [43] would
further reduce the number of min operations required to 3 x
(D¢ —2). However, for most values of D¢, this structure also
produces a longer critical path than the repeated tree structure
of [42], thereby reducing the maximum operating frequency
fmaz- Since the hardware requirement of each individual min
operation is small compared to the hardware requirement of
the decoder as a whole, it may be expected that the repeated
tree structure of [42] yields a greater hardware efficiency.

V. IMPLEMENTATION RESULTS

In this section, we characterise several instances of the
proposed decoder, having a variety of configurations, which
we compare to relevant benchmarkers, where possible. In
order to highlight the practicality of the proposed decoder,
our comparisons focus on the QC PCMs of four major
wireless communications standards, namely IEEE 802.11n/ac
(WiFi) [4], IEEE 802.16e (WiMAX) [5], IEEE 802.15.3c
(Wireless Personal Area Network, henceforth referred to as
WPAN) [44], and IEEE 802.11ad (WiGig) [35].

The remainder of this section is structured as follows.
Firstly, Section V-A discusses the methods employed for
quantifying the characteristics of the proposed decoder, in
order to be comparable with the survey of [7]. Following this,
parametrisations of the proposed decoder that are targeted at
PCMs from the WiFi family are characterised in Section V-B.
Finally, Section V-C characterises parametrisations of the
proposed decoder that are targeted at PCMs from more than
one family simultaneously. It should be noted that, since the
proposed architecture has a very high degree of flexibility,
it would be impractical to characterise every combination of
PCMs that it can be configured to support. Owing to this, the
results presented here are selected as representative samples
of possible combinations, in order to highlight key features
and issues related to the proposed architecture’s performance
in practical applications.

A. Method

For each chosen set of QC PCMs, a value was selected
for the parallelism reduction factor (), and then the offline

design process presented in Section IV was utilised to pro-
duce a SystemVerilog description of a decoder having the
architecture presented in Section III. This description was then
synthesised using Altera Quartus II for an Altera Stratix IV
EP4SGX530 FPGA. In this way, we were able to quantify
both the maximum operating frequency f,,4, and the hardware
resource usage. More specifically, we use the Equivalent Logic
Blocks (ELBs) metric proposed in [7] for characterising the
hardware resource usage of each synthesised decoder, in order
to facilitate a comparison with the results of that survey.

In addition to this, bit-accurate C++ BER simulations
were performed, in order to characterise the error-correction
performance of the synthesised decoder for each of its target
PCMs. These simulations assumed Binary Phase-Shift Key-
ing (BPSK) transmission over an Additive White Gaussian
Noise (AWGN) channel, in common with the majority of
previous FPGA implementations of LDPC decoders [7]. Our
simulations considered a maximum of 18 decoding iterations
per frame and a minimum of 100 frame errors per BER
measurement, in order to ensure statistical significance. Us-
ing these results, the transmission energy efficiency may be
characterised as the value of the channel’s signal to noise
power ratio per bit Fj/Ny at which a desirable target BER
of 10~* is achieved, as employed in [7]. Finally, the average
number of decoding iterations I, required to achieve this BER
performance at this Ej,/Ny value was characterised and used
to calculate the decoded processing throughput 7', according

to
_ Jmaz XN X R

T = 5
X I (&)

where n is the encoded frame length, R is the coding rate,
and t; is the number of clock cycles required per decoding
iteration. Since the proposed architecture processes one frame
at a time, the processing latency can be calculated as the
ratio of the message word length k¥ = n — m to the decoded
processing throughput 7'. An example BER plot for the eight
WiFi PCMs having the shortest and longest block lengths
is presented in Fig. 12a. The accompanying plot of the
average number of iterations required per frame is presented
in Fig. 12b.

B. Decoders targeted at WiFi LDPC PCMs

The standard on which WiFi is based, namely
IEEE 802.11n/ac [4], defines 12 QC LDPC PCMs, based on
each combination of three different frame lengths (n; = 648,
ng = 1296, and ng = 1944) and four different coding rates
(R = 1/2, Ry = 2/3, Ry = 3/4, and Ry = 5/6). All 12 of
the PCMs have n, = 24 block-columns, resulting in three
different values of z = n/n, corresponding to the three
frame lengths. Furthermore, the number of block-rows my
employed by each PCM may be calculated according to
mp =np X (1 — R).

The FPGA-based LDPC decoder presented in [45] employs
a parameterised architecture and an offline design flow similar
to those proposed in Sections III and IV. The authors state that
the decoder parameters are “limited run-time reconfigurable by
over allocation and selective enabling”, however no further
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Fig. 12. Simulation results for codes from the WiFi family having frame lengths n1 = 648 bits and n3 = 1944 bits, with decoding rates Ry = 1/2,
Ry = 2/3, R3 = 3/4, and R4 = 5/6. (a) BER results, assuming BPSK transmission over an AWGN channel, with a maximum of 18 decoding iterations per
frame. (b) Average number of decoding iterations required per frame for finding a legitimate codeword.

elaboration is provided. The only characteristics presented
in [45] for the WiFi LDPC code correspond to a non-flexible
decoder parametrisation, which was designed for the single
PCM having n = ng = 1944 and R = R; = 1/2. In the survey
of [7], the design of [46] provided the only other FPGA-
based LDPC decoder that supports run-time flexibility across
all 12 of the WiFi PCMs. However, [46] only quantifies the
processing throughput, hardware resource requirements and
transmission energy efficiency for this decoder when the PCM
associated with n = ny = 1296 and R = Ry = 2/3 is active.

In order to facilitate comparisons with the FPGA-based
LDPC decoders of [45] and [46], four separate instances of
the decoder proposed in this work were implemented and
characterised for WiFi PCMs. We refer to our first instance
as decoder F1, which targets the single PCM with the largest
frame length ns = 1944 and lowest coding rate Ry = 1/2,
facilitating a direct comparison with the results from [45]. Our
second decoder F2 targets the three PCMs with R = Ry = 1/2,
having frame lengths n; = 648 to nz = 1944. Thirdly, decoder
F3 targets the four PCMs with frame length n; = 648, having
rates Ry = 1/2 to Ry = 5/6. Finally, decoder F4 targets all 12
PCMs in the WiFi family, facilitating a direct comparison to
the results of [46].

Table I characterises F1, F2, F3, and F4, as well as the
designs of [45] and [46]. Note that without the use of the par-
allelism reduction factor @, the large values of z in the WiFi
LDPC code family would result in extremely high hardware
resource requirements for F1, F2, and F4. Accordingly, we
selected values of ) for each of these decoders such that they
all employ P = 27 VNPUs, as shown in Table I. Furthermore,
the results of Table I are plotted in Fig. 13, together with the
results of the survey conducted in [7].

As described above, decoder F1 may be directly compared
to the benchmarker of [45], since neither of them possess
run-time flexibility and since they both target the same PCM
having a frame length of nz = 1944 and a coding rate of
Ry = 1/2. As shown in Table I, decoder F1 suffers from a 63%
lower processing throughput than the benchmarker of [45],
but requires 17% fewer hardware resources and achieves
the target BER with a 0.6 dB lower transmission energy
requirement. Additionally, the throughput presented in [45] is
achieved by simultaneously decoding four frames using four
parallel decoder copies, which does not improve the associated
processing latency. Owing to this, we may infer that the pro-
cessing latency of decoder F1 is 33% lower than that of [45].
Furthermore, [45] does not detail the impact of introducing
run-time flexibility upon any of its measured characteristics,
whereas the architecture of decoder F1 includes an overhead
that is associated with being completely generalisable to any
number of QC PCMs.

Similarly, decoder F4 may be directly compared to the
design of [46], which offers run-time flexibility for any PCM
in the WiFi family. However, in order to maintain a fair
comparison, we must consider the PCM having the same
coding rate Ry = 2/3 and frame length no = 1296 as was
used in [46]. The characteristics of decoder F4 when using
this frame length and coding rate are indicated accordingly in
Fig. 13. Table I shows that for this PCM, decoder F4 achieves
a processing throughput that is 167% higher than that of [46],
while the error correction performance of the two decoders is
similar. However, decoder F4 suffers from a 7.3 times larger
hardware resource usage than that of [46]. This cost may be
attributed to the fully-flexible QC routing networks employed
by the proposed architecture, which may be generalised to
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TABLE I: Characteristics of decoders targeted at PCMs from the WiFi family.

g IS ~ E @ ~ 2 =)
15} 5 » 2 Q
: iz | £3 SEE| 4 £ 5, | g
a8 o 4 <8 5 ZZe | @2 3 =2 53 SEC)
F1 3 1944 1/2 72 1 64.8 9.91 128.6 7.56 2.23
6438 1/ 24 81.7 6.08 2253 1.44 277
F2 3 1296 1/2 48 3 81.7 8.42 162.7 3.98 2.4
1944 1/2 72 81.7 9.91 138.2 7.03 2.23
648 1/ 24 64.1 6.08 2221 1.46 2.77
F3 | 648 2/3 24 4 64.1 4.36 413.0 1.05 3.37
648 3/4 24 64.1 3.68 550.5 0.88 3.77
648 5/6 24 64.1 2.88 781.6 0.69 4.36
648 1/2 24 140.4 6.08 196.8 1.65 2.77
648 2/3 24 140.4 4.36 365.9 1.18 3.37
648 3/a 24 140.4 3.68 487.7 1.00 3.77
648 5/6 24 140.4 2.88 692.3 0.78 4.36
1296 1/2 48 140.4 8.42 142.1 4.56 2.40
F4 3 1296 2/3 48 12 140.4 6.28 254.0 3.40 2.99
1296 3/ 48 140.4 5.37 334.2 291 3.42
1296 5/6 48 140.4 4.34 459.4 2.35 4.01
1944 1/2 72 140.4 9.91 120.7 8.05 2.23
1944 2/3 72 140.4 7.56 211.0 6.14 2.82
1944 3/4 72 140.4 6.61 271.5 5.37 3.23
1944 5/6 72 140.4 5.58 357.3 4.53 3.83
[45] - 1944 1/2 - 1 77.8 10 348 11.2 2.83
[46] - 1296 2/3 - 12 19.3 15 95 9.09 2.49
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Fig. 13. Trade-offs of decoders targeted at PCMs from the WiFi family.

multiple code families with a wider variety of submatrix sizes
and node degrees than those of the WiFi family, as discussed
in Section III-D. By contrast, the design of [46] is specialised
for the WiFi family of PCMs and exploits several of their
common features in order to minimise the routing hardware
resource usage.

By comparing the characteristics of decoders F2 and F3,

it may be observed that supporting run-time flexibility for
a selection of frame lengths n in conjunction with a single
coding rate R incurs a greater hardware resource usage cost
than supporting one frame length for multiple coding rates.
This may be attributed to the programmable BSs, which al-
ways require Z inputs and outputs, regardless of the node-level
parallelism P. Supporting multiple frame lengths requires
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support for a larger number of submatrix sizes z, which causes
the internal arrangement of each BS to become increasingly
complex, as will be demonstrated further in Section V-C. This
problem is exacerbated by the limitations imposed by FPGA
synthesis, in which the programmable routing networks and
logic elements must be utilised to implement hundreds of
multiplexers per BS. The comparatively low hardware resource
requirement of decoder F3 also demonstrates the effectiveness
of the methods discussed in Section III-C and Section III-E,
which reduce the potential impact of increasing the number
of CNPU inputs D¢, as required when supporting higher-rate
codes.

A further analysis of the proposed design is presented in
Fig. 14, wherein the main characteristics of decoders F1, F2,
and F4 are plotted radially with respect to the characteristics
of [45], for the case of decoding the same PCM with frame
length ng = 1944 and coding rate R; = 1/2. Here, supe-
rior values for each characteristic are plotted outwards on a
logarithmic scale. Fig. 14 shows that each of the decoders pre-
sented in this section attain a lower processing throughput than
that of [45], but with a smaller latency, greater error correction
performance, and equal or greater run-time flexibility. Fig. 14
also illustrates the trade-off between flexibility and hardware
resource usage, showing that decoders that support a greater
number of PCMs at run-time suffer from a higher resource
requirement, and vice versa.

Throughput

~350 Mbps

Flexibility ~130 Mbps ELBs

12 PCMs

Benchmarker: |
Decoder F1:
Decoder F2:|
Decoder F4:| /

Latency Ey/ Ny

Fig. 14. Comparison of decoders targeted at PCMs from the WiFi family.
Characteristics are normalised relative to the benchmarker from [45].

C. Decoders targeted at PCMs from multiple families

In addition to providing run-time flexible support for multi-
ple PCMs from within the same LDPC code family, the archi-
tecture presented in Section III is also capable of supporting
PCMs from multiple different code families. Furthermore, the
automated design flow presented in Section IV ensures that
the design process is no more complicated than that of one
which supports codes from only a single family.

In order to demonstrate this key feature, multiple instances
of the proposed decoder were again implemented and charac-

terised using the methods described in Section V-A. Firstly,
decoder S1 targets the PCMs having the lowest frame length
and coding rate from each of the WiFi, WiMAX, WiGig, and
WPAN families. In order to maximise the throughput, this
decoder employs Q = 1, which gives a parallelism of P = 42
due to the large submatrix size of z = 42 in the WiGig
code family. However, this high degree of parallelism results
in unused hardware resources when decoding the supported
WiFi, WiMAX, and WPAN PCMs, whose submatrix sizes z
are 27, 24, and 21, respectively. In order to investigate the
impact of this, decoder S2 targets the PCMs with the lowest
frame length and coding rate from only the WiFi, WiMAX,
and WPAN families. Here, the parallelism P is reduced to 27.
Thirdly, decoder S3 was designed to support the PCMs from
both the WiGig and WPAN families having the two highest
coding rates, with a parallelism of P = 11. Furthermore, we
implemented two additional decoders to target all 134 of the
PCMs from the four families mentioned previously, namely 12
from the WiFi family, 114 from the WiMAX family, 4 from the
WiGig family, and 4 from the WPAN family. More specifically,
decoder S4 employs () = 24, which results in a parallelism of
P =4, since Z = 96 is the maximum submatrix size among
this selection of PCMs. Finally, decoder S5 supports this same
set of 134 PCMs, but adopts = 8, which leads to P = 12.

Throughout the survey of [7], only [11] and [31] were
identified as offering LDPC decoder designs having run-time
flexibility for more than one family of codes. In particular,
these two designs are capable of supporting full run-time
flexibility over any LDPC code, regardless of structure. Note
that [31] does not detail the specific PCM used to generate its
results, instead providing an approximate average result for
several PCMs. Furthermore, while the processing throughput
measurements presented in [31] were calculated using 15
decoding iterations, the only BER results it presents were
generated using 100 decoding iterations, hence they cannot
be considered as part of a fair comparison. Additionally, the
results presented in [11] were not generated using one of the
standardised codes described previously either.

Table II and Fig. 15 compare the processing throughputs,
hardware resource requirements, and error correction capabil-
ities of the benchmarkers discussed above, as well as those
for a representative subset of the PCMs supported in each of
the proposed decoders S1 to S5. These results show that the
proposed decoders offer similar processing throughputs to the
majority of FPGA-based LDPC decoders considered in [7],
while offering a very high degree of run-time flexibility, albeit
with a larger hardware resource requirement which will be
discussed below.

As anticipated, the reduced parallelism of decoder S2 com-
pared to S1 leads to a reduction in the hardware resource
usage, without decreasing the throughput for its supported
WiFi, WiMAX or WPAN PCMs. More specifically, the ability
of decoder S1 to decode a WiGig PCM in addition to those
supported by decoder S2 causes it to require a greater quantity
of hardware, without increasing the throughput. Meanwhile,
the complementary aspects of the WiGig and WPAN PCMs
can be observed in the characteristics of decoder S3, which
offers a high throughput at a relatively low hardware resource
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TABLE II: Characteristics of decoders targeted at PCMs from multiple families.

L
5 e [Ast ; E — > o
() o (5] w w (9]
E =% | £z | i3 £E85| & _ £ 55| %5
2 o 25 2E 2E = g | @=L S ) 53 Sic)
WiFi 648 1/2 24 6.08 215.2 1.5 2.77
St | WIMAX 576 1/2 24 4 915 7.98 145.7 2.0 3.14
WiGig 672 1/2 16 6.70 303.7 1.1 3.14
WPAN 672 1/2 32 6.76 150.5 2.2 3.02
WiFi 648 1/2 24 6.08 218.6 1.5 2.77
S2 1 WiMAX 576 1/2 24 3 58.8 7.98 148.1 1.9 3.14
WPAN 672 1/2 32 6.76 152.9 2.2 3.02
WiGig 672 3/4 64 4.17 129.1 2.6 3.72
WiGig 672 13/16 64 3.23 250.1 2.0 4.30
83 4 WPAN 672 3/4 64 4 44.9 3.99 135.0 2.5 3.56
WPAN 672 7/8 64 3.11 259.7 1.9 4.12
WiFi 648 5/6 168 2.88 105.8 5.1 4.36
WiFi 1296 3/4 336 5.37 51.1 19.0 3.42
WiFi 1944 1/2 504 991 18.5 52.7 2.23
WiMAX 576 5/6 144 3.99 79.2 6.1 4.45
WiMAX 864 3/4 216 5.46 52.1 12.4 3.75
WiMAX 1248 2/3 312 7.64 33.1 25.1 3.29
§4 24 WIMAX 1920 1/2 480 134 208.0 12.26 15.5 62.1 2.61
WiMAX 2304 2/3 576 10.24 24.7 62.2 2.94
WiGig 672 1/2 176 6.70 27.0 12.4 3.14
WiGig 672 3/4 176 4.17 65.1 7.7 3.72
WPAN 672 5/8 192 4.84 429 9.8 3.12
WPAN 672 7/8 192 3.11 934 6.3 4.12
WiFi 648 5/6 72 2.88 227.1 2.4 4.36
WiFi 1296 3/4 120 5.37 131.5 7.4 3.42
WiFi 1944 1/2 168 9.91 50.9 19.1 2.23
WiMAX 576 5/6 48 3.99 218.5 2.2 4.45
WiMAX 864 3/4 72 5.46 143.7 4.5 3.75
WiMAX 1248 2/3 120 7.64 79.1 10.5 3.29
85 8 WiMAX 1920 1/2 168 134 2289 12.26 40.6 23.6 2.61
WIMAX 2304 2/3 192 10.24 68.1 22.5 2.94
WiGig 672 1/2 64 6.70 68.3 4.9 3.14
WiGig 672 3/4 64 4.17 164.7 3.1 3.72
WPAN 672 5/8 64 4.84 118.2 3.6 3.12
WPAN 672 7/8 64 3.11 257.6 2.3 4.12
[31] - NA NA NA NA - 30.6 15 5.0 NA NA
NA 4095 0.82 NA 10 2.0 1679 3.42
[11] - NA 4095 0.82 NA - 1.21 10 1.45 2316 3.52
NA 4095 0.94 NA 10 243 1584 5.19

usage.

Finally, decoders S4 and S5 offer a much higher degree of
run-time flexibility, at the cost of higher hardware resource
requirements. This increased hardware usage is mainly due
to the increased complexity of the programmable BSs, which
must handle shift values of up to s = 95, with 24 possible
values of z, namely 19 from the WiMAX family, 3 from
the WiFi family, and one each from the WPAN and WiGig
families. The impact of this may be observed by comparing
decoders S4 and S5, where decoder S4 has 3 times fewer
NPUs than S5, but its hardware resource requirement is only
1.1 times smaller. This may be explained by the domination of
the overall hardware resource requirement by the BSs, which
are used in equal number in both S4 and S5. Flexible partially-
parallel LDPC decoders that are designed to support codes
from a variety of communications standards have an inherent
requirement to employ a large quantity of highly-complex

flexible routing, such as the programmable BSs proposed here.
This is caused by the requirement to support a large range
of submatrix sizes z with a fine granularity, which are often
ill-suited to the parallelism of the decoder. For this reason,
this issue has received particular attention during the design
of the LDPC code for enhanced Mobile BroadBand (eMBB)
data in the 3GPP 5G New Radio (NR) [47], which is required
to have a much greater of flexibility than the LDPC codes
of previous standards. More specifically, it has been proposed
that the submatrix sizes z should be multiples of powers of
two, since this would permit the use of a Banyan network [36]
to alleviate some of the routing complexity, and would ensure
that a level of parallelism could be chosen that is suitable
for all supported submatrix sizes. These improvements would
significantly reduce the dominance of the routing components
on the hardware resource requirement of the proposed de-
coder, which would in turn increase the maximum operating
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Fig. 15. Trade-offs of decoders targeted at PCMs from multiple families.

frequency and hence throughput.

The results of Table II and Fig. 15 show that all of the
proposed decoders offer much higher processing throughputs
than those of [11] and [31], albeit using more hardware
resources. Although these previous designs offer a higher
degree of run-time flexibility than the solutions proposed here,
this is achieved at the cost of particularly low processing
throughputs. This may be explained by the fully-serial ar-
chitecture employed by the design of [11], which results in
the very low hardware resource requirements and processing
throughput shown here. Conversely, [31] proposes a partially-
parallel implementation of a decoder which supports any reg-
ular or irregular code by compiling the PCM into a hardware-
optimised form before loading it onto the FPGA. However,
the cost of this degree of flexibility is a large number of clock
cycles per iteration, resulting in a low processing throughput.
Additionally, depending on how well the target PCMs comply
with the compilation process of [31], up to 23% of its parallel
processing components remain idle for some of its PCMs,
resulting in a large hardware resource requirement with respect
to the resultant processing throughput. Finally, the decoder
of [31] also requires numerous clock cycles and manual
intervention in order to load a new PCM representation onto
the FPGA, at run time. This would not facilitate the dynamic
switching of PCMs to adapt to changing channel conditions,
for example. By contrast, the proposed architecture stores
every supported PCM in ROM after compilation, which allows
the active PCM to be switched within a single clock cycle. This
is facilitated while achieving a higher processing throughput
overall, with manageable hardware resource requirements and
without sacrificing error correction performance.

VI. CONCLUSIONS

This paper has presented the design and implementation of
an FPGA-based LDPC decoder having the run-time flexibility
to switch between a set of QC PCMs within a single clock
cycle. We have also proposed an automated design flow, which
gives the proposed architecture the design-time flexibility to
support any set of QC PCMs. Furthermore, this design flow
automatically generates the HDL description of the decoder,
which may be synthesised onto an FPGA. The implementation
results presented in Section V indicate that the proposed
design achieves a high level of design-time and run-time
flexibility, whilst maintaining reasonable performance in terms
of processing throughput, processing latency, error correction
capability, and hardware resource usage.
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