
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

An analytical model of ground surface vibration due to axisymmetric wave 1 

motion in buried fluid-filled pipes 2 

Yan Gao
a
*, Jennifer M. Muggleton

b
, Yuyou Liu

c,d
, Emiliano Rustighi

b 
3 

a
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of 4 

Sciences, Beijing 100190 China 5 

b
Institute of Sound and Vibration Research, University of Southampton, Highfield, 6 

Southampton SO17 1BJ UK 7 

c
Beijing Municipal Institute of Labour Protection, Beijing 100054 China 8 

d
AECOM Infrastructure & Environment UK Limited, London SW19 4DR UK 9 

Abstract: The axisymmetric (n=0) fluid-borne (s=1) wave has been exploited with varying 10 

degrees of success in practical surveys for determining the location of buried pipes. 11 

Difficulties are sometimes encountered in interpreting ground surface vibration data, whilst 12 

attempting to locate the pipes, due to the occurrence of abrupt changes in the phase response 13 

over the usable frequency range. Based on a wave propagation model developed recently, this 14 

paper presents an analytical model for predicting the ground surface displacements resulting 15 

from the radiated elastic waves in the soil medium. Two representative soils have been 16 

specifically considered, where the s=1 wave in the pipe will leak shear waves into the soil, 17 

but may or may not leak compressional waves. In each of these cases, numerical simulations 18 

are presented to predict the ground surface displacements. The model is used to demonstrate 19 

how, when both compressional and shear waves are radiated, they can interfere such that 20 

abrupt phase changes occur at the frequencies coincident with magnitude minima in the 21 

ground surface displacements; when only shear waves are radiated, such interference does 22 

not occur. Furthermore, for sandy soil, it is found that the horizontal displacement is 23 

dominated by the radiated shear wavenumber component whereas the vertical displacement is 24 

controlled by the radiated compressional wavenumber component. Using the analytical 25 

http://ees.elsevier.com/jsv/download.aspx?id=1115182&guid=70ee8866-c851-41f8-9b4f-0bc89d1cbbc5&scheme=1
http://ees.elsevier.com/jsv/viewRCResults.aspx?pdf=1&docID=31063&rev=1&fileID=1115182&msid={7B69784B-081C-42D8-8F55-87ED7442B175}
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model, theoretical predictions of ground surface displacements are compared with 1 

experimental data from a dedicated MDPE pipe rig. 2 

Key words: buried pipes; fluid-borne wave; elastic waves; ground surface vibration. 3 

*Corresponding author. E-mail address: gaoyan@mail.ioa.ac.cn 4 

1. Introduction  5 

Buried pipelines are central to modern life and form an important part of many 6 

engineering structures for transporting fluids and gases. Pipe location is a subject of 7 

increasing concern in China and across the world due to ever increasing congestion in our 8 

underground space, combined with the need to continually maintain, repair and replace assets 9 

within that space. It is becoming apparent that utility maps often contain inaccurate data and, 10 

moreover, are invariably incomplete. With this in mind, a general urban survey is currently 11 

underway in China to gather the first authentically recorded location information about 12 

existing pipes laid underground [1]. In other countries too, considerable effort is underway to 13 

rectify these issues [2]. 14 

The way in which axisymmetric (n=0) waves propagate in fluid-filled pipes has been the 15 

subject of numerous studies [3-9]. Fuller and Fahy [3] investigated the dispersion behaviour 16 

and energy distributions of free waves in thin-walled fluid-filled pipes; Pinnington and 17 

Briscoe [4], in particular, focused on axisymmetric (n=0) wave motion within the fluid-filled 18 

pipes in vacuo. When the pipe is surrounded by an elastic medium, the vibrational energy is 19 

transmitted along the pipe in a variety of modes, and can couple energy into the surrounding 20 

medium due to the leaky modes leaving the pipe wall [5, 6]. More recently, the present 21 

authors [7-9] have developed models for the study of the propagation characteristics of the 22 

fluid-borne (s=1) wave within fluid-filled pipes surrounded by an elastic medium and the 23 

torsional (s=0) wave, all of which may radiate to the ground surface. These cited works 24 

suggests that well below the pipe ring frequency (usually at least 1 kHz), the s=1 wave is 25 

mailto:gaoyan@mail.ioa.ac.cn
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often the main carrier of vibrational energy within oil- or water-filled piping systems. This is 1 

in marked contrast to the case of the pipe in an air medium in which the excitation of the 2 

bending mode contributes mostly, in particular at lower frequencies [10]. The low-frequency 3 

s=1 wave propagates predominantly within the contained fluid but is accompanied by some 4 

radial pipe wall motion. Furthermore, it has been demonstrated experimentally in an earlier 5 

study that this wave can effectively radiate into the surrounding soil and be detected at the 6 

ground surface; in this case axial phase dependence mirrors that in the pipe [11]. Using this 7 

knowledge an acoustic technique has been developed for the detection of underground pipes: 8 

the pipe is intentionally and directly excited at some known location (e.g. via a hydrant) 9 

aboveground with concurrent vibrational mapping of the ground surface, in order to infer the 10 

location of the remainder of the pipe. (It is possible that excitation of the ground in the 11 

vicinity of the pipe could also elicit waves in the pipe but such an arrangement would be by 12 

no means optimal.) It was shown that the phase of the ground vibration data can be exploited 13 

to reveal the pipe location, with the magnitude data providing a useful supplement in 14 

identifying discontinuities (such as leaks). However, it was noticed that, although the spatial 15 

phase dependence at ground surface matched that in the pipe, the phase variation with 16 

frequency at a single location above the pipe contained abrupt phase changes which could not 17 

be properly accounted for, as illustrated in Fig. 1. Since this first study, it has been found that 18 

these phase phenomena commonly occur and, to date, no satisfactory explanation for the 19 

occurrences has been offered. 20 

The low-frequency propagation characteristics of the s=1 wave have received much 21 

attention in the literature and wave equations presented in previous research; however, the 22 

surrounding spaces (be they fluid or elastic) have, in general, been restricted to infinite ones. 23 

The presence of a free surface, or indeed any other discontinuity in the soil elastic properties, 24 

will affect the form of wave solutions. To date, there has only been a limited amount of work 25 
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carried out into the study of radiated elastic waves in the surrounding soil itself and effects of 1 

the ground surface. Jette and Parker [12] first investigated the ground surface displacements 2 

accompanying the propagation of acoustic waves in a buried gas-filled pipe. As evidenced by 3 

the experimental data, the ground surface vibration, in response to the internal acoustic 4 

pressure, was found to be predominantly governed by the axisymmetric vibration of the pipe 5 

at frequencies ranging from 200 Hz to 2 kHz. Numerical methods, for example the finite 6 

element method, have been developed to investigate the vibrational behaviour of cylindrical 7 

underground structures in an elastic half-space in seismic applications [13-17]. Although they 8 

have shown to be effective for the analysis of the propagation of cylindrical waves associated 9 

with energy radiation, the accurate modelling of the 3D dynamic structure becomes 10 

impossible in practical situations due to the computational cost [17]. For ease of computation 11 

as well as physical interpretation of wave phenomena, it is more desirable to explore the 12 

analytical method for the study of the ground vibration response associated with wave 13 

radiation due to pipe motion.  14 

In this paper, a model is presented for predicting the ground surface displacements 15 

resulting from the s=1 wave motion in a buried fluid-filled pipe. A comprehensive analysis of 16 

the fully coupled system, including the ground surface, would be extremely complex and 17 

beyond the scope of the present paper. Here a somewhat simplified analysis is presented, for 18 

which the following assumptions are made [8]: 19 

 The soil is assumed to be homogeneous and isotropic, resulting in only two types of 20 

body waves being present in the soil (a compressional wave and a shear wave) [18]. 21 

Other soil models do exist, such as the Biot model (and its modified versions) which 22 

consider soil porosity (see, for example [19, 20]), and result in an increase in the 23 

number of possible waves in the soil, but here the aim is to use the simplest model 24 

which will still capture the salient features observed in practice and illuminate the 25 
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dominant physical processes in play; 1 

 The effects of the soil on the pipe and the effects of the waves propagating in the pipe 2 

on the soil can be considered independently; what this means in practice is that, in the 3 

calculation of the dispersion characteristics of the s=1 wave, the free ground surface 4 

(along with the concomitant wave reflections) is neglected – it is only included once the 5 

waves in the pipe have already, so to speak, been set up. Because of the large 6 

attenuation in most soils, this is only likely to become problematic at extremely low 7 

frequencies when the number of compressional/shear wavelengths between the pipe 8 

and the ground surface becomes very small;  9 

 Once the waves radiating from the pipe reach the ground surface, they can be 10 

considered to be in the far field and undergo a plane wave treatment. This limits the 11 

lower frequency bound for which the analysis is valid, in a similar way to the 12 

assumption described above; Only response of the ground directly over the pipe is 13 

considered, for which only elastic body waves need to be considered.  14 

The investigation starts with the introduction of the propagation and radiation of the s=1 15 

wave confined to low frequencies, followed by a detailed description of the propagating wave 16 

motion in Section 2. The model is then incorporated into the analytical method to predict the 17 

ground surface displacements in Section 3. Section 4 presents some numerical results of the 18 

ground surface displacements for a PVC water pipe buried in two representative soils. 19 

General discussions follow on the predicted ground vibration response to explain the 20 

frequency-domain features, and to demonstrate the coherent interference of the conical 21 

compressional with shear waves in some sandy soils while being unlikely to happen in clay 22 

soils. Some experimental measurements are presented to support the analytical model in 23 

Section 5. Finally some conclusions are drawn in Section 6.  24 
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2. Fluid-borne wave motion 1 

Before considering how elastic waves radiate in the surrounding soil, the fluid-borne (s=1) 2 

wave motion in a buried fluid-filled pipe needs to be studied. Based on our previous model to 3 

predict the dispersion relationship for the s=1 wave [7], this section investigates the soil 4 

vibration induced by the s=1 wave. 5 

Consider a thin-walled fluid-filled pipe surrounded by an infinite elastic medium that can 6 

sustain elastic body waves, i.e., the compressional and shear waves as illustrated in Fig. 2. 7 

The pipe has a mean radius a and wall thickness h. With reference to the cylindrical co-8 

ordinate system, u and w denote the shell displacements in the x and r directions, respectively; 9 

and ux and ur denote the soil displacements. The surrounding soil is assumed to be elastic, 10 

homogenous and isotropic.  11 

2.1 Relationships between the internal pressure and the pipe wall displacements 12 

Consider the equations governing the coupled axial and radial motion for the 13 

axisymmetric s waves in the buried fluid-filled pipe given in [7] 14 

 

2 2

11 12

2

21 22

( ) i ( )

i ( ) 1

ss p s

sp s

Uk a SL v k a SL

Wv k a SL FL SL

       
          

0  (1) 15 

where Us and Ws are the displacement amplitudes of the pipe wall; Ω is the non-dimensional 16 

frequency, Lk a  ; kL is the shell compressional wavenumber, 2 2 2(1 ) /L p p pk v E   ; ρp, Ep 17 

and vp are the density, Young’s modulus and Poisson’s ratio of the shell; fluid loading term, 18 

FL and SL are the fluid loading term and the soil loading matrix representing the coupling 19 

effects of the fluid and soil respectively, and are given by 20 

 

2
0

0

J ( )

J ( )

r

f fs

r r
p fs fs

k aa
FL

h k a k a






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
 (2) 21 

and 22 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 

 

 

2 2 2

11
2 2

0 0 0 0

2 2 2

0 0
12

2 2

0 0 0 0

(1 )

[H ( ) / H ( )] [H ( ) / H ( )]

(1 ) H ( ) / H ( )
i 2

[H ( ) / H ( )] [H ( ) / H ( )]

r
p ds r

m
r r r r r r

p rs ds rs rs ds ds

r r
p r ds ds

m
r r r r r r

p rs ds r

s

s

ss rs ds ds

v a k ak a
SL

E h k ak a k a k a k a k a k a

v a k a k a k a
SL k a

E h k ak a k a k a k a k a k a






 

 

 
 

 

21 12

2 2 2

0 0 0 0
22

2 2

0 0 0 0

(1 ) [H ( ) / H ( )][H ( ) / H ( )]
2

[H ( ) / H ( )] [H ( ) / H ( )]

r r r r r
p rs r rs rs ds ds

m
r r r r r r

p rs ds rs r s sss d d

SL SL

v a k ak a k a k a k a k a
SL

E h k ak a k a k a k a k a k a






 

  


 
        
    

 (3a-d) 1 

where ρf is the density of the contained fluid; the radial wavenumber of the internal fluid, r

fsk , 2 

is related to the fluid wavenumber, kf, by 2 2 2( )r

fs f sk k k   and /f fk c ; cf is the free-field 3 

fluid wavespeed, /f f fc B  ; Bf and ρf are the bulk modulus and density of the internal 4 

fluid; 
0H ( )r

dsk r and 
0H ( )r

rsk r , represent conical waves radiating outward from the pipe into the 5 

surrounding soil; r

dsk  and r

rsk , are the radial wavenumbers of the compressional (with the 6 

wavenumber kd) and shear (with the wavenumber kr) waves respectively, 2 2 2( )r

ds d sk k k   and7 

2 2 2( )r

rs r sk k k  ; 0 0J ( /  (   )J )r    ; and 0 0H ( /  (   )H )r    .  8 

For the s=1 wave, the relationship between the amplitudes of the axial and radial 9 

displacements can be found from Eq. (1) by 10 

 
2

22
1 1

1 21

1

i ( )p

FL SL
U W

v k a SL

  



 (4) 11 

where the complex wavenumber, k1, is obtained by 12 

 
2 2

1 2
1

1
fk k





 
  

  
 (5) 13 

where α and β are the measures of the effects of soil and fluid loading on the pipe wall, and 14 

given by 2 2 2

22 12 1 11 1( i / ) / (1 / )pSL v SL k a SL k a       and 22 (1 ) /f p pB a v E h    15 

respectively.  16 

Applying the momentum equation and displacement continuity condition in the radial 17 
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direction at the pipe-soil interface, the pressure amplitude, Pf1, is found to be related to the 1 

radial displacement amplitude of the pipe wall, W1, by 2 

2

1 1

1 0 1

1

J ( )

f

f r r
f f

P W
k k a

 



(6) 3 

The relationship between the internal pressure and the pipe wall displacements are now set up 4 

by combining Eqs. (4) and (6). 5 

2.2 Soil vibration 6 

In a cylindrical co-ordinate system, the soil displacements and the stresses may be 7 

expressed in terms of the compressional and shear wave potentials, and are given by [7] 8 

1

2
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(7) 9 

and 10 

1
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(8) 11 

where Am and Bm are the potential coefficients of the compressional and shear waves. 12 

Applying the displacement continuity conditions (at r=a) in both the axial and radial 13 

directions, i.e., ux(a)=u and ur(a)=w in Eq. (7) and eliminating the harmonic terms  1i
e

t k x 
, 14 

the potential coefficients, Am and Bm, can be expressed in terms of the amplitudes of the pipe 15 

wall displacement, U1 and W1, by 16 

1 0 1 1 0 1

1 1 0 1 1 1 0 1 1

2
11 1 0 1 0 1 1 0 1 0 1

i H ( ) H ( )
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 

     
   

    
 (9) 17 

It is noted that the relationships between the internal pressure and the pipe wall 18 

displacements have been set up by Eqs. (4) and (6). Therefore, combining them with Eq. (9) 19 

leads to the potential coefficients, Am and Bm, which may be expressed in terms of the 20 
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amplitudes of the internal pressure Pf1 or the pipe wall displacement, U1 or W1. 1 

3. Ground surface motion 2 

Soil vibration has been studied for the fluid-filled pipe buried in an infinite surrounding 3 

soil. In this section, further development of the theory is carried out to determine the ground 4 

surface motion in response to the radiation of elastic waves from the pipe into the soil.  5 

3.1 Incident waves in the soil 6 

Consider the two types of elastic body waves, i.e., the compressional or shear waves that 7 

may propagate in the soil medium. Directly over the pipe as illustrated in Fig. 3, for each 8 

incident plane wave, both types of elastic waves emanate in a homogeneous and isotropic 9 

half space as a result of the reflection at the free surface. In the Cartesian co-ordinates, the 10 

horizontal (x direction) and vertical (z direction) soil displacements can then be expressed in 11 

terms of two wave potentials by [21] 12 

 
p p

xu
x z

  
 
 

; 
p p

zu
z x

  
 
 

 (10a, b) 13 

where ϕp and ψp are the compressional and shear potentials respectively, which for plane 14 

waves have the form 15 

 1 1i( )
e

r
dt k z k x

p pA
  

 ; 1 1i( )e
r
rt k z k x

p pB     (11a, b) 16 

with the subscript p denoting plane waves; and Ap and Bp are potential coefficients. 17 

Substituting Eqs. (11) into (10) gives 18 
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      

 (12) 19 

Jette and Parker [12] first suggested that the radiated waves travelling over a depth d 20 

(calculated from the pipe centre) can be treated as plane waves at the ground surface provided 21 

that 1 1r

dk d   and 1 1r

rk d   (i.e., for a sufficient large wavenumber-depth product). Here a 22 

similar approach is taken to allow for the analytical solutions to the reflection of plane waves 23 
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at the free surface. Noting that compressional waves travel faster than shear waves in the soil, 1 

if 1 1r

dk d  , then the condition 
1 1r

rk d   is automatically satisfied. To set up the relationship 2 

between the two co-ordinate systems, adopting the far-field asymptotic approximations for 3 

the Hankel functions in Eq. (7) at r=d, and setting the horizontal and vertical soil 4 

displacements given by Eq. (12) (z=d) equal to the corresponding soil displacements in the 5 

cylindrical co-ordinates, the potential coefficients, Ap and Bp, are found to be related to Am 6 

and Bm by 7 

 i /4

1

2
p mr

d

A e A
k d




 ; i /412

i
r

r
p m

k
B e B

d




  (13a, b) 8 

3.2 Reflections at free surface 9 

When radiated waves are incident upon the ground surface, reflections occur as illustrated 10 

in Fig. 3. As stated above, it is assumed that the reflection at the free surface leads to the 11 

compressional and shear waves. Correspondingly, the potentials, ϕp and ψp, can be expressed 12 

as overall contributions of the incident and reflected wave potentials by  13 

 1 1 1i i i( )( e e )e
r r
d dk z k z t k x

p p pA A      ; 1 1 1i i i( )( e e )e
r r
r rk z k z t k x

p p pB B       (14a, b) 14 

where 
pA  and 

pB  are the incident potential coefficients obtained by Eqs. (13a, b); 
pA and 15 

pB  are the unknown reflected potential coefficients. Substituting Eqs. (14) into (10) gives 16 
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 (15) 17 

According to Hooke’s Law, the stresses are related to the soil displacements by  18 

 z x
zx m

u u

x z
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; 2 z

zz m m

u

z
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
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
 (16a, b) 19 

where Δ is the dilation, 2

p   [21]. Substituting Eqs. (14a) and (15) into (16) gives 20 
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For free surface at z=d, both normal and tangential stresses vanish. Thus Eq. (17) leads to 2 
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where 
2 2 2 2

1 1 1 1 1
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Substituting Eqs. (18) into (15) results in the soil displacements at the ground surface in 6 

terms of the potential coefficients of incident waves by 7 

 1 1 1i i i( )( e e )e
r r
d rx k d k d t k x

d p r p

z

u
A B

u
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U U  (19) 8 

where the amplitude vectors Ud and Ur are given by 9 
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It is noted that the free wavenumbers, kd and kr, can be vectorially decomposed into x 11 

trace (axial) component, k1, and z trace (radial) components, 1

r

dk  and 1

r

rk , respectively, as 12 

given in Section 2.1. This explains that in practice, the s=1 wave can be effectively observed 13 

at the trace velocity of c1 when making the ground surface measurements. As can be seen 14 

from Eq. (19), for a fixed time t and position x, the ground surface displacements are the 15 

overall contributions made by both plane waves with the trace components, 1

r

dk  and 1

r

rk , 16 

radiating outward from the pipe over a propagation distance d. Consequently, the nature of 17 

the ground surface vibration induced by the propagating s=1 wave is predominantly affected 18 

by the radiation condition along with the burial depth. Furthermore, at the free surface, the 19 
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incident wave potential coefficients, 
pA  and 

pB , can be approximated by Eqs. (13a, b). By 1 

eliminating the harmonic terms  1i
e

t k x   on both sides in Eq. (19), the amplitudes of the soil 2 

displacements, Ux and Uz, can be expressed in terms of the potential coefficients, Am and Bm, 3 

as 4 

 1 1i ii /4 1

1

2 2
e i e

r r
d r

r
x k d k dr

d m r mr

z d

U k
e A B

U k d d



 

  
  

 
U U  (21) 5 

The first and second terms on the right side of Eq. (21) indicate the contributions of the z 6 

trace components made by the compressional and shear waves respectively. Here, the 7 

potential coefficients, Am and Bm, are given by Eq. (9).  8 

3.3 Elastic waves in representative soils 9 

The vibrational behaviour of the ground surface results from the combination of two 10 

types of elastic waves which may radiate in the soil, with the total contribution satisfying the 11 

boundary conditions at the free surface. Here, two soil types may be distinguished: those for 12 

which both the shear and compressional wavespeeds are both less than the wavespeed in the 13 

pipe; and those for which the compressional wavespeed is greater than that in the pipe. 14 

Typically, sandy soils fall into the first category with and clay/chalky soils falling into the 15 

second, as shown in Table 1. 16 

As might be expected, the elastic properties of the soil are of great importance in 17 

influencing the radiation induced by the s=1 wave that propagates in a fluid-filled pipe. In the 18 

following, it should be noted that the real part of the wavenumber is related to the phase 19 

velocity of the propagating wave. Recent work by the present authors [7] has shown that the 20 

s=1 wave, will leak shear waves for typical values of the shear velocity in the soil (when 21 

1 rc c  or
2 2

1Re( ) Re( )rk k ), while may or may not leak compressional waves into the soil. 22 

For example, the compressional wave will radiate in loose, sandy soils (where, in general, 23 

1 dc c  or 
2 2

1Re( ) Re( )dk k ), but will be less likely to radiate in clay soils (where, typically 24 
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1 dc c or 
2 2

1Re( ) Re( )dk k ). We therefore consider the following radiation conditions: 1 

(1) For 1 dc c , the s=1 wave leaks both compressional and shear waves. In this case, it 2 

can be seen from Eq. (21) that the overall soil displacements in both the horizontal 3 

and vertical directions at the ground surface consist of a superposition of the 4 

responses due to both wave types. When both the compressional and shear waves 5 

radiate, the interference effect of the waves will result in a complex oscillation at the 6 

ground surface due to their different phase velocities. 7 

(2) For 1 dc c , only the shear wave radiates in the soil. Setting 0pA  , it is clear that the8 

contribution of the radiated compressional wave vanishes in Eq. (21). This lead to 9 

1i12
i e

r
r

r
x k dr

r m

z

U k
B

U d

 
 

 
U (22) 10 

The effect of radiated elastic waves on the ground surface displacements is examined 11 

numerically in two representative soils in the next section. 12 

4. Numerical results and discussions13 

This section presents some numerical results of the ground surface displacements relative 14 

to the pipe wall displacements induced by the s=1 wave motion in a buried water-filled PVC 15 

pipe (of diameter 160 mm and thickness 10 mm). Two representative soils are considered: a 16 

typical sandy soil (A) and a typical clay soil (B), which provide consistency with the previous 17 

study carried out in [7]. Losses within the surrounding medium are included (with a loss 18 

factor of 0.1) by adopting complex elastic moduli for the soil. The material properties of the 19 

pipe, soil and fluid are shown in Table 2. The frequency range of interest is up to 1 kHz, since 20 

signals are heavily attenuated at higher frequencies in plastic pipes. 21 

4.1 Phase velocity of the s=1 wave 22 

The phase velocity of the s=1 wave is plotted in Figs. 4(a) and (b) for sandy soil (A) and 23 

clay soil (B) respectively. For both soil types, the propagating s=1 wave is slightly dispersive. 24 
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This is caused by the added effect of soil loading on the pipe wall, more details of which can 1 

be found in [7]. It can be seen from Fig. 4(a) that the calculated phase velocity of the s=1 2 

wave for the sandy soil is greater than both the compressional and shear velocities in the soil. 3 

This suggests that both elastic waves will radiate in the sandy soil considered. For clay soil 4 

(B), however, the phase velocity of the s=1 wave lies between the shear and compressional 5 

velocities, as shown in Fig. 4(b). In this case, the s=1 wave will only leak the shear wave. 6 

4.2 Ground surface displacements 7 

In this section, the main factors that affect the vibrational behaviour at the ground surface 8 

are studied, including the soil type and the burial depth (calculated above the pipe). In the 9 

numerical analysis, the ground surface displacements, xU  and zU , are evaluated in terms of 10 

the non-dimensional amplification factors relative to the radial displacement of the pipe wall, 11 

i.e., 1/x xU U W , 1/z zU U W . Substituting Eqs (4), (9) into (21) gives 12 
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 (23b) 14 

with the first and second terms representing the contributions of the compressional and shear 15 

waves respectively.  16 

4.2.1 Sandy soil 17 

For the water-filled PVC pipe buried at a depth of 1 m, the theory presented here can be 18 
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adopted to predict the displacements above 33 Hz for 1r

dk d  . As discussed in Section 4.1, 1 

both compressional and shear waves radiate in the sandy soil. Therefore, the interfering effect 2 

of the elastic waves is anticipated in the plots of the ground surface displacement. For the 3 

magnitude plots of both the horizontal and vertical amplification factors, as can be seen from 4 

Fig. 5(a) and Fig. 6(a), the shear wave contributions are much greater than the compressional 5 

wave contributions at lower frequencies; they decrease rapidly with increasing frequency 6 

whereas the contributions due to the compressional wave increase. As a result, it is observed 7 

that both the overall horizontal and vertical magnitudes fluctuate in the frequency range of 8 

interest. Fig. 5(a) shows that for the horizontal displacement, the fluctuations in the 9 

magnitude lead to a series of local maxima and minima separated by about 200 Hz. In 10 

particular, the magnitude reaches the minimum value (approximately zero) at 590 Hz. For the 11 

vertical displacement, it can be found from Fig. 6(a) that the magnitude fluctuates with a 12 

separation of roughly 160 Hz at lower frequencies below 600 Hz and the oscillatory 13 

behaviour becomes less obvious at higher frequencies. 14 

To demonstrate the interfering effect of two waves on the phase of the ground surface 15 

displacements, both the wrapped and unwrapped phase are plotted in Figs. 5(b) and (c) for 16 

the horizontal amplification factors, and in Figs. 6(b) and (c) for the vertical amplification 17 

factors respectively. For the horizontal displacement, as can be seen from Fig. 5(b), the 18 

contribution of the shear wave dominates below 400 Hz. Above 400 Hz, the response 19 

deviates from the radial shear wave component since the radiated compressional wave 20 

contributes significantly. In particular at 590 Hz, an abrupt phase change occurs as marked by 21 

the red arrow in the phase plot. The occurrence of the phase changes are easily explained by 22 

re-expressing the displacements given by Eq. (23), in a simplified form of 1 1i i

1 2e exU g g   . 23 

Here g1 and g2 are the magnitudes for two elastic waves, and ζ1 and ζ2 are the corresponding 24 

phases. When the overall magnitude of xU  approaches a minimum of zero, the lag of one 25 
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displacement term with respect to another must approach  . This leads to the abrupt phase 1 

change at the frequencies coincident with magnitude minima. Further check of the 2 

unwrapped phase plotted in Fig. 5(c) shows that the phase varies approximately linearly with 3 

frequency at lower frequencies, with the radiated shear wave being dominant. Again, at 4 

590Hz, an abrupt phase change occurs; above this frequency, it shifts towards the phase of 5 

the radial compressional wavenumber component, as the contribution of the compressional 6 

wave increases. In contrast, for the vertical displacement, the unwrapped phase is mainly 7 

governed by the radial compressional wavenumber component at higher frequencies above 8 

140 Hz. Similar to the horizontal displacement, a phase change occurs at around 80 Hz where 9 

the magnitude approaches a local minimum. Clearly both the horizontal and vertical 10 

displacements of the ground surface are affected by the interfering effect of the elastic waves 11 

in the soil. 12 

4.2.2 Clay soil 13 

For a burial depth of 1 m, the shear wavenumber satisfies 1r

rk d   above 51 Hz. Figs. 7 14 

and 8 plot the horizontal and vertical amplification factors for clay soil (B). A similar trend 15 

can be seen from the magnitude results plotted in Figs 7(a) and 8(a). Compared with the 16 

sandy soil plotted in Figs. 5(a) and 6(a), the magnitude increases with frequency in particular 17 

above 800 Hz for the clay soil (being greater than 1). It can be seen from the magnitude plots 18 

that there is no evident interfering behaviour of the elastic waves. Figs. 7(b) and 8(b) plot the 19 

phase of the horizontal and vertical amplification factors respectively. When only the shear 20 

wave radiates in the soil, as anticipated, no abrupt phase changes are observed. In addition, it 21 

can be seen from Eq. (22) that the phase is directly related to the radial shear wavenumber. 22 

This may offer an alternative way to retrieve the s=1 phase velocity from ground surface 23 

measurements, provided the shear wavespeed in the soil is known, along with the pipe depth. 24 

Alternatively, it offers a way to estimate the pipe depth provided the s=1 phase velocity can 25 
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be estimated from the spatial variation of phase above the pipe. 1 

4.2.3 Effect of the burial depth 2 

In sandy soil (A) where both elastic waves radiate, the amplification factors are plotted in 3 

Figs. (9) and (10) for different burial depths. Above 60 Hz, 33 Hz and 24 Hz, the 4 

wavenumber-depth product satisfies 1r

dk d   for the depth of 0.5 m, 1 m and 1.5 m 5 

respectively. For both horizontal and vertical displacements, the magnitude and phase plotted 6 

in Figs. (9a-c) and (10a-c) illustrate very similar low-frequency vibrational behaviour for 7 

different burial depths. As can be seen from the magnitude plots, the magnitude level 8 

decreases slightly due to the increasing attenuation with burial depths. The interfering effect 9 

of elastic waves becomes more evident with a narrower frequency separation for the deep 10 

depth with the penalty in the reduction of the magnitude level. Therefore, examination of the 11 

fluctuations in the magnitude of the ground surface response may provide the additional 12 

information required to estimate the burial depth. 13 

Again, it can be seen from Figs. 9(d-f) and 10(d-f) that distinct phase changes occur in the 14 

plots of the horizontal amplification factor at frequencies when the corresponding magnitudes 15 

approach local minima.  16 

5. Experimental measurements 17 

Here some experimental measurements are presented to support the theoretical results 18 

shown in the previous sections. The measurements were carried out on a dedicated pipe rig, 19 

the construction of which has been detailed previously [22]. However, for clarity, a 20 

description of the main features is also included here. 21 

5.1 Experimental rig 22 

The rig consists of an approximately 18 m length of MDPE (medium density 23 

polyethylene) water pipe (180 mm OD, 11 mm wall thickness) buried at a depth of 24 

approximately 1 m (the standard burial depth for mains water pipes in the UK). Table 3 gives 25 
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the key geometrical and material properties of the pipe. A right-angled bend brings the pipe 1 

up to the ground surface at one end, and a man-hole provides access at the other. This allows 2 

direct access to the pipe at either end of the rig; flanged pipe ends enable each end to be 3 

sealed with a blanking plate or not as required. The rig was designed with the excitation and 4 

propagation of the n=0, s=1 wave in mind. The pipe is instrumented with a number of PVDF 5 

(polyvinylidene fluoride) ring sensors [4] which allow this particular wave to be monitored 6 

[22]. In particular the ring sensors measure the radial pipe wall displacement needed for the 7 

present study. 8 

The general layout of the rig is shown in Fig. 11, along with the coordinate axes used for 9 

the measurements. The soil in which the pipe was buried was a mixture of gravel, sand and 10 

clay. Preliminary measurements have been undertaken previously on the rig, in order to 11 

determine the best way to excite this wave-type [22]. Of the methods tested, it was found that 12 

it could be most effectively excited with an inertial shaker mounted on a plastic end-plate 13 

bolted to the flanged end of the pipe as it comes up to the ground surface; an additional 14 

advantage of this particular arrangement is that no direct contact with the water inside the 15 

pipe is required and the pipe wall only need be excited. This arrangement is shown in Fig. 12. 16 

5.2 Pipe wall and ground vibration measurements 17 

The shaker was excited with a swept sine input from 30 Hz to 400 Hz over a period of 18 

approximately 4 minutes, with the force applied by the shaker being measured simultaneously, 19 

at a sampling rate of 1000 Hz. The pipe wall displacement resulting from excitation of the 20 

pipe was measured at two locations along the pipe, using the PVDF wire installed on the rig, 21 

2 m and 3 m axially from the source end of the pipe. Two measurements were taken to enable 22 

estimates of the wavespeed in the pipe to be made (it had been established previously [12, 22] 23 

that the magnitude of the reflections from the far end of the pipe were sufficiently low to not 24 

require a third measurement location). 25 
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Vertical and horizontal (in line with the pipe) ground vibration velocity measurements 1 

were made using I-O SM24 geophones positioned on the ground directly above the second 2 

PVDF rig sensor 3 m from the excitation location. The natural frequency of the geophones 3 

was 10 Hz, so they give a flat response at frequencies above 30 Hz. Frequency response 4 

functions were calculated relating both the radial pipe wall displacements and the ground 5 

surface velocities to the input force measured at the shaker. 6 

5.3 Experimental results 7 

Figs. 14(a) and (b) depict the magnitude and phase of the pipe wall and ground surface 8 

displacements relative to the input force. Below 30 Hz, the signals are dominated by noise as 9 

expected. Spikes in the plot at odd harmonics of 50 Hz are related to mains interference. Fig. 10 

14(a) shows that all four measurements exhibit similar trends, with an overall decrease in the 11 

magnitudes with increasing frequency. This is as expected given the large attenuation at 12 

higher frequencies for both waves in the pipe and in the soil. The geophone data becomes 13 

increasingly noisy at high frequencies. Moreover, all the measurements exhibit oscillatory 14 

behaviour with clear peaks and troughs in the response, suggesting some interference 15 

mechanism in play, particularly for the ground surface responses between 150 Hz and 200 Hz. 16 

This is as expected given that both the soil shear wave and compressional wavespeeds (see 17 

Table 4) are less than the wavepeed in the pipe. Examining the phase response in Fig. 14(b), 18 

above 30 Hz, the phase of all the measurements exhibit an approximately linear variation 19 

with frequency (as would be expected for the near-non-dispersive wave propagating in the 20 

pipe). Superimposed on this linear variation, and coincident with the troughs in Fig. 14(a), are 21 

phase jumps in the ground surface response, akin to those described earlier in the present 22 

paper. 23 

5.4 Wavespeed estimation and soil properties 24 

In order to select the most appropriate soil properties for comparison of the experimental 25 
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measurements with the theory presented, we have been guided by a combination of the 1 

measurements themselves, previous seismic surveys made on the same site [23] and 2 

knowledge of the overall soil composition. These soil parameters are shown in Table 4. 3 

Moreover, previous work has shown [24] that for a buried pipe at low frequencies, the 4 

effect of the soil loading on the n=0, s=1 pipe wavespeed is controlled largely by the value of 5 

the shear modulus of the soil. Fig. 15 shows the real part of the predicted s=1 wavenumber 6 

using the parameters shown in Table 4 alongside the wavenumber calculated from 7 

measurements made on the pipe wall, confirming the appropriateness of the choices made in 8 

the frequency range of interest. 9 

5.5 Comparison with theoretical predictions 10 

Figs. 16 and 17 show the magnitude and phase of the horizontal and vertical amplification 11 

factors respectively as predicted by theory and as obtained from the experiments. Two 12 

predictions are shown for each case: one with a zero loss factor for the soil; and one with a 13 

loss factor of 0.1. 14 

Considering first of all the magnitude plots, there are clearly some considerable 15 

differences between the measurements and predictions for both the vertical and horizontal 16 

responses, particularly at the lower frequencies, where the measured ground surface response 17 

is significantly larger than the predicted response. However, above 200 Hz, the predictions 18 

and measurements are similar, with the measured response lying between the two predictions 19 

for the horizontal amplification factor and matching more closely the lossy case for the 20 

vertical amplification factor. However, there are a greater number of dips in the measured 21 

response compared with the predicted response, and in general they do not align. A number of 22 

possible reasons for the discrepancies between the predictions and the measured data are now 23 

proffered. 24 

 It is known that the ground on which the measurements were made is not homogeneous25 
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with depth, but distinctly layered. Previous investigations revealed that, below 1 

approximately 1 m (the depth of the pipe) a significantly stiffer soil layer exists [23] 2 

with a shear modulus of around 2000 GN/m
2
, extending several metres down. The 3 

existence of this layer is likely to affect the ground surface response presented in this 4 

paper in two main ways. Firstly, a significant amount of energy radiating from the pipe 5 

will be reflected from the interface between the two soil layers, resulting in a much 6 

greater response at the ground surface than might be expected in non-layered soil. Due 7 

to the attenuation in the soil, this is likely to be more pronounced at lower frequencies, 8 

as is indeed the case here. Moreover, the existence of the stiff layer means that, at the 9 

ground surface there will be more than two waves interfering (the directly radiated 10 

compressional and shear waves). In addition, there may be multiple waves (both 11 

compressional and shear), reflected and re-reflected from the stiff layer boundary. This 12 

will result in additional interference dips in the response, as is indeed seen in the 13 

measured data. 14 

 It is also arguable that the soil cannot be considered homogeneous at all. As stated 15 

earlier, Biot theory [19, 20] takes soil porosity into account and allows for the 16 

possibility of wave types in addition to those considered here. The effects of these 17 

waves (particularly in terms of wave interactions) might account for some of the 18 

discrepancies between the measured data and the predictions. 19 

 The presented theory assumed a far-field type response at the ground surface. Whilst 20 

for relatively low frequencies (<30 Hz), the conditions, 1r

dk d  and 1r

rk d   are satisfied, 21 

it must be borne in mind that the expressions derived are nevertheless approximations 22 

whose approximate nature lessens with increasing frequency. The nature of the 23 

approximations may mitigate some of the observed differences when compared with 24 

the measured response at low frequencies. 25 
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The remaining assumption to be challenged is the supposition that the effects of the soil 1 

on the pipe and the effects of the waves propagating in the pipe on the soil can be considered 2 

independently, i.e. that in calculating the dispersion relationships for the pipe waves, the 3 

effects of the free surface can be ignored. However, this assumption is unlikely to be the 4 

cause of discrepancies between the predictions and the measured ground vibration data as the 5 

pipe wavenumber measurements and predictions show good agreement. By examining the 6 

measured phase, however, some additional insights may be gained. The figures show that, in 7 

general, the trends of the phase are reasonably well reproduced. In particular, the unwrapped 8 

phase gradients of the measurements reveal a good match with the predictions. As has been 9 

noted previously, the overall phase behaviour of the horizontal amplification factor is 10 

controlled by the radial shear wavenumber component, with the phase of the vertical 11 

amplification factor being controlled by the radial compressional wavenumber component. 12 

These are also shown in the figures, where it is seen that the gradients match well with the 13 

overall gradients in the measured data. This provides further evidence that the soil properties 14 

used for the comparison, in Table 4, are indeed representative of the soil on the measurement 15 

test site. What is also particularly interesting to note is that, for the vertical amplification 16 

factor plotted in Fig. 17, the gradient of the predicted unwrapped phase is increased relative 17 

to the radial compressional wavenumber between 50 Hz and 150 Hz; this trend is mirrored in 18 

the measured response, although here it is significantly more pronounced. 19 

6. Conclusions 20 

Based on a model of axisymmetric wave propagation established in recent work, the 21 

ground surface displacements due to waves radiating from a buried fluid-filled pipe have 22 

been investigated. An analytical method is adopted to derive general expressions for the 23 

horizontal and vertical displacements at the ground surface. Theoretical predictions of the 24 

ground surface vibration in two representative soils show the following: 25 
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 In sandy soil, the s=1 wave leaks both compressional and shear waves. As a result, the 1 

interfering effect can lead to the abrupt phase changes that occur at frequencies 2 

coincident with magnitude minima in the ground surface displacements. In addition, 3 

particularly at low frequencies, the horizontal displacement is dominated by the 4 

radiated shear wave whereas the vertical displacement is controlled by the radiated 5 

compressional wave. 6 

 In the clay soil, the s=1 wave leaks shear waves only. Therefore, as anticipated, no7 

interfering effect can be observed in either the horizontal or vertical amplification 8 

factors. 9 

The predictions are supported by measurements made on a dedicated pipe rig. Here, 10 

although there are some differences between the measured and predicted response 11 

magnitudes at the ground surface, the general trends of the response have been replicated. In 12 

particular, the phase response shows good agreement and the interference phenomena occur 13 

in both predictions and measurements. Where differences are observed, possible reasons for 14 

the discrepancies have been offered. The theoretical model presented in this paper underpins 15 

an acoustic technique for locating buried pipes described in an earlier study [11]. Moreover, it 16 

offers additional insights into how the technique might be improved such that additional 17 

information about the pipe, such as its depth, can be gleaned. 18 
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Appendix. Properties of Bessel and Hankel functions 23 

In this appendix, the properties of Bessel and Hankel functions used in the paper are 24 

given as follows [25]: 25 
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 For small argument 0x  , 0 0J ( ) / J ( ) 2 /x x x   ; 1 

 For argument x, 1 0 1H ( ) H ( ) H ( ) /x x x x    and 0 1H ( ) H ( )x x   ; 2 

 For large argument 1x  , the Hankel functions can be approximated by the asymptotic 3 

expansions, i( /2 /4)H ( ) 2 / x n

n x xe       for an integer n.  4 
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Fig. 4. Phase velocities of the s=1 wave for a PVC water pipe buried in: (a) sandy soil A and 

(b) clay soil (B) in comparison with the compressional (cd) and shear velocities (cr) in the

surrounding soil. 
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(a) 

(b) 

(c) 

Fig. 5. Horizontal amplification factor for a PVC water pipe buried in sandy soil (A): (a) 

magnitude; (b) wrapped phase; (c) unwrapped phase. The additional phase shift is marked by 

the red arrow.  
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(a) 

(b) 

(c) 

 
Fig. 6. Vertical amplification factor for a PVC water pipe buried in sandy soil (A): (a) 

magnitude; (b) wrapped phase; (c) unwrapped phase. The additional phase shifts are marked 

by the red arrow.  
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(a) 

(b) 

Fig. 7. Horizontal amplification factor for a PVC water pipe buried in clay Soil (B): (a) 

magnitude; (b) unwrapped phase. 
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(a) 

(b) 

Fig. 8. Vertical amplification factor for a PVC water pipe buried in clay soil (B): (a) 

magnitude; (b) phase.  
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Fig. 9. Effect of the burial depth on the horizontal amplification factor for sandy soil (A): for 

magnitude plots, the burial depth are (a) 0.5m; (b) 1m; (c) 1.5m; for phase plots, the burial 

depth are (d) 0.5m; (e) 1m; (f) 1.5m.  
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Fig. 10. Effect of the burial depth on the vertical amplification factor for sandy soil (A): for 

magnitude plots, the burial depth are (a) 0.5m; (b) 1m; (c) 1.5m; for phase plots, the burial 

depth are (d) 0.5m; (e) 1m; (f) 1.5m.  
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Fig. 11. Pipe rig layout. 
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Fig. 12. Shaker mounted on the plastic end-plate. 
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Fig. 13. Measurement setup showing geophones and PVDF wires. 
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(a) 

 
 

 

(b) 

 

Fig. 14. Pipe wall and ground surface displacements: (a) magnitude; (b) unwrapped phase. 
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Fig. 15. Real part of the s=1 wavenumber. 
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Fig. 16. Magnitude and phase of horizontal amplification factor, theory and experiment. 
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Fig. 17. Magnitude and phase of vertical amplification factor, theory and experiment. 
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Table 1 Elastic waves in representative soils 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Sandy soil Clay soil 

Phase velocity 

(wavenumber) 

1 dc c  or 
2 2

1Re( ) Re( )dk k  

1 rc c  or 
2 2

1Re( ) Re( )rk k  

1d rc c c   or 

2 2 2

1Re( ) Re( ) Re( )d rk k k   

Radiation 

Both compressional and 

shear waves radiate. 

Shear wave radiates only. 

Table(s)
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Table 2 Properties of the pipe, soil and water  

Properties PVC Soil A Soil B water 

Density (kg/m
3
) 2000 2000 2000 1000 

Young’s modulus (GN/m
2
) 5.0 - - - 

Bulk’s modulus (GN/m
2
) - 0.053 4.5 2.25 

Shear modulus (GN/m
2
) 1.79 0.02 0.18 - 

Poisson's ratio 0.4 - - - 

Material loss factor 0.065 0.1 0.1 - 
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Table 3 Geometrical and material properties of the pipe and soil 

Properties MDPE Pipe 

Mean radius (m) 0.0845 

Wall thickness (m) 0.011 

Density (kg/m
3
) 900 

Young’s modulus (GN/m
2
) 2.0 

Shear modulus (GN/m
2
) - 

Poisson's ratio - 

Material loss factor 0.06 
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Table 4 Bulk Properties of the soil 

Properties Soil 

Density (kg/m
3
) 2000 

Poisson's ratio 0.33 

Shear modulus (GN/m
2
) 10 

Material loss factor 0/0.1 

Shear wavespeed (m/s) ~70 

Compressional wavespeed (m/s) ~140 


