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The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits
around a spinning black hole is calculated for the first time and to very high precision, providing
a key benchmark for different approaches modelling spinning binaries. The high precision of the
calculation is leveraged to discriminate between two recent incompatible derivations of the 4PN
equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit
(ISCO) allows determination of the ISCO shift, validating previous calculations using the first law
of binary mechanics. Calculation of the ISCO shift is further extended into the near extremal regime
(with spins up to 1− a = 10−20), revealing new unexpected phenomenology. In particular, we find
that the shift of the ISCO does not have a well-defined extremal limit, but instead continues to
oscillate.

Introduction.– The periapsis advance has been one of
the key observables used to benchmark theoretical mod-
els of binary dynamics, comparing both between models
and to observations. The anomalous rate of Mercury’s
perihelion advance had been a great source of mystery
when, in 1915, it was explained by Einstein’s theory of
general relativity, thereby providing the first successful
test of the new theory [1]. Einstein’s calculation was
done using a weak field approximation appropriate for
Mercury’s orbit. Nowadays, the advent of gravitational
wave astronomy requires the modelling of highly rela-
tivistic binary systems composed of compact objects such
as black holes and neutron stars, where the periapsis ad-
vance can be multiple radians per orbit. Unfortunately,
the non-linear Einstein equations do not allow for ana-
lytic solutions of the binary dynamics. Instead we have to
rely on various approximation schemes, including post-
Newtonian (PN) expansions [2], expansion in the mass-
ratio [3], effective one body (EOB) models [4], and nu-
merical discretization of the nonlinear equation in numer-
ical relativity (NR) [5].

Calculations in each scheme are highly complex and have
their own domain of validity. It is therefore of key im-
portance to be able to compare results between different
approximation schemes for both validation of the calcula-
tions and establishing where the various approximations
break down. This requires the calculation of coordinate
invariant observables. The periapsis advance of nearly
circular orbits and the shift of the innermost stable circu-
lar orbit (ISCO) are two such observables. In the case of
non-spinning binaries, these have previously been calcu-
lated and compared in Ref. [6] using a variety of different
methods including self-force, PN, EOB, and NR.

This Letter focuses on the dynamics of spinning binary
black holes with aligned spin and orbital angular momen-
tum (a.k.a. “equatorial” binaries) in the limit that one
black hole is much more massive than the other. The
need for modelling such systems has recently been high-

lighted by the observation of GW150914 [7], which hinted
at the existence of a population of massive 30-50 M�
black holes, thereby raising the possibility of observing
mergers with relatively low mass-ratios ∼ 1 : 20; a regime
where the faithfulness of the current template banks may
be questioned. Furthermore, binary mergers with even
more extreme mass-ratios (1 : 105) form a key science
target for future space based gravitational wave obser-
vatories such as LISA scheduled for launch in the early
2030s.

Ignoring radiation reaction, equatorial binary systems
are characterized by two frequencies: the radial frequency
Ωr and the averaged azimuthal motion Ωφ, defined by

Ωr :=
2π

Pr
, Ωφ :=

〈
dφ

dt

〉
t

, (1)

where Pr is the period between two successive periap-
sis passes observed by an asymptotic inertial observer
in the center-of-mass frame, and 〈·〉t denotes averaging
(with respect to the asymptotic observer’s time t) over
one radial period Pr. These frequencies are coordinate
invariant observables that can serve to identify a partic-
ular orbit. In the limit of circular equatorial orbits, the
relation between W := Ω2

r/Ω
2
φ and Ωφ is a coordinate in-

variant that measures the periapsis advance and can be
used to compare between different calculation schemes.
More precisely, W is invariant only under a restricted
class of coordinate transformations and is therefore re-
ferred to as a “quasi-invariant” (see [8]).

This Letter provides the first direct numerical calcula-
tions of the (exact) linear in mass-ratio correction to W
around a spinning black hole using the gravitational self-
force (GSF) formalism (the non-spinning case was first
presented in [9]). These are compared to previous esti-
mates using PN and NR calculations. The high numerical
precision of our calculations further allows us to discrim-
inate between two recent (and apparently incompatible)
calculations of 4PN equations of motion for non-spinning
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binaries [10–13]. Moreover, calculation of the periapsis
shift at the ISCO allows us to calculate the shift of the
ISCO in a fully dynamical way independent of any ex-
ternal assumptions. We compare this result to earlier
calculations of the ISCO shift [14] using the first law of
binary mechanics and the Hamiltonian GSF framework.
Finally, we study the limit of the ISCO shift for extremal
spins, revealing unexpected new phenomenology.

Formalism.– The basic scenario studied in this Letter
consists of a pair of black holes with masses m1 and m2,
where the mass-ratio η := m2/m1 is very small. The pri-
mary black hole is allowed to have a spin |a| = |s1|/m2

1 <
1 aligned with the orbital angular momentum (negative
values of a indicate spin anti-aligned with the orbital
angular momentum). We further use geometrized units
such that G = c = 1.

The linear-in-mass ratio correction to W in the circu-
lar orbit limit for non-spinning binaries was first studied
in [9, 15]. Their analysis can straightforwardly be ex-
tended to spinning binaries. Following [9, 15], the linear
in mass-ratio correction to the periapsis advance is de-
fined through

W (η; a, Ω̃φ) = W (0; a, Ω̃φ) + ηρ(a, Ω̃φ) +O(η2), (2)

where Ω̃φ = (m1+m2)Ωφ. The background value is given
by

W (0; a, Ω̃φ) = 1− 6x+ 8ax3/2 − 3a2x2, (3)

where x := (Ω̃−1
φ − a)−2/3, such that at leading order in

η we have the approximation x ≈ m1/r with r the radius
of the background orbit.

Generalizing the derivation of [9, 15] to Kerr spacetime
(utilizing key parts of the analysis done in [9, 16]) we
obtain an expression for ρ in terms of the gravitational
self-force Fµ on slightly eccentric orbits,

ρ(a, Ω̃φ) = lim
e→0

2
1− 3x+ 2ax3/2

x

{ 1

2x
F r1

− 1− 3x+ 2ax3/2 + a2x2

√
1− 6x+ 8ax3/2 − 3a2x2

F 1
φ

− ax1/2 − 3x+ ax3/2 + a2x2

√
1− 6x+ 8ax3/2 − 3a2x2

aF 1
t

− 1− x(1 + 4ax1/2 − 4a2x2)

x(1− 2x+ a2x2)
F r0

}
+ 2x

(
1 + ax3/2

)(
1− ax1/2

)2

,

(4)

where e� 1 is the eccentricity, and

F r0 := 〈F r〉t , F r1 :=
2

e
〈cos(Ωrt)F

r〉t ,

F 1
φ :=

2

e
〈sin(Ωrt)Fφ〉t , F 1

t :=
2

e
〈sin(Ωrt)Ft〉t ,

(5)

where Fµ and Fµ are co-/contra-variant components of
the gravitational self-force along the orbit (see [17] for a
brief review and conventions).

Another key coordinate invariant observable is the shift
of the ISCO. This has previously been calculated for spin-
ning binaries in [14], which used a Hamiltonian formula-
tion of the conservative self-force dynamics and the first
law of binary of binary mechanics [18–21] to extract the
ISCO shift from data for the redshift invariant on circular
orbits. It would be desirable to do an independent calcu-
lation of the ISCO shift from the self-forced dynamics, as
has previously been done for non-spinning binaries [22].

In [9, 15], it was observed (for non-spinning binaries) that
since the ISCO is defined by the condition that Ωr = 0,
calculating ρ at the ISCO was equivalent to obtaining the
ISCO shift. This remains true for spinning binaries. If,
following [14, 15], we define

(1 + η)ΩISCOφ := Ω̆ISCOφ

(
1 + ηCΩ(a) +O(η2)

)
, (6)

where Ω̆ISCOφ is the ISCO frequency in the background
spacetime, then observing that at the ISCO W = 0,
Eq. (2) can be solved for CΩ to obtain

CΩ(a) =
ρ(a, Ω̆ISCOφ )

4xISCO(1 + ax
3/2
ISCO)(1− ax1/2

ISCO)2
, (7)

which generalizes Eq. (24) in [9]. This provides an alter-
native method to [14] for calculating CΩ, which has the
advantage that it obtains the ISCO shift directly from
the orbital dynamics rather than first passing through
a Hamiltonian formulation (and any accompanying as-
sumptions).

Numerical Method.– The redshift and gravitational self-
force are obtained numerically using the methods de-
scribed previously in [23] and [17], respectively. In these,
the local metric is reconstructed in a radiation gauge from
a solution of the Teukolsky equation using the formalism
of Chrzanowski, Cohen, and Kegeles [24–26]. The so-
lutions of the Teukolsky equation are obtained to very
high precision using a numerical implementation [27] of
the semi-analytic method of Mano, Suzuki, and Takasugi
(MST)[28, 29]. This procedure recovers the local metric
only up to perturbations to the mass and angular mo-
mentum of the spacetime, which are recovered using the
analysis of [30].

The gravitational self-force is obtained from the radiation
gauge metric perturbation using the ‘no string gauge’
prescription of [31]. In this prescription, the gauge has
a discontinuity on a hypersurface containing the particle
worldline. Consequently, the local time coordinate t is
not directly related to the time of an asymptotic inertial
observer, which makes the gauge unsuitable for calculat-
ing the quasi-invariants sought in this Letter. A general
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Figure 1. Comparison of our (exact) numerical calculation of
the linear in mass ratio correction to the periapsis advance,
ρGSF, to previous NR ρNR and PN ρPN estimates at a =
−0.5 provided in [32]. The inset shows the differences ∆NR =
|ρNR − ρGSF| and ∆PN = |ρPN − ρGSF| on a semi-Log-scale.
The shade region indicates the error on the NR estimate.

procedure for calculating quasi-invariants in this class on
arbitrary orbits using the ‘no string’ prescription will be
given in [8]. The gist of that analysis is that it is suf-
ficient to determine the stationary axisymmetric part of
the gauge perturbation inside the particle orbit, which
can be fixed uniquely by generalizing the procedure of
[30] to require the continuity of all metric components in
a specified reference gauge.

Results.– We have calculated the the periapsis shift
ρ(a, Ω̃φ) over a range of background orbits with spin a
ranging from −0.9 to 0.9 and Ωφ ranging from 10−3 to
ΩISCOφ on a logarithmic scale. The full numerical results
are available as Supplement Material [33].

In [32] Le Tiec et al. provided an estimation of the linear
in mass ratio correction to the periapsis advance in two
ways: (i) using an (almost) 3.5 PN approximation, and
(ii) by fitting to a series of NR simulations at a = −0.5
with mass ratio η varying between 1 : 1 and 1 : 8. In
Fig. 1 we compare these estimates to our exact numerical
result. At low frequencies, the NR estimate performs re-
ally well, agreeing with the exact result much better than
should be expected from the estimated error and also
outperforming the PN estimate. At higher frequencies,
the NR estimate loses accuracy and systematically un-
derestimates ρ, and the PN expression surprisingly gives
a better approximation to the exact result.

In the non-spinning (a = 0) case, much more accurate
PN approximations for ρ (up to 9.5PN) are available [34].
To compare to these results we prepared a dense set of
measurements of ρ in the range 10m1 < r < 1000m1,
accurate to 1 part in 1019 in the weak field. Figure 2
shows the residuals from subtracting successive PN ap-
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Figure 2. Log-Log plot of the residual differences ∆PNn :=
|ρGSF − ρPNn| between our calculation of ρGSF at a = 0
and successive PN approximants ρPNn provided in [34]. The
shaded area indicates the estimated numerical error on the
self-force result.

proximants, ∆PNn := |ρGSF − ρPNn|. In the weak field,
we see a consistent improvement in the agreement as the
PN order is increased, serving as a validation both of the
high order PN approximants and of the high accuracy
claimed for our results.

Recently, there have been two independent derivations
[10–13] of the full 4PN equations of motion for non-
spinning binaries. Their results agree on almost all coef-
ficients of the PN expansion, except for a couple of linear
in mass ratio terms, which crucially lead different contri-
butions to the periapsis advance. The results of [34] agree
with [10–12], but depend on filtering a PN expansion of
the redshift invariant through the first law of binary me-
chanics and the EOB formalism. It is therefore of interest
to provide a completely independent estimate of this co-
efficient that does not depend on any such theoretical
bridge. We do so by fitting a PN series of the form

ρ(x) =

∞∑
i=2

ρicx
i +

∞∑
j=5

ρjhx
j+1/2 +

∞∑
k=4

ρklx
k log(x)

+

∞∑
n=8

ρnl2x
n log2(x) + . . .

(8)

to our dense data set. If we make no other assump-
tions than this functional form of the series we find for
the 4PN non-log term ρ4c = 64.5(1). The accuracy of
this fit can be increased by assuming exact values for
the known PN coefficients. Including values for the 3PN
coefficients and the 4PN log term (that both calcula-
tions agree upon), we find ρ4c = 64.64049(8). If we as-
sume all known PN coefficients except ρ4c, taking the
values given in [34], the accuracy is further increased to
ρ4c = 64.640564757116(4). This is in perfect agreement
to the exact value given in [34] (and consequently [10–
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12]), which equates to ρ4c ≈ 64.640564757119... .

We next calculate the ISCO shift. As mentioned above,
we have two independent ways of calculating the shift of
the ISCO; One using the GSF to calculate the periapsis
advance, taking the limit towards the ISCO, and using
Eq. (7). The other, described in [14], using data for
the redshift on circular orbits (which we calculate using
the implementation of [23]). Fig. 3 plots the results of
both calculations finding excellent agreement (5-6 digits,
consistent with numerical error). This result bolsters the
credence of the ingredients used in the method of [14],
including the first law of binary mechanics.

Figure 3 also extends the results of [14] (which covered
spins −0.9 < a < 0.9) to much higher spins approach-
ing extremality. This calculation was done solely using
the redshift method, which is faster by at least an order
of magnitude due to needing only data on circular or-
bits. The calculation is further aided by simplifications
of the MST method in the near-horizon near-extremal
Kerr (NHNEK) limit [27]. This calculation reveals a
much richer structure than implied by [14]. Shortly af-
ter a = 0.9 the ISCO shift reaches a maximum, after
which it decreases to another minimum to ultimately ap-
pear to monotonically approach a limit value, C1. This
limit value may be traced back to coming solely from
mass and angular momentum perturbation contributions
to the redshift. Consequently, it may be calculated an-
alytically [35] to obtain C1 = 1 + 1/(2

√
3). However,

on closer examination of the NHNEK limit we find that
CΩ continues to oscillate around this limit value with
an amplitude of the order of ∼ 10−5. Similar oscilla-
tions as a function of δa = 1 − a have previously been
observed in calculations of other observable quantities
in the NHNEK limit, including the quasinormal-mode
frequencies[36], and gravitational wave flux [37]. Yet,
the author is unaware of any intuitive geometrical expla-
nation of their probable common origin.

Discussion.– In this Letter, we have produced the first
direct calculation of invariant observables (periapsis ad-
vance and ISCO shift) sensitive to the conservative part
of the gravitational self force on eccentric orbits of spin-
ning binaries. We expect these to be key benchmarks
for the coming years in improving modelling for eccen-
tric spinning binaries and, in particular, in the push for
getting more faithful models at lower mass-ratios. This
benchmark function has been demonstrated by discrim-
inating between two competing derivations of the 4PN
equations of motion for non-spinning binaries.

The calculation of the ISCO shift has been compared
with earlier calculations [14] based on calculation of the
redshift on circular orbits. The excellent agreement
serves as a verification of some of the novel elements of
our calculation such as the gauge completion of the ra-
diation gauge results. Moreover, it provides a validation
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Figure 3. Comparison of two methods for calculating the
ISCO shift from either GSF or redshift data. The x-axis has
had a non-linear scaling applied to better display the new
phenomenology in the a > 0.9 region. The inset shows a
close-up of the near extremal limit plotting δC = CΩ−C1 vs.
δa = 1− a, revealing persistent order 10−5 oscillations.

of the theoretical underpinnings of [14]. In particular, it
validates the first law of binary mechanics in a regime
where it has not been tested.

The examination of the ISCO shift in the near-extremal
regime has revealed interesting new phenomenology. In
particular the oscillation of the ISCO shift as the spin
approaches extremality seems interesting, as it implies
that the ISCO shift does not have a proper extremal
limit. These oscillations beg for an explanation, either
in terms of the extremal spacetime geometry, or in terms
of a Kerr/CFT dual [38, 39].
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