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Abstract

We propose a quality-of-service (QoS) driven power-and rate-adaptation scheme for wireless cloud

radio access networks (C-RAN), where each radio remote head (RRH) is connected to the baseband unit

(BBU) pool through high-speed optical links. The RRHs jointly support the users by efficiently exploiting

the enhanced spatial degrees of freedom attainted by the powerful cloud computing facilitated by the

BBU pool. Our proposed scheme aims for maximizing the effective capacity (EC) of the user subject to

both per-RRH average-and peak-power constraints, where the EC is defined as the tele-traffic maximum

arrival rate that can be supported by the C-RAN under the statistical delay-QoS requirement. We first

transform the EC maximization problem into an equivalent convex optimization problem. By using

the Lagrange dual decomposition method and satisfying the Karush-Kuhn-Tucker (KKT) conditions,

the optimal transmission power of each RRH can be obtained in closed form. Furthermore, an online

tracking method is provided for approximating the average power of each RRH for the sake of updating

the Lagrange dual variables. For the special case of two RRHs, the expression of the average power

to be assigned to each RRH can be calculated in explicit form, which can be numerically evaluated.

Hence, the Lagrange dual variables can be computed in advance in this special case. Our simulation
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results show that the proposed scheme converges rapidly for all the scenarios considered and achieves

20% higher EC than the optimization method, where each RRH’s power is independently optimized.

Index Terms

Effective capacity, Delay constraints, Cross-layer design, C-RAN, Cooperative transmission.

I. INTRODUCTION

The fifth-generation (5G) wireless system to be deployed by 2020 is expected to offer a

substantially increased capacity, despite reducing the energy consumption of the fourth-generation

(4G) system [1]. To achieve this ambitious goal, the cloud radio access network (C-RAN) concept

has been regarded as one of the most promising solutions, which relied on the techniques of

network function virtualization (NFV), software-defined networks (SDN) and cloud computing

[1]. In particular, C-RAN is composed of three key components: 1) a pool of baseband units

(BBUs) centrally located at a cloud data center and relying on the techniques of cloud computing,

NFV, and SDN; 2) low-cost, low-power distributed radio remote heads (RRHs) deployed in the

network; 3) high-bandwidth low latency fronthaul links that connect the RRHs to the BBU

pool. Under the C-RAN architecture, most of the baseband signal processing of conventional

base stations has been shifted to the BBU pool and the RRHs are only responsible for simple

transmission and reception functions, to a benefit of the recent development of cloud computing

techniques, some of the hitherto centralized signal processing operations can be relegated to the

BBU pool, such as cooperative transmission, transmit precoding, user scheduling, etc. Hence,

the network capacity and energy efficiency can be significantly improved.

Recently, the performance of C-RAN has been extensively studied [2]–[7], albeit these papers

have been focused on the physical layer issues, which giving no cognizance to the delay of the

upper layer’s. However, most of the multimedia services, such as video conferencing, interactive

gaming and mobile TV have stringent quality of service (QoS) requirements in terms of the

tolerable delay. Due to the time-varying characteristics of fading channels, it is impossible to

impose a deterministic delay-bound guarantee for wireless communications. However, satisfying

a certain maximum delay-outage probability is feasible. For example, in the Long Term Evolution

(LTE) Advanced standard, the probability that the delay of online gaming is higher than 50

ms should be below 2% [8]. For the sake of analyzing the statistical QoS performance, Wu
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et al. [9] introduced the notion of effective capacity (EC), which can be interpreted as the

maximum constant packet arrival rate that can be supported by the system, whilst satisfying

a maximum buffer-violation probability constraint. Since then, substantial research attention

has been dedicated to studying the EC maximization problem by accounting for diverse QoS

requirements.

However, due to the complex expression of EC, most of the existing papers focus on the

EC maximization problem for the simple scenario, where there is only a single transmitter

[10]–[16]. Specifically, a QoS-driven power-and rate-adaptation scheme was proposed for single-

input-single output (SISO) systems communicating over flat-fading channels in [10], with the

objective of maximizing the system throughput subject to both delay-QoS and average power

constraints, which is characterized by the QoS exponent θ. A smaller θ corresponds to a looser

QoS guarantee, while a higher value of θ represents a more stringent QoS requirement. The power

allocation scheme developed in [10] can be adapted to both the time-variant channel conditions

and to the QoS requirements. The results of [10] showed that in the extreme case of very

loose QoS requirements (θ → 0), the power allocation reduces to the conventional water-filling

solution. By contrast, when the QoS requirements are extremely stringent (θ →∞), the optimal

power allocation becomes the channel inversion scheme, where the system operates under a fixed

transmission rate. The problem of maximizing the EC of a frequency-selective fading channel

was studied in [11], where the authors showed that independently optimizing the power of each

channel by using the method of [10] yields a poor performance. Hence, jointly optimizing the

power allocation over all channels was derived in [11], which can achieve both high throughput

and a low delay at the same time. The EC maximization problem was studied in [12] in the

context of cognitive radio networks, where the power constraints of [10], [11] were replaced

by the maximum tolerable interference-power at the primary user. Closed-form expressions of

both the power allocation and of the EC were derived for the secondary user. Michail et al.

[13] provided a detailed EC analysis of both Nakagami-m, as well as of Rician and generalized-

K multiple input single-output (MISO) fading channels by using random matrix theory. The

power minimization problem subject to EC constraints was considered in [14] for three different

scenarios, namely for a point-to-point link, a multihop amplify-and-forward relay network and

for a multiuser downlink cellular network. Significant power savings can be achieved by using

the power allocation scheme of [14]. To a further advance, both subcarrier and power allocation



4

were investigated in [15] for a one-way relay network wherein the optimal subcarrier and power

allocation was derived by adopting the Lagrangian dual decomposition method. Most recently,

Wenchi et al. [16] considered both the average-and peak-power constraints when maximizing

the EC, and provided the specific conditions, when the peak power constraints can be removed.

Some other related contributions that aimed for maximizing the effective energy efficiency (EE)

of single-transmitter systems are [17]–[21], where the effective EE is defined as the ratio of EC

to the average power consumption.

To avoid any traffic congestion and attain a good C-RAN performance, the adaptive power

allocation scheme should take the diverse QoS requirements into account to guarantee the

satisfaction of users. In this paper, we aim for jointly optimizing the power allocation of each

RRH in order to maximize the EC of a user of the C-RAN, where both the average and peak

power constraints of each RRH are considered. This user is jointly served by all RRHs of the C-

RAN. Unfortunately, the power allocation schemes developed in the aforementioned papers for

single-transmitter scenarios [10]–[21] cannot be directly applied to C-RAN’s relying on multiple

RRHs for serving the user and to simultaneously exploit the spatial degrees of freedom. The

reason can be explained as follows. In these papers, there is only a single transmitter and only a

sum-power constraint is imposed. The Lagrange method can be used to find the optimal power

allocation, which is in the form of a water-filling-like solution in general. However, for the C-

RAN, all RRHs have their individual power constraints and the power cannot be shared among

the RRHs. Yu et al. [22] provided a detailed reason as to why the classic Lagrange method

cannot be readily applied in C-RAN. Hence, new methods have to be developed. Specifically,

the contributions of this paper can be summarized as follows:

1) In this paper, we derive the optimal power allocation for each RRH by resorting to the

Lagrangian dual decomposition and the Karush-Kuhn-Tucker (KKT) conditions. The power

allocation solutions depend both on the user’s QoS requirements and on the joint channel

conditions of the RRHs. For the special case of a single RRH, the power allocation reduces

to the solution obtained in [16].

2) The Lagrangian dual decomposition requires us to calculate the subgradient, where the

average power of each iteration should be obtained. However, it is numerically challenging

to derive the expression of average power for each RRH. To tackle this issue, we provide

an online training method for tracking the average power of each RRH. For the special
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case of a single RRH, the closed-form expression of average power can be obtained. For

the more complex case of two RRHs, we also provide the expression of the average power

for each RRH in explicit form, which can be numerically evaluated.

3) Our simulation results will show that the proposed algorithms converge promptly for any of

the scenarios considered and can provide as much as 20% higher EC than the independent

power allocation schemes, where the power allocation of each RRH is independently

optimized by using the method of [16].

The rest of this paper is organized as follows. In Section II, the C-RAN system is introduced

along with the concept of effective capacity and our problem formulation. In Section III, we

provide the optimal power allocation for the general case of any number of RRHs. In Section

IV, we derive the integral expressions’s closed-form solution concerning the average transmit

power of each RRH for the sake of updating the Lagrangian dual variables. Numerical results

are also provided for quantifying the efficiency of the proposed algorithm in achieving the EC

in Section V. Finally, our conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a downlink C-RAN consisting of I RRHs and a single user 1, where each RRH

and the user have a single antenna, as depicted in Fig. 1. The set of RRHs is denoted as I =

{1, 2, · · · , I}. All the RRHs are assumed to be connected to the BBU pool through the fronthaul

links relying on high speed fiber-optic cable. The baseband signal processing of conventional

base stations is migrated to the BBU pool for processing. In Fig. 2, the upper layer packets are

first buffered in first-in-first-out (FIFO) queue, which will be transmitted to the physical layer

of the RRHs. At the data-link layer, the upper-layer packets are partitioned into frames and then

each frame will be mapped into bit-streams at the physical layer. The channel is assumed to

obey the stationary block fading model, implying that they are fixed during each time frame of

length of Tf , while it is switched independently over different time frames.

To elaborate, we consider a Nakagami-m block-fading channel, which accounts for most of

the practical wireless communication channels. The probability density function (PDF) of the

1The method developed in this paper can also be applied to the multi-user scenario, where all users apply the classical

orthogonal frequency division multiplexing access (OFDMA) technique to remove the multi-user interference.
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Fig. 2. Cross-layer transmission model.

Nakagami-m channel spanning from the i-th RRH to the user is given by:

f(αi) =
αm−1
i

Γ(m)

(
m

ᾱi

)m
exp

(
−m
ᾱi
αi

)
, αi ≥ 0, (1)

where Γ(m) =
∫∞

0
wm−1e−wdw is the Gamma function, m represents the fading parameter, αi

denotes the instantaneous channel-power-to-noise ratio (CPNR) from the ith RRH to the user, and

ᾱi is the average received CPNR at the user from the ith RRH, denoted as PLi/σ2, where PLi

is the large-scale fading channel gain spanning from the ith RRH to the user that includes the

path loss and shadowing effect, and σ2 is the noise power. Let us define α = [α1, α2, · · · , αI ]T .

Since α1, · · · , αI are independent, the joint PDF of α is given by

f(α) = f(α1)f(α2) · · · f(αI). (2)

A. Effective Capacity

Based on large deviation theory, Chang et al. [23] showed that for a dynamic queueing

system associated with stationary ergodic arrival and service processes, as well as certain other

conditions, the queue length process Q(t) converges to a random variable Q(∞) obeying

− lim
Qth→∞

log(Pr {Q(∞) > Qth})
Qth

= θ, (3)

where Qth denotes the queue length bound and the parameter θ is a positive real value. The

above equation shows that the probability of the queue length exceeding a certain bound decays

exponentially with the queue length bound. To elaborate, θ is an important parameter, representing

the decay rate of the QoS violation probabilities. A smaller θ corresponds to a slower decay rate,
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which indicates that the delay requirement is loose, while a larger θ corresponds to a faster decay

rate, which implies that the system is capable of supporting a more stringent delay requirement.

In other words, when θ → 0, an arbitrarily long delay can be tolerated by the system, which

corresponds to the capacity studied in Shannonian information theory. On the other hand, when

θ → ∞, this implies that no delay is allowed by the system, which corresponds to the very

stringent statistical delay-bound QoS constraint of allowing no suffering at all. Since θ is closely

related to the statistical QoS requirement, it is termed as the QoS exponent [9].

In the following, we introduce the important notion of effective capacity, which is defined

as the maximum constant frame arrival rate that a given service process can support, while

obeying the delay requirement indicated by θ. Let the sequence R[k], k = 1, 2, · · · represent the

data service-rate, which follows a discrete-time stationary and ergodic stochastic process. The

parameter k is the time frame index. Let us denote by S(t) ,
∑t

k=1R[k] the partial sum of the

service process over the time sequence spanning from k = 1 to k = t. Let us furthermore assume

that the Gartner-Ellis limit of S[t], which is denoted by ΛC(θ) = limt→∞(1/t) log(E{eθS[t]}), is

a convex differentiable function for all real-value of θ [10]. Then, the effective capacity of the

service process specified by θ is defined as

EC(θ) = −ΛC(−θ)
θ

= −1

θ
log(E{e−θR[k]}) (4)

where E{·} denotes the expectation operator.

B. Problem formulation

For the user, the instantaneous service rate of a single frame, denoted by R(ν), can be

expressed as follows:

R(ν) = TfB log2(1 +
∑

i∈I
pi(ν)αi) (5)

where ν
∆
= (α, θ) represents the network condition that includes both the channel’s power gains

and the EC exponent requirement, while B is the system’s bandwidth. Note that transmit power

of each RRH depends not only on its own channel state, but also on the other RRHs’ channel

state.

In this paper, we aim for optimizing the transmit power in order to maximize the EC for

the user under two different types of power limitations for each RRH: under an average power

constraint and a peak power constraint. The first one is related to the long-term power budget,
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while the second guarantees that the instantaneous transmit power is below the linear range

of practical power amplifiers. Mathematically, this optimization problem can be formulated as

follows,

max
{pi(ν),i∈I}

− 1

θ
log
(
Eα

[
e−θTfB log2(1+

∑
i∈I pi(ν)αi)

])
(6a)

s.t. Eα [pi(ν)] ≤ P avg
i ,∀i ∈ I, (6b)

0 ≤ pi(ν) ≤ P peak
i ,∀i ∈ I, (6c)

where Eα{·} denotes the expectation over α, while P avg
i and P peak

i denote the ith RRH’s

maximum average transmit power constraint and peak transmit power constraint, respectively.

To avoid the trivial solution, we assume that the peak transmit power is larger than the average

transmit power, i.e. we have P peak
i > P avg

i ,∀i ∈ I. In this problem, the power allocations are

adaptively optimized according to the CSI feedback from the user for each time frame, while

the delay requirement is reflected by θ.

III. OPTIMAL POWER ALLOCATION METHOD

By exploiting the fact that log(·) is a monotonically increasing function, Problem (6) can be

equivalently simplified as

min
{pi(ν),∀i∈I}

Eα

[(
1 +

∑
i∈I

pi (ν)αi

)−ε(θ)]
(7a)

s.t. Eα [pi(ν)] ≤ P avg
i , ∀i ∈ I, (7b)

0 ≤ pi(ν) ≤ P peak
i ,∀i ∈ I, (7c)

where we have ε (θ) =
θTfB

ln 2
. In Appendix A, we prove that Problem (7) is a convex optimization

problem. Hence, the Lagrangian duality method can be used to solve Problem (7) with zero

optimality gap.

Note that in Problem (7), only the average power constraints are ergodic, while the others are

instantaneous power constraints. Similar to [24], we should first introduce the dual variables

associated with the average transmit power constraints. Then, the original problem can be

decomposed into independent subproblems over different fading states, and the instantaneous

power constraints can be enforced for each fading state. Let λ = [λ1, · · · , λI ]T represent
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the nonnegative dual variables associated with the average power constraints. The Lagrangian

function of Problem (7) can be written as

L(P (ν) ,λ) = Eα[(1 +
∑

i∈I
pi(ν)αi)

−ε(θ)] +
∑

i∈I
λi(Eα[pi(ν)]− P avg

i ), (8)

where P (ν) = [p1(ν), · · · , pI(ν)]T . Let us now define P = {P (ν) |(7c)}. The Lagrange dual

function is then given by

g (λ) = min
P(ν)∈P

L(P (ν) ,λ). (9)

The dual problem is defined as

max
λi≥0,∀i

g (λ) , (10)

As proven in Appendix A, Problem (7) is a convex optimization problem, which implies that

there is no duality gap between the dual problem and the original problem. Thus, solving the

dual problem is equivalent to solving the original problem.

To solve the dual problem in (10), we should solve the problem in (9) for a fixed λ, then

update the Lagrangian dual variables λ by solving the dual problem in (10). Iterate the above

two steps until convergence is reached.

1) Solving the dual function in (9): For a given λ, we should find the dual function g(λ),

which can be rewritten as

g(λ) = E [g̃ (λ)]−
∑
i∈I

λiP
avg
i , (11)

where we have:

g̃ (λ) = min
P(ν)∈P

(
1 +

∑
i∈I

pi (ν)αi

)−ε(θ)
+
∑

i∈I
λipi (ν). (12)

Note that g̃ (λ) can be decoupled into multiple independent subproblems, each corresponding to

a specific fading state. Those subproblems have the same structure for each fading state. Hence,

to simplify the derivation, ν is dropped in the following. Each subproblem can be expressed as:

min
P

(
1 +

∑
i∈I

piαi

)−ε(θ)
+
∑

i∈I
λipi (13a)

s.t. 0 ≤ pi ≤ P peak
i ,∀i ∈ I. (13b)

The above problem is convex, which can be solved by using standard convex optimization

techniques, such as the interior point method [25]. However, its complexity is high. In the

following, we obtain the closed-form solution by solving the KKT conditions of Problem (13).
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First, we introduce the nonnegative dual variables of µi,∀i ∈ I, and δi, ∀i ∈ I for the

associated constraints in (13b). The KKT conditions for the optimal primal and dual solutions

of Problem (13) are denoted as {p∗i }, {µ∗i }, and {δ∗i }, which can be expressed as

−ε(θ)(1 +
∑

i∈I
p∗iαi)

−ε(θ)−1αi + λi + µ∗i − δ∗i = 0,∀i (14a)

µ∗i (pi − P
peak
i ) = 0,∀i (14b)

δ∗i p
∗
i = 0,∀i (14c)

p∗i ≤ P peak
i ,∀i (14d)

p∗i ≥ 0,∀i, (14e)

with p∗i ≥ 0, δ∗i ≥ 0, and µ∗i ≥ 0, ∀i. Based on these KKT conditions, first the following lemma

can be obtained.

Lemma 1: For any two arbitrary RRHs i and j, if p∗i > 0 and p∗j = 0, then the following

relationship must hold
λi
αi
≤ λj
αj
. (15)

Proof : Please see Appendix B.

Lemma 1 shows that the RRHs associated with a smaller λi/αi should be assigned a non-zero

power, while the RRHs having a larger value should remain silent. Let us hence introduce π as

a permutation over I, so that we have λπ(i)

απ(i)
≤ λπ(j)

απ(j)
, when i < j, i, j ∈ I. Let I ′ ⊆ I be the

set of RRHs that transmit at a non-zero power. Then, according to Lemma 1, it can be readily

verified that we have I ′ = {π(1), · · · , π(|I ′|)}.

Lemma 2: There is at most one RRH associated with 0 < p∗i < P peak
i , and the RRH index is

i = π(|I ′|).

Proof : Please see Appendix C.

Next, we derive the optimal power allocation of Problem (13) shown as in Theorem 1.

Theorem 1: The optimal solution of Problem (13) is shown as follows,

p∗π(a)=


P peak
π(a), a < |I ′|;

min

{
P peak
π(|I′|),

1
απ(|I′|)

[(
λπ(|I′|)

ε(θ)απ(|I′|)

)− 1
ε(θ)+1−

|I′|−1∑
a=1

P peak
π(a)απ(a) − 1

]}
a = |I ′|;

0, a > |I ′|;

(16)
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where |I ′| is the largest value of x, so that we have

λπ(x)

ε(θ)απ(x)

<

[
x−1∑
b=1

P peak
π(b)απ(b) + 1

]−ε(θ)−1

. (17)

Proof : Please refer to Appendix D.

Corollary 1: When the number of RRHs is equal to one, i.e. I = 1, the optimal transmit

power is given by

p∗1 =



0, if α1 <
λ1

ε(θ)
;

1

( λ1
ε(θ))

1
1+ε(θ) α

ε(θ)
1+ε(θ)
1

− 1
α1
, if α1 ≥ λ1

ε(θ)
and 1

( λ1
ε(θ))

1
1+ε(θ) α

ε(θ)
1+ε(θ)
1

− 1
α1
< P peak

1 ;

P peak
1 , if α1 ≥ λ1

ε(θ)
and 1

( λ1
ε(θ))

1
1+ε(θ) α

ε(θ)
1+ε(θ)
1

− 1
α1
≥ P peak

1 .

(18)

Proof : It is can be readily derived using Theorem 1.

Note that the above result is consistent with the point-to-point result obtained in Theorem 2

of [16].

2) Solving the dual problem (10): To solve the dual problem (10), we invoke the subgradient

method, which is a simple method of optimizing non-differentiable objective function [26]. The

subgradient is required by the subgradient of g(·) at λ(k) = [λ
(k)
1 , · · · , λ(k)

I ]T in the kth iteration2.

In the following theorem, we provide this subgradient.

Theorem 2: The subgradient of g(·) at λ(k) in the kth iteration is given by

d(k) = Eα

[
P∗λ(k)(ν)

]
−Pavg, (19)

where P∗
λ(k)(ν) =

[
p∗

(1,λ(k))
(ν), · · · , p∗

(I,λ(k))
(ν)
]T

is the optimal solution of Problem (9) when

we have λ = λ(k), and Pavg = [P avg
1 , · · · , P avg

I ]T .

Proof : Please see Appendix E.

Based on Theorem 2, the Lagrangian dual variables can be updated as

λ(k+1) = λ(k) + ζ(k)d(k), (20)

where ζ(k) is the step in the kth iteration. The subgradient method is guaranteed to converge if

ζ(k) satisfies limk→∞ζ
(k) = 0 and

∑∞
k=1 ζ

(k) =∞ [25].

In summary, the solution of Problem (6) is given in Algorithm 1.

2According to [26], a vector d is a subgradient of g(λ) at λ(k), if for all λ, g(λ) ≤ g(λ(k)) + dT (λ− λ(k)) holds.
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Algorithm 1 Solving Problem (6)

Initialize:

Iteration number k = 0, λ(0) = [λ1
(0), · · · , λI (0)];

Repeat

1. Compute P(k) with fixed λ(k) using (16);

2. Compute the subgradient d(k), using (19);

3. Update λ(k+1) using (20), increase k by 1;

Until convergence

To execute Algorithm 1, there is another issue that has to be tackled, namely how to calculate

the average power for each RRH in order to obtain the subgradient d(k). Given the dual variables

λ(k), the expression of optimal power at each RRH depends on the generations of channel gains

α. Different generations of α will lead to different orders of λi/αi, i = 1, · · · , I , and thus

different power expressions. Even for a fixed problem-order the power allocation expressions

require multiple integrations, which imposes a high computational complexity. As a result, it is

a challenge to obtain the expression of average power for each RRH in closed form for any

given λ(k). In fact, even for the simple case of two RRHs, the average powers generally do not

have simple closed-form solutions, as shown in the next section.

To resolve the above issue, we propose an online calculation method for tracking the average

power required for each RRH. The main idea is to replace the expectation operator by averaging

the power allocations for all samples of channel generations during the channel fading process.

Specifically, let us define P̄ (k−1)
i as

P̄
(k−1)
i =

1

k − 1

k−1∑
j=1

p∗(i,λ(j))

(
α(j), θ

)
, i = 1, · · · , I, (21)

where p∗
(i,λ(j))

(
α(j), θ

)
denotes the optimal power allocation of the ith RRH for the jth channel

generation, and λ(j) represents the corresponding dual variables. Then, the expectation over

p∗
(i,λ(k))

(ν) can be approximated as

Eα

[
p∗(i,λ(k)) (ν)

]
≈ P̄

(k)
i =

p∗
(i,λ(k))

(
α(k), θ

)
+ (k − 1)P̄

(k−1)
i

k
, ∀i ∈ I, (22)

which can be recursively obtained based on the previous P̄ (k−1)
i ,∀i. It is worth noting that this

algorithm can be readily applied to the case when the fading statistics are unknown.
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Fig. 3. The properties of the function h(x) = (1 + ax)b − cx.

Fortunately, for the case of a single RRH3, the average power can be obtained in closed form,

which is given in Appendix F. The average power expression for the case of I = 2 is even more

complex, which is extensively studied in the following section.

IV. SPECIAL CASE: I = 2

To show the difficulty of obtaining the closed-form solution for each RRH, we only consider

the simplest scenario of two RRHs, i.e., I = 2. To this end, we first introduce the following

lemma, which will be used in the ensuing derivations.

Lemma 3: Let us define the function h(x) = (1 +ax)b− cx, where a > 0, c > 0, b > 1. Then,

in the region of x ≥ 0, there are only three possible curves for the function h(x), which are

shown in Fig. 3. The conditions for each case are given as follows:

1) Case 1: ab− c ≥ 0;

2) Case 2: ab− c < 0 and
(
c
ab

)1/(b−1)
(1− b) + b ≥ 0;

3) Case 3: ab− c < 0 and
(
c
ab

)1/(b−1)
(1− b) + b < 0;

Proof : Please see Appendix G.

Based on Lemma 3, we commence by deriving the expression of the average transmit power.

According to Theorem 1, there are three different possible cases for I = 2: 1) |I ′| = 0; 2)

|I ′| = 1; 3) |I ′| = 2. Obviously, the average power contributed by the first case is zero, hence

we only consider the latter two cases, which are discussed in the following two subsections.

Without loss of generality (w.l.o.g), we assume that

λ1

α1

≤ λ2

α2

(23)

3Note that [16] did not provide the closed-form expression for the average power for the case of one RRH.
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holds. The case for λ1

α1
> λ2

α2
can be similarly derived.

A. Scenario 1: There is only one RRH that transmits at a non-zero power, i.e., |I ′| = 1

Since we have assumed that the inequality (23) holds, only RRH 1 is transmitting at a non-

zero power and RRH 2 remains silent in this case. According to Theorem 1, the conditions for

|I ′| = 1 are given by

λ2

ε (θ)α2

≥
(
P peak

1 α1 + 1
)−ε(θ)−1

, (24)

λ1

ε (θ)α1

< 1, (25)

and only RRH 1 transmits at non-zero power, which is given by

p∗1 = min

{
P peak

1 ,
1

α1

[(
λ1

ε (θ)α1

)− 1
ε(θ)+1

− 1

]}
. (26)

It may be readily seen that, there are two possible values of p∗1, and the conditions for each

value will be discussed as follows.

1) p∗1 = P peak
1 : In this case, the following condition should be satisfied:

1

α1

[(
λ1

ε (θ)α1

)− 1
ε(θ)+1

− 1

]
≥ P peak

1 , (27)

which is equivalent to (
1 + P peak

1 α1

)1+ε(θ)

− ε (θ)

λ1

α1 ≤ 0. (28)

Notice that the left hand side of (28) is in the form of h(x) defined in Lemma 3, with x = α1,

a, b, c given by

a = P peak
1 , b = 1 + ε (θ) , c = ε (θ)/λ1. (29)

To guarantee that there exists a positive α1, the function h(x) should be reminiscent of Fig. 3-

(c), and the conditions for Case 3 in Lemma 3 should be satisfied. Otherwise, p∗1 is not equal to

P peak
1 . In the following, we assume that the conditions are satisfied. Let us denote the solutions

of h(α1) = 0 as αl1 and αu1 , where αl1 < αu1 . These solutions can be readily obtained by using

the classic bisection method. Then, condition (28) is equivalent to

αl1 ≤ α1 ≤ αu1 . (30)
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By combining (23) and (24), we obtain the feasible region of α2 in the form of:

0 ≤ α2 ≤ min

(
λ2

λ1

α1,
λ2

ε (θ)

(
1 + P peak

1 α1

)1+ε(θ)
)

=
λ2

ε (θ)

(
1 + P peak

1 α1

)1+ε(θ)

, (31)

where the last equality holds by using (28). Similarly, by combining (25) and (30), we obtain

the feasible region of α1 as:

max

(
αl1,

λ1

ε (θ)

)
≤ α1 ≤ αu1 . (32)

In this context, we prove that λ1/ε (θ) < αl1 in Appendix H. Hence, the feasible region of α1 is

given by αl1 ≤ α1 ≤ αu1 .

Based on the above discussions, we obtain the conditions for p∗1 = P peak
1 , p∗2 = 0 as follows:

C1 :ab− c < 0,
( c
ab

)1/(b−1)

(1− b) + b < 0, (33)

where a, b, c are given in (29).

If Condition C1 in (33) is satisfied, the average power assigned to RRH 1 in this case is given

by

TC1
RRH1

∆
=

∫ αu1

αl1

∫ λ2
ε(θ)(1+P

peak
1 α1)

1+ε(θ)

0

P peak
1 f (α1) f (α2) dα2dα1, (34)

By substituting the PDF of α2 in (2) into (34), (34) can be simplified to

TC1
RRH1

=
P peak

1

Γ(m)

∫ αu1

αl1

f(α1)γ

(
m,

mλ2

ᾱ2ε (θ)

(
1 + P peak

1 α1

)1+ε(θ)
)
dα1. (35)

Unfortunately, the closed-form expression of TC1
RRH1

cannot be obtained even for the special

case of m = 1. However, the value of TC1
RRH1

can be obtained at a good accuracy by using the

numerical integration function of Matlab.

2) p∗1 = 1
α1

[(
λ1

ε(θ)α1

)− 1
ε(θ)+1 − 1

]
: In this case, the following condition should be satisfied:

1

α1

[(
λ1

ε (θ)α1

)− 1
ε(θ)+1

− 1

]
< P peak

1 , (36)

which leads to h(α1) > 0 with a, b, c defined in (29). As seen from Fig. 3, when the first two

conditions in Lemma 3 are satisfied, the inequality (36) holds for any α1 ≥ 0. When the third

condition in Lemma 3 is satisfied, the inequality (36) holds when 0 ≤ α1 ≤ αl1 and α1 ≥ αu1 ,

where αl1 and αu1 (αl1 < αu1 ) are the solutions of h(α1) = 0 with a, b, c defined in (29).

Now, we first assume that the first two conditions in Lemma 3 are satisfied

C2 :ab− c ≥ 0, or ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) + b ≥ 0, (37)
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where a, b, c are given in (29). Then, the condition in (36) can be neglected. According to (23)

and (24), the feasible region of α2 is given by

0 ≤ α2 ≤ min

(
λ2

λ1

α1,
λ2

ε (θ)

(
1 + P peak

1 α1

)1+ε(θ)
)

=
λ2

λ1

α1, (38)

where (36) is used in the last equality. From (25), the feasible region of α1 is given by α1 ≥ λ1

ε(θ)
.

As a result, the average power of RRH 1 contributed by the case when condition C2 is satisfied

is given by

TC2
RRH1

=

∫ ∞
λ1
ε(θ)

∫ λ2
λ1
α1

0

p∗1f (α1) f (α2) dα2dα1,

=
1

Γ (m)

∫ ∞
λ1
ε(θ)

1

α1

[(
λ1

ε (θ)α1

)− 1
ε(θ)+1

− 1

]
γ

(
m,

mλ2α1

ᾱ2λ1

)
f (α1) dα1. (39)

Fortunately, when m is an integer, the closed-form expression of TC2
RRH1

can be obtained. Let

us define

U ,
λ1

ε (θ)
, V ,

1

1 + ε (θ)
,W

∆
=
mλ2

ᾱ2λ1

, Z=
(m/ᾱ1)m

(m− 1)!
, Y =

mλ2

ᾱ2λ1

+
m

ᾱ1

. (40)

If m = 1, the Nakagami-m channel reduces to the Rayleigh channel, and the average power of

RRH 1 in (39) can be simplified to:

TC2
RRH1

=
ᾱV−1

1 Γ (V, U/ᾱ1)

UV
+

1

ᾱ1

Ei

(
− U
ᾱ1

)
− Γ (V, UY )

ᾱ1Y VUV
− 1

ᾱ1

Ei (−UY ) . (41)

If m is an integer that is larger than one, i.e., m ≥ 2, we can obtain the closed-form expression

of TC2
RRH1

:

TC2
RRH1

= J1 + J2 − J3 − J4, (42)

where J1, J2, J3 and J4 are respectively given by

J1 =
ᾱV−1

1 Γ
(
V +m− 1, mU

ᾱ1

)
(m− 1)!mV−1UV

, J2 = Z

m−1∑
l=0

W l

l!Y l+m−1
Γ (l +m− 1, Y U), (43)

J3 =
Z

UV

m−1∑
l=0

W l

l!Y l+V+m−1
Γ (l + V +m− 1, Y U), J4 =

m

ᾱ1(m− 1)!
Γ

(
m− 1,

mU

ᾱ1

)
. (44)

The details of the above derivations can be found in Appendix I.

Next, we consider the case, where Condition 3) in Lemma 3 is satisfied. According to the

condition in (36), the feasible region of α1 is 0 ≤ α1 ≤ αl1 and α1 ≥ αu1 . Additionally, from

(25), α1 ≥ U should hold. According to Appendix H, U ≤ αl1 always holds. Hence, the overall
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feasible region is αl1 ≥ α1 ≥ U and α1 ≥ αu1 . Furthermore, the feasible region of α2 is the same

as in (38). As a result, the expression of the average power for RRH 1 contributed in this case

can be similarly obtained as in (39), except for the different integration intervals for α1. The

expression for the special case, when m is an integer can be similarly obtained.

Let us now define the following function

F (x) =
1

Γ (m)

∫ ∞
x

1

α1

[(α1

U

)V
− 1

]
γ (m,Wα1) f(α1)dα1.

Then, TC2
RRH1

given in (39) is equal to TC2
RRH1

= F (U).

If the following condition is satisfied:

C3 : ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) + b < 0, (45)

with a, b, c given in (29), the average power for RRH 1 contributed under this condition is

TC3
RRH1

= F (U)− F
(
αl1
)

+ F (αu1) . (46)

Note that Condition C3 is the same as Condition C1, but the power allocation for RRH 1 is

different.

B. Scenario 2: Both RRHs are transmitting at a non-zero power, i.e., |I ′| = 2

In this case, RRH 1 will transmit with full power, i.e., p∗1 = P peak
1 , and RRH 2 will transmit

at a non-zero power. According to Theorem 1, the following condition should be satisfied:

λ2

ε (θ)α2

<
(

1 + P peak
1 α1

)−ε(θ)−1

(47)

and the transmit power of RRH 2 is given by

p∗2 = min

{
P peak

2 ,
1

α2

[(
λ2

ε (θ)α2

)− 1
1+ε(θ)

− P peak
1 α1 − 1

]}
. (48)

The conditions for each value of p∗2 will be discussed as follows.

1) p∗2 = P peak
2 : In this case, the following condition should be satisfied:

P peak
2 ≤ 1

α2

[(
λ2

ε (θ)α2

)− 1
1+ε(θ)

− P peak
1 α1 − 1

]
. (49)

Combining conditions (23), (47) and (49), we can obtain the feasible region of α1 as follows

λ1

λ2

α2 ≤ α1 <
1

P peak
1

[(
ε (θ)α2

λ2

) 1
1+ε(θ)

− P peak
2 α2 − 1

]
, A. (50)
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To guarantee that we have a nonempty set of α1, the following condition should be satisfied:(
1 + P peak

2 α2 +
λ1

λ2

P peak
1 α2

)1+ε(θ)

<
ε (θ)

λ2

α2, (51)

which is in the form of function h(x) defined in Lemma 3 with x = α2, and a, b, c given by

a = P peak
2 +

λ1

λ2

P peak
1 , b = 1 + ε (θ) , c =

ε (θ)

λ2

. (52)

To guarantee the existence of a positive α2, the graphical curve of the function h(α2) should be

similar to that in Fig. 3-c, and the conditions are given by

C4 :ab− c < 0, and
( c
ab

)1/(b−1)

(1− b) + b < 0, (53)

where a, b, c are given in (52). Let us denote the solutions of h(α2) = 0 as αl2 and αu2 , where

we have αl2 < αu2 . Then, the feasible region of α2 is given by αl2 < α2 < αu2 .

Under Condition C4, the average powers of RRH 1 and RRH 2 are respectively calculated as

TC4
RRH1

=
P peak

1

Γ (m)

∫ αu2

αl2

f(α2)

[
γ

(
m,

mA

ᾱ1

)
− γ

(
m,

mλ1α2

ᾱ1λ2

)]
dα2, (54)

TC4
RRH2

=
TC4

RRH1
P peak

2

P peak
1

, (55)

where A is defined in (50).

2) p∗2 = 1
α2

[(
λ2

ε(θ)α2

)− 1
1+ε(θ) − P peak

1 α1 − 1

]
: In this case, the following condition should be

satisfied:

P peak
2 >

1

α2

[(
λ2

ε (θ)α2

)− 1
1+ε(θ)

− P peak
1 α1 − 1

]
. (56)

By combining (23), (47) and (56), the feasible region of α1 can be obtained as follows:

B ,
1

P peak
1

[(
ε (θ)α2

λ2

) 1
1+ε(θ)

−1

]
>α1≥max

{
λ1

λ2

α2, A

}
, (57)

where A is defined in (50). Note that B > A always holds. Hence, to guarantee that there exists

a feasible α1, the following condition should be satisfied:

0 ≥
(

1 +
λ1

λ2

P peak
1 α2

)1+ε(θ)

− ε (θ)α2

λ2

. (58)

Again, the right hand side of (58) is in the form of the function h(x) defined in Lemma 3, with

x = α2, and a, b, c are given by

a =
λ1

λ2

P peak
1 , b = 1 + ε (θ) , c =

ε (θ)

λ2

. (59)
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To guarantee that there exists a positive α2, the third condition in Lemma 3 should be satisfied:

CX :ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) + b < 0, (60)

where a, b, c are given in (59). When a, b, c are given in (59), we can denote the solutions

of h (α2) = 0 as α̃l2 and α̃u2 with α̃l2 < α̃u2 . Hence, the feasible region of α2 is given by

α̃l2 < α2 < α̃u2 .

The remaining task is to determine the lower bound of α1 as shown in (57).

Case I: If the following condition is satisfied:

λ1

λ2

α2 ≥ A, (61)

the feasible region of α1 is given by

B > α1 ≥
λ1

λ2

α2, (62)

where B is defined in (57). The inequality (61) can be rewritten as(
1 + P peak

2 α2 +
λ1P

peak
1

λ2

α2

)1+ε(θ)

≥ ε (θ)α2

λ2

, (63)

which is equivalent to h(α2) ≥ 0 with a, b and c given in (52).

As seen from Fig. 3, when the first two conditions in Lemma 3 are satisfied, the inequality

(63) holds for any α2 > 0. Combining this with the condition (58), the feasible region of α2 is

given by α̃l2 < α2 < α̃u2 , where α̃l2 and α̃u2 are the solutions of h(α2) = 0 with a, b, c defined in

(59). Define the following condition with a, b, c defined in (52)4:

C5 : CX and ab− c ≥ 0, or CX, ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) +b ≥ 0, (64)

and C as

C ,
1

α2

[(
ε (θ)α2

λ2

) 1
1+ε(θ)

− 1

]
. (65)

Under Condition C5, the average power of RRH 1 and RRH 2 are respectively given by

TC5
RRH1

=
P peak

1

Γ (m)

∫ α̃u2

α̃l2

[
γ

(
m,

mB

ᾱ1

)
− γ

(
m,

mλ1

ᾱ1λ2

α2

)]
f(α2)dα2, (66)

TC5
RRH2

= J1 − J2 (67)

4Under Condition C5, a, b, c are defined in (59).
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with
J1 = 1

Γ(m)

∫ α̃u2
α̃l2
C
(
γ
(
m, mB

ᾱ1

)
− γ

(
m, mλ1

ᾱ1λ2
α2

))
f (α2) dα2

J2 =
ᾱ1P

peak
1

mΓ(m)

∫ α̃u2
α̃l2

1
α2

(
γ
(
m+ 1, mB

ᾱ1

)
− γ

(
m+ 1, mλ1

ᾱ1λ2
α2

))
f (α2)dα2,

where B is defined in (57), α̃l2 and α̃u2 are the solutions of h(α2) = 0 with a, b, c defined in (59).

On the other hand, when the third condition in Lemma 3 is satisfied, inequality (63) holds for

0 ≤ α2 ≤ αl2 or α2 ≥ αu2 , where αl2 and αu2 are the solutions of h(α2) = 0 with a, b, c defined

in (52). Additionally, it is easy to verify that the curve of h(α2) associated with a, b, c defined

in (52) is above the curve of h(α2) with a, b, c defined in (59). Hence, the following relations

hold:

α̃l2 < αl2 < αu2 < α̃u2 . (68)

Combining (68) with condition (58), the feasible region of α2 is given by

α̃l2 < α2 < αl2, α
u
2 < α2 < α̃u2 . (69)

As a result, when the following conditions are satisfied with a, b, c defined in (52):

C6 : CX, ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) +b < 0, (70)

the average power required for RRH 1 and RRH 2, denoted as TC6
RRH1

and TC6
RRH2

respectively, is

similar to the expressions of TC5
RRH1

and TC5
RRH2

except that the integration interval of α2 becomes

(69).

Case II: If the following condition is satisfied:

λ1

λ2

α2 < A, (71)

the feasible region of α1 is B > α1 > A, where B is defined in (57). The above condition is

equivalent to h(α2) < 0 with a, b, c defined in (52). To guarantee the existence of a positive α2,

the third condition in Lemma 3 should be satisfied. Assuming that this condition is satisfied, the

feasible region of α2 is given by αl2 < α2 < αu2 , where αl2 and αu2 are the solutions of h(α2) = 0

with a, b, c defined in (52). Again, by using the relations in (68) and the condition (58), the

feasible region of α2 is given by αl2 < α2 < αu2 .

Hence, if the following conditions are satisfied with a, b, c defined in (52):

C7 : CX, ab− c < 0 and
( c
ab

)1/(b−1)

(1− b) +b < 0, (72)
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TABLE I

MAIN RESULTS WHEN I = 2, AND λ1
α1
≤ λ2

α2

Conditions Power Allocation Average Power

|I′| = 1

C1 p∗1 = P peak
1 TC1

RRH1

C2 p∗1 = 1
α1

[(
λ1

ε(θ)α1

)− 1
ε(θ)+1 − 1

]
TC2

RRH1

C3 p∗1 = 1
α1

[(
λ1

ε(θ)α1

)− 1
ε(θ)+1 − 1

]
TC3

RRH1

|I′| = 2

C4 p∗1 = P peak
1 , p∗2 = P peak

2 TC4
RRH1

, TC4
RRH2

C5 p∗1 = P peak
1 , p∗2 = 1

α2

[(
λ2

ε(θ)α2

)− 1
1+ε(θ) − P peak

1 α1 − 1

]
TC5

RRH1
, TC5

RRH2

C6 p∗1 = P peak
1 , p∗2 = 1

α2

[(
λ2

ε(θ)α2

)− 1
1+ε(θ) − P peak

1 α1 − 1

]
TC6

RRH1
, TC6

RRH2

C7 p∗1 = P peak
1 , p∗2 = 1

α2

[(
λ2

ε(θ)α2

)− 1
1+ε(θ) − P peak

1 α1 − 1

]
TC7

RRH1
, TC7

RRH2

that the average powers required for RRH 1 and RRH 2 are respectively given by

TC7
RRH1

=
P peak

1

Γ (m)

∫ αu2

αl2

[
γ

(
m,

mB

ᾱ1

)
− γ

(
m,

mA

ᾱ1

)]
f(α2)dα2, (73)

TC7
RRH2

= J̃1 − J̃2, (74)

where J̃1 and J̃2 are given by

J̃1 = 1
Γ(m)

∫ αu2
αl2
C
(
γ
(
m, mB

ᾱ1

)
− γ

(
m, mA

ᾱ1

))
f (α2) dα2,

J̃2 =
ᾱ1P

peak
1

mΓ(m)

∫ αu2
αl2

1
α2

(
γ
(
m+ 1, mB

ᾱ1

)
− γ

(
m+ 1, mA

ᾱ1

))
f (α2)dα2.

C. Discussion of the results

In this subsection, we summarize the results discussed in the above two subsections in Table

I. The average power required for each RRH contributed under condition (23) is given by

P
λ1
α1
≤ λ2
α2

RRH1
=

7∑
i=1

TCi
RRH1

ε(Ci), P
λ1
α1
≤ λ2
α2

RRH2
=

7∑
i=4

TCi
RRH2

ε(Ci), (75)

where ε (·) is an indicator function, defined as

ε (Ci) =

 1, if Condition Ci holds,

0, otherwise.
(76)

Then, the average power required for each RRH is given by

PRRH1 = P
λ1
α1
≤ λ2
α2

RRH1
+ P

λ1
α1
>
λ2
α2

RRH1
, PRRH2 = P

λ1
α1
≤ λ2
α2

RRH2
+ P

λ1
α1
>
λ2
α2

RRH2
, (77)
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where P
λ1
α1
>
λ2
α2

RRH1
and P

λ1
α1
>
λ2
α2

RRH2
denotes the average transmit power under condition λ1

α1
> λ2

α2
for

RRH 1 and RRH 2, which can be calculated as the condition of λ1

α1
≤ λ2

α2
.

To provide more insights concerning the joint power allocation results for the case of I = 2,

in Fig. 4 we plot the regions corresponding to different cases of the dual variables. For clarity,

we only consider the case of λ1

α1
> λ2

α2
.

Fig. 4-(a) corresponds to the case of λ1 = λ2 = 1. From this figure, we can see that our

proposed joint power allocation algorithm divides the region of λ1

α1
> λ2

α2
into two exclusive

regions by the solid lines. If (α1, α2) falls into the region T1, both RRHs remian silent. On the

other hand, if (α1, α2) falls into the region T2, Condition C2 is satisfied and only RRH 1 will

transmit with a non-zero power, but less than the peak power.

Fig. 4-(b) corresponds to the case of λ1 = 1/5, λ2 = 1. In this case, the region of λ1

α1
> λ2

α2

is divided into five exclusive regions. Similarly, in region T1, none of the RRHs transmit. In

region T2 and T4, Condition C3 is satisfied and only RRH 1 is assigned non-zero power for

data transmission, but less than the peak power. If (α1, α2) falls into region T3, Condition C1 is

satisfied, and RRH 1 will transmit at peak power and RRH 2 still remains silent. However, if

(α1, α2) falls into the region T5, Condition C5 holds, RRH 1 will transmit at peak power and

RRH 2 is allocated positive power that is lower than the peak power.

Fig. 4-(c) corresponds to the case of λ1 = λ2 = 1/10. In this case, the region is partitioned

into as many as eight regions. Regions T1-T4 are the same as the case in Fig. 4-(b). If (α1, α2)

falls into regions T6 and T8, Conditions C6 is satisfied, hence RRH 1 will transmit at its peak

power and RRH 2 is assigned non-zero power for its transmission, but its power is less than the

peak power. If (α1, α2) falls into region T7, Condition C7 is satisfied. Similarly, RRH 1 transmits

at its maximum power and RRH 2 transmits at a non-zero power below its peak power. On the

other hand, if (α1, α2) falls into region T7, Condition C4 is satisfied and both RRHs will transmit

at their peak power.

It is interesting to find that with the reduction of the dual variables, more RRHs will transmit

at non-zero power or even the peak power. This can be explained as follows. The dual variables

can be regarded as a pricing factor, where a lower dual variable will encourage the RRHs to be

involved in transmission due to the low cost.
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Fig. 4. The partitions of the region of λ1
α1

> λ2
α2

under different dual variables: (a) λ1 = λ2 = 1; (b) λ1 = 1/5, λ2 = 1;

(c) λ1 = λ2 = 1/10. The system parameters are set as [16]: Time frame of length Tf = 0.2 ms, the system bandwidth

B = 100 KHz, delay QoS exponent θ = (ln2)/20 so that ε(θ) = 1, peak power constraint P peak
i = 1 W,∀i = 1, 2.

V. SIMULATIONS

In this section, we characterize the performance of our proposed algorithm. We consider a

C-RAN network covering a square area of 2 km × 2 km. The user is located at the center of this

region and the RRHs are independently and uniformly allocated in this area. Unless otherwise

stated, we adopt the same simulation parameters as in [16]: Time frame of length Tf = 0.2 ms;

system bandwidth of B = 100 KHz; average power constraint of P avg
i = 0.5 W,∀i; peak power

constraint of P peak
i = 1 W, ∀i; QoS exponent of θ = 0.5; Nakagami fading parameter m = 2.

The path-loss is modeled as PLi = 148.1 + 37.6log10di (dB) [8], where di is the distance

between the ith RRH and the user measured in km. The shadowing fading is also considered,

which obeys the lognormal distribution having a zero mean and 8 dB standard derivation. The

step size in the kth iteration is set to ζ(k) = 1/k.

We compare our algorithm to the following algorithms:

1) Nearest RRH serving algorithm: In this algorithm, the user is only served by its nearest

RRH, and the optimization method proposed in [16] for point-to-point systems is adopted

to solve the power allocation problem in this setting. This algorithm is proposed to show

the benefits of cooperative transmission in C-RAN.

2) Constant power allocation algorithm: In this algorithm, the transmit power is set to be

equal to the average power constraint for any time slots. Since the peak power limit is

higher than the average power limit, both the average power constraints and peak power
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constraints can be satisfied. This approach was assumed to illustrate the benefits of dynamic

power allocation proposed in this paper.

3) Independent power allocation algorithm: In this algorithm, each RRH independently opti-

mizes its power allocation by using the method of [16] that is only based on its channel

condition. This algorithm is invoked for showing the benefits of jointly optimizing the

power allocation according to the joint channel conditions of all RRHs.

In the following, we first consider the case of I = 2, where the average power required for

each RRH can be numerically obtained according to the results of Section IV. Then, we study

the more general case associated with more than two RRHs.

Fig. 5 shows a randomly generated network topology relying on two RRHs, and Figs. 6-11

are based on this network topology. In this setting, for the nearest RRH serving algorithm, the

user is only served by RRH 2 due to its shorter distance compared to RRH 1.

In Fig. 6, we study the convergence behaviour of the proposed algorithm under different delay

exponents. It is seen that the proposed algorithm converges promptly for all delay exponents

considered, and that a higher QoS exponent may lead to lower convergence speed in this setting.

For example, observe at the top of Fig.5 that when θ = 0.01, 20 iterations are sufficient for

the algorithm to converge. However, for the case of θ = 1, nearly 60 iterations are required

for the convergence of the algorithm. The main advantage for the case of two RRHs is that the

Lagrange dual variables can be calculated in an off-line manner by using the results of Section

IV, and stored in the memory.
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Fig. 7. EC for various algorithms vs QoS exponent θ.
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Fig. 8. EC for various algorithms vs Nakagami fading parameter m.

Let us now study the impact of the delay requirements on the effective capacity performance

for various algorithms in Fig. 7. As expected, when the delay-QoS requirement becomes more

stringent, i.e., the value of QoS exponent θ increases, the effective capacity achieved by all

algorithms is reduced. By employing two RRHs for jointly serving the user to exploit higher

spatial degrees of freedom, the proposed algorithm significantly outperforms the nearest RRH

based algorithm, where only one RRH is invoked for transmission. For example, for θ = 0.1

the effective capacity provided by the former algorithm is roughly 44% higher than that of the

latter algorithm. It is observed that the performance of the latter algorithm is even inferior to

that of the naive constant power allocation algorithm. Since our proposed algorithm adapts its

power allocation to delay-QoS requirement, whilst additionally taking into account the channel

conditions, it achieves a higher effective capacity than the constant power allocation algorithm,

especially for the loose QoS requirement region, where the performance gain attained is about

36%. By optimizing the power allocation based on the joint channel conditions, the proposed

algorithm performs better than the independent one, where the joint relationship of the channel

conditions is ignored. The performance gain is more prominent when the delay-QoS requirement

is moderate, which can be up to 20% in this example. By contrast, when the delay-QoS

requirement is very stringent or loose, both algorithms have a similar performance, which implies

that in these two extreme cases, independently optimizing the power allocation across these two

RRHs approaches the optimal solution, and requires a lower complexity than the proposed

algorithm.
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Fig. 8 shows the effect of the Nakagami fading parameter m on the performance of various

algorithms, where the QoS exponent is fixed at θ = 0.5. The figure shows that the effective

capacity achieved by all the algorithms increases with m. There is a substaintial improvement

from m = 0.5 to and m = 1.5, and all algorithms experience a slow convergence for large

m. Note that a similar trend has been observed in [16] for a point-to-point system. The figure

also shows that our proposed algorithm has a much better performance than the other three

algorithms, and the performance gain increases with the Nakagami fading parameter m. It is

interesting to observe from the figure that the independent power allocation algorithm performs

slightly better than the constant power allocation algorithm, and the performance gain diminishes

when m is large. This may be due to the fact that when m is increasing, the channel becomes

more deterministic, thus each RRH will use a constant transmission power for the independent

power allocation algorithm. By contrast, the performance gain of the proposed algorithm over

the existing methods is still significant, when m is high, since the higher degrees of freedom

are exploited by our algorithm.

Fig. 11 investigates the effect of peak power limitation on the performance of the various

algorithms. The figure shows that the effective capacity of constant power allocation remains

fixed for any peak power constraint, since the transmit power required for each RRH is fixed to

0.5 W. It is observed again that our proposed algorithm has a better performance than the other

three algorithms. An interesting phenomenon can be observed from this figure. The effective

capacity achieved both by the independent power allocation algorithm and by the nearest RRH
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Fig. 12. EC for various algorithms vs QoS delay exponent θ.

serving algorithm saturate quickly and there is only a slight increase of the effective capacity

above P peak
i = 0.6W for these two algorithms. By contrast, the effective capacity achieved by

our proposed algorithm keeps on increasing for all values of P peak
i . The reason is that the joint

relationship of these two channels is effectively exploited by our algorithm. This again reveals

the advantage of our proposed algorithm over the existing algorithms.

Finally, we consider a more general case in Fig. 10, where five RRHs are randomly located

in a square. In this setting, for the nearest of the RRH serving algorithm, the user is only served

by RRH 3. The rest of the figures are based on this network topology.

We first study the convergence behaviour of the online tracking method in Fig. 11, where

different QoS requirements are tested. As shown in Fig. 11, the online tracking method converges

promptly for all considered values of θ, and there is only a slight oscillation within a small

dynamic range. These observations demonstrate the efficiency of the online tracking method. In

contrast to the case of two RRHs, a larger value of θ leads to a faster convergence.

In Fig. 12, we again study the effect of QoS requirements on the performance of various

algorithms for the general case of five RRHs. As in the case of two RRHs, the effective capacity

achieved by all algorithms reduces with θ. The superior performance of our proposed algorithm

over the other three algorithms is observed again. However, the performance gain is higher than

two RRHs. For example, the proposed algorithm has almost twice the effective capacity of the

nearest RRH based algorithm. It also exhibits a substantial performance gain over the independent

power allocation algorithm for the two extreme cases, when the QoS delay requirement is very
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loose and very stringent.

VI. CONCLUSIONS

We considered joint power allocation for the EC maximization of C-RAN, where the user

has to guarantee a specific delay-QoS requirement to declare successful transmission. Both the

per-RRH average and peak power constraints were considered. We first showed that the EC

maximization problem can be equivalently transformed into a convex optimization problem,

which was solved by using the Lagrange dual decomposition method and by studying the KKT

conditions. The online tracking method was proposed for calculating the average power for each

RRH. For the special case of two RRHs, the expression of average power for each RRH can be

obtained in closed form. The simulation results showed that our proposed algorithm converges

promptly and performs much better than the existing algorithms. Specifically, 20% EC gain

can be achieved by our proposed algorithm over the independent algorithm for some cases. By

adapting to both the channel conditions and QoS exponent, our proposed algorithm significantly

outperforms the constant power based allocation scheme.

APPENDIX A

PROOF OF CONVEXITY OF PROBLEM (7)

Since the expectation operator is a linear additive operator, we only have to consider the ob-

jective function for each new channel fading generation. For simplicity, we omit the dependency

of pi (ν) on ν and the objective function can be expressed as

y(P)
∆
=
(

1 +
∑

i∈I
piαi

)−ε(θ)
, (A.1)

where P denotes the collection of power allocations. The second partial derivatives of y(P) can

be calculated as
∂y2(P)

∂p2
i

= α2
i ε(θ) (ε(θ) + 1)

(
1 +

∑
i∈I

piαi

)−ε(θ)−2

(A.2)

and
∂y2(P)

∂pi∂pj
= αiαjε(θ) (ε(θ) + 1)

(
1 +

∑
i∈I

piαi

)−ε(θ)−2

. (A.3)

Hence, the Hessian matrix of the function y(P) is

∇2y(P) = ε(θ) (ε(θ) + 1)
(

1 +
∑

i∈I
piαi

)−ε(θ)−2

ααT ,
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which is a positive semidefinite matrix. Obviously, the constraints in Problem (7) are linear.

Hence, the proof is completed.

APPENDIX B

PROOF OF LEMMA 1

Since p∗i > 0, p∗j = 0, from (14b) and (14c) it follows that µ∗i ≥ 0, δ∗i = 0 and µ∗j = 0, δ∗j ≥ 0,

respectively. Then, from (14a) it follows that

µ∗i = ε(θ)(1 +
∑

m∈I
p∗mγ̃m)−ε(θ)−1αi − λi ≥ 0, (B.1)

δ∗j = −ε(θ)(1 +
∑

m∈I
p∗mαm)−ε(θ)−1αj + λj ≥ 0. (B.2)

Hence, we have
λi
αi
≤ ε(θ)(1 +

∑
m∈I

p∗mαm)−ε(θ)−1 ≤ λj
αj
. (B.3)

APPENDIX C

PROOF OF LEMMA 2

We first prove the first part of Lemma 2. Assume that there are two RRHs i and j with

0 < p∗i < ppeak
i and 0 < p∗j < P peak

j . Then, according to (14b) and (14c), it follows that

u∗i = 0, δ∗i = 0, u∗j = 0, δ∗j = 0. Substituting them into (14a) yields

−ε(θ)(1 +
∑

m∈I
p∗mαm)−ε(θ)−1αi + λi = 0, (C.1)

−ε(θ)(1 +
∑

m∈I
p∗mαm)−ε(θ)−1αj + λj = 0. (C.2)

Hence, we have
λj
αj

=
λi
αi
. (C.3)

Since αi is independent of αj , λi and λj are constants, it is concluded that the above equality

holds with a zero probability. Thus, there is at most one RRH i with 0 < p∗i < P peak
i .

Let us also assume that there are two users i, k ∈ I ′ with 0 < p∗i < P peak
i and p∗k = P peak

k .

By using (14b) and (14c), we have u∗i = 0, δ∗i = 0, u∗k ≥ 0, and δ∗k = 0. According to (14a), it

follows that
λi
αi

= ε(θ)(1 +
∑

m∈I
p∗mαm)−ε(θ)−1 ≥ λk

αk
. (C.4)

Hence, we conclude that i = π(|I ′|).
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APPENDIX D

PROOF OF THEOREM 1

Lemma 2 implies that only one of the following two solutions can be true, which are

• Case I: p∗π(a) = P peak
a , a = 1, · · · , |I ′|;

• Case II: p∗π(a) = P peak
a , a = 1, · · · , |I ′| − 1, p∗π(I′) can be calculated as:

p∗π(I′) =
1

απ(|I′|)

( λπ(|I′|)

ε(θ)απ(|I′|)

)− 1
ε(θ)+1

−
|I′|−1∑
a=1

P peak
π(a)απ(a) − 1

 .
Then, we have to prove that |I ′| is the largest value of x that satisfies the following condition

λπ(x)

ε(θ)απ(x)

<

[
x−1∑
b=1

P peak
π(b)απ(b) + 1

]−ε(θ)−1

. (D.1)

First, we show that in both Case I and Case II, for any user π(a) ∈ I ′, the above inequality

holds. For Case I, as p∗π(|I′|) = P peak
|I′| , by using (14b) and (14c), it follows that µ|I′| ≥ 0 and

δ|I′| = 0. Then, substituting them into (14a) yields

λπ(|I′|)

ε(θ)απ(|I′|)
≤

 |I′|∑
b=1

P peak
π(b)απ(b) + 1

−ε(θ)−1

<

|I′|−1∑
b=1

P peak
π(b)απ(b) + 1

−ε(θ)−1

.

Hence, the above inequality holds for a = |I ′|. From Lemma 1, the left hand side (LHS) of

(D.1) increases as x increases, while the right hand side of (RHS) (D.1) decreases as x increases.

Hence, the inequality (D.1) holds for x = 1, · · · , |I ′| − 1. As a result, for x = 1, · · · , |I ′|, the

inequality (D.1) holds. A similar proof can be extended to Case II, the details of which are

omitted.

Finally, we show that for any RRH π(j), j ∈ {|I ′|+ 1, · · · , I}, (D.1) does not hold. Due to

the fact that the LHS of (D.1) increases as x increases while the RHS of (D.1) decreases as x

increases, it is sufficient to prove that for RRH π(|I ′| + 1), (D.1) does not hold. According to

(14b) and (14c), we have δ∗π(|I′|+1) ≥ 0 and µ∗π(|I′|+1) = 0. Then, from (14a), it follows that

λπ(|I′|+1)

ε(θ)απ(|I′|+1)

≥

 |I′|∑
b=1

p∗πbαπ(b) + 1

−ε(θ)−1

≥

 |I′|∑
b=1

P peak
π(b)απ(b) + 1

−ε(θ)−1

,

which does not satisfy inequality (D.1). Therefore, the proof is completed.
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APPENDIX E

PROOF OF THEOREM2

For any given λ̃, denote the optimal solution of Problem (9) by P∗
λ̃
(ν) =

[
p∗

(1,λ̃)
(ν), · · · , p∗

(I,λ̃)
(ν)
]T

when λ = λ̃. Then, we have

g(λ̃) = min
P∈P

{
Eα[(1 +

∑
i∈I

pi(ν)αi)
−ε(θ)

] +
∑

i∈I
λ̃i(Eα[pi(ν)]− P avg

i )

}
(E.1)

≤ Eα[(1 +
∑

i∈I
p∗(i,λ(k))(ν)αi)

−ε(θ)] +
∑

i∈I
λ̃i(Eα[p∗(i,λ(k))(ν)]− P avg

i ) (E.2)

= g(λ(k)) +
∑

i∈I

(
λ̃i − λ(k)

i

)
(Eα[p∗(i,λ(k))(ν)]− P avg

i ) (E.3)

= g(λ(k)) +
(
λ̃− λ(k)

)T
(Eα[P∗λ(k)(ν)]− P̃avg), (E.4)

where (E.1) uses the definition of g(λ̃) in (9), (E.2) follows since P∗
λ(k)(ν) is not the optimal

solution of Problem (E.1) when λ = λ̃.

APPENDIX F

THE AVERAGE POWER FOR THE CASE OF I = 1

Let us now define the following function

g(α1) =
1(

λ1

ε(θ)

) 1
1+ε(θ)

α
ε(θ)

1+ε(θ)

1

− 1

α1

. (F.1)

Taking the first-order derivative of g(α1) with respect to α1 and setting it to zero yields:

g′(α1) = − 1(
λ1

ε(θ)

) 1
1+ε(θ)

α
1+

ε(θ)
1+ε(θ)

1

ε(θ)

1 + ε(θ)
+

1

α2
1

= 0. (F.2)
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By solving (F.2), we can obtain the solution α∗1 = λ1

ε(θ)

(
1+ε(θ)
ε(θ)

)1+ε(θ)

. It can be easily verified

that the function g(α1) first increases in the region of α1 ∈
[
λ1

ε(θ)
, α∗1

]
and then decreases when

α1 ∈ [α∗1,∞]. Hence, we can obtain the maximum value of the function g(α1) by substituting

α∗1 into (F.1), which yields

g(α∗1) =
1

λ1

(
ε(θ)

1 + ε(θ)

)1+ε(θ)

. (F.3)

It can be readily verified that when α1 → ∞, g(α1) → 0. In addition, g
(

λ1

ε(θ)

)
= 0. Hence,

depending on the comparative value between g(α∗1) and P peak
1 , two cases should be considered,

when computing the average power as illustrated in Fig. 13. The details are given as follows:

Case I: g(α∗1) ≤ P peak
1 . In this case, the transmit power is always lower than the peak power

as shown in Fig. 13. Hence, the peak power constraints are redundant and can be removed. Thus,

the average power can be expressed as

Eα1 {p1} =

∫ ∞
λ1
ε(θ)

g(α1)f(α1)dα1,

which can be expanded as

Eα1 {p1} =



(
ε(θ)
λ1

) 1
1+ε(θ)

(
m
ᾱ1

) ε(θ)
1+ε(θ)

Γ(m)(m− ε(θ)
1+ε(θ))

[
−
(

λ1m
ᾱ1ε(θ)

)m− ε(θ)
1+ε(θ)

e
− λ1m
ᾱ1ε(θ) + Γ

(
m+ 1

1+ε(θ)
, λ1m
ᾱ1ε(θ)

)]
− m

(m−1)Γ(m)ᾱ1

[
−
(

λ1m
ᾱ1ε(θ)

)m−1

e
− λ1m
ᾱ1ε(θ) + Γ

(
m, λ1m

ᾱ1ε(θ)

)]
,when m 6= 1(

ε(θ)
λ1

) 1
1+ε(θ)

ᾱ
− ε(θ)

1+ε(θ)

1 Γ
(

1
1+ε(θ)

, λ1

ᾱ1ε(θ)

)
+ 1

ᾱ1
Ei
(
− λ1

ᾱ1ε(θ)

)
, when m = 1,

(F.4)

where Ei(x) = −
∫∞
−x (e−t/t) dt is the exponential integral function, while Γ (s, x) =

∫∞
x
ts−1e−tdt

is the upper incomplete gamma function.

Case II: g(α∗1) > P peak
1 . In this case, there must exist two solutions that satisfy g(α1) = P peak

1

as shown in Fig. 13. Denote these two solutions as αL1 and αU1 with αL1 < αU1 . These two solutions

can be numerically obtained by existing algorithms, such as the classic bisection search method.

As seen from Fig. 13, the transmit power is equal to g(α1) when α1 ∈
[
λ1

ε(θ)
, αL1

]
and

[
αU1 ,∞

]
,

equal to P peak
1 when α1 ∈

[
αL1 , α

U
1

]
. Hence, the average power can be expressed as:

Eα1 {p1} =

∫ αL1

λ1
ε(θ)

g(α1)f(α1)dα1︸ ︷︷ ︸
O1

+P peak
1

∫ αU1

αL1

f(α1)dα1︸ ︷︷ ︸
O2

+

∫ ∞
αU1

g(α1)f(α1)dα1︸ ︷︷ ︸
O3

. (F.5)
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Note that O1 and O3 can be derived similarly as the average power in Case I, which are omitted

for simplicity. We only provide the expression of O2 as follows:

O2 =
P peak

1

Γ(m)

[
γ

(
m,

m

ᾱ1

αU1

)
− γ

(
m,

m

ᾱ1

αL1

)]
,

where γ (s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function.

For the case of a single RRH, there is only one dual variable λ1, which can be obtained by

solving equation Eα1 {p1} = P avg
1 with one-dimension bisection search method.

APPENDIX G

PROOF OF LEMMA 3

For x ≥ 0, the second-order derivative of h(x) with respect to (w.r.t.) x is given by h′′(x) =

a2b(b − 1)(1 + ax)b−2, which is positive since a > 0, b > 1. Hence, h(x) is a convex function,

when x ≥ 0. Combining with the fact that h(0) = 1, there are only three possible curves for

h(x) when x ≥ 0, as shown in Fig. 3. Next, we derive the conditions for each case.

1) Case 1: In this case, the first-order derivative of h(x) is positive when x = 0, i.e., h′(0) ≥ 0,

which yields the condition for Case 1 in Lemma 3;

2) Case 2: The first-order derivative of h(x) is negative for x = 0, i.e., h′(0) < 0, which

yields the condition of ab − c < 0. The minimum point of h(x) is achieved by solving

equation h′(x) = 0, and the solution is given by x∗ = 1
a

((
c
ab

) 1
b−1 − 1

)
. Then, according

to Fig. 3-b, h(x∗) ≥ 0 should hold, which leads to the second part of the conditions in

Case 2 in Lemma 3;

3) Case 3: The proof is similar to that in Case 2, and is omitted for simplicity.

APPENDIX H

PROOF OF λ1

ε(θ)
< αl1

It is easy to verify that h (λ1/ε (θ)) > 0 when a, b, c are given in (29). Hence, when the

third condition of Lemma 3 given in Condition C1 is satisfied, according to Fig. 3-c, λ1/ε (θ)

must fall into two regions: 1) 0 < λ1/ε (θ) < αl1; 2) λ1/ε (θ) > αu1 . In the following, we prove

that the probability of λ1/ε (θ) falling into the second region is zero by using the method of

contradiction.
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Suppose that λ1/ε (θ) > αu1 holds. Then, according to Fig. 3-c, λ1/ε (θ) must be larger than

the optimal point, i.e., λ1/ε (θ) > x∗, where x∗ is given in Appendix G. By substituting a, b, c

in (29) into this inequality and after some further simplifications, we have(
P peak

1 λ1

ε (θ)
+ 1

)ε(θ)

>
ε (θ)

P peak
1 λ1 (1 + ε (θ))

. (H.1)

Additionally, by inserting a, b, c in (29) into Condition C1 and after some further simplifications,

we have

P peak
1 λ1 <

(
ε (θ)

1 + ε (θ)

)1+ε(θ)

< 1. (H.2)

By substituting (H.2) into the right hand side of (H.1) and with some simple further operations,

one obtains λ1P
peak
1 > 1, which contradicts with (H.2) that λ1P

peak
1 < 1. Hence, the assumption

that λ1/ε (θ) > αu1 cannot hold, which completes the proof.

APPENDIX I

DERIVATIONS OF TC2
RRH1

WHEN m IS A POSITIVE INTEGER

The closed-form expression of TC2
RRH1

for the case of m = 1 can be easily obtained by inserting

m = 1 into (39). In the following, we only focus on the case when m ≥ 2.

When m ≥ 2, function γ (m,x) can be expanded as [8.352.1, Page 899, [27]]

γ (m,x) = (m− 1)!

(
1− e−x

m−1∑
l=0

xl

l!

)
. (I.1)

By plugging the above expression with x = Wα1 into (39), we obtain the average power for

RRH 1 as follows:

TC2
RRH1

=
Z

UV

∫ ∞
U

αV+m−2
1 e

− m
ᾱ1
α1dα1︸ ︷︷ ︸

J1

+Z
m−1∑
l=0

W l

l!

∫ ∞
U

αl+m−2
1 e−Y α1dα1︸ ︷︷ ︸

J2

− Z

UV

m−1∑
l=0

W l

l!

∫ ∞
U

αl+V+m−2
1 e−Y α1dα1︸ ︷︷ ︸

J3

−Z
∫ ∞
U

αm−2
1 e

− m
ᾱ1
α1dα1︸ ︷︷ ︸

J4

.

With some simple variable substitutions, the closed-form expressions of J1, J2, J3 and J4 can

be easily calculated as in (43) and (44), respectively.
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