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In this paper we obtain general conditions under which the wave equation is well-
posed in spacetimes with metrics of Lipschitz regularity. In particular, the results
can be applied to spacetimes where there is a loss of regularity on a hypersurface
such as shell-crossing singularities, thin shells of matter, and surface layers. This
provides a framework for regarding gravitational singularities not as obstructions to
the world lines of point-particles, but rather as obstruction to the dynamics of test
fields. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975216]

I. INTRODUCTION

An important requirement of any classical physical theory is that given suitable initial data one
can determine the evolution of the system. Within the theory of general relativity, the concept of
global hyperbolicity1 therefore plays a key role. Mathematically, a spacetime region N is said to
globally hyperbolic if the causality condition is satisfied, and for any two points p,q ∈ N the causal
diamond J+(p) ∩ J−(q) is compact and contained in N .2 However from the physical point of view,
the important property of smooth globally hyperbolic spacetimes is that the evolution of the Einstein
equations is well defined (see, e.g., Ref. 3 for details).

One way of interpreting the compactness of J+(p) ∩ J−(q) is that this set “does not contain
any points on the edge of spacetime, i.e., at infinity or at a singularity” (Ref. 3, Sec. 6.6). In this
context the regularity usually considered in the region N is that the metric must be C1,1 (that is to
say the first derivative of the metric is Lipschitz, which is also denoted C2−). This criteria is based on
the existence and uniqueness of geodesics and the characterisation of gravitational singularities in
terms of geodesic incompleteness. Moreover this regularity is the threshold where causal theory for
smooth metrics and rough metrics agrees.4,5

However, in many realistic astrophysical situations one would like to solve Einstein’s field
equations with lower regularity. For example, when one models a jump in density at the boundary of
a star. This led Clarke6 to define a notion of generalised hyperbolicity directly in terms of the local
existence and uniqueness of the wave equation.

Clarke’s definition of generalised hyperbolicity was motivated by two things. First there are a
number of spacetimes in which points are removed due to the presence of weak singularities and
are therefore not globally hyperbolic but are still of physical interest. These include spacetimes with
thin shells of matter,7 impulsive gravitational waves,8 and shell-crossing singularities.9

The second motivation was that of using test fields (given by solutions of the wave equation)
rather than test particles (given by solutions of the geodesic equation) to probe the structure of
singularities. Some work to examine the physical effect of gravitational singularities has been done
by using a 3-parameter family of test particles (see, for example, Ref. 10); however, an advantage
of using test fields is that the behaviour of the naturally defined energy-momentum tensor of the
field gives a direct measurement of the physical effect of the singularity which is not so easy when
considering families of test particles.
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There have been previous approaches which study the nature of the singularities using test
fields (see, e.g., Refs. 11–14). In all these approaches one considers self-adjoint extensions of the
(spatial) Laplace-Beltrami operator and applies appropriate boundary conditions at the singularity.
All this work has focused on the case of static spacetimes and furthermore most of these self-adjoint
extensions are in L2 (except14 who consider finite energy solutions).

The approach in this paper is to consider singularities as interior points of a spacetime with low
regularity rather than regarding the singularity as a boundary and applying boundary conditions.
A natural condition in this context is to require the solutions to lie in the Sobolev space H1

loc

which ensures that the energy momentum tensor is well-defined as a distribution. In this paper we
will therefore look at conditions on the spacetime and initial data which give solutions with this
regularity.

In particular, we will look at the co-dimension one case which is relevant, for example, to
junction conditions with jumps in the density, impulsive gravitational waves, and brane-world
cosmologies. In a previous paper we looked at the case of co-dimension two singularities such as
cosmic strings.15

In previous work Grant et al.16 showed the existence of generalised solutions to the wave equa-
tion on singular spacetimes. This involved replacing the singular metric by a 1-parameter family
of smooth metrics. The 1-parameter family of solutions of the corresponding wave equations then
describes a generalised solution. Using this approach it was possible to demonstrate the existence
of a generalised solution to the wave equation for a wide class of metrics which included metrics
with components bounded almost everywhere. A downside of this approach is that it is not easy
to relate the generalised solution to a classical weak solution of the equation. In our approach we
will utilise the vanishing viscosity method (see, e.g., the work of Evans17) to show the existence of
a weak solution of the wave equation. This involves approximating the wave equation by a system
of second order parabolic equations with a parameter ϵ corresponding to the viscosity. Like Grant
et al. we again obtain a 1-parameter family of solutions but we are able to utilise results from para-
bolic regularity theory to have better control over the solutions and their convergence. This enables
us to show that the 1-parameter family converges to a weak solution of the zero viscosity equation
which corresponds to an H1 solution of the wave equation. The basic method we use follows that
of Evans17 but the details differ and our results are also distinct from his since we assume less
regularity and as a result our solutions also exhibit less regularity.

The plan of the paper is as follows. In Sec. II we introduce the general setting for the problem
and state the main theorems. We do not impose the ultrastatic condition used in Ref. 18 and write
the wave equation as a first order system (see, e.g., Ref. 19). This enables us to work with the L2

energy of the first order system which corresponds to an H1 energy of the second order equation.
In this setting we obtain existence of the solutions in time dependent scenarios without the need for
any symmetry. Sec. III contains the proofs of the theorems while Sec. IV gives examples of how
these can be applied to various examples such as a discontinuity across a hypersurface, impulsive
gravitational waves, and brane-world cosmologies.

II. THE MAIN RESULTS

The interest in co-dimension one singular submanifolds covers a variety of different interesting
physical phenomena such as, surface layers,7 impulsive gravitational waves,8 and shell-crossing
singularities20 all of which fall outside the class of smooth globally hyperbolic spacetimes. More-
over, the mathematical analysis by Geroch and Traschen21 of what now is called the class of
Geroch-Traschen metrics and the subsequent analysis by Steinbauer and Vickers22 using general-
ised functions gives co-dimension one singular submanifolds a robust mathematical background. In
addition, recent proposals in semi-classical gravity and quantum gravity23 suggest that the metric
near the event horizon may present some loss of regularity. In this section we present techniques to
prove local well-posedness of the wave equation in spacetimes with co-dimension one singularities
subject to certain conditions on the metric.
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Clarke used the term generalised hyperbolicity to describe the situation where one has a unique
solution to the wave equation. However we want to impose the slightly stronger condition of
well-posedness and in addition want to emphasise the role of the wave equation. See Ref. 24 for a
discussion of this and related terms.

A. The general setting

The geometric setting is a region Σ[0,T ] = [0,T] × Σ, where Σ is either a compact closed
n-dimensional manifold or an open, bounded set of Rn with smooth boundary ∂Σ. In what fol-
lows, for simplicity, we will only consider the former case. The proof in the latter case follows by
replacing H1(Σ) by H1

0(Σ) and using the volume form given by dxn.
Rather than considering the particular case of a spacetime with a singular hypersurface, where

the regularity of the metric drops below C2, we will consider a rough spacetime, where the space-
time metric gab is only Lipschitz. We will show that in this situation one has well-posedness (in
a sense made precise below) of the wave equation with weak solutions of regularity H1(Σ[0,T ]). In
order to do this, we will reformulate the wave equation as a first order symmetric hyperbolic system
and look for L2 solutions of this system.

We therefore start by considering the first order initial value problem

Lu = A0∂tu + Ai∂iu + Bu = F, (1)
u(0, ·) = u0(·). (2)

In the above we have employed the Einstein summation convention where i, j, k, etc. range over
1,2, . . . ,n. The unknown u and the source term F are both RN valued functions on Σ[0,T ], while
A0, Ai, and B are N × N matrix valued functions on Σ[0,T ]. We will assume that A0 and Ai are
symmetric and that in addition A0 is positive definite.

In order for such a system to correspond to the wave equation given by a Lipschitz metric, we
will require that A0 and Ai have bounded first derivatives and that B is bounded, so that we require

A0 ∈ W 1,∞(Σ[0,T ],RN2), Ai ∈ W 1,∞(Σ[0,T ],RN2), B ∈ L∞(Σ[0,T ],RN2). (3)

In the analysis below we will be working in spaces such as L2(Σ). Rather than defining this in
terms of a particular coordinate system on Σ, we will introduce a background Riemannian metric
hi j on Σ and let νh be the corresponding volume form. We then define L2(Σ) to be the space of
real valued functions g on Σ such that


Σ
g2νh < ∞ and we denote the associated inner product by

( f , g)L2(Σ) =

Σ

f gνh. Note that since Σ is compact νh is bounded from below and above. Further-
more if Σ is parallelizable (which for simplicity we will assume), there is no loss of generality in
taking hi j to be the flat metric. Note that in the three dimensional case, which is most relevant to
applications in general relativity, it is enough for Σ to be orientable for it to be parallelizable.

For the case of vector valued functions v on Σ, we define L2(Σ,RN) to be those v such that
Σ

v · vνh < ∞. The corresponding inner product on L2(Σ,RN) is then given by

(v,w)L2(Σ,RN ) =

Σ

v · wνh.

Where there is no risk of confusion, we will write both the inner product in L2(Σ) and in L2(Σ,RN)
simply as (·, ·)L2. The Sobolev spaces H1(Σ,RN), etc. are defined in a similar manner (see Ref. 17,
Sec. 5.2, Ref. 19).

We also make use of the function space L2(Σ[0,T ]) which is defined by requiring that functions
are square integrable on [0,T] × Σ with respect to the volume form dt ∧ νh.

However in the analysis below it is often convenient to think of a function v(t, x) as a map from
[0,T] to a function v(t)(·) of x ∈ Σ given by v(t)(x) = v(t, x). For example, L2(0,T ; W k,p(Σ,RN)) is
the space of functions

v : [0,T] → W k,p(Σ,RN), (4)
t → v(t), (5)
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such that v(t) ∈ W k,p(Σ,RN) and ( T

0
∥v∥2

W k,p(Σ,RN )dt
) 1

2

< ∞. (6)

When thinking of v in this way, we will denote the time derivative by v̇. We also define the
following spaces which will be used in Sec. III D:

W̃ k,p(Σ[0,T ],RN) B {w ∈ W k,p(Σ[0,T ],RN) : such that w(T, ·) = 0}.
In particular, we will be interested in the following case:

H̃1(Σ[0,T ],RN) B {w ∈ H1(Σ[0,T ],RN) : such that w(T, ·) = 0}.

B. Weak solutions and the main theorems

We will be looking for weak solutions of the initial value problem (1). To motivate the defini-
tion we proceed as follows. Given a standard C1 solution u of the initial value problem, we may first
take the dot product of Equation (1) with a smooth RN-valued function v with support in [0,T) × Σ
and then integrate over x and t to obtain T

0
(Lu,v)L2(Σ,RN )dt =

 T

0
(F,v)L2(Σ,RN )dt . (7)

Integrating the left hand side by parts with respect to x and t we obtain T

0
(u,L∗v)L2(Σ,RN )dt −

�
A0u|t=0,v(0)�L2(Σ,RN ) =

 T

0
(F,v)L2(Σ,RN )dt, (8)

where L∗ is the formal adjoint of L defined below and the second term on the right hand side (RHS)
comes from the t = 0 boundary term when we integrate by parts with respect to t. This approach
results in the following definition.

Definition 1 (Weak Solution). We say a function

u ∈ L2(0,T ; L2(Σ,RN))
is a local weak solution of the initial value problem (1) provided that for all v ∈ C∞(Σ[0,T ],RN), with
supp(v) ⊆ [0,T) × Σ T

0
(u,L∗v)L2(Σ,RN )dt =

 T

0
(F,v)L2(Σ,RN )dt +

�
A0(0)u0,v(0)�L2(Σ,RN ). (9)

This definition of a weak solution is the classical one used by Friedrichs25 but differs from the
one used by Evans,17 who does not integrate with respect to t. Note also that the formal adjoint
is defined with respect to νh. So in the case where we use a general Riemannian metric, there are
additional terms involving the derivatives of νh in the expression for L∗ compared to the flat case.
The explicit expression is

L∗v B −∂t(A0v) − ∂i(Aiv) + BTv − Γ̃il iA
lv, (10)

where Γ̃i
jk

are the connection coefficients of the smooth Riemannian metric hi j.
In order to prove uniqueness and well-posedness of the initial value problem, we will need to

control the L2 size of the solution. This motivates the following definition.

Definition 2 (Regular Weak Solution). We say a weak solution u ∈ L2(0,T ; L2(Σ,RN)) is regu-
lar if u satisfies the energy estimate

∥u∥2
L2(0,T ;L2(Σ,RN )) 6 C

(
∥u0∥L2(Σ,RN ) +

 T

0
∥F(t, ·)∥2

L2(Σ,RN )dt
)
. (11)
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We may now state our main result concerning solutions of low-regularity symmetric hyperbolic
systems.

Theorem 1. Given the linear symmetric hyperbolic system

Lu = A0∂tu + Ai∂iu + Bu = F, (12)
u(0, ·) = u0(·), (13)

where A0, Ai,B, and F are as in (3), and the initial data u0 is in L2(Σ,RN), then there exists a unique
regular weak solution u ∈ L2(Σ[0,T ],RN). Furthermore this solution is stable in the sense that the
solution depends continuously on the norm of the initial data in L2(Σ,RN) and the norm of the
source function in L2(Σ[0,T ],RN).

We may now use the above result to establish the following theorem for the wave equation.

Theorem 2. Let gab be in C0,1, and f in L2(Σ[0,T ]). Given initial data (u0,u1) ∈ H1(Σ) × L2(Σ)
then the system

�gu + m2u = f , (14)

u(0, ·) = u0, (15)
∂tu(0, ·) = u1 (16)

has a unique solution u ∈ H1(Σ[0,T ]) that depends continuously on the norm of the initial data
and of the source function f . Moreover, the corresponding energy-momentum tensor Tab[u] is in
L1
loc

(Σ[0,T ]).
Note that the above result is similar to the one obtained for the homogeneous wave equation in

Ref. 26. However, we have extended the results to the more general case that includes mixed space
and time derivatives, included a source function, and provided a different proof.

We would like to mention that one cannot go further without paying a price. As shown
by Colombini et al.27 there are examples of wave equations with coefficients depending only
on time of Hölder regularity C0,α with exponent α < 1 with no distributional solution. (Note: a
function f is C0,α if | f (s) − f (t)| < C |s − t |α). However, they proved well-posedness by moving
from Sobolev spaces to Gevrey spaces. These results have been further extended to coefficients
that depend smoothly on the space variable but are log-Lipschitz (LL) regular in time28 (that is,
| f (s) − f (t)| 6 K |s − t | ln |s − t |). In both Refs. 27 and 28 the structure of the second order part of
the operator considered has the special form

∂2

∂t2 −

j,k

∂

∂x j

(
a j,k(x, t) ∂

∂xk

)
. (17)

In Ref. 29 mixed terms in time and space were allowed and the regularity of the coefficients was LL
in space and time. However, the local well posedness results obtained are in Sobolev spaces H s with
|s| < 1 and therefore the energy momentum tensor of the solutions is not integrable. Finally, one can
explore wave-type equations with very rough coefficients such as in Ref. 30 where one is lead to the
necessity of weakening the notion of a solution to the Cauchy problem and enlarging the allowed
class of solutions.

III. PROOF OF THE MAIN THEOREM

A. Outline of the proof

The proof of Theorem 2 uses the vanishing viscosity method described in Sec. 7.3 of the work
of Evans.17 Note however that Evans assumes that A0 and Ai have greater regularity than we do and
as a result is able to obtain a solution with greater regularity. This explains why our definition of
a weak solution has to differ from his. However the essence of the proof is essentially the same. It
consists of the following steps:
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1 First, we approximate problem (1) by the system of parabolic initial value-problem on Σ[0,T ]
given by

∂tuϵ − ϵ∆huϵ + (A0)−1Ai∂iuϵ + (A0)−1Buϵ = (A0)−1F, (18)

uϵ(0, x) = ρϵ ∗ (u0(x)) ,
where {(ρϵ)} ∈ (0,1] is a family of mollifiers. Here ∆h is the Laplace-Beltrami operator on
Σ associated with the smooth background Riemannian metric hi j. By adding in the second
order Laplace-Beltrami terms we obtain a system with smooth principal symbol. We may then
use classical methods of parabolic regularity theory to obtain a solution with better analytic
properties than the original hyperbolic system.

2 Second, we obtain the following uniform energy estimate

∥uϵ∥2
L2(0,T ;L2(Σ,RN )) 6 C

(
∥u0∥L2(Σ,RN ) +

 T

0
∥F(t, ·)∥L2(Σ,RN )dt

)
(19)

where C is independent of ϵ .
3 Third, we take the limit ϵ → 0 and show convergence in an appropriate weak sense to a regular

weak solution as defined above.
4 Fourth, using the energy inequality (19) we show uniqueness and stability. This concludes the

proof of Theorem 1.
5 Fifth, we rewrite the wave equation as a symmetric hyperbolic problem and show that for a

Lipschitz metric the corresponding L satisfies the conditions of Theorem 1.
6 Sixth, we show that the solution of the wave equation obtained via the symmetric hyperbolic

problem is in H1(Σ[0,T ]). This concludes the proof of Theorem 2.

B. Approximate solutions and energy estimate

The results we obtain make extensive use of the vanishing viscosity method. As explained
above, the first step is to show that there exist suitable solutions to (18). This step follows directly
from the work of Evans (Ref. 17, Th. 1 Sec. 7.3).

Proposition 1 (Existence of Approximate solutions). For each ϵ > 0, there exists a unique solu-
tion uϵ of (18) with uϵ ∈ L2(0,T ; H2(Σ,RN)) and u̇ϵ ∈ L2(0,T ; L2(Σ,RN)).

Proof. This is a variant of a standard result for parabolic systems. Following Evans set
X = L∞(0,T ; H1(Σ,RN)) and then for each w ∈ X , consider the linear system

∂tuϵ − ϵ∆huϵ = −(A0)−1Ai∂iw − (A0)−1Bw + (A0)−1F, (20)

uϵ(0, x) = uϵ
0(x), (21)

where uϵ
0(x) = ρϵ(x) ∗ (u0(x)). Notice that the system is formed of N scalar parabolic equations of

the form ∂tυ − ϵ∆hυ = f . The coefficients are now all smooth and the only loss of regularity comes
from the source term on the RHS of (20). However as this is bounded in L2(0,T ; L2(Σ,RN)), we
can apply standard results (see, e.g., Ref. 17, Th. 5 Sec. 7.1) to show that there is a unique solution
uϵ ∈ L2(0,T ; H2(Σ,RN)) with u̇ϵ ∈ L2(0,T ; L2(Σ,RN)).

In the same manner we can choose w̃ ∈ X and find ũϵ that solves

∂tũϵ − ϵ∆hũϵ = −(A0)−1Ai∂iw̃ − (A0)−1Bw̃ + (A0)−1F, (22)

ũϵ(0, x) = uϵ
0(x). (23)

Subtracting uϵ − ũϵ, we find that ūϵ = uϵ − ũϵ solves

∂tūϵ − ϵ∆hūϵ = −(A0)−1Ai∂iw̄ − (A0)−1Bw̄ (24)

ūϵ(0, x) = 0 (25)
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where w̄ = w − w̃. Using standard energy estimates for solutions of parabolic equations we have
that ū satisfies:

sup
06t6T

∥ūϵ(t)∥2
H1(Σ,RN ) 6 C(T, ϵ)

(
∥(A0)−1(Ai∂iw̄ + Bw̄)∥2

L2(0,T ;L2(Σ,RN ))
)

6 C(T, ϵ)
(

sup
06t6T

∥w̄(t)∥2
H1(Σ,RN )

)
. (26)

Thus

∥ūϵ∥L∞(0,T ;(Σ,RN )) 6 C(T, ϵ)∥w̄∥L∞(0,T ;(Σ,RN )). (27)

Therefore, if T is small enough such that C(T, ϵ) 6 1
2 we obtain that

∥ūϵ∥L∞(0,T ;(Σ,RN )) 6
1
2
∥w̄∥L∞(0,T ;(Σ,RN )), (28)

so that

∥uϵ − ũϵ∥L∞(0,T ;(Σ,RN )) 6
1
2
∥w − w̃∥L∞(0,T ;(Σ,RN )). (29)

This implies that we have a contraction mapping and the hypothesis of Banach’s fixed point theorem
is satisfied for the mapping

M : L∞(0,T ; (Σ,RN)) → L∞(0,T ; (Σ,RN)),
w → uϵ,

which therefore has a unique fixed point which solves (18). If C(T, ϵ) > 1
2 we can choose T1 small

enough such that C(T1, ϵ) 6 1
2 and then repeat the above argument for intervals [0,T1], [T1,2T1], . . . ,

[nT1,T]. In either case we obtain a solution uϵ which solves (18) on the interval [0,T]. Standard
parabolic regularity theory (see, e.g., Th. 5, Sec. 7.1 Ref. 17) then gives us uϵ ∈ L2(0,T ; H2(Σ,RN))
and that u̇ϵ ∈ L2(0,T ; L2(Σ,RN)), which concludes the proof of Theorem 1. �

Note that Evans goes on to use Th. 6, Sec. 7.1 Ref. 17 to obtain an improved regularity
result showing that uϵ ∈ L2(0,T ; H3(Σ,RN)) and that the time derivative u̇ϵ ∈ L2(0,T ; H1(Σ,RN)).
However we do not need this result.

C. Energy estimates

The next step is to obtain the uniform energy estimate in ϵ for the solutions uϵ. This is the
content of the following proposition.

Proposition 2. There exists a constant C depending on T,Σ,hi j, ∂lhi j, sup
x∈Σ[0,T ]

�|(A0)−1|,
|Ai |, |B|, |∂t(A0)−1|, |∂t Ai |, |∂j(A0)−1|, |∂jAi |� such that

∥uϵ∥2
L2(0,T ;L2(Σ,RN )) 6 C

(
∥u0∥L2(Σ,RN ) +

 T

0
∥F(t, ·)∥L2(Σ,RN )dt

)
. (30)

Therefore the estimate is independent of ϵ .

Proof of Proposition 2. Taking the time derivative of ∥uϵ∥2
L2(Σ,RN ) gives

d
dt

(
∥uϵ(t)∥2

L2(Σ,RN )
)
= 2(uϵ, u̇ϵ)L2(Σ,RN )

= 2
�
uϵ, ϵ∆huϵ − (A0)−1Ai∂iuϵ − (A0)−1Buϵ + (A0)−1F

�
L2(Σ,RN ).

(31)
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We have estimates for the following terms in (31):

|(uϵ, (A0)−1F)L2(Σ,RN )| 6 C1(∥uϵ(t)∥2
L2(Σ,RN ) + ∥F∥2

L2(Σ,RN )), (32)

(uϵ, ϵ∆huϵ)L2(Σ,RN ) = −ϵ
N
l=1


Σ

hi j∂i(ul)∂j(ul)νh 6 0, (33)

�(uϵ, (A0)−1Buϵ)� 6 C2∥uϵ∥2
L2(Σ,RN ). (34)

However we also require an estimate for (uϵ, (A0)−1Ai∂iuϵ)L2(Σ,RN ), which is the remaining term in
(31). This term can be estimated by applying a suitable integration by parts.

We first assume that the smooth background Riemannian metric is hi j = δi j, write (A0)−1Ai as
Ãi and estimate (uϵ, Ãi∂iuϵ)L2(Σ,RN ). Using the fact that Ãi are symmetric, we then have

(uϵ, Ãi∂iuϵ)L2(Σ,RN ) =

Σ

uϵ
·
�
Ãi∂iuϵ

�
dnx (35)

=
1
2


Σ

∂i
�
Ãiuϵ

�
· uϵdnx − 1

2


Σ

�
∂i Ãi

�
uϵ
· uϵdnx (36)

= −1
2


Σ

�
∂i Ãi

�
uϵ
· uϵdnx. (37)

So that

|(uϵ, Ãi∂iuϵ)L2(Σ,RN )| 6 1
2

�����


Σ

�
∂i Ãi

�
uϵ
· uϵdnx

�����
(38)

6 C3∥uϵ∥2
L2(Σ,RN ), (39)

where the constant C3 is independent of ϵ and we have used the fact that ∂i Ãi is bounded. In the
case of a general background Riemannian metric hi j rather than the ordinary divergence of Ãi, one
obtains the divergence with respect to the background metric hi j and the corresponding result is

|(v, Ãi∂iv)L2(Σ,RN )| 6 1
2

�����


Σ

�(∂i + Γ̃kki)Ãi
�

uϵ
· uϵνh

�����
(40)

6 C4∥uϵ∥2
L2(Σ,RN ), (41)

where again C4 is independent of ϵ . For the case where Σ is an open, bounded set of Rn with
smooth boundary ∂Σ, one needs a slightly more complicated argument where one approximates uϵ

by smooth functions of compact support (see Ref. 17, Sec. 7.3 for details).
Using all the available estimates (32)–(34) and (40) in (31) we obtain the estimate

d
dt

(
∥uϵ(t)∥2

L2(Σ,RN )
)
6 C5

(
∥uϵ∥2

L2(Σ,RN ) + ∥F∥2
L2(Σ,RN )

)
. (42)

Using Gronwall’s inequality and the fact that

∥uϵ(0, x)∥L2(Σ,RN ) 6 ∥u0(x)∥L2(Σ,RN ), (43)

we obtain the estimate

sup
06t6T

∥uϵ(t)∥2
L2(Σ,RN ) 6 C6

(
∥u0∥2

L2(Σ,RN ) +
 T

0
∥F∥2

L2(Σ,RN )dt
)
. (44)

Finally noting that

∥uϵ∥2
L2(0,T ;L2(Σ,RN )) 6 T sup

06t6T
∥uϵ(t)∥2

L2(Σ,RN ) (45)

and using this in the estimate (44) we obtain (30) which concludes the proof. �



022502-9 Y. Sanchez Sanchez and J. A. Vickers J. Math. Phys. 58, 022502 (2017)

D. Existence, uniqueness, and stability

In this section we show the existence and uniqueness of the initial value problem. In Prop-
osition 1 we obtained solutions uϵ in L2(0,T ; H2(Σ,RN)) to the parabolic system (18). Using the
Banach-Alaoglu theorem there exists a subsequence {uϵk}∞

k=1 that converges weakly to a function u
in L2(0,T ; L2(Σ,RN)). We now show that this converges to a weak solution of (1).

First we choose a function w̃ ∈ H̃2(Σ[0,T ],RN), take the dot product with Equation (18), and
integrate over t and x. This gives

 T

0
((A0)−1Luϵ,w̃)L2(Σ,RN ) − ϵ(∆huϵ,w̃)L2(Σ,RN )dt

=

 T

0
((A0)−1F,w̃)L2(Σ,RN )dt .

(46)

Integrating by parts we obtain

 T

0
(uϵ, L̃w̃)L2(Σ,RN ) − ϵ(uϵ,∆hw̃)L2(Σ,RN )dt

=

 T

0
((A0)−1F,w̃)L2(Σ,RN )dt + (uϵ(0),w̃(0))L2(Σ,RN ),

(47)

where the operator L̃ is defined by

L̃w̃ B −∂tw̃ − ∂i(Ai(A0)−1w̃) + BT((A0)−1)w̃ − Γ̃lilAi(A0)−1w̃. (48)

Then taking the limit k → ∞ and using the weak convergence of uϵk ⇀ u and that uϵk(0) →
(A0)−1(0)u0 in L2(Σ,RN) we obtain

 T

0
(u, L̃w̃)L2(Σ,RN )dt

=

 T

0
((A0)−1F,w̃)L2(Σ,RN )dt + (u0,w̃(0))L2(Σ,RN ).

(49)

The above equality was obtained for w̃ ∈ H̃2(Σ[0,T ],RN); however, the equation remains well-
defined for w̃ ∈ H̃1(Σ[0,T ],RN) ⊂ C0([0,T],L2(Σ)) . We now show that not only is the equation
well-defined, but it remains valid for w̃ ∈ H̃1(Σ[0,T ],RN). The method involves taking the convolu-
tion with a family of mollifiers ρδ and then passing to the limit δ → 0.

Let w̃ ∈ H̃1(Σ[0,T ],RN) and define w̃δ = ρδ ∗ w̃ where we have chosen δ close enough to zero
such that w̃δ(T, ·) = 0. Therefore we have

 T

0
(u, L̃w̃δ)L2(Σ,RN )dt

=

 T

0
((A0)−1F,w̃δ)L2(Σ,RN )dt + (u(0),w̃δ(0))L2(Σ,RN ).

(50)

Taking the limit δ → 0 and using the Schwartz inequality we have the following limits:

w̃δ
t → w̃t in L2(0,T ; L2(Σ,RN)), (51)

− (Ai(A0)−1)w̃δ
i → −(Ai(A0)−1)w̃i in L2(0,T ; L2(Σ,RN)), (52)

BT((A0)−1)w̃δ → BT((A0)−1)w̃ in L2(0,T ; L2(Σ,RN)), (53)

Γ̃
k
lk Al(A0)−1w̃δ → Γ̃klk Al(A0)−1w̃ in L2(0,T ; L2(Σ,RN)), (54)

w̃δ(0) → w̃(0) in L2(Σ,RN). (55)
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We therefore conclude that  T

0
(u, L̃w̃)L2(Σ,RN )dt

=

 T

0
((A0)−1F,w̃)L2(Σ,RN )dt + (u0,w̃(0))L2(Σ,RN )

(56)

for w̃ ∈ H̃1(Σ[0,T ],RN).
If we now take w ∈ C∞(Σ[0,T ],RN), with supp(w) ⊆ [0,T) × Σ, and multiply it by A0, we obtain

that A0w ∈ W̃ 1,∞(Σ[0,T ],RN) ⊂ H̃1(Σ[0,T ],RN) and supp(A0w) ⊂ supp(w) .
We may therefore insert w̃ = A0w in (56) which gives T

0
(u, L̃ A0w)L2(Σ,RN )dt

=

 T

0
((A0)−1F, (A0)w)L2(Σ,RN )dt +

�
u0, (A0)w|t=0

�
L2(Σ,RN ),

(57)

which can be rewritten as T

0
(u,L∗w)L2(Σ,RN )dt =

 T

0
(F,w)L2(Σ,RN )dt +

�(A0(0))u0,w(0)�
L2(Σ,RN ) (58)

for all w ∈ C∞(Σ[0,T ],RN) with supp(w) ⊆ [0,T) × Σ, where L∗ is the formal adjoint defined by
Equation (10).

Therefore, we have proved that u obtained by taking the limit of the subsequence {uϵk}∞
k=1 is a

weak solution lying in the function space L2(0,T ; L2(Σ,RN)) with initial data u0 as in Definition 1.
As the norm function is lower semicontinuous, we may take the limit of Equation (30) to obtain

the estimate

∥u∥2
L2(0,T ;L2(Σ,RN )) 6 lim

k→∞
∥uϵk∥2

L2(0,T ;L2(Σ,RN )) (59)

6 C
(
∥u0∥2

L2(Σ,RN ) +
 T

0
∥F∥2

L2(Σ,RN )dt
)
, (60)

so that the solution we have obtained is a regular weak solution.
To show uniqueness we consider two functions u1,u2 which are both regular weak solutions.

Then u = u1 − u2 is a regular weak solution with source F = 0 and initial data u0 = 0. Moreover the
solution satisfies the energy estimate (11) as shown above. Therefore

∥u∥L2(0,T ;L2(Σ,RN )) = 0. (61)

This implies u = 0 and therefore u1 = u2.
The final step in establishing well-posedness is to prove the stability of the solution with respect

to initial data. To make the concept precise we say that the solution u is continuously stable in
L2(0,T ; L2(Σ,RN)) with respect to initial data u0 in L2(Σ,RN) , if given ϵ > 0 there is δ depending
on u0 such that if ũ0 ∈ L2(Σ,RN) with

∥ũ0 − u0∥L2(Σ,RN ) 6 δ, (62)

then the corresponding weak solution ũ with source function F satisfies

∥ũ − u∥L2(0,T ;L2(Σ,RN )) 6 ϵ . (63)

The stability results follow from using the energy inequality shown in Theorem 2 for the difference
ũ − u which gives

∥ũ − u∥2
L2(0,T ;L2(Σ,RN )) 6 C∥ũ0 − u0∥2

L2(Σ,RN ). (64)

Now choosing δ = ϵ
C

we obtain the inequality

∥ũ − u∥2
L2(0,T ;L2(Σ,RN )) 6 ϵ2 (65)
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which establishes stability with respect to the initial data.
Finally we note that by the Tonelli-Fubini theorem we have that L2(0,T ; L2(Σ,RN)) = L2(Σ[0,T ])

and this concludes the proof of Theorem 1.

E. The wave equation

In order to apply the results of Theorem 1 to applications in general relativity we will show here
how the wave equation can be written as a first order linear symmetric problem.

We define

v = (∂1u, . . . , ∂nu, ∂tu,u)T = (v1, . . . , vn, vn+1, vn+2)T ∈ Rn+2 (66)

and the symmetric (n + 2) × (n + 2) matrices Aµ by

A0 =

*.........
,

g11 g12 · · · 0 0
g21 g22 · · · 0 0
...

...
. . .

...
...

0 0 · · · −g00 0
0 0 · · · 0 1

+/////////
-

,

Ak =

*.........
,

0 0 · · · g1k 0
0 0 · · · g2k 0
...

...
. . .

...
...

g1k g2k · · · 2g0k 0
0 0 · · · 0 0

+/////////
-

.

We further define the matrix B to be given by

B =

*.........
,

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

... 0
gabΓ1

ab gabΓ2
ab · · · gabΓ0

ab −m2

0 0 · · · −1 0

+/////////
-

,

where Γc
ab

are the connection coefficients of the spacetime metric gab. We also define the RN-valued
vector function F by F = (0,0, . . . ,− f ,0)T .

In this way, we may rewrite the scalar wave equation (14) as a first order system which has the
form

Lv = A0∂tv − Ai∂iv + Bv = F, (67)
v(0, ·) = v0(·). (68)

We may then use Theorem 1 to establish well-posedness of (67). To prove the existence of solutions
to the wave equation, we therefore need to prove that the solution v of the symmetric hyperbolic
system (67) has the form v = (∂1u, . . . , ∂nu, ∂tu,u)T .

We now mollify our solution v using a strict delta net to obtain a sequence of smooth functions
vϵ = ρϵ ∗ v = (v1

ϵ , . . . , v
n+2
ϵ )T that satisfies T

0
(Lvϵ,w)L2(Σ,RN )dt =

 T

0
(Fϵ,w)L2(Σ,RN )dt

for a suitable mollified Fϵ of the form (0,0, . . . ,−hϵ,0)T where hϵ is any L2 function.
Then  T

0
(Lvϵ − Fϵ,w)L2(Σ,RN )dt = 0



022502-12 Y. Sanchez Sanchez and J. A. Vickers J. Math. Phys. 58, 022502 (2017)

for all w ∈ C∞(Σ[0,T ],RN) and therefore Lvϵ = Fϵ almost everywhere so we obtain that

∂tv
j
ϵ = ∂jv

n+1
ϵ

and

∂tv
n+2
ϵ = vn+1

ϵ .

Also, we choose initial data such that

∂iv
n+2
ϵ (0, ·) = v iϵ(0, ·), i = 1,2, . . . ,n. (69)

We now define uϵ = vn+2
ϵ = ρϵ ∗ vn+2 and obtain

∂iuϵ(τ) = v iϵ(0, ·) +
 τ

0
∂i∂tv

n+2
ϵ dt (70)

= v iϵ(0, ·) +
 τ

0
∂tv

i
ϵdt (71)

= v iϵ(τ). (72)

Taking now into account that vϵ → v in L2([0,T],L2(Σ,Rn+2)) and that the convolution and deriv-
atives commute, we obtain the result that v is an L2([0,T],L2(Σ,Rn+2)) function of the form
(∂1u, . . . , ∂nu, ∂tu,u).

Collecting the results from this section we have established Theorem 2.

IV. APPLICATIONS

Although in the following three examples the spacetimes are not spatially compact, we will
assume that we are working in a local region of the form Σ[0,T ] = [0,T] × Σ as described in the
geometric setting.

A. Junction conditions

There is a precise mathematical formalism proposed by Israel to describe the junction condi-
tions for two regular spacetimes joined along a non-null singular hypersurface Λ.7 He noted that if
we consider two half-spaces V+ and V−, a singular hypersurface, Λ, can be fully characterised by
the different extrinsic curvatures (second fundamental forms) associated with its embeddings in V+

and V− and a continuous matching condition of the metric through the common boundary. If we use
Gaussian coordinates based on Λ, then the normal derivatives of the metric have a jump across Λ
with the metric being continuous along Λ. This scenario satisfies the analytic conditions required
for the application of Theorem 2 to apply. Notice however that the theorem does not need to make
assumptions on the time dependence or matter content of the spacetime.

B. Impulsive gravitational waves

A spacetime that contains impulsive gravitational waves described in double null coordinates
has line element given by

ds2 = 2dudv − (1 − uΘ(u))2dy2 − (1 + uΘ(u))2dz2, (73)

where Θ(u) is the Heaviside step function. The spacetime is vacuum but has a Weyl tensor with
delta function components

Cuyuy = −δ(u),
Cuzuz = δ(u).

Such spacetimes cannot be globally hyperbolic in the usual sense since the focusing property of the
impulse is an obstruction to the existence of a Cauchy surface. However the spacetime satisfies the
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conditions of Theorem 2 so that the wave equation is locally well-posed and such spacetimes satisfy
the condition of generalised hyperbolicity. It is important to notice that although the curvature is not
bounded this condition is not relevant for Theorem 2 to apply.

Metric (73) is not sufficiently regular to apply standard theorems on the existence and unique-
ness of the geodesic equation. However by matching solutions across u = 0 one can continue the
geodesics through the hypersurface and show that such spacetimes are geodesically complete (see,
e.g., Ref. 31 for details). Our theorem 2 nicely complements this result by showing that not only
does one have well defined geodesics but one also has well defined solutions of the wave equation
for such spacetimes.

The spacetime given by (73) is just the simplest example of an impulsive gravitational wave
solution. In fact it is possible to consider a wider class of impulsive gravitational waves, both ex-
panding and non-expanding, propagating on backgrounds of constant curvature including a possible
cosmological constant.31 In Refs. 32 and 33 it is shown that for these solutions, when written in the
Rosen form, one can prove existence and global uniqueness of continuously differentiable geodesics
(in the sense of Filippov). One may use this to show that a large class of these spacetimes are
non-singular in the traditional sense of being geodesically complete. Again this ties in well with our
own results, since when written in the Rosen form such spacetimes have Lipschitz metrics which
satisfy the conditions of theorem 2 and therefore have well defined solutions to the wave equation.

C. Brane-world cosmologies

The Randall-Sundrum (RS) brane-worlds are models that explore gravity beyond classical gen-
eral relativity34 and also appear in a cosmological context.35 In the RS model in AdS5 one has that
in Gaussian normal coordinates X A = (t, xi, y) based on the brane at y = 0, the model has the line
element

ds2 = e−2|y |/L(−dt2 + dxi2) + dy2. (74)

This spacetime again satisfies the conditions for Theorem 2 to be applicable and therefore solutions
with finite energy exist.

Notice that the well-posedness result can be extended to other brane world models and even
collision of branes as long as the spacetime satisfies the assumptions of Theorem 2. Therefore, one
can consider that dynamical models of colliding branes (see, e.g., Ref. 36) do not produce strong
gravitational singularities provided that the spacetime remains C0,1 during all the process.

D. Main result and the relation to previous work

The main result of the paper (Theorem 2) shows that spacetimes which are usually thought
of as singular may be regarded as regular if one adopts the point of view that true singularities
make the local dynamics of test fields ill-defined. We have established general conditions under
which linear wave equations are locally well-posed in spacetimes with weak singularities where the
singularity is concentrated on a submanifold. In particular, the results can be applied to spacetimes
with shell-crossing singularities, surface layers, and hypersurface singularities of regularity C0,1.

We establish local well-posedness for general first order linear symmetric hyperbolic systems
with coefficients with low regularity. We show that unique stable solutions exist in L2(Σ[0,T ],RN).
This solution corresponds in the second order formalism to a finite energy solution in H1(Σ[0,T ]) of
the wave equation. Moreover, the main advantage in writing the problem as a first order system is
that the existence of a covariantly constant timelike vector fields and the condition on the curvature
are not needed which are key conditions in previous works.18,37 Therefore, the results obtained
extend previous results of Vickers and Wilson,18 and Ishibashi and Hosoya14 by allowing a larger
class of non-vacuum time dependent spacetimes. We also establish not only the existence and
uniqueness of solutions but also their stability and local well posedness.
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