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Chromatin accessibility maps of chronic
lymphocytic leukaemia identify subtype-specific
epigenome signatures and transcription regulatory
networks
André F. Rendeiro1,*, Christian Schmidl1,*, Jonathan C. Strefford2,*, Renata Walewska3, Zadie Davis3,

Matthias Farlik1, David Oscier3 & Christoph Bock1,4,5

Chronic lymphocytic leukaemia (CLL) is characterized by substantial clinical heterogeneity,

despite relatively few genetic alterations. To provide a basis for studying epigenome

deregulation in CLL, here we present genome-wide chromatin accessibility maps for 88 CLL

samples from 55 patients measured by the ATAC-seq assay. We also performed

ChIPmentation and RNA-seq profiling for ten representative samples. Based on the resulting

data set, we devised and applied a bioinformatic method that links chromatin profiles to

clinical annotations. Our analysis identified sample-specific variation on top of a shared core

of CLL regulatory regions. IGHV mutation status—which distinguishes the two major subtypes

of CLL—was accurately predicted by the chromatin profiles and gene regulatory networks

inferred for IGHV-mutated versus IGHV-unmutated samples identified characteristic

differences between these two disease subtypes. In summary, we discovered widespread

heterogeneity in the chromatin landscape of CLL, established a community resource for

studying epigenome deregulation in leukaemia and demonstrated the feasibility of large-scale

chromatin accessibility mapping in cancer cohorts and clinical research.
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C
hronic lymphocytic leukaemia (CLL) is the most common
type of leukaemia in the Western world1. It is
characterized by a remarkable clinical heterogeneity,

with some patients pursuing an indolent course, whereas others
progress rapidly and require early treatment. The diverse clinical
course of CLL patients, in particular those that initially present
with low disease burden, fuels interest in prognostic biomarkers
and personalized therapies2. Current clinical biomarkers for CLL
include mutational status of the IGHV genes3,4, IGHV gene
family usage5, stereotyped B-cell receptors6,7, serum markers8,9,
chromosomal aberrations10,11 and somatic mutations12–14.
Most notably, IGHV mutation status distinguishes between a
less aggressive form of CLL with mutated IGHV genes (mCLL)
and a more aggressive form with unmutated IGHV genes (uCLL).
Several surrogate biomarkers of IGHV mutation status have been
described. For example, high levels of ZAP70 expression appear
to be associated with uCLL15. In addition to these focused
biomarkers, transcriptome profiling has been used to define
broader molecular signatures that may improve disease
stratification independent of IGHV mutation status16.

Recent genome and exome sequencing projects have identified
additional genes that are recurrently mutated in CLL17,18, some of
which have prognostic significance. Nevertheless, CLL samples
carry relatively few genetic aberrations compared with other adult
cancers19, and some patients develop progressive disease despite
being classified as ‘low risk’ based on genetic markers, suggesting
that non-genetic factors are relevant for CLL aetiology and
outcome. Several lines of evidence point to a role of epigenome
deregulation in CLL pathogenesis: first, somatic mutations have
been observed in non-coding regions of the genome, where they
appear to induce deregulation of relevant cancer genes18. Second,
chromatin remodelling proteins such as ARID1A and CHD2 are
recurrently mutated in CLL17,18, indicating causal links between
chromatin deregulation and CLL. Third, aberrant DNA
methylation was observed in all studied CLL patients20–22,
correlated with IGHV mutation status and identified a new
subtype (iCLL) that appears to be an intermediate between mCLL
and uCLL20,23.

Although prior studies of epigenome deregulation in primary
cancer samples have focused almost exclusively on DNA
methylation24, recent technological advances now make it
possible to map chromatin landscapes in large patient cohorts.
Most notably, the assay for transposase-accessible chromatin
using sequencing (ATAC-seq) facilitates open chromatin
mapping in scarce clinical samples25 and ChIPmentation
provides a streamlined, low-input workflow for genome-wide
mapping of histone marks and transcription factors26. These
two assays use a hyperactive variant of the prokaryotic
Tn5 transposase, which integrates DNA sequencing adapters
preferentially in genomic regions with accessible chromatin.
ATAC-seq profiles are similar to those of DNase-seq, sharing the
ability to detect footprints of transcription factor binding in
the chromatin accessibility landscape27. ChIPmentation closely
recapitulates the results obtained by more classical chromatin
immunoprecipitation followed by sequencing protocols26. Both
assays work well on scarce patient samples, and they enable fast
sample processing on timescales that would be compatible with
routine clinical diagnostics.

To establish the feasibility of large-scale chromatin analysis in
primary cancer samples and to provide a basis for dissecting
regulatory heterogeneity in CLL, we performed chromatin
accessibility mapping using the ATAC-seq assay on a cohort of
88 primary CLL samples derived from 55 patients. Furthermore,
for ten of these samples we established histone profiles using
ChIPmentation for three histone marks (H3K4me1, H3K27ac
and H3K27me3) and transcriptome profiles using RNA

sequencing (RNA-seq). We also developed a bioinformatic
method for linking these chromatin profiles to clinical
annotations and molecular diagnostics data, and we performed
an initial analysis of gene regulatory networks that underlie the
major disease subtypes of CLL. In summary, this study provides a
publicly available reference data set and a rich source of testable
hypotheses for dissecting CLL biology and pathogenesis.

Results
Chromatin accessibility maps for 88 CLL samples. To map the
chromatin accessibility landscape of CLL (Fig. 1a), we performed
ATAC-seq on 88 purified lymphocyte samples obtained from
the peripheral blood of 55 CLL patients. These patients were
managed at a single medical centre, and they collectively repre-
sent the spectrum of clinical phenotypes that are commonly
observed in CLL (Supplementary Data 1). Their average age at
sample collection was 73 years, and 8% of patients were sampled
at relapse following initial or subsequent therapy. The majority of
samples (58%) had been classified as IGHV-mutated as part of
routine clinical diagnostics (Supplementary Fig. 1 and
Supplementary Data 1).

All samples selected for ATAC-seq library preparation
contained at least 80% leukaemic cells. The ATAC-seq libraries
were sequenced with an average of 25.4 million fragments,
resulting in a data set comprising a total of 2.2 billion sequenced
fragments (Supplementary Data 2). Data quality was high in all
cases, with mitochondrial read rates in the expected range
for ATAC-seq (mean: 38.3%; s.d.: 9.3%) and the characteristic
patterns of nucleosome phasing derived from paired-end data
(Supplementary Fig. 2).

The individual samples were sequenced with sufficient depth to
recover the majority of chromatin-accessible regions that are
detectable in each sample (Supplementary Fig. 3). Moreover, by
combining data across all 88 samples we approached cohort-level
saturation in terms of unique chromatin-accessible regions
(Fig. 1b), indicating that our cohort is sufficiently large to
identify most regulatory regions commonly accessible in CLL
samples.

As illustrated for the BLK gene locus (Fig. 1c), our ATAC-seq
data set can be aggregated into a comprehensive map of
chromatin accessibility in CLL. This map comprises 112,298
candidate regulatory regions, of which 11.6% are constitutively
open across essentially all CLL samples, whereas 59.1% are open
in a sizable proportion of samples (5–95% of samples) and 29.3%
are unique to only one or very few samples (Supplementary
Fig. 4a). All data are available for interactive browsing and
download from the Supplementary Website (http://cll-chromatin.
computational-epigenetics.org/).

Chromatin-accessible regions in CLL are widely distributed
throughout the genome, with moderate enrichment at genes
and promoters (Fig. 1d and Supplementary Fig. 4b). We also
compared the CLL-accessible regions with epigenome segmenta-
tions for CD19þ B cells (Fig. 1e and Supplementary Fig. 4c),
a related cell type for which comprehensive reference epigenome
data are publicly available28. Strong enrichment was observed for
regions that are classified as transcription start sites or as
enhancer elements in the B cells, indicative of a globally similar
chromatin accessibility landscape between B cells and CLL.
Nevertheless, a sizable fraction of CLL-accessible regions carried
quiescent or repressive chromatin in B cells, which is the expected
pattern for regulatory elements that are subject to CLL-specific
activation.

Heterogeneity in the CLL chromatin accessibility landscape.
Although the number of constitutively accessible regions in our
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cohort was relatively low (11.6%, Supplementary Fig. 4a), we still
observed high consistency between individual samples and, any
two samples in our data set shared 70–98% of their chromatin-
accessible regions (Supplementary Fig. 5a). Conversely,
we also observed robust differences in the ATAC-seq signal
intensity between samples. To facilitate gene-by-gene investiga-
tion of this heterogeneity, we established the ‘chromatin
accessibility corridor’ as a means of aggregating the cohort-level
variation into a single intuitive genome browser track (Fig. 2a and
Supplementary Website). As illustrated by the PAX5 and BCL6
gene loci, even where the locations of chromatin accessible

regions are shared across most samples, substantial differences in
the ATAC-seq intensity levels were observed (Fig. 2a).

For a more systematic investigation of chromatin heterogeneity
in CLL, we calculated the cohort-level variance for each of the
112,298 regions in the CLL consensus map and linked these
regions to nearby genes that they may regulate (see Methods for
details). Promoters of genes with a known role in B-cell biology
and/or CLL pathogenesis showed significantly reduced variability
(Po10� 5, Kolmogorov–Smirnov test; Supplementary Fig. 5b),
which was not due to differential representation of CpG islands
among the promoters of the gene sets (P¼ 0.49, Fisher’s exact
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Figure 1 | The chromatin accessibility landscape of CLL. (a) ATAC-seq profiling and analysis workflow for establishing patient-specific and cohort-level

maps of chromatin accessibility in CLL. (b) Saturation analysis showing the number of unique chromatin-accessible regions detected across 88 samples

and with a total sequencing depth of 2.2 billion ATAC-seq fragments. The narrow blue and green corridors indicate 95% confidence intervals for

samples added in random order (1,000 iterations). (c) Genome browser plot showing ATAC-seq signal intensity for 88 individual CLL samples (top),

average signal intensity across the cohort and cohort-level peak calls (centre) and reference data from the ENCODE project (bottom). Interactive genome

browser tracks are available from the Supplementary Website: http://cll-chromatin.computational-epigenetics.org/. (d) Absolute (frequency) and relative

(fold change) co-localization of unique chromatin-accessible regions in CLL with gene annotations (left) and chromatin state segmentations for CD19þ B

cells from the Roadmap Epigenomics project (right).
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test). For distal enhancer elements we did not observe any clear
differences in heterogeneity between genes with and without a
link to B cells and CLL (P¼ 0.08, Kolmogorov–Smirnov test).

Beyond these global trends, the variance and distribution of
chromatin accessibility across samples was highly gene specific
(Fig. 2b and Supplementary Fig. 5c), as illustrated by CLL-linked
genes including B-cell surface markers (CD19), B-cell receptor
signalling components (CD79A/B, LYN and BTK), common
oncogenes (MYCN, KRAS and NRAS) and genes that are
recurrently mutated in CLL (NOTCH1, SF3BP1, XPO1 and
CDKN1B)17,18,29.

Unsupervised principal component analysis clearly identified
IGHV mutation status as the major source of heterogeneity in
chromatin accessibility among CLL samples (Fig. 2c and
Supplementary Fig. 6). However, the first two principal
components explained only 6.8 and 5.2% of the total variance
in the chromatin accessibility data set, suggesting that many other
factors contribute to the observed differences between samples.

The most direct way by which differences in chromatin
accessibility may influence disease course would be through
differential regulation of CLL-relevant genes. Therefore, to
systematically assess the link between chromatin accessibility
and gene expression in our cohort, we performed RNA-seq
on ten CLL samples with matched ATAC-seq data. A weak
positive correlation was observed between chromatin accessibility
and gene expression (Pearson’s r¼ 0.33; Supplementary Fig. 7a),
which was highly dependent on the distance of the chromatin-
accessible region to the nearest transcription start site
(Supplementary Fig. 7b).

For chromatin-accessible regions in the vicinity of genes
that RNA-seq identified as differentially expressed between
IGHV-mutated (mCLL) and IGHV-unmutated (uCLL) samples
(Supplementary Data 3), we observed significant differences in
chromatin accessibility, which provided partial separation of
the two disease subtypes (Supplementary Fig. 7c). A more
pronounced separation was observed when we focused our
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analysis on those regions that had been identified as differentially
methylated between mCLL and uCLL in a prior study of DNA
methylation in CLL20 (Supplementary Fig. 7d).

Finally, we assessed whether patterns of differential variability
between mCLL and uCLL (that is, higher levels of heterogeneity
in one or the other subtype) may provide insights into the biology
of these two disease subtypes. We identified 389 regions that
showed a higher degree of variability among mCLL samples,
whereas 581 regions were more variable among uCLL samples
(Supplementary Fig. 8a)—consistent with prior results showing
higher gene expression variability among uCLL samples30.
These differentially variable regions were distributed across a
broad range of ATAC-seq intensity values and were not a side
effect of differences in average chromatin accessibility
(Supplementary Fig. 8b). Genomic region enrichment analysis
using the LOLA software31 found mCLL-variable regions
enriched for B-cell-specific transcription factor binding (ATF2,
BATF, BCL6, NFKB and RUNX3) and active histone marks
(Supplementary Fig. 8c). In contrast, uCLL-variable regions were
strongly associated with the cohesin complex, including binding
sites for CTCF, RAD21 and SMC3.

Disease subtype-specific patterns of chromatin accessibility.
To link the CLL chromatin accessibility landscape to clinical
annotations and molecular diagnostics data (most notably to the
IGHV mutation status that distinguishes between mCLL and
uCLL), we devised a machine learning-based method that derives
subtype-specific signatures directly from the data (Fig. 3a).
Random forest classifiers were trained to predict whether a
sample is IGHV-mutated or IGHV-unmutated, based on the
chromatin accessibility values for all 112,298 regions in the CLL
consensus map. We evaluated the performance of the resulting
classifier by leave-one-out cross-validation and observed excellent
prediction accuracy with a receiver operating characteristic
(ROC) area under curve of 0.96 (Fig. 3b), which corresponds to a
sensitivity of 95.6% at a specificity of 88.2%. To confirm that this
cross-validated test set performance was not inflated by any form
of overtraining, we repeated the same predictions one thousand
times with randomly shuffled class labels. Much lower ROC area
under curve values were observed in all cases, and their mean was
very close to the theoretical expectation of 0.5 (Fig. 3b).

Next, we extracted the most predictive regions from the trained
classifiers, giving rise to data-driven chromatin signatures that
discriminate between mCLL and uCLL (Supplementary Data 4).
Hierarchical clustering categorized these regions into 719 with
increased chromatin accessibility in IGHV-mutated samples
(‘mCLL regions’, cluster 1 in Fig. 3c) and 764 regions with
increased chromatin accessibility in IGHV-unmutated samples
(‘uCLL regions’, cluster 2 in Fig. 3c). More than half (51%) of
these machine learning-based signature regions overlapped with
statistically significant differential ATAC-seq peaks between
IGHV-mutated and IGHV-unmutated samples (Supplementary
Fig. 9a and Supplementary Data 4, see Methods for details). The
remaining regions contributed to accurate prediction of CLL
subtypes as part of a broader signature, even though they did not
by themselves reach the stringent thresholds of the differential
peak analysis (Supplementary Fig. 9b).

To test whether these subtype-specific chromatin signatures
reflected more general differences in the gene regulatory
landscape of CLL, we compared RNA-seq profiles and
ChIPmentation maps for three histone marks (H3K4me1,
H3K27ac and H3K27me3) between five IGHV-mutated and five
IGHV-unmutated samples. We found that the genes in the
vicinity of the signature regions were on average more highly
expressed in the cell type showing higher chromatin accessibility

(Fig. 3d and Supplementary Fig. 10), although only a small
percentage of these genes were significantly differentially
expressed between mCLL and uCLL samples based on our
RNA-seq data (0.8% and 6.3%, respectively). Moreover, the
ChIPmentation profiles were consistently associated with the
differences in chromatin accessibility. Higher levels of the active
H3K27ac mark as compared with repressive H3K27me3 were
found in mCLL samples and mCLL-specific regions, and vice
versa for uCLL (Fig. 3e). This observation is illustrated by the
ZNF667 promoter and an enhancer at the ZBTB20 locus (Fig. 3f),
two genes that have been identified as predictors of time to
treatment and overall survival in CLL32,33.

Between individual samples we observed both qualitative
(that is, the presence or absence of a peak) and quantitative
(that is, different peak height) differences in chromatin
accessibility, as illustrated by several genes with a known role
in CLL (Supplementary Figs 11 and 12). For example, the
expression ratio between ADAM29 and LPL has been shown to
have prognostic value in CLL34 and our data set identifies an
mCLL-specific chromatin-accessible region within the ADAM29
locus (Supplementary Fig. 11) as well as a uCLL-specific
chromatin-accessible region overlapping with the LPL promoter
(Supplementary Fig. 12), which may provide a regulatory basis for
the previously described association. CD83, which has been
associated with treatment-free survival35, is another example of a
gene locus containing an mCLL-specific chromatin-accessible
region (Supplementary Fig. 11). In contrast, uCLL-specific
regions were identified in the gene loci encoding the
CLL-linked transcription factor CREBBP18 and the surface
protein CD38, which has been extensively validated as a
prognostic factor in CLL36 (Supplementary Fig. 12).

To gain insight into the more general biological characteristics
of the mCLL and uCLL signature regions, we performed genomic
region set analysis using LOLA31 (Fig. 3g), and we observed that
the mCLL regions were enriched for active promoter and
enhancer regions (marked by H3K4me1 and H3K27ac) in
lymphocyte-derived cell lines (SU-DHL-5, JVM-2, GM12878
and KARPAS-422), as well as binding sites of relevant
transcription factors (BATF, BCL6 and BLC3). In contrast, the
uCLL regions were enriched for H3K4me1-marked promoter/
enhancer regions in CD38-negative naive B cells, reflecting the
postulated naive B-cell origin of these CLL cells37. The uCLL
regions were also enriched for transcribed regions (H3K36me3)
in naive B cells and in B-cell-derived cell lines such as the BL-2
cell line, which has not undergone class-switch recombination.

We also performed motif enrichment analysis for the mCLL
and uCLL signature region sets and, we observed significant
enrichment relative to a random background model but
no clear-cut differences when comparing the two region sets
directly with each other (which is expected given the low
statistical power of such an analysis). Nevertheless, when
we linked chromatin-accessible regions to co-localized genes,
we observed strong differences in the enrichment for cellular
signalling pathways (Fig. 3h). The mCLL regions were
associated with pathways having an established role in normal
lymphocytes (CTLA4 inhibitory signaling, high-affinity IgE
receptor signalling, Fc epsilon signalling and Fc gamma receptor
signalling), whereas the uCLL regions were associated with
cancer-associated pathways such as NOTCH signalling and
fibroblast growth factor receptor signalling. All of these
enrichment analyses were validated based on the statistically
significant differential ATAC-seq peaks between IGHV-mutated
and IGHV-unmutated samples, which gave rise to highly similar
results (Supplementary Fig. 13).

Finally, we investigated whether a third CLL subtype—termed
IGHV intermediate (iCLL)—could be detected in our data set,
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as it was recently proposed based on DNA methylation data20,23.
Clustering all samples based on the IGHV mutation signature
regions, we indeed observed two intermediate clusters, the larger
one comprising 20 samples from 14 patients (Fig. 4a, green) and
the smaller one comprising 3 samples from 2 patients (Fig. 4a,
brown). Most but not all of these iCLL samples were classified as
IGHV-mutated based on the available molecular diagnostics data
(Supplementary Fig. 14). Principal component analysis provided
further evidence that the iCLL samples fall between mCLL and
uCLL samples based on their ATAC-seq profiles (Fig. 4b). Their
intermediate character was also supported by the RNA-seq and
ChIPmentation data, where the iCLL group showed patterns that
consistently ranged between those of the mCLL and uCLL groups
(Supplementary Fig. 15).

Gene regulatory networks in mCLL and uCLL disease subtypes.
In addition to providing chromatin accessibility maps, ATAC-seq
can also detect transcription factor binding based on character-
istic chromatin footprints25. Using this property of our data, we
inferred chromatin-based gene regulatory networks for CLL and
its two major disease subtypes (Fig. 5a). To that end, we pooled all
ATAC-seq data across the analysed samples, identified footprints
for 366 transcription factors with high-quality motifs in the
JASPAR database38 and linked these regulatory elements to their
putative target genes (see Methods for details). The quality of the
observed footprints was comparable to those in publicly available
DNase-seq data for CD19þ B cells (Supplementary Fig. 16),
although we observed some deviations between the two assays
that are likely due to the different sequence specificity of the Tn5
enzyme as opposed to the DNase I enzyme.

We first inferred a pan-CLL gene regulatory network using
ATAC-seq data from all samples (Supplementary Fig. 17).
The resulting network was dominated by highly connected
transcription factors, including broadly activating factors
(SP1/2/3), the insulator protein CTCF and regulators of biological
processes such as cell proliferation (EGR), cell cycle (E2F) and
B-cell maturation (SPI1 and PAX5). This pan-CLL network was
structurally similar to a network for CD19þ B cells that we
inferred from publicly available DNase-seq data using the same
bioinformatic method (Supplementary Fig. 18), and in the
absence of a large chromatin accessibility data set of B cells from
healthy individuals it is not possible to conclusively identify the
CLL-specific parts of our network.

Second, to investigate regulatory differences between CLL
subtypes, we inferred gene regulatory networks separately for
mCLL and uCLL samples (Supplementary Fig. 19) and identified
the most differentially connected genes between the two (Fig. 5b).

Genes that were more highly connected in the mCLL network
coded for the transcription factors ZNF354C and ELF5, the
metallopeptidase ADAM29 and the membrane protein CD22.
In contrast, the BMP receptor CRIM1, the transcription factors
MECOM and PAX9, the fibroblast growth factor signalling
receptor FGFR1 and the membrane protein CD9 were more
highly connected in the uCLL network (Fig. 5c). The more highly
connected genes in either subtype also showed higher levels of
H3K4me1 and H3K27ac in their regulatory elements in samples
of the corresponding subtype (Supplementary Fig. 20a,b).

When we restricted our analysis to genes with a known role in
B-cell biology and/or CLL pathogenesis (Fig. 5d), we observed a
highly specific association of CD22 (which codes for an inhibitory
receptor involved in B-cell receptor signalling) with mCLL,
whereas CD38 and ZAP70 were preferentially associated with
uCLL. Focusing on CD22 and PAX9 as two high-ranking genes
in our analysis, we plotted the sub-networks of their direct
neighbours and observed characteristic differences between the
gene regulatory networks for mCLL and uCLL (Supplementary
Fig. 20c). Many of the subtype-specific genes identified by the
regulatory network also showed locus-specific differences in their
ChIPmentation profiles (Supplementary Fig. 20d). Altogether,
our results confirm that ATAC-seq profiles are useful for
identifying epigenome differences in clinical samples, and they
illustrate how this data set can be used for deriving testable
hypotheses about the regulatory basis of CLL.

Discussion
By ATAC-seq profiling on a large set of primary CLL samples, we
have established a detailed map of the chromatin accessibility
landscape in CLL. The ATAC-seq data were complemented by
RNA-seq profiles and ChIPmentation for three histone marks,
performed in ten representative samples covering three disease
subtypes (mCLL, uCLL and iCLL). To our knowledge, this data
set is currently the largest catalogue of chromatin accessibility
maps for any cancer type, demonstrating the feasibility of
chromatin profiling in large cohorts of primary cancer samples
and validating a broadly applicable bioinformatics workflow for
analysing such data.

The large number of patient samples included in this study
allowed us to dissect the role of epigenome variability as a
potential contributor to cancer heterogeneity39. We found that
variability between samples was common in our data set, both in
the form of qualitative (that is, the presence or absence of a peak)
and quantitative (that is, different peak height) differences
between individual samples. In the absence of a reference data
set with chromatin accessibility maps for normal B cells from a
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large number of healthy donors, it remains unclear whether or
not the observed heterogeneity in CLL constitutes a major
increase over the expected heterogeneity in a genetically diverse
cohort. Nevertheless, significantly reduced heterogeneity at the
promoters of genes involved in B-cell biology and/or CLL
pathogenesis suggest a functional role of the observed inter-
individual differences. Overall, our data support the existence of a
core regulatory landscape shared by most or all CLL samples,
which is complemented by sample-specific subsets of a
substantially larger number of CLL-associated regulatory regions.

IGHV mutation status was the single biggest contributor to
sample-specific differences in chromatin accessibility, although it
explained only 5–10% of the observed variance in our data set.
Based on the ATAC-seq profiles we were able to distinguish
with excellent accuracy between IGHV-mutated mCLL and
IGHV-unmutated uCLL. Our analysis also suggested the existence
of one (or possibly two) intermediate type (iCLL), consistent with
a recent report that used DNA methylation analysis of a large
CLL cohort to identify novel CLL subtypes20. Chromatin
accessibility and DNA methylation both appear to separate

4

0

–4

2

–2

–6

6

ZNF354C
ELF5

ADAM29
CD22

CRIM1

FGFR1
PAX9

CD9

CTCFSPI1

NFKB1

PAX5

TAF7

R
el

at
iv

e 
ch

an
ge

 in
 n

um
be

r
of

 c
on

ne
ct

io
ns

 b
et

w
ee

n
uC

LL
 a

nd
 m

C
LL

 (
lo

g 2
)

All genes

MECOM

DNA binding motif of the TF

Plus strand
Minus strand
Background

−300 −200 −100 0 100 200 300

200

400

600

800

TFA TFB

Fr
eq

ue
nc

y 
of

 A
TA

C
-s

eq
ch

ro
m

at
in

 in
se

rt
io

n 
ev

en
ts

GENE A

ATAC-seq
signal

Gene
models

Distance to TF binding motif

TF B
TFBTFA TFDTFC

TF A
TFBTFA

GENE X
TFBTFA

GENE Y
TFE TFB

Assignment of TF
footprints to genes

GENE
X

TFB

TFC

TFE

TFA

GENE
Y

TFC

Gene regulatory
network inference

CD22

CD38

IL2

ZAP70
TLR2

CD19

NOTCH1

2

0

–2

1

–1

–3

3

CLL-relevant genes

R
el

at
iv

e 
ch

an
ge

 in
 n

um
be

r
of

 c
on

ne
ct

io
ns

 b
et

w
ee

n
uC

LL
 a

nd
 m

C
LL

 (
lo

g 2
)

4

TF footprint detection1 2

3

a

b c

d

b

CD38

OTX1

LHX2

LHX6

LHX9

GRIN1

DAZL

SP8

WDR4

GSC2

SP1

SP2

SP3

SP4

EHF

CEP112

IL22RA2

GYPBGATA5

GATA2

GATA3

MAX

CTCF

HHIP

HINFP

ITGA5

SAMSN1

APOBEC3B

GSX2

GSX1

FAM151B

ZIC4

CHRD

VSX1

ZIC3

NFIL3

HOXB2

HOXB3

SGPL1

HOXC11

HOXC10

CUX2

HOXC12

ZEB1

DCDC2

TFAP4

SPDEF

PRDM1

HLF

FOXC2

FOXC1

HES7

MYH10

ABHD17C

SMAD9

SMAD1

SMAD3

REL

ZPBP

NEURL1B

SPI1

BSX

HIC2

NR2F1

DLGAP1

ZNHIT3

RNF152

BEND6

RXRG

MGA

RXRB

PLCL1

SPIB

SPIC

BARX1

LEF1

OLIG2

OLIG3

OLIG1

EMX2

TP73

EMX1

ZNF492
MYF6

HOXD12

RBPMS

ERF

ERG

LCTL

TBC1D31

HNF1B

KLF5

POU5F1B

PROP1

XPA

CBWD1

EVX1

FOXB1

REST

JUN

WNT5B

PHOX2A

HOXB13

POU1F1

THAP1

E2F4

E2F3

E2F1

HMBOX1

ASAH2B

E2F8

ZNF546

AICDA

DNAL1

KIAA1549

SPRED1

SCRT1

SCRT2

FOXI1

GCM2

NFE2L2

ADRA2A

RASSF6

HNF1A

FOXF2

ZNF263

RELA

RAX

LIPC

IL31RA

CENPB

ESX1

SNAI2

SLC41A2

RFX4

RFX5

RFX2

RFX3

ELK3

ELK1

ELK4

SYNPO2

DBP

TRIP4
FOXP2

FOXP3

NFATC2

FOXP1

TBR1

SERINC3

ESRRA

MNX1

FOXA1

ESRRB

CEACAM1

EN1

EN2
LRRTM2

PPP1R9A

CLDN7

TCF4

TCF3

FARP1

VNN2

IGFBP6

IRF2

IRF1

IRF7

IRF9

IRF8

MEF2B

MEF2A

MEF2D

ZNF503

ZNF502

ARPP21

ISX

CLOCK

ONECUT3

ONECUT2

ONECUT1

NHLH1

ZNF623

MECOM

ZBTB18

USF2

USF1

TBX15

DOCK3

TBX19

TTC29

SOX21

E2F6

PODXL2

SATB2
FOXL1

ZBTB7B

SLC22A11
HOXA5

HOXA2

NRF1

NFYB

NFYA

SOX9

CCNB1IP1

MYBL1

PITX3

MYBL2

SOX4

CEBPB

CEBPA

CEBPG

MZF1

CEBPD

ALX3

EOMES

ETS1

AQP11

NR4A2

PPARG

EBF1

MLX

ENDOU

PBX1

LACC1

NRL

MAP6D1

LCA5

NRIP3

SOX10

POU2F2

TGIF2

TGIF1

POU2F1

HSF1

HSF2

HSF4

TBX21

TBX20

GPER1

MEIS1

PAH

PAM

GPR37

DLX6

ZNF354C BHLHE40

BHLHE41

RORA

POU6F2

INHBB

POU6F1

MAGI2

MBNL2

FAM131B

ZIC1

CREB3

HOXD1

CREB1

EVX2

NR2C2

FOXH1

FGFR1

SMPDL3A

PLD1

NKX2-8

TCF7L2

RUNX2

RUNX3

RUNX1

PRRX1

HHIPL1

KDELC1

DUX4

C3orf67

GCM1

VENTX

NT5E

FAM13A

SUMF1

EGR2

EGR3

EGR1

MEIS3

MEIS2

EGR4

TSHZ2

NFE2

SCNN1A

RREB1

FOS

LBX2

UNC5C

CUX1

LBX1

PAX5

PAX4

PAX7

PAX6

PAX1

PAX3

SCRN3

PAX9 PKNOX1

PKNOX2

TP53

ESR1

HOXC13

INSM1

STK33

DUXA

YY1

MB21D2

YY2

RTKN

TBX2

LHFP

TBX1

TBX4

TBX5

MEOX1

MEOX2

STAT3

STAT1

HOXA13

HOXA10

FOSL1

FOSL2

SLC6A16

PDHA2

GALNTL6

SRF

FOXD2

FOXD1

EDN1

CD9

GMEB2

ESR2

SRY

ADAM29

NEUROD2

KCNH3

EIF2AK2

ACTR3C

AGPAT4

GABPA

CCDC85A

IDO2

FOXO3

FOXO6

FOXO4

TEAD3

TEAD1

TEAD4

KLF13

KLF16

KLF14

TFAP2A

MSC

TFAP2C

TFAP2B

UNCX

PTHLH

NFATC3

PLAG1

VSX2

POU3F3

POU3F2

POU3F1

ZBTB7A

ZBTB7C

POU3F4 HSPB9

ZNF804A

RAB32

CEBPE

TFCP2

PRUNE2

CRIM1

ADPRHL1

MGARP

CDX1

ISL2

CDX2

LRFN2

GSC

MAFK

NKX2-3

DYX1C1

MAFF

MAFG

ZNF143WWC2

ZNF660

MFAP3L

CD22

FLI1

OASL

LNX1

T

NKX6-2

ELFN2

NKX6-1

KCNMB2

BARHL2

L3MBTL4

SYT1

STC2

ZNF215

MARCH10

NR3C2

GLIS2

GLIS3

HOXC6LRRC63

PNMA2

PLAC4

MNT

OTX2

SHOX

HTR2A

PCBP3

TFE3

NEUROG2

ZBTB33

RHO TFEC

TFEB

LMX1A

RHOV

LMX1B

TMPRSS13

HIST1H2BI

ANKRD29

ETV1

ETV3

ETV2

ETV5

ETV4

ETV6

GLOD4

HNF4G

HNF4A

HOXD13

HOXD11

POU4F3

STON2

HECW2

BATF3

ZNF273

DMRT3

TP63

GBX1

ZNF740

TEF

SSBP4

LDLRAD3

HESX1

MAPK4

NFKB1

NFKB2

TSKU

FEV

C10orf99
GOLM1

UNC13A

MIXL1

FADS2

HEY2

PROX1

HEY1

TRPS1

MTF1

ID4

WDR90

JDP2

SREBF2

SREBF1

NKX3-2

NKX3-1

ARL9

ZNF311

FOXG1

JUNB

JUND

RHOXF1

ZNF256

ELF1

KIAA1456

ELF3

ELF5

ELF4

XBP1

GRHL1

BHLHE22

BHLHE23

FIGLA

GLI2

FSHR

MSX1

MSX2

RAX2

NR3C1

MLXIPL

POU4F1

POU4F2

AR

ATF7

NFIC

NFIA

SLC40A1SLC7A11
PCDH7

CREB3L1

ATF4

NOTO

NFIX

SPATA7

SIGLEC1

TNFRSF1A

Figure 5 | Gene regulatory networks underlying the mCLL and uCLL disease subtypes. (a) Methodology for deriving gene regulatory networks from

ATAC-seq data using transcription factor (TF) footprinting, mapping of transcription factor-binding footprints to co-localized genes and regulatory network

inference. (b) CLL gene regulatory network derived from the data of all 88 samples, showing the most differentially connected genes between uCLL and
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better between these disease subtypes than gene expression data,
suggesting that the biological differences between the major
subtypes of CLL are primarily encoded in the epigenome
and possibly reflect patterns retained from a subtype-specific
cell-of-origin.

Combining data across samples provided sufficient sequencing
depth for footprinting analysis of transcription factor binding,
allowing us to infer gene regulatory networks from the data and
to compare them between mCLL and uCLL. Although genomic
footprinting has its limitations40, the resulting network models
give rise to predictions that can provide a starting point for
further experimental dissection of the transcription regulatory
landscape of CLL. For example, mCLL-associated regions were
enriched for transcription factors that are active in mature B cells
and involved in memory B-cell differentiation (BATF and BCL6),
whereas the uCLL group was enriched for regulatory regions that
are active in other haematopoietic cell types, indicative of a less
differentiated cell state. Moreover, pathways that may boost
proliferation, such as NOTCH signalling41 and interferon
signalling42, were specifically observed in the more aggressive
subtype (uCLL), whereas enrichment of inhibitory signalling by
CTLA4 may contribute to the more indolent character of
mCLL43. Beyond a small number of specific differences, the
inferred gene regulatory networks were highly similar between
mCLL and uCLL, consistent with the low number of differentially
expressed genes that were previously observed between CLL
subtypes16,44,45.

From a technological perspective, our study describes broadly
applicable methods for dissecting chromatin profiles in large
cohorts of primary patient samples. The differential chromatin
analysis outlined in Fig. 3 starts from clinical and/or diagnostic
data and uses supervised learning techniques to identify and
cross-validate discriminatory chromatin signatures. We focused
specifically on IGHV mutation status, but the method can be
applied to any type of patient grouping, for example, based on
disease progression or therapy response. Moreover, the described
method for ATAC-seq-based inference of gene regulatory
networks (Fig. 5) establishes a data-driven approach for dissecting
regulatory cell states—including their differences between disease
subtypes—that is highly complementary to previous work aimed
at inferring regulatory networks from transcriptome data46–48.
Finally, the ‘chromatin accessibility corridor’ (Fig. 2) adapts a
related concept49 to provide intuitive browser-based visualization
of chromatin data across large cohorts, while accounting for
regulatory heterogeneity.

Relevant limitations of our study include the following: (i) lack
of a clearly defined and experimentally accessible cell-of-origin
for uCLL and mCLL, making it difficult to distinguish with
certainty between chromatin patterns that are CLL specific and
those that are derived from the disease’s cell-of-origin; (ii) clonal
heterogeneity of CLL within patients, which would be
experimentally addressable only with single-cell sequencing
technologies50,51 that are currently limited in their genome-
wide coverage; (iii) lack of scalable methods for distinguishing
between functional and non-functional transcription factor
binding; and (iv) ambiguities in the assignment of transcription
factor binding sites to the genes that they regulate. In the light of
these limitations, the inferred gene regulatory networks constitute
an initial model that will require future refinement as additional
data and validations become available.

In summary, our study establishes a chromatin accessibility
landscape of CLL, which identifies shared gene regulatory
networks as well as widespread heterogeneity between individual
patients and between disease subtypes. It also provides a resource
that can act as a starting point for deeper dissection of chromatin
regulation in CLL, identification of therapeutically relevant

mechanisms and eventual translation of relevant discoveries into
clinical practice. Given that the chromatin profiling assays used
here (ATAC-seq and ChIPmentation) are sufficiently fast and
straightforward for use in a clinical sequencing laboratory,
chromatin deregulation is becoming increasingly tractable as a
promising source of biomarkers for stratified cancer therapy.

Methods
Sample acquisition and clinical data. All patients were diagnosed and treated
at the Royal Bournemouth Hospital (UK) according to the revised guidelines
of the International Workshop Chronic Lymphocytic Leukemia/National Cancer
Institute. Patients were selected to reflect the clinical and biological heterogeneity of
the disease. Sequential samples were included for a total of 24 patients. All samples
contained more than 80% leukaemic cells. Established chromosomal rearrange-
ments were diagnosed by fluorescence in situ hybridization (Abbott Diagnostics;
DakoCytomation) or multiple ligation-dependent probe amplification using
the MLPA P037 CLL-1 probemix (MRC Holland SALSA) according to the
manufacturers’ instructions. Chromosome analysis was performed and reported
according to the International System for Human Cytogenetic Nomenclature. IGHV
was sequenced as previously described4, and a threshold of 498% germline
homology was taken to define the unmutated subset4. The study was approved by the
ethics committees of the contributing institutions (Royal Bournemouth Hospital and
Medical University of Vienna). Informed consent was obtained from all participants.

ATAC sequencing. Accessible chromatin mapping was performed using the
ATAC-seq method as previously described25, with minor adaptations. In each
experiment, 105 cells were washed once in 50 ml PBS, resuspended in 50ml
ATAC-seq lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2 and
0.1% IGEPAL CA-630) and centrifuged for 10 min at 4 �C. On centrifugation, the
pellet was washed briefly in 50 ml MgCl2 buffer (10 mM Tris pH 8.0 and 5 mM
MgCl2) before incubating in the transposase reaction mix (12.5 ml 2� TD buffer,
2 ml transposase (Illumina) and 10.5 ml nuclease-free water) for 30 min at 37 �C.
After DNA purification with the MinElute kit, 1 ml of the eluted DNA was used
in a quantitative PCR (qPCR) reaction to estimate the optimum number of
amplification cycles. Library amplification was followed by SPRI size selection to
exclude fragments larger than 1,200 bp. DNA concentration was measured with a
Qubit fluorometer (Life Technologies). Library amplification was performed using
custom Nextera primers25. The libraries were sequenced by the Biomedical
Sequencing Facility at CeMM using the Illumina HiSeq3000/4000 platform
and the 25-bp paired-end configuration.

RNA sequencing. Total RNA was isolated using the AllPrep DNA/RNA Mini Kit
(Qiagen). RNA amount was measured using Qubit 2.0 Fluorometric Quantitation (Life
Technologies), and the RNA integrity number was determined using Experion
Automated Electrophoresis System (Bio-Rad). RNA-seq libraries were prepared using
a Sciclone NGS Workstation (PerkinElmer) and a Zepyhr NGS Workstation (Perki-
nElmer) with the TruSeq Stranded mRNA LT sample preparation kit (Illumina).
Library amount and quality were determined using Qubit 2.0 Fluorometric Quanti-
tation (Life Technologies) and Experion Automated Electrophoresis System (Bio-Rad).
The libraries were sequenced by the Biomedical Sequencing Facility at CeMM using
the Illumina HiSeq 3000/4000 platform and the 50-bp single-read configuration.

ChIPmentation. ChIPmentation was carried out as previously described26, with
minor adaptions. Briefly, cells were washed once with PBS and fixed with 1%
paraformaldehyde in up to 1 ml PBS for 10 min at room temperature. Glycine was
added to stop the reaction. Cells were collected at 500 g for 10 min at 4 �C
(subsequent work was performed on ice and used cool buffers and solutions unless
otherwise specified) and washed twice with up to 0.5 ml ice-cold PBS supplemented
with 1 mM phenylmethyl sulfonyl fluoride (PMSF). The pellet was lysed in
sonication buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 0.25% SDS,
1� protease inhibitors (Sigma) and 1 mM PMSF) and sonicated with a Covaris
S220 sonicator for 20–30 min in a milliTUBE or microTUBE until the size of most
fragments was in the range of 200–700 bp. Lysates were centrifuged at full speed for
5 min at 4 �C, and the supernatant containing the sonicated chromatin was
transferred to a new tube. The lysate was then brought to RIPA buffer conditions
(final concentration: 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 140 mM NaCl,
1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, 1� protease inhibitors
(Sigma) and 1 mM PMSF) to a volume of 200 ml per immunoprecipitation. For each
immunoprecipitation, 10 ml magnetic Protein A (Life Technologies) were washed
twice and resuspended in PBS supplemented with 0.1% BSA. The antibody was
added and bound to the beads by rotating 2 h at 4 �C. Used antibodies were
H3K4me1 (0.5 mg per immunoprecipitation, Diagenode pAb-194-050), H3K27ac
(1 mg per immunoprecipitation, Diagenode pAB-196-050) and H3K27me3
(1 mg per immunoprecipitation, Millipore 07-499). For control libraries, an
immunoprecipitation with 2.5 mg of a nonspecific IgG rabbit antibody was used.
Blocked antibody-conjugated beads were then placed on a magnet, supernatant was
removed and the sonicated lysate was added to the beads followed by incubation
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for 3–4 h at 4 �C on a rotator. Beads were washed subsequently with RIPA (twice),
RIPA-500 (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 500 mM NaCl, 1%
Triton X-100, 0.1% SDS and 0.1% DOC) (twice) and RIPA-LiCl (10 mM Tris-HCl
pH 8.0, 1 mM EDTA pH 8.0, 250 mM LiCl, 1% Triton X-100, 0.5% DOC and 0.5%
NP40) (twice).

Beads were washed once with cold Tris-Cl pH 8.0, to remove detergent, salts
and EDTA. Beads were washed once more with cold Tris-Cl pH 8.0 but the
reaction was not placed on a magnet to discard supernatant immediately. Instead,
the whole reaction including beads was transferred to a new tube and then placed
on a magnet to remove supernatant to decrease background. Beads were then
carefully resuspended in 25 ml of the tagmentation reaction mix (10 mM Tris pH
8.0, 5 mM MgCl2, 10% v/v dimethylformamide) containing 1 ml Tagment DNA
Enzyme from the Nextera DNA Sample Prep Kit (Illumina) and incubated at 37 �C
for 1–3 min in a thermocycler. The beads were washed with RIPA (twice) and once
with cold Tris-Cl pH 8. Beads were washed once more with cold Tris-Cl pH 8.0 but
the reaction was not placed on a magnet to discard supernatant immediately.
Instead, the whole reaction including beads was again transferred to a new tube and
then placed on a magnet to remove supernatant. Beads were then incubated with
70ml elution buffer (0.5% SDS, 300 mM NaCl, 5 mM EDTA and 10 mM Tris-HCl
pH 8.0) containing 2 ml of Proteinase K (NEB) for 1 h at 55 �C and 8 h at 65 �C, to
revert formaldehyde cross-linking, and supernatant was transferred to a new tube.
Finally, DNA was purified with SPRI AMPure XP beads (sample-to-beads ratio
1:2) or Qiagen MinElute columns.

One microlitre of each library was amplified in a 10-ml qPCR reaction
containing 0.15 mM primers, 1� SYBR Green and 5 ml Kapa HiFi HotStart
ReadyMix (Kapa Biosystems), to estimate the optimum number of enrichment
cycles with the following programme: 72 �C for 5 min, 98 �C for 30 s, 24 cycles of
98 �C for 10 s, 63 �C for 30 s and 72 �C for 30 s, and a final elongation at 72 �C for
1 min. Kapa HiFi HotStart ReadyMix was incubated at 98 �C for 45 s before
preparation of all PCR reactions (qPCR and final enrichment PCR), to activate the
hot-start enzyme for successful nick translation at 72 �C in the first PCR step. Final
enrichment of the libraries was performed in a 50-ml reaction using 0.75 mM
primers and 25 ml Kapa HiFi HotStart ReadyMix. Libraries were amplified for
Nþ 1 cycles, where N is equal to the rounded-up Cq value determined in the
qPCR reaction. Enriched libraries were purified using SPRI AMPure XP beads at a
beads-to-sample ratio of 1:1, followed by a size selection using AMPure XP beads
to recover libraries with a fragment length of 200–400 bp. Library preparation was
performed using custom Nextera primers as described for ATAC-seq25. The
libraries were sequenced by the Biomedical Sequencing Facility at CeMM using
the Illumina HiSeq3000/4000 platform and the 25-bp paired-end configuration.

Preprocessing of the ATAC-seq data. Reads were trimmed using Skewer52.
Trimmed reads were aligned to the GRCh37/hg19 assembly of the human genome
using Bowtie2 (ref. 53) with the ‘-very-sensitive’ parameter. Duplicate reads were
removed using sambamba markdup54, and only properly paired reads with
mapping quality 430 and alignment to the nuclear genome were kept. All
downstream analyses were performed on the filtered reads. Genome browser tracks
were created with the genomeCoverageBed command in BEDTools55 and
normalized such that each value represents the read count per base pair per
million mapped and filtered reads. Finally, the UCSC Genome Browser’s
bedGraphToBigWig tool was used to produce a bigWig file. Combined tracks with
percentile signal across the cohort were created by quantifying ATAC-seq read
coverage at every reference genome position using BEDTools coverage and
normalizing it between samples. Normalization was done by dividing each value by
the total number of filtered reads and multiplying it with ten million, to obtain
numbers that are comparable and easy to visualize. Next, the mean as well as the
5th, 25th, 75th and 95th percentiles of signal across the whole cohort were
calculated with Numpy, converted into bedgraph files and subsequently to bigwig
format using bedGraphToBigWig. Peak calling was performed with MACS2
(ref. 56) using the ‘-nomodel’ and ‘-extsize 147’ parameters, and peaks overlapping
blacklisted features as defined by the ENCODE project57 were discarded.

Preprocessing of the RNA-seq data. Reads were trimmed with Trimmomatic58

and aligned to the GRCh37/hg19 assembly of the human genome using Bowtie1
(ref. 59) with the following parameters: -q -p 6 -a -m 100—minins 0—maxins
5000—fr—sam—chunkmbs 200. Duplicate reads were removed with Picard’s
MarkDuplicates utility with standard parameters before transcript quantification
with BitSeq60 using the Markov chain Monte Carlo method and standard
parameters. To obtain gene-level quantifications, we assigned the expression values
of its highest expressed transcript to each gene. Differential gene-level expression
between the three IGHV mutation status groups was performed using DESeq2
(ref. 61) from the raw count data with a significance threshold of 0.05. To produce
genome browser tracks, we mapped the reads to the genomic sequence of the
GRCh37/hg19 assembly of the human genome using Bowtie2 (ref. 53) with the
‘-very-sensitive’ parameter, removed duplicates using sambamba markdup54 and
used the genomeCoverageBed command in BEDTools55 to produce a bedgraph file.
This file was normalized such that each value represents the read count
per base pair per million filtered reads, and the UCSC Genome Browser’s
bedGraphToBigWig tool was used to convert it into a bigWig file.

Preprocessing of the ChIPmentation data. Reads were trimmed using Skewer52.
Trimmed reads were aligned to the GRCh37/hg19 assembly of the human genome
using Bowtie2 (ref. 53) with the ‘-very-sensitive’ parameter. Duplicate reads were
removed using sambamba markdup54, and only properly paired reads with
mapping quality 430 and alignment to the nuclear genome were kept. All
downstream analyses were performed on the filtered reads. Genome browser tracks
were created with the genomeCoverageBed command in BEDTools55 and
normalized such that each value represents the read count per base pair per million
filtered reads. Finally, the UCSC Genome Browser’s bedGraphToBigWig tool was
used to produce a bigWig file.

Bioinformatic analysis of chromatin accessibility. The CLL consensus map was
created by merging the ATAC-seq peaks from all samples using the BEDTools55

merge command. To produce Fig. 1b, we counted the number of unique
chromatin-accessible regions after merging peaks for each sample in an iterative
manner, randomizing the sample order 1,000 times and computing 95% confidence
intervals across all iterations. The chromatin accessibility of each region in each
sample was quantified using Pysam, counting the number of reads from the filtered
BAM file that overlapped each region. To normalize read counts across samples, we
performed quantile normalization using the normalize.quantiles function from the
preprocessCore package in R. For each genomic region we calculated the support as
the percentage of samples with a called peak in the region, and we calculated four
measures of ATAC-seq signal variation across the cohort: mean signal, s.d.,
variance-to-mean ratio and the squared coefficient of variation (the square of the
s.d. over the mean). In addition, we used BEDTools intersect to annotate each
region with the identity of and distance to the nearest transcription start site
and the overlap with Ensembl gene annotations (promoters were defined as the
2,500-bp region upstream of the transcription start site). Annotation with
chromatin states was based on the 15-state genome segmentation for CD19þ B
cells from the Roadmap Epigenomics Project62 (identifier: E032).

To summarize the chromatin accessibility signals into one value per gene
(Fig. 2b and Supplementary Fig. 5), we used the accessibility values of the closest
region (but no further than 1,000 bp from the transcription start site) to represent
the promoter and the mean values of all distal regions (located more than 2,500 bp
from the transcription start site) of each gene to represent distal regulatory
elements. To test for overrepresentation of CpG islands in the promoters of genes
with a known role in B-cell biology and/or CLL pathogenesis, we downloaded the
position of CpG islands in the GRCh37/hg19 assembly from the UCSC Genome
Browser63, counted the number of promoters (as defined above) that overlapped by
at least 1 bp with CpG islands in the gene set of interest and in all other genes with
accessible elements in CLL, and used Fisher’s exact test to assess the significance of
the association. Unsupervised principal component analysis was performed with
the scikit-learn64 library (sklearn.decomposition.PCA) applied to the chromatin
accessibility values of all chromatin-accessible regions across the CLL cohort.

To investigate variability within the mCLL and uCLL sample groups, we divided
the samples in two groups based on their IGHV mutation status (samples below a
98% homology threshold were considered mutated, and samples with missing
values for the IGHV mutation status were excluded from the analysis) and we used
the F test from the var.test function in R on the chromatin accessibility values of all
CLL cohort regions. Significantly variable regions were defined as having a
Bonferroni-corrected P-value below 0.05 and mean accessibility above 1. Region
set-enrichment analysis was performed on the significantly variable regions of each
group using LOLA31 with its core databases: transcription factor binding sites from
ENCODE57, tissue clustered DNase hypersensitive sites65, the CODEX database66,
UCSC Genome Browser annotation tracks63, the Cistrome database67 and data
from the BLUEPRINT project68. Motif enrichment analysis was performed with
the AME tool from the MEME suite69 using 250 bp sequences centred on the
chromatin-accessible regions and randomly generated sequences of the same
length and set size from a distribution of zeroth- and first-order Markov order
(single nucleotides and dinucleotide) frequencies as background.

Machine learning analysis of disease subtypes. Random forest classifiers from
the scikit-learn64 Python library (sklearn.ensemble.RandomForestClassifier) were
trained with the samples’ IGHV mutation status as class label and the chromatin
accessibility values for each sample at each of the 112,298 consensus regions as
input features (prediction attributes). All samples with known IGHV mutation
status were used for class prediction, the performance was evaluated by leave-one-
out cross-validation, and the results were plotted as ROC curves using scikit-learn.
Given that several patients contributed more than one sample to the cohort, in each
iteration of the cross-validation we removed any samples from the training set that
belonged to the same patient as the sample in the test set, to eliminate a potential
risk of overtraining. Furthermore, we repeated the cross-validation 1,000 times
based on randomly shuffled class labels to confirm that no overtraining occurred in
our analysis. The most predictive regions for IGHV mutation status were selected
by averaging the feature importance of the random forest classifiers over all
iterations of the cross-validation and selecting those features with Gini importance
higher than 10� 4. Region set enrichment was performed using LOLA31

as described above. Pathway enrichment analysis was performed using
seq2pathway70. The sample clustering in Fig. 4a was based on the pairwise
correlation of ATAC-seq signal in the predictive regions between samples, and the
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dendrogram was plotted using Scipy’s hierarchical clustering function. With the
same values of chromatin accessibility from above, we performed principal
component analysis on the CLL samples using R’s implementation in the
prcomp function. To provide further validation of the machine learning analysis,
we also identified differential ATAC-seq peaks between IGHV-mutated and
IGHV-unmutated samples using the DESeq2 R package61. This statistical analysis
was based on read counts for all CLL-accessible regions in each patient, testing for
differential chromatin accessibility using a model based on the negative binomial
distribution. Regions with Benjamini–Hochberg adjusted P-values below 0.01 and
an absolute log2 fold change above 1 were used for comparison with those
signature regions identified by the machine-learning analysis.

Gene regulatory network inference. Transcription factor binding maps as the
basis for inferring gene regulatory networks were derived by footprinting analysis
using the PIQ software71 and a set of 366 human transcription factor motifs from
the JASPAR database38. We retained only those transcription factors with at least
500 high-purity (40.7) binding sites overlapping with an ATAC-seq peak, as
previously described72. Binding sites located in the gene body or in the 2,500-bp
region upstream of its transcription start site were assigned to the overlapping
gene(s), and intergenic binding sites were assigned to the gene whose transcription
start site was closest to the peak. This assignment was based on the Ensembl gene
annotation version 75, and we treated non-protein-coding genes in the same way as
protein-coding genes. To infer gene regulatory networks, an interaction score was
calculated in a similar way as previously described72: the interaction score between
a transcription factor t and a gene g (St,g) was defined as the sum over all n
transcription factor binding sites of t that can be assigned to g:

St;g ¼
Xn

i¼1

2� Pi � 0:5ð Þ�10�
di;g

100000

� �

In this formula Pi is the PIQ purity score, and di,g is the distance of a particular
transcription factor binding site i to gene g. This score establishes a unidirectional
(transcription factors to genes) and weighted (based on the interaction score)
relationship, providing the edges of the gene regulatory network. We inferred gene
regulatory networks for all samples combined and also separately for the two
disease subtypes (mCLL and uCLL) based on IGHV mutation status. We
considered only transcription-factor-to-gene interactions with scores above 1, and
in Fig. 5b and Supplementary Figs 17 and 19 we plotted only nodes with more than
200 connections. For the CD19þ B-cell gene regulatory network we used DNase-
seq data from the Roadmap Epigenomics Project62 (identifier: E032). Both the
processing of the raw data and the network inference were performed in the same
manner as for ATAC-seq. The comparison of composition and structural
characteristics of the gene regulatory networks inferred from ATAC-seq data for
the CLL cohort and from DNase-seq data for CD19þ B cells was done using
functions from the networkx73 library in Python. The inferred networks were
visualized using the Gephi software, applying the Force Atlas 2 graph layout with
LinLog and hub dissuasion. To compare the inferred mCLL and uCLL networks,
we divided the degree of each node by the total number of edges in each network,
which compensates for differences in the absolute number of detected interactions,
and quantified differences by subtracting and log2-transforming this value between
networks for each node.

Data availability. All data are available as genome browser tracks for interactive
browsing and download from the Supplementary Website (http://cll-chromatin.
computational-epigenetics.org/). The processed data are also openly available from
NCBI GEO under the accession number GSE81274, whereas the raw sequencing
data are available from EBI EGA under the accession number EGAS00001001821,
under a controlled access regimen to protect the privacy of the patients who have
donated the samples.
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